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Obsidian: Typestate and Assets for Safer Smart Contracts
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Blockchain platforms are coming into broad use for processing critical transactions among participants
who have not established mutual trust. Many blockchains are programmable, supporting smart contracts,
which maintain persistent state and support transactions that transform the state. Unfortunately, bugs in
many smart contracts have been exploited by hackers. Obsidian is a novel programming language with a
type system that enables static detection of bugs that are common in smart contracts today. Obsidian uses
typestate to detect improper state manipulation and uses linear types to detect abuse of assets. We describe
two case studies that evaluate Obsidian’s applicability to the domains of parametric insurance and supply
chain management, finding that Obsidian’s type system facilitates reasoning about high-level states and
ownership of resources. We compared our Obsidian implementation to a Solidity implementation, observing
that the Solidity implementation requires a lot of boilerplate checking and tracking of state, whereas Obsidian
eliminates this through static checks.

Additional Key Words and Phrases: programming language design, smart contract programming languages,
blockchain, aliasing, permissions systems, usability of programming languages

1 INTRODUCTION

Blockchains have been proposed to address security and robustness objectives in contexts that
lack shared trust. By recording all transactions in a tamper-resistant ledger, blockchains attempt
to facilitate secure, trusted computation in a network of untrusted peers. Blockchain programs,
sometimes called smart contracts [Szabo 1997], can be deployed in a ledger; once deployed, they
can maintain state. For example, a program might represent a bank account and store a quantity of
virtual currency. Clients could conduct transactions with bank accounts by invoking the appropriate
interfaces. In this paper, we refer to a deployment of a smart contract as an object or contract instance.

Proponents have suggested that blockchains be used for a plethora of applications, such as
finance, health care [Harvard Business Review 2017], supply chain management [IBM 2019], and
others [Elsden et al. 2018]. Unfortunately, some prominent blockchain applications have included
security vulnerabilities, for example through which over $80 million worth of virtual currency
was stolen [Graham 2017; Sirer 2016]. In addition to the potentially severe consequences of bugs,
platforms require that contracts are immutable, so bugs cannot be fixed easily. If organizations
are to adopt blockchain environments for business-critical applications, there needs to be a more
reliable way of writing smart contracts.

Many techniques promote program correctness, but our focus is on programming language
design so that we can prevent bugs as early as possible — potentially by aiding the programmer’s
reasoning processes before code is even written. We have created Obsidian, a programming language
for smart contracts that provides strong compile-time features to prevent bugs. Obsidian is based
on a novel type system that uses typestate to statically ensure that objects are manipulated correctly
according to their current states, and uses linear types to enable safe manipulation of assets, which
must not be accidentally lost.

Obsidian’s sophisticated features for improving safety will not do any good if programmers
cannot or will not use them. Therefore, we aim to provide usable features: ones that are designed so
that people can use them effectively. Although techniques for developing programming languages
in a human-centered way are not yet mature, one of our research goals in developing Obsidian is to
develop principles and techniques for designing languages that are effective for their users. However,
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1:2 Anon.

it does not suffice to focus entirely on usability; the language must provide strong, domain-relevant
guarantees. We rely on theory to confine our design to the space of languages that have the formal
properties we desire, permitting safe, sound reasoning about program properties.

Following Coblenz et al. [2018], we have adapted methods from the human-computer interaction
literature to make it more likely that Obsidian will be a practical, effective language for programmers
to use. For example, we use some sophisticated type system ideas from the programming language
community that have not yet been adopted in practice, which creates a usability risk. Therefore,
we used human-centered techniques to help refine those ideas to increase their adoptability and
utility. These methods are formative — that is, they serve to provide insight in the early stages
of the design process. Formative methods contrast with summative methods, which are used to
evaluate a completed design (usually in a quantitative way). We describe several results gathered
from these techniques that influenced our design.

Analyzing usability requires first deciding who the users are. We take the perspective that we
want to empower as many people as possible to write or modify Obsidian programs, while accepting
that prior programming expertise will be required for many kinds of tasks.

We make the following contributions:

(1) We show how typestate and linear types can be combined in a programming language, using
a rich but simple permission system that captures the required restrictions on aliases.

(2) We show how low-cost user studies can be used to obtain insights, which we leveraged to
refine the programming language design.

(3) As case studies, we show how Obsidian can be used to implement a parametric insurance
application and a supply chain, and by comparison to Solidity, how leveraging typestate can
move checks from run time to compile time. Our case studies were done by programmers
who were not the designers of the language, showing that the language is usable by people
other than only the designers.

After summarizing related work, we introduce the Obsidian language with an example (§3). We
describe how the language design fits into the Fabric blockchain infrastructure in §4. Section 5
focuses on the design of particular aspects of the language and describes how qualitative studies
influenced our design. We discuss two case studies in §6. Future work is discussed in §7. We
conclude in §8.

2 RELATED WORK

Researchers have previously investigated common causes of bugs in smart contracts [Atzei et al.
2016; Delmolino et al. 2015; Luu et al. 2016], created static analyses for existing languages [Kalra
et al. 2018], and worked on applying formal verification [Bhargavan et al. 2016]. Our work focuses
on preventing bugs in the first place by designing languages in which many commonplace bugs
cannot occur.

There is a large collection of proposals for new smart contract languages, cataloged by Harz and
Knottenbelt [2018]. One of the more closely-related languages is Flint [Schrans et al. 2018]. Flint
supports a notion of typestate, but lacks a permission system that, in Obsidian, enables flexible, static
reasoning about aliases. Flint supports a trait called Asset, which enhances safety for resources
to protect them from being duplicated or destroyed accidentally. However, Flint models assets as
traits rather than as linear types due to the aliasing issues that this would introduce [Schrans and
Eisenbach 2019]. This leads to significant limitations on assets in Flint. For example, in Flint, assets
cannot be returned from functions. Obsidian addresses these issues with a permission system, and
thus permits any non-primitive type to be an asset and treated as a first-class value.
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The Obsidian Smart Contract Language 1:3

Some researchers have used quantitative studies to consider specific design questions, such as
static vs. dynamic types [Hanenberg et al. 2014]. Quantitative studies are useful at the conclusion
of a design process, but are too resource-intensive to apply for each individual design decision
along the way.

Our work instead uses qualitative studies to focus on exploring design alternatives within a design
space that theory suggests may be good. Prior qualitative work on usable programming languages
includes Kurtev et al’s study on Quorum [Kurtev et al. 2016] to identify usability problems faced by
novices. Wilson et al. used Mechanical Turk to elicit feedback about behavior in esoteric situations
in a theoretical programming language, finding low consistency and low consensus [Wilson et al.
2017]. Neither of these studies consider typestate or linearity features.

DelLine investigated using typestate in the context of object-oriented systems [DeLine and
Fahndrich 2004], finding that subclassing causes complicated issues of partial state changes; we
avoid that problem by not supporting subclassing. Plaid [Sunshine et al. 2011] and Plural [Bierhoff
and Aldrich 2008] are the most closely-related systems in terms of their type systems’ features, but
neither language used formative studies to inform the design process and neither was intended
for a blockchain context. Sunshine et al. showed typestate to be helpful in documentation when
users need to understand object protocols [Sunshine et al. 2014], but that study (and others on
typestate) did not ask participants to write code that used typestate. The designers of Plural
performed summative case studies themselves, but did not invite participants for formative user
studies [Bierhoff et al. 2011]. Our work rests in part on the theoretical foundations of typestate in
Garcia et al. [2014].

Linear types, which facilitate reasoning about resources, have been studied in depth since Wadler’s
1990 paper [Wadler 1990], but have not been adopted in many programming languages. Rust [Mozilla
Research 2015] is one exception, using a form of linearity to restrict aliases to mutable objects.
This limited use of linearity did not require the language to support as rich a permission system
as Obsidian does. Alms [Tov and Pucella 2011] is an ML-like language that supports linear types.
As with Plural, the language designers did the case study themselves rather than asking others
to use their system. Session types [Caires and Pfenning 2010] are another way of approaching
linear types in programming languages, as in Concurrent CO [Willsey et al. 2017]. However, they
are more directly suited for communicating, concurrent processes, which is very different from a
sequential, stateful setting as is the case on blockchains.

3 INTRODUCTION TO THE OBSIDIAN LANGUAGE

Obsidian is based on several guidelines for the design of smart contract languages identified in
Coblenz et al. [2019]. Briefly, those guidelines are:

e Strong static safety: bugs are particularly serious when they occur in smart contracts. In
general, it can be impossible to fix bugs in deployed smart contracts because of the immutable
nature of blockchains. Obsidian emphasizes a novel, strong, static type system in order to
detect important classes of bugs at compile time. Among common classes of bugs is loss of
resources, such as virtual currency.

e User-centered design: a proposed language should be as usable as possible. We integrated
feedback from users in order to maximize users’ effectiveness with Obsidian.

e Blockchain-agnosticism: blockchain platforms are still in their infancies and new ones enter
and leave the marketplace regularly. Being a significant investment, a language design should
target properties that are common to many blockchain platforms.

We were particularly interested in creating a language that we would eventually be able to
evaluate with users, while at the same time significantly improving safety relative to existing
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1:4 Anon.

language designs. In short, we aimed to create a language that we could show was more effective for
programmers. In order to make this practical, we made some relatively standard surface-level design
choices that would enable our users to learn the core language concepts more easily, while using
a sophisticated type system to provide strong guarantees. Where possible, we chose approaches
that would enable static enforcement of safety, but in a few cases we moved checks to runtime in
order to enable a simple design for users or a more precise analysis (for example, in dynamic state
checks, §5.6).

We selected an object-oriented approach because smart contracts inevitably implement state
that is mutated over time, and object-oriented programming is well-known to be a good match to
this kind of situation. This approach is also a good starting point for our users, who likely have
some object-oriented programming experience. However, in order to improve safety relative to
traditional designs, Obsidian omits inheritance, which is error-prone (due to the fragile base class
problem [Mikhajlov and Sekerinski 1998]). We leveraged some features of the C-family syntax,
such as blocks delimited with curly braces, dots for separating references from members, etc., to
improve learnability for some of our target users.

The example in Fig. 1 shows some of the key features of Obsidian. TinyVendingMachine is a
main contract, so it can be deployed independently to a blockchain. A TinyVendingMachine has
a very small inventory: just one candy bar. It is either Full, with one candy bar in inventory,
or Empty. Clients may invoke buy on a vending machine that is in Full state, passing a Coin as
payment. When buy is invoked, the caller must initially own the Coin, but after buy returns, the
caller no longer owns it. buy returns a Candy to the caller, which the caller owns. After buy returns,
the vending machine is in state Empty.

Smart contracts commonly manipulate assets, such as virtual currencies. Some common smart
contract bugs pertain to accidental loss of assets [Delmolino et al. 2015]. If a contract is declared
with the asset keyword, then the type system requires that every instance of that contract have
exactly one owner. This enables the type checker to report an error if an owned reference goes
out of scope. For example, assuming that Coin was declared as an asset, if the author of the buy
transaction had accidentally omitted the deposit call, the type checker would have reported the
loss of the asset in the buy transaction. Any contract that has an Owned reference to another asset
must itself be an asset.

To enforce this, references to objects have types according to both the contract of the referenced
object and a mode, which denotes information about ownership. Modes are separated from contract
names in the syntax with an @ symbol. Exactly one reference to each asset contract instance must be
Owned; this reference must not go out of scope. For example, an owned reference to a Wallet object
can be written Wallet@Owned. Ownership can be transferred between references via assignment or
transaction invocation. The compiler outputs an error if a reference to an asset goes out of scope
while it is Owned. Ownership can be explicitly discarded with the disown operator.

Unowned is the complement to Owned: an object has at most one Owned reference but an arbitrary
number of Unowned references. Unowned references are not linear, as they do not convey ownership.
They are nonetheless useful. For example, a Wallet object might have owning references to Money
objects, but a Budget object might have Unowned aliases so that the value of the Money can be
tracked (even though only the Wallet is permitted to transfer the objects to another owner).
Alternatively, if there is no owner of an object, it may have Shared and Unowned aliases. Examples
of these scenarios are shown in Fig. 2 to provide some intuition.

In Obsidian, the mode portion of a type can change due to operations on a reference, so transaction
signatures can specify modes both before and after execution. As in Java, a first argument called
this is optional; when present, it is used to specify initial and final modes on the receiver. The >
symbol separates the initial mode from the final one. In the example above, buy must be invoked
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The Obsidian Smart Contract Language 1:5

1 // This vending machine sells candy in exchange for candy tokens.
2 main asset contract TinyVendingMachine {

3 Coins @ Owned coinBin;

4

5 state Full {

6 Candy @ Owned inventory;

7 }

8 state Empty; // No candy if the machine is empty.

9

10 TinyVendingMachine () {

11 coinBin = new Coins(); // Start with an empty coin bin.
12 ->Empty;

13 }

14

15 transaction restock(TinyVendingMachine @ Empty >> Full this,
16 Candy @ Owned >> Unowned c) {

17 ->Full(inventory = c);

18 }

19

20 transaction buy(TinyVendingMachine @ Full >> Empty this,

21 Coin @ Owned >> Unowned c) returns Candy @ Owned {
22 coinBin.deposit(c);

23 Candy result = inventory;

24 ->Empty;

25 return result;

26 3}

27

28 transaction withdrawCoins() returns Coins @ Owned {

29 Coins result = coinBin;

30 coinBin = new Coins();

31 return result;

32 3}

33 3}

Fig. 1. A tiny vending machine implementation, showing key features of Obsidian.

on a TinyVendingMachine that is statically known to be in state Full, passing a Coin object that
the caller owns. When buy returns, the receiver will be in state Empty and the caller will no longer
have ownership of the Coin argument.

Obsidian contracts can have constructors (line 10 above), which initialize fields as needed. If a
contract has any states declared, then every instance of the contract must be in one of those states
from the time each constructor exits.

Objects in smart contracts frequently maintain high-level state information [Ethereum Foun-
dation 2017], with the set of permitted transactions depending on the current state. For example,
a TinyVendingMachine might be Empty or Full, and the buy transaction can only be invoked on
a Full machine. Prior work showed that including state information in documentation helped
users understand how to use object protocols [Sunshine et al. 2014], so we include first-class
support for states in Obsidian. Typestate [Aldrich et al. 2009] is the idea of including state in-
formation in types, and we take that approach in Obsidian so that the compiler can ensure that
objects are manipulated correctly according to their states. State information can be captured in a
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1:6 Anon.

Object@Unowned Object@Shared
Object@Unowned Object@Unowned Object@Shared Object@Shared
Object@Owned Object@Shared
@ ®)

Fig. 2. Some common aliasing scenarios. (a) shows an object with one owner; (b) shows a shared object.

mode. For example, TinyVendingMachine@Full is the type of a reference to an object of contract
TinyVendingMachine with mode Full. In this case, the mode denotes that the referenced object is
statically known to be in state Full.

State is mutable; objects can transition from their current state to another state via a transition
operation. For example, ->Full (inventory = c) might change the state of a TinyVendingMachine
to the Full state, initializing the inventory field of the Full state to c. This leads to a potential
difficulty: what if a reference to a TinyVendingMachine with mode Empty exists while the state
transitions to Full? To prevent this problem, typestate is only available with references that also
have ownership. Because of this, there is no need to separately denote ownership in the syntax;
we simply observe that every typestate-bearing reference is also owned. Then, Obsidian restricts
the operations that can be performed through a reference according to the reference’s mode. In
particular, if an owned reference might exist, then non-owning references cannot be used to mutate
typestate. If no owned references exist, then all references permit state mutation. A summary of
modes is shown in Table 1.

Mode Meaning Restrictions

Owned This is the only reference to the object that is Typestate mutation
owned. There may be many Unowned aliases but permitted
no Shared aliases.

Unowned There may or may not be any owned aliases to Typestate mutation
this object, but there may be many other Unowned forbidden
or Shared aliases.

Shared This is one of potentially many Shared references Typestate mutation
to the object. There are no owned aliases. permitted

state name(s) This is an owned reference and also conveys the Typestate mutation
fact that the referenced object is in one of the permitted
specified states. There may be Unowned aliases but
no Shared or Owned aliases.

Table 1. A summary of modes in Obsidian
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The Obsidian Smart Contract Language 1:7

4 SYSTEM DESIGN AND IMPLEMENTATION

Obsidian supports Hyperledger Fabric [The Linux Foundation 2018], a permissioned blockchain
platform. In contrast to public platforms, such as Ethereum, Fabric permits organizations to decide
who has access to the ledger, and which peers need to approve (endorse) each transaction. This
typically provides higher throughput and more convenient control over confidential data than
public blockchains. Fabric supports smart contracts implemented in Java, so the Obsidian compiler
translates Obsidian source code to Java for deployment on Fabric peer nodes. The Obsidian compiler
prepares appropriately-structured directories with Java code and a build file. Fabric builds and
executes the Java code inside purpose-build Docker containers that run on the peer nodes. The
overall Obsidian compiler architecture is shown in Fig. 4.

4.1 Storage in the ledger

Fabric provides a key/value store for persisting the state of smart contracts in the ledger. As a
result, Fabric requires that smart contracts serialize their state in terms of key/value pairs. In
other smart contract languages, programmers are required to manually write code to serialize and
deserialize their smart contract data. In contrast, Obsidian automatically generates serialization
code, leveraging protocol buffers [Google Inc. 2019] to map between message formats and sequences
of bytes. When a transaction is executed, the appropriate objects are lazily loaded from the key/value
store as required for the transaction’s execution. Lazy loading is shallow: the object’s fields are
loaded, but objects that fields reference are not loaded until their fields are needed. After executing
the transaction, Obsidian’s runtime environment automatically serializes the modified objects and
saves them in the ledger. This means that aborting a transaction and reverting any changes made
is very cheap, since this entails not setting key/value pairs in the store, flushing the heap of objects
that have been lazily loaded, and (shallowly) re-loading the root object from the ledger. This lazy
approach decreases execution cost and frees the programmer from needing to manually load and
unload key/value pairs from the ledger, as would normally be required on Fabric.

4.2 Passing objects

In Ethereum, transaction arguments and outputs must be primitives, not objects. As a result of
automatic serialization and deserialization, Obsidian permits arbitrary objects to be passed as
arguments and returned from transactions. Obsidian accepts objects encoded in their protocol
buffer encodings. Since the protocol buffer specifications are emitted by the Obsidian compiler, any
client (even non-Obsidian clients) can correctly serialize and deserialize native Obsidian objects in
the format Obsidian expects to invoke Obsidian transactions and interpret their results.

Every Obsidian object has a unique ID, and references to objects can be transmitted between
clients and the blockchain via its ID. There is some subtlety in the ID system in Obsidian: all
blockchain transactions must be deterministic so that all peers generate the same IDs, so it is
impossible to use traditional (e.g. timestamp-based or hardware-based) UUID generation. Instead,
Obsidian bases IDs on transaction identifiers, which Fabric provides, and on an index kept in
a ID factory. The initial index is reset to zero at the beginning of each transaction so that no
state pertaining to ID generation needs to be stored between transactions. Blockchains provide a
sequential execution environment, so there is no need to address race conditions in ID generation.
When clients instantiate contracts, they generate IDs with a traditional UUID algorithm, since
clients operate off the blockchain.

Although serializing objects according to their Protobuf specifications is better than requiring
programmers to manually write their own serialization code, if a client is written in a traditional
language, the client does not obtain the safety benefits of the Obsidian type system. Obsidian
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1:8 Anon.
1 import "TinyVendingMachine.obs"

2

3 main contract TinyVendingMachineClient {

4 transaction main(remote TinyVendingMachine@Shared machine) {
5 restock (machine);

6

7 if (machine in Full) {

8 Coin ¢ = new Coin();

9 remote Candy candy = machine.buy(c);

10 eat(candy);

11 1

12 }

13

14 private transaction restock(remote TinyVendingMachine@Shared machine) {
15 if (machine in Empty) {

16 Candy candy = new Candy();

17 machine.restock (candy);

18 }

19 }

20

21 private transaction eat(remote Candy @ Owned >> Unowned c) {
22 disown c;

23 3}

24}

Fig. 3. A simple client program, showing how clients reference a smart contract on the blockchain. Note
that the blockchain-side smart contract has been modified (relative to Fig. 1) to have Shared receivers, since
top-level objects are never owned by clients.

addresses this problem in two ways. First, clients can also be written using the Obsidian language
and compiler; Obsidian clients obtain all the benefits of the Obsidian type system. The compiler
can output Java code that runs as its own process (not on a blockchain) and invokes blockchain
transactions remotely. The Obsidian client program has a main transaction, which takes a remote
reference. The keyword remote, which modifies types of object references, indicates that the type
refers to a remote object. The compiler implements remote references with stubs, via an RMI-like
mechanism. When a non-remote reference is passed as an argument to a remote transaction, the
referenced object is serialized and sent to the blockchain. Afterward, the reference becomes a
remote reference, so that only one copy of the object exists (otherwise mutations to the referenced
object on the client would not be reflected on the blockchain, resulting in potential bugs). This
change in type is similar to how reference modes change during execution. Fig. 3 shows a simple
client program that uses the TinyVendingMachine above. The main transaction takes a remote
reference to the smart contract instance.

4.3 Ensuring safety with untrusted clients

If a client program is written in a language other than Obsidian, it may not adhere to Obsidian’s
type system. For example, a client program may obtain an owned reference to an object and then
attempt to transfer ownership of that object to multiple references on the blockchain. This is called
the double-spend problem on blockchains: a program may attempt to consume a resource more than
once. To address this problem, the Obsidian runtime keeps a list of all objects for which ownership
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The Obsidian Smart Contract Language 1:9

Obsidian source import Obsidian source
(smart contract) [®--="="mTTmmmmomoos (client code)

Compiler
transformation Y
—> Contract Interface ~ Client
implementation specification implementation
(Java) (protobuf) (Java)
Blockchain
platform
operation Y
Fabric chaincode ) .
> package Compiled client
\
Deploy and
instantiate
v
invoke
Fabric «
network
result

Fig. 4. Obsidian system architecture

has been passed outside the blockchain. When a transaction is invoked on an argument that must
be owned, the runtime aborts the transaction if that object is not owned outside the blockchain,
and otherwise removes the object from the list. Likewise, when a transaction argument or result
becomes owned by the client after the transaction (according to the transaction’s signature), the
runtime adds the object to the list. Of course, Obsidian has no way of ensuring safe manipulation
of owned references in non-Obsidian clients, but this approach ensures that each time an owned
reference leaves the blockchain, it only returns once, preventing double-spending attacks. Obsidian
cannot ensure that non-Obsidian clients do not lose their owned references, so we hope that most
client code that manipulates assets will be written in Obsidian.

5 LANGUAGE DESIGN PROCESS AND DETAILS

Obsidian is the first object-oriented language (of which we are aware) to integrate linear assets
and typestate. This combination — and, in fact, even just including typestate — could result in a
design that was hard to use, since typical typestate languages require users to understand a complex
permissions model. In designing the language, we focused on simplicity in service of usability. We
maintained static safety where possible, but moved certain checks to runtime where needed to
maintain a high level of expressiveness. We also aimed to simplify the job of the programmer relative
to existing blockchain programming languages by eliminating onerous, error-prone programming
tasks, such as writing serialization and deserialization code, as discussed above. In this section, we
describe how we designed features to improve user experience, in some cases driven by results of
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formative user studies. Rather than relying only on our own experience and intuition, we invited
participants to help us assess the tradeoffs of different design options. This enabled us to take a
more data-driven approach in our language design, like Stefik and Hanenberg [2014] and Coblenz
et al. [2018]. We take the perspective that we should integrate qualitative methods in addition
to quantitative methods in order to drive language design in a direction that is more likely to be
beneficial for users.

5.1 Qualitative Studies

In designing Obsidian, we integrated several qualitative methods in our formative user studies.
These studies are not the focus of this paper, but we found them useful in iterating on our design,
and we hope that others will be able to leverage these techniques in the future. We obtained IRB
approval for our studies and paid participants $10/hour for their time. Overall, we recruited 28
participants in the formative studies across various parts of the Obsidian design. In this paper,
we give participants arbitrary identifiers, such as P14, to conceal their identities. Participants
were generally local students studying computer science, mostly at the graduate level. Although
recruiting only students would be problematic for a quantitative study in which we attempted to
reason generally about programmers, in these qualitative studies, we were interested in identifying
common barriers to success. Even if the difficulties encountered by one population may not be the
same as those encountered by another population, we view all potential users as being valuable
sources of insight regarding our design. This is a typical approach in the HCI community [Nielsen
1993]. Our goal in qualitative studies was not to gather quantitative information about the frequency
of usability problems; instead, we assume (as is typical in usability studies) that any problem we
see is likely to occur with many participants and is therefore worth fixing if possible.

There is a difficult practical problem running lab studies on a new programming language: if
the language is very different from those with which a participant is familiar, there is a learning
stage where the participant must learn the new language. One approach is to focus on language
learnability [Stefik et al. 2011]: how easily can novices learn a language, and how well do those
novices perform? Our interest, however, is in long-term programmer performance, and we aim to
gather as much relevant data as possible in a short lab session. This would seem to limit our study
to languages that either participants already know or which they can learn quickly.

A corresponding problem is one of conflation. Suppose one is interested in analyzing the usability
of a particular design decision. If one teaches participants a new language, the participants are
likely to have difficulty with many different aspects of the language, not just the one of interest.
Furthermore, when a participant is confused about something related to the design decision, it is
not clear whether the root cause is the design decision itself or some unrelated point of confusion
or aspect of the language. The effects of the design decisions become overwhelmed by the noise
from unrelated parts of the language.

We observe, however, that languages (including Obsidian) are designed so that features are as
orthogonal as possible [Pratt and Zelkowitz 1996; Sebesta 2006]. Therefore, our approach is to
study the design decisions in isolation by back-porting them to a language with which participants
are already familiar. This approach introduces its own noise: perhaps the aspects do not behave in
the second language as they would in the first, and the outcome might not be applicable to the first
language. However, we limit the impact of any differences by choosing Java, which is structurally
similar to Obsidian, and choosing tasks where the differences are not particularly important. For
example, both Java and Obsidian are statically-typed object-oriented languages, and the problem of
aliases to mutable state is common to both.
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5.2 Type declarations, annotations, and static assertions

Obsidian requires type declarations of local variables, fields, and transaction parameters. In addition
to providing familiarity to programmers who have experience with other object-oriented languages,
there is a hypothesis that these declarations may aid in usability by providing documentation,
particularly at interfaces [Coblenz et al. 2014]. Traditional declarations are also typical in prior
typestate-supporting languages, such as Plaid [Sunshine et al. 2011]. Unfortunately, typestate is
incompatible with the traditional semantics of type declarations: programmers normally expect
that the type of a variable always matches its declared type, but mutation can result in the typestate
no longer matching the initial type of an identifier. This violates the consistency usability heuristic
[Nielsen and Molich 1990] and is a potential source of reduced code readability, since determining
the type of an identifier can require reading all the code from the declaration to the program point
of interest.

To alleviate this problem, we introduced static assertions. These have the syntax [e @ mode].
For example, [account @ Open] statically asserts that the reference account is owned and refers
to an object that the compiler has proved is in Open state. Furthermore, to avoid confusion about
the meanings of local variable declarations, Obsidian forbids mode specifications on local variable
declarations.

Static assertions have no implications on the dynamic semantics (and therefore have no runtime
cost); instead, they serve as checked documentation. The type checker verifies that the given mode
is valid for the expression in the place where the assertion is written. A reader of a typechecked
program can be assured, then, that the specified types are correct, and the author can insert the
assertions as needed to improve program understandability.

In a user study of an earlier version of the language, participants were unsure when ownership
was transferred when calling a method. In that version of the language, a deposit transaction
signature might be written:

transaction deposit (Money @ Owned money) { ... }
In the final version of the language, the same signature would be written:
transaction deposit (Money @ Owned >> Unowned money) { ... }

In the earlier version of the language, the programmer was expected to understand that to pass
an Owned reference, the caller must give up ownership. In contrast, in logAmount, the caller would
not transfer ownership, because the parameter was Unowned:

transaction logAmount (Money @ Unowned money) { ... }

This distinction was too subtle. For example, in one formative study, P19 asked what happens
when passing an @0wned object to a method with an unowned formal parameter. We regard the
fact that the question was asked as an indication that the syntax is unclear. P20 said, “I am confused
between when you write @wned to make a variable to be owned or non-owned and the transfer of
ownership. So when I [annotate this constructor type @wned], I'm not sure if 'm making a variable
owned or I'm transferring ownership.” To address these problems, we made ownership transfer
explicit in signatures of transactions: when ownership changes, both initial and final modes are
written.

transaction deposit (Money @ Owned >> Unowned money) { ... }
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1:12 Anon.

5.3 State transitions

Each state definition can include a list of fields, which are in scope only when the object is in the
corresponding state. What, then, should be the syntax for initializing those fields when transitioning
to a different state? Some design objectives included:

e When an object is in a particular state, the fields for that state should be initialized.

e When an object is not in a particular state, the fields for that state should be out of scope.

o According to the user control and freedom heuristic [Nielsen and Molich 1990], programmers
should be able to initialize the fields in any order, including by assignment. Under this
criterion, it does not suffice to only permit constructor-style simultaneous initialization.

We assessed the usability of several options in a formative user study. Because this study was
intended to help assess which of several options was likely best, rather than to gather statistically
significant results, it was limited in size. First, we gave the four participants in the part of the study
a state transition diagram and code partially implementing a Wallet object, and asked them to
invent code to do state transitions. Notably, they all initialized fields before transitioning. We gave
them four approaches, and asked them to use each one in a partially-completed transaction.

(1) Assets must be assigned to fields in the transition, e.g. ->S(x = a1) indicates assigning the
value of the local variable a1 to field x of state S.

(2) Assets must be assigned to fields before the transition, e.g. S: :x = al; ->S.

(3) Assets must be assigned to fields before the transition, but the fields are in local scope, not in
destination-state scope, e.g. x = al; ->S.

(4) Assets must be assigned to fields after the transition, e.g. ->S; x = al.

No participant had significant confusion or made significant mistakes when implementing each
initialization approach. Most of the participants preferred assigning assets to fields before the
transition with destination state scoping (option 2). Most of the participants disliked assignment
to fields after the transition because it conflicts with their interpretation of the semantics of
state transitions. This was consistent with their behavior before being shown the options, so we
decided to design Obsidian to allow this. Obsidian supports both options (1) and (2) above. This is
consistent with all three of our objectives above: users can initialize fields before transitions or
during transitions, but without needing access to fields that are out of scope given the current state
and without ever having uninitialized current-state fields.

5.4 Transaction scope

Since some transactions are only available when the object is in a particular state, some previous
typestate-oriented languages supported defining methods inside states. For example, Plaid [Sunshine
et al. 2011] allows users to define the read method inside the OpenFile state to make clear that
read can only be invoked when a File is in the OpenFile state. Barnaby et al. [2017] considered
this question and observed that study participants, who were given a typestate-oriented language
that included methods in states, asked a lot of questions about what could happen during and
after state transitions. They were unsure what this meant in that context and what variables were
in scope at any given time. One participant thought it should be disallowed to call transactions
available in state S1 while writing a transaction that was lexically in state Start. For this reason, we
designed Obsidian so that transactions are defined lexically outside states. Transaction signatures
indicate (via type annotations on a first argument called this) from which states each transaction
can be invoked. This approach is consistent with other languages, such as Java, which also allows
type annotations on a first argument this.
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589 5.5 Field type consistency

% In traditional object-oriented languages, fields always reference either null or objects whose types

are subtypes of the fields’ declared types. This presents a difficulty for Obsidian, since the mode
is part of the type, and the mode can change with operations. For example, a Wallet might have
a reference of type Money@Owned. How should a programmer implement swap? An obvious way
would be as follows:

591
592
593
594
595
596 contract Wallet {
597 Money@Owned money;
598
599 transaction swap (Money@Owned m) returns Money@Owned {
Money result = money;

money = m;

600
601
602 return result;

603

O 00 N N U R W N

604

3

605
The problem is that line 5 changes the type of the money field from Owned to Unowned by transferring

ownership to result. Should this be a type error, since it is inconsistent with the declaration of
money? If it is a type error, how is the programmer supposed to implement swap? One possibility is
to add another state:

606
607
608
609

610 contract Wallet {

state Empty;
state Full {
Money@Owned money;

611
612
613

615

616 transaction swap (Wallet@Full this, Money@Owned m) returns Money@Owned {

617 // Suppose the transition returns the contents of the old field.

618

Money result = ->Empty;
819 10 ->Full (money = m);
620 99 return result;
621 12 }
622 15
623
624 Although this approach might seem like a reasonable consequence of the desire to keep field

625 values consistent with their types, it imposes a significant burden. First, the programmer is required
626 to introduce additional states, which leaks implementation details into the interface. Second, this
627 requires that transitions return the newly out-of-scope fields, but it is not clear how: should the
628 result be of record type? Should it be a tuple? What if the programmer neglects to do something
629  with the result? Plaid [Sunshine et al. 2011] addressed the problem by not including type names in
630 fields, but that approach may hamper code understandability [Coblenz et al. 2014]. In Obsidian, we
631 permit fields to temporarily reference objects that are not consistent with the fields” declarations,
632 but we require that at the end of methods (and constructors), the fields refer to appropriately-typed
633 objects. This approach is consistent with the approach for local variables, with the additional
63¢  postcondition of type consistency. Both local variables and fields of nonprimitive type must always
635 refer to instances of appropriate contracts; the only discrepancy permitted is of mode. The same is
636 true for transaction parameters, except that the type of a parameter at the end of the method must
637
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1:14 Anon.

be a subtype of the specified final type. Obsidian forbids re-assigning formal parameters to refer to
other objects to ensure soundness of this analysis.

Re-entrancy imposes a significant problem here: re-entrant calls from the middle of a transaction’s
body, where the fields may not be consistent with their types, can be dangerous, since the called
transactions are supposed to be allowed to assume that the fields reference objects consistent with
the fields’ types. To address this, Obsidian forbids re-entrant calls to public methods at the object
level of granularity. The Obsidian runtime detects illegal re-entrant calls and aborts transactions
that attempt them. However, to facilitate helper methods, Obsidian also supports private methods,
which declare the expected types of the fields before and after the invocation. For example:

contract PrivateTransactions {
C @ S1 c;
private (C @ S2 >> S1 c¢) transaction t1() {.. .}

Transaction t1 may only be invoked by methods of PrivateTransactions, and only on this.
When t1 is invoked, the typechecker checks to make sure field c has type C @ S2, and assumes
that after t1 returns, ¢ will have type C @ S1.

Avoiding unsafe re-entrancy has been shown to be important for real-world smart contract
security, as millions of dollars have been stolen via a re-entrant call exploit [Daian 2016].

5.6 Dynamic State Checks

The Obsidian compiler enforces that transactions can only be invoked when it can prove statically
that the objects are in appropriate states according to the signature of the transaction to be invoked.
In some cases, however, it is impossible to show this statically. For example, consider redeem in Fig.
5. After line 24, the contract may be in either state Active or state Expired. However, inside the
dynamic state check block that starts on line 26, the compiler assumes that this is in state Active.
The compiler generates a dynamic check of state according to the test. However, regarding the
code in the block, there are two cases. If the dynamic state check is of an owned reference x, then
it suffices for the type checker to check the block under the assumption that the reference is of
type according to the dynamic state check. However, if the reference is shared, there is a problem:
what if code in the block changes the state of the object referenced by x? This would violate the
expectations of the code inside the block, which is checked as if it had ownership of x. We consider
the cases:

o If the expression to be tested is a variable with Owned mode, the body of the if statement can
be checked assuming that the variable initially references an object in the specified state,
since that code will only execute if that is the case due to the dynamic check.

o If the expression to be tested is a variable with Unowned mode, there may be another owner
(and the variable cannot be used to change the state of the referenced object anyway). In that
case, typechecking of the body of the if proceeds as if there had been no state test, since it
would be unsafe to assume that the reference is owned. However, this kind of test can be
useful if the desired behavior does not statically require that the object is in the given state.
For example, in a university accounting system, if a Student is in Enrolled state, then their
account should be debited by the cost of tuition this semester. The debit operation does not
directly depend on the student’s state; the state check is a matter of policy regarding who
gets charged tuition.

o If the expression to be tested is a variable with Shared mode, then the runtime maintains a
state lock that pertains to other shared references. The body is checked initially assuming
that the variable owns a reference to an object in the specified state. Then, the type checker
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The Obsidian Smart Contract Language 1:15

verifies that the variable still holds ownership at the end and that the variable has not been
re-assigned in the body. However, at runtime, if any other Shared reference is used to change
the state of the referenced object, then the transaction is aborted. This approach enables safe
code to complete but ensures that the analysis of the type checker regarding the state of the
referenced object remains sound. This approach also bears low runtime cost, since the cost
of the check is borne only in transitions via Shared references. An alternative design would
require checks at invocations to make sure that the referenced object was indeed in the state
the typechecker expected, but we expect our approach has significantly lower runtime cost.
Furthermore, our approach results in errors occurring immediately on transition, not later
on in execution, which would require the programmer to figure out which transition caused
the bug.

o If the expression to be tested is not a variable, the body of the if statement is checked as
usual. It would be unsafe for the compiler to make any assumptions about the type of future
executions of the expression, since the type may change.

We conducted user studies on the usability of a prototype Obsidian permissions system. Although
those user studies focused on the static aspects of the system, we observed that several of the
participants found it more natural to think of state in a dynamic way. That is, rather than writing
down type signatures that specified types, they wrote tests using if to check state. We concluded
that as programmers start using Obsidian and learn how to reason about its type system, they are
likely to add dynamic state checks in cases where a static design might be more appropriate.

The dynamic state check mechanism is related to the focusing mechanism of Fahndrich and
DeLine [2002]. Unlike focusing, Obsidian’s dynamic state checks detect unsafe uses of aliases
precisely rather than conservatively, enabling many more safe programs to typecheck. Furthermore,
Obsidian does not require the programmer to specify guards, which in focusing enable the compiler
to reason conservatively about which references may alias.

6 EVALUATION

Beyond the formative user studies that helped us design the language, we wanted to ensure that
Obsidian can be used to specify typical smart contracts in a concise and reasonable way. Therefore,
we undertook two case studies, which are a typical way of evaluating new programming languages
[cite][cite].

Obsidian’s type system has significant implications for the design and implementation of software
relative to a traditional object-oriented language. We were interested in evaluating several research
questions using the case studies:

(1) Does the aliasing structure in real blockchain applications allow use of ownership (and
therefore typestate)? Or, alternatively, do so many objects need to be Shared that the main
benefit of typestate is that it helps ensure that programmers insert dynamic tests when
required?

(2) How does the design of Obsidian impact the architecture of smart contracts?

(3) To what extent does the use of typestate reduce the need for explicit state checks and
assertions, which would otherwise be necessary?

6.1 Case study 1: Parametric Insurance

6.1.1 Motivation. To address the research questions above, we were interested in implementing a
blockchain application in Obsidian. To obtain realistic results, we looked for a domain in which:

e Use of a blockchain platform for the application provided significant advantages over a
traditional, centralized platform.
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736 1 main asset contract GiftCertificate {
737 2 Date @ Unowned expirationDate;
738 3
739 4 state Active {
740 5 Money @ Owned balance;
741 6 3
742 7 ]
743 8 state Expired;
9 state Redeemed;
744
10
T} GiftCertificate(Money @ Owned >> Unowned b, Date @ Unowned d)
746
12 {
747 13 expirationDate = d;
748 14 ->Active(balance = b);
749 15 3}
750 16
751 17 transaction checkExpiration(GiftCertificate @ Active >> (Active | Expired) this)
752 18 {
753 19 if (getCurrentDate().greaterThan(expirationDate)) {
20 disown balance;
754 ;
21 ->Expired;
755
22 }
756 gg )
5T 94 transaction redeem(GiftCertificate @ Active >> (Expired | Redeemed) this)
758 25 returns Money@Owned
759 26 {
760 27 checkExpiration();
761 28
762 29 if (this in Active) {
763 30 Money result = balance;
764 31 ->Redeemed;
32 return result;
765
33 }
766
34 else {
767 35 revert "Can't redeem expired certificate";
768 34 }
769 37 }
770 38 transaction getCurrentDate(GiftCertificate @ Unowned this)
771 39 returns Date @ Unowned
772 40 {
773 41 return new Date();
774 42 3
775 B3
776
777 Fig. 5. A dynamic state check example.
778
779
780 e We could engage with a real client to ensure that the requirements were driven by real needs,
781 not by convenience of the developer or by the appropriateness of language features.
782 e The application seemed likely to be representative in structure of a large class of blockchain
783 applications.
784
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The Obsidian Smart Contract Language 1:17

A summary of this case study based on an earlier version of the language was previously described
by Koronkevich [2018]", but here we provide substantially more analysis and the implementation
is more complete.

In parametric insurance, a buyer purchases a claim, specifying a parameter that governs when the
policy will pay out. For example, a farmer might buy drought insurance as parametric insurance,
specifying that if the soil moisture index in a particular location drops below m in a particular
time window, the policy should pay out. The insurance is then priced according to the risk of
the specified event. In contrast, traditional insurance would require that the farmer summon a
claims adjuster, who could exercise subjective judgment regarding the extent of the crop damage.
Parametric insurance is particularly compelling in places where the potential policyholders do
not trust potential insurers, who may send dishonest or unfair adjusters. In that context, potential
policyholders may also be concerned with the stability and trustworthiness of the insurer: what if
the insurer pockets the insurance premium and goes bankrupt, or otherwise refuses to pay out
legitimate claims?

In order to build a trustworthy insurance market for farmers in parts of the world without
trust between farmers and insurers, the World Bank became interested in deploying an insurance
marketplace on a blockchain platform. We partnered with the World Bank to use this application
as a case study for Obsidian. We used the case study both to evaluate Obsidian as well as to improve
Obsidian, and we describe below results in both categories.

The case study was conducted primarily by an undergraduate who was not involved in the
language design, with assistance and later extensions by the language designers. The choice to have
an undergraduate do the case study was motivated by the desire to learn both about what aspects
of the language were easy or difficult to master. It was also motivated by the desire to reduce bias;
a language designer studying their own language might be less likely to observe interesting and
important problems with the language.

We met regularly with members of the World Bank team to ensure that our implementation would
be consistent with their requirements. We began by eliciting requirements, structured according to
their expectations of workflow for participants.

6.1.2  Requirements. The main users of the insurance system are farmers, insurers, and banks.
Banks are necessary in order to mediate financial relationships among the parties. We assume that
farmers have local accounts with their banks, and that the banks can transfer money to the insurers
through the existing financial network. Basic assumptions of trust drove the design:

e Farmers trust their banks, with whom they already do business, but do not trust insurers,
who may attempt to pocket their premiums and disappear without paying out policies when
appropriate.

e Insurers do not trust farmers to accurately report on the weather; they require a trusted
weather service to do that. They do trust the implementation of the smart contracts to pay
out claims when appropriate and to otherwise refund payout funds to the insurers at policy
expiration.

o There exists a mutually trusted weather service, which can provide signed evidence of weather
events.

6.1.3 Design. Because blockchains typically require all operations to be deterministic and all
transactions to be invoked externally, we derived the following design:

e Farmers are responsible for requesting claims and providing acceptable proof of a relevant
weather event in order to receive a payout.

1Unpublished draft.
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—Weatier—) — — e —_—
Weather Bank Client Insurance Insurer

service . service
requestBid(...) —

(off-blockchain) (off-blockchain) =
Policy@Offered

requestBid(...)
Policy@Offered

withdraw()

Money@Owned buyPolicy(Policy@Offered policy,
> Money@Owned >> Unowned payment)

requestWeatherRecord()

claim(WeatherRecord w)

Money@Owned .

—7 ) -

WeatherRecord

Fig. 6. Invocations sent and results returned in a typical successful bid/claim scenario.

e Insurers are responsible for requesting refunds when policies expire.
o A trusted, off-blockchain weather service is available that can, on request, provide signed
weather data relevant to a particular query.

An alternative approach would involve the weather service handling weather subscriptions. The
blockchain insurance service would emit events indicating that it subscribed to particular weather
data, and the weather service would invoke appropriate blockchain transactions when relevant
conditions occurred. However, this design is more complex and requires trusting the weather
service to push requests in a timely manner. Our design is simpler but requires that policyholders
invoke the claim transactions, passing appropriate signed weather records.

Our design of the application allows farmers to start the exchange by requesting bids from
insurers. Then, to offer a bid, insurers are required to specify a premium and put the potential
payout in escrow; this ensures that even if the insurer goes bankrupt later, the policy can pay
out if appropriate. If the farmer chooses to purchase a policy, the farmer submits the appropriate
payment.

Later, if a weather event occurs that would justify filing a claim, a farmer requests a signed
weather report from the weather service. The farmer submits a claim transaction to the insurance
service, which sends the virtual currency to the farmer. The farmer could then present the virtual
currency to their real-world bank to enact a deposit.

6.1.4  Results. The implementation consists of 545 non-comment, non-whitespace lines of Obsidian
code. For simplicity, the implementation is limited to one insurer, who can make one bid on a policy
request. An overview of the invocations that are sent and results that are received in a typical
successful bid and claim scenario is shown in Fig. 6. All of the objects reside in the blockchain
except as noted. The full code for this case study is in the supplemental materials.

We made several observations about Obsidian. In some cases, we were able to leverage our
observations to improve the language. In others, we learned lessons about application design and
architecture with Obsidian and other typestate-oriented programming languages.

First, in the version of the language that existed when the case study started, Obsidian included an
explicit ownership transfer operator <-.In that version of the language, passing an owned reference as
an argument would only transfer ownership to the callee if the argument was decorated with <-. For
example, deposit (<-m) would transfer ownership of the reference m to the deposit transaction, but
deposit(m) would be a type error because deposit requires an Owned reference. While redundant
with type information, we had included the <- operator because we thought it would reduce
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confusion, but we noticed while using the language (both in the case study and in smaller examples)
that its presence was onerous. We removed it, which was a noticeable simplification.

Second, in that version of the language, asset was a property of contracts. We noticed in the
insurance case study that it is more appropriate to think of asset as a property of states, since some
states own assets and some do not. In the case study, an instance of the PolicyRecord contract
holds the insurer’s money (acting as an escrow) while a policy is active, but after the policy is
expired or paid, the contract no longer holds money (and therefore no longer needs to itself be an
asset). It is better to not mark extraneous objects as assets, since assets must be explicitly discarded,
and only assets can own assets. Each of those requirements imposes a burden on the programmer.
This burden can be helpful in detecting bugs, but should not be borne when not required. We
changed the language so that asset applies to individual states rather than only entire contracts.

Third, the type system in Obsidian has significant implications on architecture. In a traditional
object-oriented language, it is feasible to have many aliases to an object, with informal conventions
regarding relationships between the object and the referencing objects. A significant line of research
has focused on ownership types [Clarke et al. 1998], which refers to a different notion of ownership
than we use here in Obsidian. Ownership types aim to enforce encapsulation by ensuring that
the implementation of an object cannot leak outside its owner. Here, we are less concerned with
encapsulation and more focused on sound typestate semantics. This allows us to avoid the strict
nature of these encapsulation-based approaches while accepting their premise: typically, good
architecture results in an aliasing structure in which one "owner” of a particular object controls the
object’s lifetime and, likely, all of the changes to the object. UML distinguishes between composition,
which implies ownership, and aggregation, which does not, reinforcing the idea that ownership is
common and useful in typical object-oriented designs.

Because of the use of ownership in Obsidian, using typestate with a design that does not express
ownership sometimes requires refining the design so that it does. In the case study, we found this
useful in refining our design. For example, when an insurance policy is purchased, the insurance
service must hold the payout virtual currency until either the policy expires or it is paid. Then, the
insurance service must associate the currency for a policy with the policy itself. Does the policy,
then, own the Money? If so, what is the relationship between the client, who purchased the policy
and has certain kinds of control over it, and the Policy, which cannot be held by the (untrusted)
client? We resolved this question by adding a new object, the PolicyRecord. A PolicyRecord,
which is itself Owned by the insurance service, has an Unowned reference to the Policy and an
Owned reference to a Money object. This means that PolicyRecord is an asset when it is active
(because it owns Money, which is itself an asset) but Policy does not need to be an asset. We
found that thinking about ownership in this strict way helped us refine and clarify our design.
Without ownership, we might have chosen a less carefully-considered design.

It is instructive to compare the Obsidian implementation to a Solidity implementation, which we
wrote for comparison purposes. Figure 7 shows how the Obsidian implementation is substantially
shorter. Note how the Solidity implementation requires repeated run time tests to make sure each
function only runs when the receiver is in the appropriate state. Obsidian code only invokes those
transactions when the Policy object is in appropriate state; the runtime executes an equivalent
dynamic check to ensure safety when the transactions are invoked from outside Obsidian code.
Also, the Solidity implementation has cost and expirationTime fields in scope when inappro-
priate, so they need to be initialized repeatedly. In the Obsidian implementation, they are only
set when the object is in the Of fered state. Finally, the Solidity implementation must track the
state manually via currentState and the States type, whereas this is done automatically in the
Obsidian implementation.
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contract Policy { contract Policy {
state Offered { enum States {Offered, Active, Expired}
int cost; States public currentState;
int expirationTime; uint public cost;
3 uint public expirationTime;
state Active; constructor (uint _cost, uint _expirationTime) public {
state Expired; cost = _cost;
state Claimed; expirationTime = _expirationTime;
currentState = States.Offered;
Policy@Offered(int c, int expiration) { }
->0ffered(cost = c, expirationTime = expiration);
3} function activate() public {
require(currentState == States.Offered,
transaction activate(Policy@Offered >> Active this) { "Can't_activate_Policy_not_in_Offered_state.");
->Active; currentState = States.Active;
3 cost = 0;
expirationTime = 0;
}
transaction expire(Policy@Offered >> Expired this) { function expire() public {
->Expired; require(currentState == States.Offered,
} "Can't_expire_Policy_not_in_Offered_state.");
3} currentState = States.Expired;
cost = 0;
expirationTime = 0;
}
}
(a) Obsidian implementation of a Policy contract. (b) Solidity implementation of a Policy contract.

Fig. 7. Comparison between Obsidian and Solidity implementations of a Policy contract from the insurance
case study.

We showed our implementation to our World Bank collaborators, and they agreed that it rep-
resents a promising design. There are various aspects of the full system that are not part of the
case study, such as properly verifying cryptographic signatures of weather data, communicating
with a real weather service and a real bank, and supporting multiple banks and insurers. However,
in only a cursory review, one of the World Bank economists noticed a bug in the Obsidian code:
the code always approved a claim requests even if the weather did not justify a claim according to
the policy’s parameters. This brings to light two important observations. First, Obsidian, despite
being a novel language, is readable enough to new users that they were able to understand the
code. Second, type system-based approaches find particular classes of bugs, but other classes of
bugs require either traditional approaches or formal verification to find.

6.2 Case study 2: Shipping

6.2.1 Motivation. Supply chain tracking is one of the commonly-proposed applications for blockchains
[IBM 2019]. As such, we were interested in what implications Obsidian’s design would have on
an application that tracks shipments as they move through a supply chain. We collaborated with
partners in an industrial research organization® to conduct a case study of a simple shipping
application. Our collaborators wrote most of the code, with occasional Obsidian help from us.

6.2.2  Results. The implementation consists of 367 non-comment, non-whitespace lines of Ob-
sidian code. (The full implementation is included in the supplemental materials.) We found it
very encouraging that they were able to write the case study with relatively little input from us,
which is remarkable considering that Obsidian is a research prototype with extremely limited

2Their identities can be revealed in the non-blind version of this paper.
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documentation. Although this is smaller than the insurance case study, we noticed some interesting
relationships between the Obsidian type system and object-oriented design.

Fig. 8 summarizes an early design of the Shipping application, focusing on a particular owner-
ship problem. The implementation does not compile; the compiler reports three problems. First,
LeglList’s arrived transaction attempts to invoke setArrival via a reference of type Leg@Unowned;
this is disallowed because setArrival changes the state of its receiver, which is unsafe through
an Unowned reference. Second, append in Leglist takes an Unowned leg to append, but uses it
to transition to the HasNext state, which requires an Owned object. Third, Transport’s depart
method attempts to append a new Leg to its leglList. It does so by calling the Leg constructor,
which takes a Shared Transport. But calling this constructor passing an owned reference (this)
causes the caller’s reference to become Shared, not Owned, which is inconsistent with the type of
depart, which requires that this be owned (and specifically in state InTransport).

Fig. 9 shows the final design of the application. This version passes the type checker. Note how a
LeglList contains only Arrived references to Leg objects. One Leg may be InTransit, but that
is owned by the Transport when it is in an appropriate state (also InTransit). Each Leg has
an Unowned reference to its Transport, allowing the TransportList to own the Transport. A
TransportList likewise only contains objects in Unload state; one Transport in InTransport
state is referenced at the Shipment level.

We argue that although the type checker forced the programmer to revise the design, the revised
design is better. In the first design, collections (TransportlList and Leglist) contain objects of
dissimilar types. In the revised design, these collections contain only objects in the same state.
This change is analogous to the difference between dynamically-typed languages, such as LISP, in
which collections may have objects of inconsistent type, and statically-typed languages, such as
Java, in which the programmer reaps benefits by making collections contain objects of consistent
type. The typical benefit is that when one retrieves an object from the collection, there is no
need to case-analyze on the element’s type, since all of the elements have the same type. This
means that there can be no bugs that arise from neglecting to case-analyze, as can happen in the
dynamically-typed approach.

The revised version also reflects a better division of responsibilities among the components. For
example, in the first version (Fig. 8), LegList is responsible for both maintaining the list of legs as
well as recording when the first leg arrived. This violates the single responsibility principle [Martin
et al. 2003]. In the revised version, LeglList only maintains a list of Leg objects; updating their
states is implemented elsewhere.

One difficulty we noticed in this case study, however, is that sometimes there is a conceptual gap
between the relatively low-level error messages given by the compiler and the high-level design
changes needed in order to improve the design. For example, the first error message in the initial
version of the application shown in Fig. 8 is: Cannot invoke setArrival on a receiver of
type Leg@Owned; a receiver of type Leg@InTransit is required. The programmer is
required to figure out what changes need to be made; in this case, the arrived transaction should
not be on Leglist; instead, LegList should only include legs that are already in state Arrived.
We hypothesize that more documentation and tooling may be helpful to encourage designers to
choose designs that will be suitable for the Obsidian type system.

7 FUTURE WORK

Obsidian is a promising smart contract language, but it should not exist in isolation. Authors
of applications for blockchain systems (known as distributed applications, or Dapps) need to be
able to integrate smart contracts with front-end applications, such as web applications. Typically,
developers need to invoke smart contract transactions from JavaScript. We would like to build a
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Transport

TransportList LegList

state Empty;
state HasNext {
LegList@Owned next;

state Load;

state Empty; state InTransport {

state HasNext {

. ‘ value | } legList
TransportList@Owned next; <>_ state Unload; ‘ }

. - Leg@Unowned value;
X LegList@Owned legList; ’
Transport@Unowned value; LegList@Shared cLeg;

arrived();
append(Leg@Unowned pLeg)
depart(Transport@Load >> InTransport this); returns LegList@Shared;
transportList
value
Shipment
Leg
TransportList@Owned transportList;
state InTransit;
state Arrived;
carrier Transport@Shared carrier;

@Owned reference

Leg@InTransit(Transport@Shared t,...);

@Unowned reference setArrival(Leg@InTransit >> Arrived this, ...);

b

@Shared reference

Fig. 8. Initial design of the Shipping application.

TransportList Transport LeglList
. state Load; state Empty;
:g: Ersﬁ\tl)gxt ( state InTransport { state HasNext {
N i : i LegList@Owned next;
TransportList@Owned next; ' value ) Leg@InTransit currentLeg; ' legList gList@
. state Unload; Leg@Arrived value;
Transport@Unload value; LegList@Owned legList;
append(LegList@Owned this,
depart(Transport@Load >> InTransport this); Leg@Arrived >> Unowned pLeg);
transportList
value
Shipment Leg

state InTransit;

TransportList@Owned transportList; state Arrived:

Transport@InTransport inTsp;

- <> Transport@Unowned carrier;
carrier

Leg@InTransit(Transport@Unowned t,...);
setArrival(Leg@InTransit >> Arrived this, ...);

H @Owned reference

% @Unowned reference
—D @Shared reference

Fig. 9. Revised design of the Shipping application.
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mechanism for JavaScript applications to safely invoke transactions on Obsidian smart contracts.
One possible approach is to embed Obsidian code in JavaScript to enable native interaction, coupled
with a mapping between Obsidian objects and JSON.

Obsidian currently has no IDE support; we plan to develop plugins for a popular IDE so that
programmers can edit Obsidian code more conveniently and efficiently.

In the current implementation, Obsidian clients invoke all remote transactions sequentially. This
means that another remote user might run intervening transactions, violating assumptions of the
client program. We plan to address this by using a Fabric mechanism to group transactions into
larger Fabric transactions, which will fail if any conflicting transaction occurred.

The type system-oriented approach in Obsidian is beneficial for many users, but it does not
lead to verification of domain-specific program properties. In the future, it would be beneficial to
augment Obsidian with a verification mechanism so that users can prove relevant properties of
their programs formally.

Finally, Obsidian currently only supports Hyperledger Fabric. We would like to target Ethereum
as well in order to demonstrate generality of the language as well as to enable more potential users
to use the language.

8 CONCLUSIONS
With Obsidian we have shown how:

e Typestate can be combined with assets using a simple permissions system to provide relevant
safety properties for smart contracts

e Qualitative user studies can be integrated into programming language design to lead to useful
design insights

e Simple applications can be built successfully with typestate and assets, with useful implica-
tions on architecture and object-oriented design

Obsidian represents a promising direction in the design of smart contract languages and pro-
gramming languages in general. We expect that the qualitative research methods will enjoy further
adoption in designing programming languages for other domains, and that the innovations in the
Obsidian type system will find use outside blockchain systems.
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