Smarter Smart Contract Development Tools

Michael Coblenz, Joshua Sunshine, Jonathan Aldrich, Brad A. Myers
School of Computer Science
Carnegie Mellon University
Pittsburgh, USA
{mcoblenz, sunshine, aldrich, bam}@cs.cmu.edu

Abstract—Much recent work focuses on finding bugs and
security vulnerabilities in smart contracts written in existing
languages. Although this approach may be helpful, it does
not address flaws in the underlying programming language,
which can facilitate writing buggy code in the first place. We
advocate a re-thinking of the blockchain software engineering
tool set, starting with the programming language in which
smart contracts are written. In this paper, we propose and
justify requirements for a new generation of blockchain software
development tools. New tools should (1) consider users’ needs
as a primary concern; (2) seek to facilitate safe development
by detecting relevant classes of serious bugs at compile time;
(3) as much as possible, be blockchain-agnostic, given the wide
variety of different blockchain platforms available, and leverage
the properties that are common among blockchain environments
to improve safety and developer effectiveness.

Index Terms—smart contracts, usability of programming lan-
guages, blockchain

I. INTRODUCTION

Blockchain platforms are increasingly supporting sophisti-
cated computation, implemented in smart contracts. Unfortu-
nately, programs implemented on blockchain platforms have
suffered a series of bugs and security vulnerabilities through
which over $80 million worth of virtual currency has already
been stolen [1], [2]. The observation that these platforms are
significant targets of high-stakes software development has
led to a new area of research in which researchers propose
methods to improve security. We argue that the research
community places too much emphasis on small changes to
the development process that might identify specific bugs
and vulnerabilities after they have already been introduced.
Instead, we propose that the community refocus itself on a top-
down agenda to rethink the problems of blockchain software
development from a human perspective.

We sampled conference proceedings from 2018 and cate-
gorized each blockchain-related paper. Among 35 blockchain-
related papers we identified from 2018, only one focused on
the possibility of programming languages other than Solidity
to implement smart contracts — and that paper compared
existing languages, rather than proposing a new language
design [3]. On the other hand, five conducted analyses of
smart contracts written in existing languages. Although other
work on language design is ongoing, most blockchain research
seems to focus on building blockchain applications and plat-
forms rather than on what tools software engineers will use to
write applications.

The notion that programming languages affect how people
think dates back to the early history of computing. Iverson
quoted A. N. Whitehead, who wrote in 1911: “By relieving
the brain of all unnecessary work, a good notation sets it
free to concentrate on more advanced problems, and in effect
increases the mental power of the race” [4]. We expect, then,
given the nascent nature of Solidity and the serious bugs reg-
ularly found in Solidity programs, that iterating on the smart
contract language would significantly improve the ability of
software engineers to write smart contracts effectively. Indeed,
a line of research has found various impacts of language design
on programmer effectiveness [5], [6]. We argue, as Stefik and
Hanenberg do [7], that programming language designers have
a responsibility to consider usability as a key criterion when
designing and evaluating programming languages.

In this paper, we propose three requirements for languages
intended for smart contract authorship, and observe that no
commonly-used language meets these requirements. We are
designing a new programming language, Obsidian [8], ac-
cording to these requirements, but we invite other researchers
to join us in exploring the space of better blockchain pro-
gramming languages. We argue that languages should (1)
consider users’ needs as a primary concern; (2) seek to
facilitate safe development by detecting relevant classes of
serious bugs at compile time; and (3) as much as possible,
be blockchain-agnostic, given the wide variety of different
blockchain platforms available.

II. ANALYSIS OF RECENT BLOCKCHAIN PAPERS

To assess the recent focus on smart contract languages
relative to other topics in the blockchain research community,
we conducted a literature review. We identified a set of
categories into which we divided the papers, revising the
categories as we found additional papers that did not fit in
any of the established categories. The categories and paper
counts are shown in Table 1.

We included all papers in the proceedings of WETSEB 2018
and ICBC 2018. In addition, we searched the proceedings of
ICSE 2018 and PACMPL so that we would include more
general-interest papers on blockchain software engineering
and programming languages; the latter searches (for the term
“blockchain”) resulted in only one paper each. In all, we found
35 papers on blockchain topics.

We were surprised that there was only one paper in the
corpus pertaining to smart contract programming language

Category Papers
Blockchain application implementations and techniques 15
Blockchain platforms: consensus, performance, security, analysis 11
Legal Regulation of blockchain systems 11
Analysis of smart contracts in existing languages 5
Alternative smart contract languages 1
Blockchain application modeling/visualization 1
Security 1
TABLET

BLOCKCHAIN RESEARCH CATEGORIES AND PAPER COUNTS

design [3]. That paper, by Parizi and Dehghantanha, reported
on a user study comparing Solidity [9], Pact [10], and Lig-
uidity [11]. Because the vulnerabilities were analyzed by a
tool designed to find particular vulnerabilities that are common
among Solidity programs, it is not clear whether the programs
in the other languages included serious vulnerabilities that the
tool did not detect. The authors measured times for novice par-
ticipants to complete a collection of programming tasks when
assigned one of three different languages, arguing that faster
times indicate increased usability. However, time for novices
to complete small programming tasks is only one aspect of
usability. A more thorough examination would consider the
challenges users face; more realistic tasks and experienced
users; and perhaps most importantly, a fine-grained analysis
of which language design features contributed to or detracted
from usability.

One additional paper proposed a programming language for
analysis of the Ethereum blockchain [12], but that language
is not suitable for implementing smart contracts themselves;
it is limited to analyses of the whole ledger.

Several blockchain languages did not appear in our mapping
study, which focused on recent academic publications in the
venues we considered most likely for work of this nature. A
paper on Flint was published in the Programming conference
proceedings [13]. Other languages, such as Liquidity, Pact, and
Vyper [14], are commercial projects. Although they may be
better than Solidity, they have not achieved wide adoption and
have not been examined in a peer-reviewed context.

III. REQUIREMENTS FOR SMART CONTRACT LANGUAGES

Having observed relatively little academic research that
considers the possibility of improving smart contract devel-
opment by creating or refining programming languages, we
elicit requirements for successful smart contract languages
by observing the application domain and the history of the
community’s experience with existing languages.

A. Strong static safety

Once a smart contract is deployed and users rely on the
deployed contract, bugs in the deployed contract can be
impossible to fix, since the nature of some blockchains is
such that the contract cannot be modified after deployment.
Furthermore, smart contracts may implement high-stakes soft-
ware governing valuable resources, such as cryptocurrencies,
or maintaining important business records. Bugs in smart

contracts undermine the very purpose of the blockchain,
which is to facilitate transactions among parties that have not
established trust.

Delmolino et al. found that novices typically make several
serious errors when writing smart contracts [15]; although the
study was done with Serpent, which predated Solidity, popular
blockchain languages have not been designed to prevent the
bugs that Delmolino et al. found, such as errors in encoding
state machines resulting in loss of money.

As a result, we argue for strong, compile-time mechanisms
to eliminate as many classes of bugs as is practical. Recent
work on static smart contract checking, such as Oyente [16]
and MadMax [17], aim to find instances of particular classes of
bugs. But these kinds of static analysis may not have the same
kinds of deep impact on programmer’s reasoning as deeper
language design decisions. Indeed, correctness by construction
may be a more direct means of attaining safety, since it
demands that programmers structure their artifacts in a way
that avoids classes of bugs. It is better, then, to combine careful
language design, which shapes how people think, with static
analyses that can detect other bugs that the language cannot
prevent. For example, commonly-used languages offer type
systems that do not facilitate reasoning about assets, which can
be owned and consumed. This leads to bugs in which assets are
accidentally either consumed more than once or lost forever, as
has been shown to occur [15]. Likewise, traditional languages
do not facilitate compile-time reasoning about the states that
objects are in, even though smart contracts typically implement
state machines that support different transactions depending
on the state. This can lead to bugs in which transactions are
invoked on contracts that are in inappropriate states.

B. User-centered design

Blockchain software development is fundamentally a human
process, involving human developers who must create appli-
cations to meet human needs [18]. A smart contract language,
then, is an interface by which people can specify behavior, and
is subject to the principles of human-computer interaction.

Many programming language designs and tools for software
engineers aim to reduce the difficulty of writing programs,
but unfortunately, most of the tools in use today were not
formally evaluated with users. Instead, designers guessed what
would be “good” for users and provided it. But the users of
the tools may have different needs than the designers, so it
does not suffice for designers to create tools for themselves
and hope that others will learn to use the tools effectively. We
argue that software engineers, being people too, are amenable
to the methods of human-computer interaction [19] and that
designers of programming languages should use a wide variety
of techniques in order to make their tools more usable [18].

A lot of approaches developed in the programming language
research community are not adopted by developers because
they are too hard to use or are impractical for real-world
usage. For example, Bhargavan et al. [20] proposed formal
verification of smart contracts. Though many researchers are

working on this, formal verification is still impractical for most
programmers to use.

End-user programming offers the potential to empower
more users to write software. Spreadsheets are a widely-
used programming environment. Can we design smart contract
languages that enable business analysts at a company to write
code reflecting policy changes [21] according to business
needs, rather than assuming that a professional software engi-
neer will always be part of the process? Can we enable domain
experts, who might already be fluent in visual languages such
as BPM, to write and modify smart contracts [22], [23]? This
goal might seem to be at odds with the goal to offer stronger
static checking, but in many end-user systems the key is to
make it very easy to accomplish common tasks safely. For
example, Scratch uses the shapes of connectors to indicate how
components may be connected together [24]. Each language
designer should carefully consider who the target users are
and whether it is possible to enable more people to write and
maintain smart contracts.

C. Blockchain-agnosticism

As of this writing, there were at least 28 different blockchain
platforms [25]. An author of a smart contract may need to
deploy on one blockchain platform initially, and then migrate
as the blockchain market matures. Even Ethereum, which is
the longest-running and most popular smart contract platform,
plans significant changes in Ethereum 2.0, which may cause
some users to migrate to or from Ethereum. Each platform
supports a particular set of languages; currently-supported lan-
guages include Java, Go, Kotlin, Solidity, C++, WebAssembly,
Python, JavaScript, Liquidity, and Rust (among others). A new
smart contract language that only works on one platform locks
itself to an uncertain future. More importantly, programs last a
long time, and implementations need to be robust to changes
in underlying infrastructure.

Instead of committing to a particular platform, designers
should make a small number of safe assumptions about the
nature of blockchain platforms, allowing developers to create
stable software against a simple abstraction. By doing so,
language designers might improve safety and usability relative
to general-purpose languages. Languages might rely on the
following properties that most blockchain systems have in
common:

Sequential execution: Blockchain platforms typically sup-
port neither parallelism nor concurrency. This simplifies
reasoning relative to systems that do support parallelism
or concurrency.

Deterministic evaluation: Because all peers must obtain the
same result when executing transactions, smart contracts
cannot depend on arbitrary external API invocations.

High cost of computation: Computation on the blockchain
is substantially more expensive than off-chain computa-
tion, so although transactions are typically small, they
need to be exceptionally cheap. Public blockchains re-
quire users to pay cryptocurrency according to the com-
putational cost of their transactions, providing additional

motivation to keep transactions cheap and also motivating
a need to predict transaction costs in advance of execu-
tion.

Unpredictable transaction ordering: Clients submit trans-
action requests to blockchains without knowing what
transactions will occur between their submission and
the transactions’ executions. If an intervening transaction
violates an implicit precondition of a transaction, the
results of the transaction might be surprising to the user
who issued it. [16]

Cryptography needed to maintain secrecy: Blockchains
permit a collection of nodes to see all the data on the
blockchain. Any data that should remain secret from
some of these nodes must be encrypted. This requires
cryptographic techniques, such as timed commitments
[26]. This difficulty comes up frequently; for example,
a gambling application might need to allow players to
place secret bets, but if the bets are stored naively, the
bets will be public.

Off-chain interaction: Client software that executes off-
blockchain needs to interact with deployed smart con-
tracts. Some existing approaches, such as that in
Ethereum, limit the APIs to those that only take prim-
itive arguments, stifling the expressiveness of the APIs.
New languages should facilitate well-designed, expressive
APIs by allowing arbitrary data structures to be passed
and returned. New languages should make it easy to
develop client software that interacts with blockchains.

Storage: Some blockchain platforms, such as Hyperledger
Fabric, require users to manually save and restore data
from the ledger as key/value pairs. This allows fine-
grained control but also requires programmers to expend
significant effort and offers the potential for bugs. Lan-
guages should facilitate automatic, efficient storage of
smart contract state.

IV. OBSIDIAN: A NEW BLOCKCHAIN PROGRAMMING
LANGUAGE

Our design complements some of the static analyses that
have been proposed (such as in Oyente) by detecting additional
bugs that existing analyses cannot detect. For example, in
Obsidian, we statically rule out a class of bugs that result
in loss of assets due to owning references to assets going out
of scope. We also take advantage of the fact that contracts
typically support different transactions depending on their
state, and we rule out bugs in which transactions are invoked
when the contract is in an inappropriate state. This kind of
approach has been shown to be helpful even when only used
as documentation [27]. We hope to show that programmers
who use Obsidian tend to write smart contracts with fewer
serious bugs.

Although we are targeting professional software engineers
with Obsidian, we are integrating user-centered design into
the language design process in order to maximize the chances
that it will be effective for all levels of users [28]. We
plan to evaluate the final language in a user study and we

encourage other language designers to substantiate their claims
of usability or increased productivity with studies with target
populations.

Obsidian is applicable to many different blockchain plat-
forms, but our first target is Hyperledger Fabric. Obsidian
could be made suitable for Ethereum as well with some
additional work on resource estimation. Obsidian compiles
to Java, which is supported natively on Fabric, and has low
runtime overhead, minimizing cost of transaction execution.
Obsidian automatically serializes and deserializes objects for
archiving in the ledger as well as to support API invocation
by clients. Obsidian leverages the assumption that the envi-
ronment is sequential to simplify reasoning, although aspects
of the Obsidian type system might facilitate reasoning in
concurrent contexts.

V. CONCLUSION

The distinctive characteristics of blockchain programming
environments and the applications that people want to write
for them motivate the design of domain-specific languages
to improve safety, security, and developer effectiveness. Re-
cent research has focused on improving programs written
in existing languages, such as Solidity, but there remains
a potential for novel languages to shape how developers
think and thus make developers much more productive. By
leveraging properties common to many different blockchain
platforms, researchers and language designers may be able to
create novel cross-platform smart contract languages that make
developers more effective.

ACKNOWLEDGMENT

This material is based upon work supported by the US
Department of Defense, by NSF grants CNS-1734138 and
CNS-1423054, by NSA lablet contract H98230-14-C-0140, by
the Software Engineering Institute, and by AFRL and DARPA
under agreement #FA8750-16-2-0042. Michael Coblenz is
supported by an IBM PhD fellowship. Any opinions, findings,
and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views
of the sponsors.

REFERENCES

[1] E. Giin Sirer, “Thoughts on the DAO hack,” 2016. [Online]. Available:
http://hackingdistributed.com/2016/06/17/thoughts-on-the-dao-hack/

[2] L. Graham. (2017) $32 million worth of digital currency ether stolen
by hackers. [Online]. Available: https://www.cnbc.com/2017/07/20/32-
million-worth-of-digital-currency-ether-stolen-by-hackers.html

[3] R. M. Parizi and A. Dehghantanha, “Smart Contract Programming
Languages on Blockchains: An Empirical Evaluation of Usability and
Security,” vol. 10974. Springer International Publishing, 2018, pp.
75-91. [Online]. Available: http://link.springer.com/10.1007/978-3-319-
94478-4

[4] K. E. Iverson, “Notation as a tool of thought,” Commun. ACM,
vol. 23, no. 8, pp. 444465, Aug. 1980. [Online]. Available:
http://doi.acm.org/10.1145/358896.358899

[5]1 S. Hanenberg, S. Kleinschmager, R. Robbes, E. Tanter, and A. Stefik,
“An empirical study on the impact of static typing on software maintain-
ability,” Empirical Software Engineering, vol. 19, no. 5, pp. 1335-1382,
oct 2014.

[6]

[7]

[8]

\O

[9]
[10]
(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

S. Endrikat, S. Hanenberg, R. Robbes, and A. Stefik, “How do API
documentation and static typing affect API usability?” in International
Conference on Software Engineering. New York, NY, USA: ACM,
2014, pp. 632-642.

A. Stefik and S. Hanenberg, “The programming language wars: Ques-
tions and responsibilities for the programming language community,”
ser. Onward! 2014. New York, NY, USA: ACM, 2014, pp. 283-299.
[Online]. Available: http://doi.acm.org/10.1145/2661136.2661156

M. Coblenz, “Obsidian: a safer blockchain programming language,” in
Proceedings of the 39th International Conference on Software Engineer-
ing Companion. IEEE Press, 2017, pp. 97-99.

Ethereum Foundation, “Solidity,” https://solidity.readthedocs.io/en/develop/.

Accessed Jan. 3, 2017.

Kadena, “Pact,” 2019. [Online]. Available: https://pact.kadena.io
OCamlPRO, “Liquidity, a simple language
over Michelson,” 2019. [Online]. Available:
https://github.com/OCamlPro/liquidity/blob/master/docs/liquidity.md

S. Bragagnolo, H. Rocha, M. Denker, and S. Ducasse, “Ethereum query
language,” 2018 IEEE/ACM st International Workshop on Emerging
Trends in Software Engineering for Blockchain (WETSEB), 2018.

F. Schrans, S. Eisenbach, and S. Drossopoulou, “Writing safe
smart contracts in Flint,” in Conference Companion of the
2Nd International Conference on Art, Science, and Engineering
of Programming, ser. Programming'18 Companion. New
York, NY, USA: ACM, 2018, pp. 218-219. [Online]. Available:
http://doi.acm.org/10.1145/3191697.3213790
The Ethereum Foundation, “Vyper,” 2019.
https://github.com/ethereum/vyper

K. Delmolino, M. Arnett, A. E. Kosba, A. Miller, and E. Shi, “Step by
step towards creating a safe smart contract: Lessons and insights from
a cryptocurrency lab,” JACR Cryptology ePrint Archive, vol. 2015, p.
460, 2015.

L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making Smart
Contracts Smarter,” in Proceedings of ACM CCS’16, 2016.

N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smarag-
dakis, “Madmax: Surviving out-of-gas conditions in ethereum smart
contracts,” OOPSLA, 2018.

M. Coblenz, J. Aldrich, B. A. Myers, and J. Sunshine, “Interdisciplinary
programming language design,” in Onward! 2018 Essays, ser. SPLASH
’18, 2018.

B. A. Myers, A. J. Ko, T. D. LaToza, and Y. Yoon, “Programmers are
users too: Human-centered methods for improving programming tools,”
Computer, vol. 49, no. 7, pp. 44-52, July 2016.

K. Bhargavan, N. Swamy, S. Zanella-Béguelin, A. Delignat-Lavaud,
C. Fournet, A. Gollamudi, G. Gonthier, N. Kobeissi, N. Kulatova,
A. Rastogi, and T. Sibut-Pinote, “Formal Verification of Smart Con-
tracts,” in Proceedings of the 2016 ACM Workshop on Programming
Languages and Analysis for Security, New York, New York, USA, 2016.
IBM. Blockchain for supply chain. [Online]. Available:
https://www.ibm.com/blockchain/supply-chain/

O. Lopez-Pintado, L. Garcia-Bafiuelos, M. Dumas, and I. Weber, “Cater-
pillar: A blockchain-based business process management system,” in
BPM 2017, Barcelona, Spain, 2017.

A. Tran, Q. Lu, and I. Weber, “Lorikeet: A model-driven engineering tool
for blockchain-based business process execution and asset management,”
Demo Track at BPM, vol. 2018, pp. 56-60, 2018.

M. Resnick, J. Maloney, A. Monroy-Hernandez, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman et al.,
“Scratch: Programming for all.” Commun. Acm, vol. 52, no. 11, pp.
60-67, 2009.

M. Yusuf, “A comprehensive list of blockchain platforms,” 2018.
[Online]. Available: https://www.technoduet.com/a-comprehensive-list-
of-blockchain-platforms/

N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks
on ethereum smart contracts,” Cryptology ePrint Archive: Report
2016/1007, https://eprint. iacr. org/2016/1007, Tech. Rep., 2016.

J. Sunshine, J. D. Herbsleb, and J. Aldrich, “Structuring documentation
to support state search: A laboratory experiment about protocol pro-
gramming,” in European Conference on Object-Oriented Programming
(ECOOP), 2014.

C. Barnaby, M. Coblenz, T. Etzel, E. Kanal, J. Sunshine, B. Myers,
and J. Aldrich, “A user study to inform the design of the obsidian
blockchain dsl,” in PLATEAU 17 Workshop on Evaluation and Usability
of Programming Languages and Tools, 2017.

[Online]. Available:

