Obsidian Language Formalism

1 Language Overview

2 Obsidian Core Calculus Grammar

The grammar is shown in Figure 77.

Ct == contract C { St 7 f } | contract C managed by C" { St 7 f }

St ::= state S { 7 fMethDecl MethBody }
p = owned | readonly | shared

s u= C | C.S

T = pTs | pack_to[S, 7]

TxLabel ::= function | transaction
MethDecl ::= TxLabel T m(7TZ) — S
MethBody = { e}

cu= case S {e}

e = this.f |z |let x = e in e | new C.S(T) as p | throw | try { e } catch { e }
| pack_to S(T) returns x | x.m(T) | unpack { e } | switchz { € }

Fig. 1. Grammar

3 Static Semantics

Figure 7?7 defines auxiliary relations that are helpful in defining the typing re-
lation; Figure 7?7 defines the typing relation for expressions; Figure 77 defines
extra typing judgments to check fields, methods, and contracts.

The typing relation A +, e : 7 4 A’ is flow-sensitive: it outputs a typing
context, in addition to giving a type to the expression e. The following invari-
ant also holds for the typing relation: = € dom(A) if and only if € dom(4").
Informally, this says that the contexts A and A’ have the exact same variables
in them, only differing perhaps by the type assigned to those variables.

The boolean b in the typing judgment indicates whether the expression e
should be typed as if it were inside an unpack statement: inside an unpack,
b = t, while outside of an unpack, b = f. Some typing judgments are valid for
only one or the other case (e.g. T-PACK and T-INV) but others are valid in either
case (e.g. T-LET).

Types can either be of contract type or of a special pack to type. Only the
former sort of types, however, are allowed in the typing context. This is implicitly
enforced by:

— T-LET - this rule requires the bound variable to be of contract type

— the method Ok judgment - this determines the initial value of the typing
context when typechecking a method body, and prohibits pack to types in
the initial context

— the field Ok judgment - this ensures that fields aren’t of type pack to, and
thus pack to types cannot appear in the typing context via field unpacking.

It is assumed that the type rules have access to the helper function lookup,
fields, and methods. These helper functions retrieve, respectively, the contract
signature, the set of fields, and the set of methods of a contract given the con-
tract’s name. If the type specifies a specific typestate, all the methods and fields
that are available in that state (including those defined in the contract as a
whole) are retrieved.

4 Dynamic Semantics

Auxiliary definitions for the dynamic semantics are shown in Figure ?7. The
small-step evaluation relation is defined in Figure ?7. We augment the set of
expressions e in the runtime to make it easier to express the desired semantics
for exceptions: it is assumed that whole programs do not make use of the new
try-catch and method call constructs.

Obsidian Formalism

distinct(T) | Distinct Variables

Vi,j. i #xjvi=7]

distinct(T)
Residual Permission
res(owned) = readonly res(readonly) = readonly res(shared) = shared

Residual Type

res(p>7s) = res(p) > 7s
res(z, A) | Residual Context

A = Al — res(A(z:))]
res(z, A) = A’

‘ rm(z, A), rm(T, A) ‘

p # owned x ¢ dom(A)
rm(z,(A,z:p>71))=A rm(z, A) = A

rm(J,A) = A rm({x1, ..., Tn, Tnt1}, A) = rm{z1, ..., 20}, rm(Tni1, A))

Subtyping

T<T p=>C.S < p=C
trans(S,7s)
trans({S},C) = C.S trans({Sz2}, C.S1) = C.S2
trans({S1, S2,...},C.5) =C trans({S1, S2,...},C) =C

‘ mergeable(A; Aq, ..., Ay) ‘

mergeable(A; Ay, ..., Ay) 37".(Vi.Ai (z) <: 7")
mergeable((A,x : 7); A1, ..., A)

‘ merge(A; Ay, ..., Ay) ‘

mergeable(A; Aq, ..., Ap)
merge(A; Ay, ..., An) ={(z,7) |z e A & Ai(x) <: 7}

mergeable(; A, . ..

7A7’L)

Fig. 2. Auxiliary Relations

T-SUB T-VAR
Ax:Thyx:7 A x:res(r)

r¢ A Abper:ip>T1s 4 A A,z :p>Tsbpea: T - As
Abplet z=e1 inex: 7 - rm(zw, Az)

T-LET

lookup(C) = contract C managed by C’ = 3i,p’. A(this) <:p' =C;
T f = fields(C.S) Vi.A(x;) =75 distinct(T)

T-NEW
Atpnew C.S(T) as p:p>C.S dres(z, A)
(7 f) € fields(A(this))
- T-READ - T-THR
A ¢ this.f :res(t) 4 A Ay throw: 7 -4 A
(TzLabel 7" m(7) — S) € methods(r") distinct(y, x)
Vi.A(y;) =7 p = readonly = T'xLabel = function
— T-INV
Az :peT1 Hram(y): 7 Ares(y, A),z : pr>trans(S, ")
A(z) =p=C
Vi.S; € states(C) Vi. Az ip>C.S; e T 4 A
X 7 T-SWITCH
A ¢ switch © {case S1 {e1} ...} : 7 A merge(A; Ay,..., Ay)
A(this) = p=>C.S; p # readonly T f = fields(C.S1)
Vi.fi ¢ A A fi:iTi, oy fn: T b e pack_to[S2,7] 4 A
— T-UNPACK
A ¢ unpack {e}: 7 4 rm(f,A")
T f = fields(trans(S, A(this)))
Vi.A(z;) =7 Aly) =71 distinct(T, y)
T-PACK

A (¢ pack_to S(T) returns y : pack_to[S, 7] 4 res((Z,y), Q)

Abper T A Abper:T A
Aty try {e1} catch {e2} : 7 4 merge(A; Ay, Az)

T-TRY

Fig. 3. Statics

Obsidian Formalism

(7 f) Ok | Field Consistency

(owned =75 f) Ok (p=C f) Ok

‘ (MethDecl MethBody) Ok in C.S ‘ Method Consistency

f; &, this : owned =>C.S,x1 : T1,..., Tn:Tn Fe: 7T A
Vo, 7.. A(z) = owned > 7, iff x = this

transaction 7' m(7) — S {e} Ok in C.S

f; &, this : readonly > C.S, 1 : T1,...,Tn :Th Fe: 7+ A
Yz, 7., A(z) # owned o> 7,
function 7’ m(7x) {e} Ok in C.S

Fig. 4. Auxiliary Judgments

1 € LOCATIONS — OBJECTS
p € VARIABLES — LOCATIONS
OBJECTS = {(Ts, fmap) | fmap € FIELDS — LOCATIONS)
field(f, (s, fmap)) = fmap(f)
type((7s, fmap)) = 7s

(TS: fmap)[f = é] = (787 fmap[f = é])
¢ € LOCATIONS

ex=... | try(p) {e1} catch {ea} | £ | Ex | call(p) {e}

v = { | pack_to S({) returns ¢

E,E[e] | Evaluation Context, Substitution
E:=o|letxz=Eine|let x =/ in E | unpack {E} | call(p) {E}
ole] =e
(let x = E in €')[e] = (let = E[e] in ¢€)
(let x = £ in E)[e] = (1et = = £ in E[e])
(unpack {E})[e] = (unpack {E[e]})

(call(p) {E})[e] = (call(p) {E[e]})

context(u, p, E) | Calculates a suitable p’ for evaluation inside of E
context(u, p,0) = p context(u, p,let x = E in e) = context(u, p,E)
context(u, p,let x = ¢ in E) = context(u, p[z — £],E)

7T = Fields(type(u(p(this))))
p = plfi > field(fr, p(p(tnis)))]... [fu — ficld(fu, n(p(this)))]

context(iu, p,unpack {E}) = context(u, p'\{this}, E)

context(u, p, call(p’) {E}) = context(u, p', E)

Fig. 5. Auxiliary Definitions

Obsidian Formalism

— _E-VAR . —_E-READ
s Py T = f, p(T) ts ps [— 1, field(f, p(p(this)))
E-BUBBLE-UP context(p, pB) = p pope— i E-EV
1, s B[Ex] — p, Ex 1, p, E[e] — 1/ E[¢]
E-LET E-THROW
w,p,let x =£in v — p,v u, p, throw — pu, Ex

lookup(type(u(p(x))),m) = 7 m(7z) — S {e}
p' = Dz = p(y:)][this — p(z)]
1, psx.m(y) — p,call(p’) {e}

E-METHOD

E-RETURN
1, p, call(p’) {€} — p, €

¢ Dom(l") ﬁ = fleldS(OS) fmflp = {(f17p($1)), R (fn7p(1:n))}

E-NEW
u, p,new CS(E) as p — ‘u,[f = (CSa fmﬂﬂ)]a£
Vi.p(x;) = £; =/
Vi p(@:) P(y) _ b-pACK
u, p,pack_to S(T) returns y — pu,pack_to S({) returns ¢
7F = ficlds(type(u(p(this))))
Othis = p(thi =] [fn— £l f = this) — Oinis
this = p(this)[f1 1]...[f £ | " /M[P(,IS), th]E_TRANS
1, p,unpack {pack_to S(¢) returns '} — u',{
E-TRY-1
p, p,try {e1} catch {ea} — p, try(u) {e1} catch {ez}
! /
My, p,€1 — [€1
E-TRY-2

1, p,ery(p1) {er} cateh {ea} — p',try(un) {1} catch {e2}

E-TRY-3
t, p,try(p) {€} catech {ea} — p, ¢

E-CATCH

1, ps try(pa) {Ex} catch {ea} — i1, ez

Fig. 6. Dynamics

