
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

A User Study to Inform the Design of the Obsidian
Blockchain DSL

Celeste Barnaby
Wesleyan University

cbarnaby@wesleyan.edu

Michael Coblenz
Carnegie Mellon University
mcoblenz@cs.cmu.edu

Tyler Etzel
Cornell University
tje44@cornell.edu

Eliezer Kanal
Carnegie Mellon University

ekanal@cert.org

Joshua Sunshine
Carnegie Mellon University

sunshine@cs.cmu.edu

Brad Myers
Carnegie Mellon University

bam@cs.cmu.edu

Jonathan Aldrich
Carnegie Mellon University

jonathan.aldrich@cs.cmu.edu

Abstract
Blockchain platforms such as Ethereum and Hyperledger
facilitate transactions between parties that have not estab-
lished trust. Increased interest in these platforms has moti-
vated the design of programming languages such as Solidity,
which allow users to create blockchain programs. However,
there have been several recent instances where Solidity pro-
grams have contained bugs that have been exploited. The
security of blockchain programs is especially important given
that they commonly involve the exchange of money or other
objects with real-world value. We are currently developing
a blockchain-based programming language called Obsidian
with the goal of minimizing the risk of common security
vulnerabilities. We are designing this language in a human-
centered way, conducting exploratory user studies with a
natural programming approach to inform our design choices.
In this paper, we discuss our approach to the design of a user
study, as well as our preliminary findings.

Keywords blockchain programming, blockchain security,
user study

ACM Reference Format:
Celeste Barnaby, Michael Coblenz, Tyler Etzel, Eliezer Kanal, Joshua
Sunshine, Brad Myers, and Jonathan Aldrich. 2017. A User Study
to Inform the Design of the Obsidian Blockchain DSL. In Proceed-
ings of 8th Workshop on Evaluation and Usability of Programming
Languages and Tools, Vancouver, BC, Canada, October 23, 2017
(PLATEAU’17), 7 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
We are designing a blockchain-based programming language
called Obsidian [1] with the goal of minimizing the risk
of common security vulnerabilities in blockchain programs.

with paper note.
PLATEAU’17, October 23, 2017, Vancouver, BC, Canada
2017. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Blockchain programs written with current domain-specific
languages such as Solidity [2] often contain exploitable bugs.
In a particularly calamitous example, $50 million was stolen
from a contract called The DAO on the Ethereum blockchain
[3]. Obsidian contains core features – namely, first-class type-
state, linear resources, and path-dependent types – that will
allow users to write safe, effective programs. The target user
base of Obsidian is business professionals who will use the
language to write smart contracts, and its design is thus ori-
ented towards this domain. Obsidian programs consist of
contracts – similar to classes in Java – which contain fields,
states, and transactions – similar to methods.

1.1 Typestate
We (as well as other researchers) have observed that programs
in the domains of focus for blockchain platforms are typically
state-oriented [9]. Furthermore, the DAO exploit stemmed
from invoking a function in an external contract while the
calling contract was in an inconsistent state. In light of this,
Obsidian makes state first-class: an object in Obsidian has a
mutable state that restricts which transactions can be invoked
on it [4].

contract LibraryCard {

state NoCard {

transaction getCard () {

...

->HasCard

}

}

state HasCard {

transaction checkOutBook () {

...

}

}

}

Fig. 1. An example of states in Obsidian.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

PLATEAU’17, October 23, 2017, Vancouver, BC, Canada Barnaby et al.

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

The states of a contract are defined as explicit blocks con-
taining transactions and fields, which can only be accessed if
the contract is in the corresponding state. In the example in
Fig. 1, a LibraryCard is always in one of two states, NoCard
or HasCard. The transaction checkOutBook can only be called
on an instance of LibraryCard if it is in the HasCard state; oth-
erwise, it will throw an exception. The -> operator indicates
a state transition.

1.2 Linear Resources
Blockchain programs may manage some kind of resource, like
a cryptocurrency, or a token indicating a more complicated
right (e.g. ownership of a financial option). Linear types [5]
are an existing approach that allow the compiler to enforce
a safe, clean programming model: resources cannot be used
more than once, but must be used before leaving the current
scope (thus ensuring that a resource is not lost accidentally).

contract Treasury {

// Money is a resource of Treasury

resource contract Money { ... }

transaction t1(Money m) {

spendMoney(m);

Bond b = exchangeForBonds(m);

// compiler error: m is used twice

}

transaction t2(Money m) {

// compiler error: m is never used

return;

}

}

Fig. 2. Linear resources in Obsidian

1.3 Path-Dependent Types
There are certain cases in blockchain programs in which a
programmer may want a resource to be dependent upon a
specific contract. For example, we may want each instance of
the Treasury contract in Fig. 2 to mint its own kind of money.
If money m1 from treasury t1 is used with a distinct treasury
t2, we would like the compiler to give an error message.
Obsidian supports this via the inclusion of path-dependent
types [6], wherein values can have type members. In the above
example, the type of Money is dependent upon a specific value
of Treasury; put another way, each treasury t has its own type
t.Money.

Path-dependent types assist in writing secure contracts:
without such types, every treasury would share the same
money type, and the programmer would have to manually
check that all money deposited into a treasury (for exam-
ple) is of the correct type. Incorrect or insufficient checks
could leave contracts vulnerable to exploitation. With path-
dependent types, all such checks are automatic: we can ensure

that only money that comes from a specific treasury is used
in transactions within that treasury.

1.4 Usability
It is crucial that real programmers are able to write correct
Obsidian code easily and efficiently. But even with seem-
ingly intuitive features, it is not always clear which design is
most effective for programmers. For instance, consider the
following simple Obsidian contract:

contract C {

state Start {

int x;

transaction a() returns int {

->S1{x1 = x};

return b(x1);

}

}

state S1 {

int x1;

transaction b(int y) returns int {

return y;

}

}

}

In transaction a, does it make sense to call b(x1) after
transitioning to state S1? Lexically the contract is still in the
Start state, so it is not immediately apparent which variables
and transactions are in scope. In a nontrivial program with
many different contracts, transactions, and states, a situation
like this could cause serious confusion. Failure to encode state
machines properly has been shown to be a significant source
of errors in smart-contract programming [7]. It is critical
that users are able to understand and use states easily and
effectively – if not, there is potential to create the same or
worse bugs, including security weaknesses, as in a language
without states.

Similar questions of usability arise with linear resources
and path-dependent types. Despite their apparent utility, linear
types have seen limited adoption in popular programming lan-
guages (though Rust uses a form of linearity for alias control
[10]), so it is not clear what is the best user-facing approach to
integrating these types into our design. As for path-dependent
types, an initial approach we have taken is to use nested con-
tracts to indicate a dependency relationship; however, nesting
has different implications in different languages, and we are
not certain that users will be able to recognize the presence
and utility of path dependency.

A related issue is whether users will want to use these fea-
tures if they are made available. Are these logical, sensible
solutions to real problems that programmers face? If people

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

A User Study to Inform the Design of the Obsidian Blockchain DSL PLATEAU’17, October 23, 2017, Vancouver, BC, Canada

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

do not understand or choose to use the language’s core fea-
tures, then any of the potential benefits of those features are
lost.

We are conducting a user study to investigate the usability
of state transitions and path-dependent types in Obsidian (a
study of the usability of linear resources will occur in future
work). This study is consistent with prior work that showed
the applicability of human-computer interaction techniques to
programming tools [8]. One technique we use is the natural
programming approach, in which we ask participants how
they would like to express their solutions to programming
problems [11]. The key research questions we address in the
study are as follows:

• Are states and path-dependent types a natural way of
approaching the challenges that arise in blockchain
programming?

• How do people naturally express states, state transitions,
and path-dependent types?

• Which (if any) of our proposed ways of presenting
states, state transitions, and path-dependent types is
most understandable and usable by programmers?

• Are people able to effectively use and understand path-
dependent types as they are implemented in Obsidian?

2 User Study Design
This study was exploratory rather than evaluative: its purpose
was to give us information about the usability of state tran-
sitions and path-dependent types so we can make informed
choices about the design of our language. We chose these
features as the focus of our study because they are both key
safety features that we expect users will use frequently. In
addition, they both have several distinct options for their syn-
tactic representation, and the results of the study will factor
into which design we choose to implement.

Participants were asked to complete two programming ex-
ercises, both of which were divided into parts that gradually
introduced the participant to Obsidian and its main features.
Participants were instructed to think aloud throughout the
exercise, and were permitted to ask questions. We designed
the study so that both exercises could be completed in approx-
imately an hour and a half, in order to make it easier for us to
find willing participants as well as to limit participant fatigue.
We obtained IRB approval for the study; participants gave
informed consent and were paid $10/hour for their time.

2.1 Voter Registration Exercise
Participants were given a description of a voter registration
system for a hypothetical democratic nation. The system had
certain stipulations that made a state machine a logical means
of representing its required behaviors. For instance, the sys-
tem had specific conditions under which a citizen either be-
came registered to vote or remained unregistered.

The exercise was divided into five parts. In part one, partic-
ipants were asked to implement the system using pseudocode.
They were encouraged to invent any language features that
they wanted in order to solve this problem. Our goal was
to see how people naturally solve a problem in this domain:
what ideas do they have, and what assumptions do they make?

In part two, participants were given a state diagram that
modeled the voter registration system, and were asked to
modify their pseudocode to include the states and state tran-
sitions shown in the diagram. Again, we wanted to observe
people’s natural ideas about how to represent states and state
transitions in a program.

In part three, participants were given a two-page Obsidian
tutorial detailing the key components of the language. The
tutorial explained how state blocks work, but did not give any
information about how transitions should be written. Partici-
pants were then given an Obsidian program that implemented
the voter registration system, but was missing state transitions.
Participants were asked to add state transitions to the code,
inventing the syntax themselves.

In part four, participants were shown three options for the
syntax and functionality of state transitions, each accompa-
nied by a short code example. Participants were presented the
options in a random order; the order given here is arbitrary.

In option 1, shown in Fig. 3, users were allowed to use any
transaction available in the current dynamic state regardless
of the lexical context. For instance, it is legal to use the toS2

transaction (on line 5) inside the Start state, even though that
transaction is defined within S1. This is because there is a
transition to S1 in the previous line.

1 contract C {

2 state Start {

3 transaction t(int x) {

4 ->S1{x1 = x};

5 toS2 ();

6 }

7 }

8
9 state S1 {

10 int x1;

11
12 transaction toS2() {

13 ->S2{x2 = x1};

14 }

15 }

16
17 state S2 {

18 int x2;

19 }

20 }

Fig. 3. Option 1 for state transitions

In option 2, shown in Fig. 4, each state had a constructor
that was invoked when the contract transitioned to that state.

3

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

PLATEAU’17, October 23, 2017, Vancouver, BC, Canada Barnaby et al.

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

With this option, there could not be any code following a
state transition; thus, a transition had to be the final line of a
transaction.

1 contract C {

2 state Start {

3 transaction t(int x) {

4 ->S1(x)

5 }

6 }

7
8 state S1 {

9 int x1;

10 S1(int x) { // State constructor

11 x1 = x;

12 ->S2(x1);

13 }

14 }

15
16 state S2 {

17 int x2;

18 S2(int x) { // State constructor

19 x2 = x;

20 }

21 }

22 }

Fig. 4. Option 2 for state transitions

In option 3, shown in Fig. 5, there were conditional if in

{state} blocks, which allowed the user to lexically nest states
so that another state’s transactions and fields could be used
directly.

1 contract C {

2 state Start {

3 transaction t(int x) {

4 ->S1({x1 = x})

5 if in S1 {

6 ->S2({x2 = x1})

7 }

8 if in S2 {

9 ...

10 }

11 }

12 }

13
14 state S1 {

15 int x1;

16 }

17
18 state S2 {

19 int x2;

20 }

21 }

Fig. 5. Option 3 for state transitions

Participants were asked to complete a short Obsidian con-
tract once for each option. The contract was designed to be a
simple yet non-trivial use of state transitions that illustrated
the benefits and drawbacks of each option. The goal of this
part was to see whether participants would be able able to
implement the contract successfully with each option, as well
as to gather feedback about which option they preferred and
why.

In part five, participants were asked to pick one of the
three options for state transitions and use it to complete the
Obsidian program from part three. They were then asked to
explain their reasoning and elaborate on if there was anything
confusing about any of the options.

2.2 Lottery Ticket Exercise
Participants were given a description of a program that al-
lowed users to create and participate in lotteries. Every lottery
sold lottery tickets, but a user should only be able to redeem a
winning ticket from the lottery from which it was purchased –
thus motivating the use of path-dependent types.

The exercise was divided into two parts. Part one mir-
rored the voter registration exercise in that participants were
asked to implement the program using pseudocode. Again,
we wanted to see how people naturally go about solving this
problem. Would using path-dependent types – or some feature
similar to that – occur to anyone?

In part two, participants were given an explanation of path-
dependent types and offered an Obsidian contract that im-
plemented the lottery program, but had two transactions left
unwritten. Participants were asked to write those transactions.
We wanted to observe whether people were able to understand
path-dependent types and write correct code using them after
only a brief introduction.

3 Discussion of Study Design
One challenge in designing the user study was ensuring that
the programming exercises had an appropriate level of diffi-
culty. The scenarios had to be simple enough that participants
could comprehend and implement them in the little time they
had, but complex enough that implementing them was a non-
trivial problem that actually motivated the use of Obsidian’s
features. Our first several pilot studies revealed that our ex-
ercises were too complicated, and participants took much
longer to read and understand the instructions than we had
anticipated. Additionally, there were parts of the exercises
that people were continually confused about, which made it
difficult to assess their ability to use the language.

As we revised the programming exercises, we trended to-
wards simplifying and condensing. For instance, the state
diagram in the voter registration exercise originally had six
states and five transitions, but was modified to have three
states and three transitions; the tutorial was cut from three
pages to one and a half; and two parts were removed from the

4

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

A User Study to Inform the Design of the Obsidian Blockchain DSL PLATEAU’17, October 23, 2017, Vancouver, BC, Canada

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

lottery ticket exercise. We also made sure that each exercise
targeted exactly one feature: the voter registration exercise
was focused only on state transitions, the lottery ticket exer-
cise on path-dependent types.

We found that simplifying the exercises allowed us to col-
lect better data. Participants who completed the simplified
exercises spoke their thoughts aloud more consistently and
stated their preferences and opinions more confidently. They
were able come up with better and more interesting solutions
to the problems and write Obsidian code more effectively.
But simplifying our programming exercises also created cer-
tain limitations. Since the exercises were short and not very
complex, participants’ opinions may have been based only
on a cursory understanding of the language. There may be an
option for state transitions, for instance, whose utility only
becomes apparent in a large, complicated contract. Testing
these issues is left for future work.

4 Preliminary Results
We recruited a convenience sample of 12 participants. They
had varying levels of programming experience: some were
beginners, some experts. None had any knowledge about Ob-
sidian prior to completing the study. Nine of the participants
were undergraduates studying computer science; one was a
computer science Ph.D student, and two were working in a
business-related fields. Since this was an exploratory study,
we revised the study materials after each participant accord-
ing to what we learned about the materials or the language
design choices, and we asked participants to complete either
one or both exercises according to our experimental design
needs and the participants’ time constraints. Some partici-
pants only completed several parts of one exercise due to time
constraints.

4.1 Voter Registration Exercise
Seven participants were given the voter registration exercise.
When asked to write pseudocode for the voter registration
exercise, the general approach every participant took was to
create a globally accessible list that stored the registration
status (either registered or unregistered) of each citizen. While
this is a logical implementation of the problem, it was not
completely secure. For example, some participants created
separate lists for registered and unregistered citizens, meaning
that it would be possible for a citizen to erroneously appear
on both lists.

Six out of these seven participants were shown a state di-
agram and asked to modify their pseudocode to use states.
Of these six participants, two created explicit state blocks
with functions and variables inside, similar to the design of
Obsidian. The rest either maintained a global state variable
that changed based on the status of a citizen, gave each cit-
izen a state field that changed based on the citizen’s status
(e.g. with syntax such as "Citizen.state = CANVOTE()"), or

created empty, immutable states at the top of the program.
Several participants did not check whether a citizen was unreg-
istered before processing their application, meaning it would
be possible for an already registered citizen to register again –
something we expressly prohibited in the instructions.

When looking at and writing Obsidian code with states,
participants asked a lot of questions about what should be
allowed to happen during and after a state transition – that
is, what variables are and are not in scope, what the keyword
“this" refers to, and what transactions can be used. Several
participants asked if there was any way to check which state
the contract was in. One participant noted that he felt it should
never be allowed to call transitions from one state while lex-
ically in another, saying “I’m calling S1’s transaction from
code for Start.” Another participant said that she felt that
state transitions were like return statements, and after com-
pleting a transition there should not be any more code in that
transaction.

Three participants preferred the option that included state
constructors, maintaining that this option was easier to under-
stand. One preferred the option with if in {state} blocks
because it made it immediately apparent which state a con-
tract was in. The remaining three participants either did not
express a preference or did not complete this part of the exer-
cise.

4.2 Lottery Ticket Exercise
Six participants were given the lottery ticket exercise. When
asked to implement the program using pseudocode, four out
of the six defined a class for Lottery. The instructions speci-
fied that users of the program should be able to buy a ticket
from any lottery, but must only be able to redeem a winning
ticket from the lottery where they bought the ticket. Four
out of the six implemented a program without immediately
recognizing or forming a solution to this problem. When the
study facilitator pointed out the issue, the approach all four
participants took to resolve it was to give every lottery a fixed
ID. They then made sure that the function that redeems a
ticket must check that the ticket’s ID is equal to the lottery
ID.

This implementation left some room for exploitation. Two
participants made the lottery’s ID a randomly generated num-
ber, meaning it would be possible for two lotteries to have
the same ID. One participant had the ticket owner input the
lottery ID themselves upon redeeming the ticket, meaning
that if a ticket owner somehow found the ID of a different
lottery, they could redeem their ticket from there. In each case,
the participant was able to understand the need to have lottery
tickets be tied to lotteries in some way, but four out of the six
participants had trouble executing this easily and effectively.

When offered an explanation of path-dependent types and
given an Obsidian program to complete, all participants were

5

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

PLATEAU’17, October 23, 2017, Vancouver, BC, Canada Barnaby et al.

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

able to write correct (albeit very simple) code. Five partic-
ipants were asked to identify the types of two lottery tick-
ets that had been purchased from different lotteries. Since
lotteries and lottery tickets had an established dependency
relationship, the correct answer was that they had different
types, even though they were both lottery tickets. Of these
five participants, two were able to offer this answer with ac-
curate reasoning. One vaguely said that it "seems" like they
should have different types, but was not sure since it was not
indicated explicitly in the code.

Three participants noted that the use of nested classes was
confusing or unclear – one said, "it’s usually bad practice to
use nested classes in Java."

5 Discussion
The results of the pseudocode portions of both exercises indi-
cate that states and path-dependent types are not necessarily
the most obvious or natural ways of solving the problems
we presented. This makes sense given the backgrounds of
our participants: most of them noted that they were writing
pseudocode resembling the language they were most com-
fortable with, and thus may not have thought about inventing
new, unfamiliar language features. Moreover, the simplicity
of both exercises – the voter registration exercise in particu-
lar – may have made the need for these features somewhat
opaque. Still, we found it encouraging that two participants
independently invented special syntax denoting states, with
appropriate scoping for fields and transactions. Further, we
found in many cases that the approaches participants did take
(reflecting approaches representative of commonly-used lan-
guages) to implementing the programs were insufficient or
unsafe, and the weaknesses in their programs could have been
solved by using states or path-dependent types. This result,
coupled with our strong background evidence of the utility
of these features, motivates us to continue developing these
features in Obsidian, while further investigating the best ways
to design, present, and evaluate them.

The results of the voter registration exercise indicate that a
majority of participants prefer to specify code that executes
after state transitions using state constructors. The fact that
participants preferred this option after a short coding exercise
is not conclusive proof that this is the best option or the one
we should implement; however, it does indicate that Obsidian
users want it to be simple and easy to tell which variables
and transactions are in scope and to lexically determine the
current state of an object. Our results offer evidence that
encapsulating all the actions of a state within that state may
allow users to understand more easily which state an object is
currently in and which transactions and fields they are allowed
to use – thus enabling them to write better code.

The responses we received from participants in the lottery
ticket exercise reveal that nesting contracts is likely not the

most understandable way to express a dependency relation-
ship. Three participants made comments about this, and those
who did not were not able to identify path-dependent types
correctly. An alternative to this approach would be to prohibit
nesting and instead use a keyword to denote this relation-
ship (e.g. "resource contract LotteryTicket depends on

Lottery").

6 Future Work
We are continuing to refine the language features and test
them with further user studies.

• We will target people in the business domain (e.g. busi-
ness students and business analysts) with limited pro-
gramming experience, in order to collect data from the
intended user base of Obsidian.

• We will design programming exercises that further ad-
dress the usability of linear resources. One question of
interest, for example, is how to enforce linearity for
field accesses and state transitions: what should hap-
pen when attempting to access an owned field that has
already been consumed, and how can one transition
between states with different owned fields?

• We will design programming exercises that require par-
ticipants to read and write longer, more complicated
Obsidian contracts that actually compile. This will of-
fer us more evidence about whether people are able to
write correct Obsidian code. It will also allow partici-
pants to gain a deeper, less superficial understanding
of Obsidian’s features and thus offer more constructive
feedback about Obsidian’s usability.

• Finally, we plan to modify the Obsidian language im-
plementation using the results of these studies, and
evaluate the final design in a formal study testing its
effectiveness.

7 Conclusion
We designed and conducted an exploratory study of the us-
ability of two of Obsidian’s major safety features. Preliminary
results from this study offered valuable insight into both the
design choices we will make in the language as well as the
direction that future user studies will take. By using a human-
centered approach in the design of Obsidian, we aim to offer
a blockchain-based programming language that allows users
to write smart contracts more safely and easily than currently
available blockchain DSLs.

References
[1] M. Coblenz, “Obsidian: A Safer Blockchain Programming Language,"

in Proceedings of the 39th International Conference on Software Engi-
neering - ICSE ’17, 2017.

[2] Ethereum Foundation, “Solidity," https://solidity.readthedocs.io/en/develop/.
Accessed Aug. 3, 2017.

[3] E. Gün Sirer, “Thoughts on the DAO hack," 2016. [Online]. Available:
http://hackingdistributed.com/2016/06/17/thoughts-on-the-dao-hack/

6

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

A User Study to Inform the Design of the Obsidian Blockchain DSL PLATEAU’17, October 23, 2017, Vancouver, BC, Canada

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

[4] J. Aldrich, J. Sunshine, D. Saini, Z. Sparks, “Typestate-Oriented Pro-
gramming," in Proceedings of the 24th ACM SIGPLAN conference
companion on Object oriented programming systems languages and
applications, 2009, pp. 1015-1022.

[5] P. Wadler, “Linear Types Can Change the World," IFIP TC, vol. 2, pp.
347 - 359, 1990.

[6] N. Amin, T. Rompf, and M. Odersky. “Foundations of Path-Dependent
Types." in OOPSLA, 2014.

[7] K. Delmolino, M. Arnett, A. E. Kosba, A. Miller, and E. Shi, “Step by
step towards creating a safe smart contract: Lessons and insights from a
cryptocurrency lab." IACR Cryptology ePrint Archive, vol. 2015, p. 460,
2015.

[8] B. Myers, A. Ko, T. LaToza, and Y. Yoon, “Programmers Are Users Too:
Human-Centered Methods for Improving Programming Tools," IEEE
Computer, Special issue on UI Design, 49, issue 7, July, 2016, pp. 44-52.

[9] Ethereum Foundation, “Common patterns,”
http://solidity.readthedocs.io/en/develop/common-patterns.html.
Accessed Jan. 4, 2017.

[10] N. D. Matsakis and F. S. Klock, II. 2014. “The Rust language." Ada
Lett. 34, 3 (October 2014), 103-104.

[11] B.A. Myers, J.F. Pane, A. Ko, “Natural Programming Languages and
Environments", Comm. ACM, vol. 47, no. 9, pp. 47-52, 2004.

7

	Abstract
	1 Introduction
	1.1 Typestate
	1.2 Linear Resources
	1.3 Path-Dependent Types
	1.4 Usability

	2 User Study Design
	2.1 Voter Registration Exercise
	2.2 Lottery Ticket Exercise

	3 Discussion of Study Design
	4 Preliminary Results
	4.1 Voter Registration Exercise
	4.2 Lottery Ticket Exercise

	5 Discussion
	6 Future Work
	7 Conclusion
	References

