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Verifying Switched System Stability With Logic
Anonymous Author(s)

ABSTRACT
Switched systems are known to exhibit subtle (in)stability behav-

iors requiring system designers to carefully analyze the stability

of closed-loop systems that arise from their proposed switching

control laws. This paper presents a formal approach for verifying

switched system stability that blends classical ideas from the con-

trols and verification literature using differential dynamic logic (dL),
a logic for deductive verification of hybrid systems. From controls,

we use standard stability notions for various classes of switching

mechanisms and their corresponding Lyapunov function-based

analysis techniques. From verification, we use dL’s ability to verify

quantified properties of hybrid systems and dL models of switched

systems as looping hybrid programs whose stability can be for-

mally specified and proven by finding appropriate loop invariants,
i.e., properties that are preserved across each loop iteration. This

blend of ideas enables a trustworthy implementation of switched

system stability verification in the KeYmaera X prover based on dL.
For standard classes of switching mechanisms, the implementation

provides fully automated stability proofs, including searching for

suitable Lyapunov functions. Moreover, the generality of the deduc-

tive approach also enables verification of switching control laws

that require non-standard stability arguments through the design of

loop invariants that suitably express specific intuitions behind those

control laws. This flexibility is demonstrated on three case studies:

a model for longitudinal flight control by Branicky, an automatic

cruise controller, and Brockett’s nonholonomic integrator.

CCS CONCEPTS
• Theory of computation → Logic and verification; Timed
and hybrid models; • Computing methodologies → Compu-
tational control theory; • Computer systems organization →

Embedded systems.
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1 INTRODUCTION
Switched systems provide a powerful mathematical paradigm for

the design and analysis of discontinuous (or nondifferentiable) con-

trol mechanisms [10, 22, 28, 44]. Examples of such mechanisms

include: bang-bang controllers that switch between on/off modes;

gain schedulers that switch between a family of locally valid linear

controllers; and supervisory control, where a supervisor switches

between candidate controllers based on logical criteria [22, 28].

However, switched systems are known to exhibit subtle (in)stability

behaviors, e.g., switching between stable subsystems can lead to

instability [22], so it is important for system designers to adequately

justify the stability of their proposed switching designs. Verification

and validation are complementary approaches for such justifica-

tions: validation approaches, such as system simulations or lab

experiments, allow designers to check that their models and con-

trollers conform to real world behavior; verification approaches

yield formal mathematical proofs that the stability properties hold

for all possible switching decisions everywhere in the model’s infi-

nite state space, not just for finitely-many simulated trajectories.

This paper presents a logic-based, deductive approach for veri-

fying switched system stability under various classes of switching

mechanisms. The key insight is that control-theoretic stability ar-

guments for switching control can be formally justified by blending

techniques from discrete program verification with continuous dif-

ferential equations analysis using differential dynamic logic (dL),
a logic for deductive verification of hybrid systems [33, 34]. In-

tuitively, switched systems are modeled in dL as looping hybrid
programs [46], as in the following snippet ({·}∗ denotes repetition):

{ u := ctrl(x); // switching controller (discrete dynamics)

x ′ = fu (x) // actuate decision (continuous dynamics)

}∗@invariant( ... ) // switching loop with invariant annotation

Accordingly, switched system stability is formally specified in dL
as first-order quantified safety properties of such loops (Section 2.2),

and these safety properties can then be proved rigorously by com-

bining fundamental ideas from verification and control, namely:

i) identification of loop invariants (@invariant above), i.e., proper-

ties of the (discrete) loop that are preserved across all executions

of the loop body, ii) compositional verification for separately ana-

lyzing the discrete and continuous dynamics of the loop body, and

iii) Lyapunov functions, i.e., auxiliary energy functions that enable

stability analysis for the continuous dynamics.

Section 3 identifies key loop invariants underlying stability ar-

guments for various classes of switching mechanisms and derives

sound stability proof rules for those mechanisms. Crucially, these

syntactic derivations are built from dL’s sound foundations for hy-

brid program reasoning [33, 34], without the need to introduce

new mathematical concepts such as non-classical weak solutions or

nondifferentiable Lyapunov functions [9, 16]. Section 4 uses these

derivations to implement support for switched systems in the KeY-

maera X prover based on dL [12], including a modeling interface

1
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for switched systems, automatic search for Lyapunov function can-

didates, and sound verification of switched system stability spec-

ifications. Notably, the implementation requires no extensions to
KeYmaera X’s soundness-critical core and thereby directly inherits

all of KeYmaera X’s correctness guarantees [12, 25]. This trustwor-

thiness is necessary for computer-aided verification of complex,

controlled switching designs, where the number of correctness con-

ditions on their Lyapunov functions scales quadratically with the

number of switching modes (Section 3.2), making pen-and-paper

proofs error-prone or infeasible. Section 5 further applies the deduc-

tive approach on three case studies, chosen because each require

subtle twists to standard switched system stability arguments:

• Longitudinal flight control [4]: This model is parametric (5

parameters, 2 state variables) and its stability justification

due to Branicky [4] uses a “noncustomary” Lyapunov func-

tion [10], whose correctness requires intricate arithmetic

reasoning. The proof is enabled through the use of ghost
switching where virtual switching modes are introduced for

the sake of the stability analysis, similar to the use of ghost

variables in program verification [30, 34, 35].

• Automatic cruise control [29]: This hybrid automaton switches

between several operating modes, e.g., standard/emergency

braking, accelerating, and PI control, based on specific guard

conditions. Lyapunov function candidates can be numeri-

cally generated [26], but must be corrected for soundness.

• Brockett’s nonholonomic integrator [7]: A large class of con-

trol systems can be transformed to the nonholonomic in-

tegrator but this system is not stabilizable by continuous

feedback [7, 22]. Instead, the system must be initially con-

trolled into a suitable region where a stabilizing control law

can be applied. The stability argument must show that the

initial control mode does not destabilize the system.

These case studies are verified semi-automatically in KeYmaera X,

with user guidance to design and prove modified loop invariants

that suitably capture the specific intuitions behind their respective

control laws. The flexibility and generality of this paper’s deductive

approach enables suchmodifications while ensuring that the overall

stability argument remains valid. In fact, these modified stability

proofs enjoy exactly the same, strong correctness guarantees thanks

to their formalization within the uniform dL logical foundations.

All proofs are in the appendix. The KeYmaera X implementation,

examples, and case studies are available at:
1

https://figshare.com/s/00b273eb0a5fc61c175d

2 BACKGROUND
This section briefly recalls switched systems and their hybrid pro-

gram models introduced by Tan and Platzer [46]. The section then

explains how stability for these models can be formally specified

and verified using differential dynamic logic (dL) [33, 34].

2.1 Switched Systems as Hybrid Programs
2.1.1 Hybrid Programs. The language of hybrid programs is gen-
erated by the following grammar, where x is a variable, e is a dL

1
While an artifact will be submitted for artifact evaluation if this paper is accepted

according to the guidelines for regular papers, we already provide a double-blind

anonymized link to a prototype implementation for interested reviewers now.

term, and Q is a formula of first-order real arithmetic [33, 34].

α , β ::= x ′ = f (x)&Q | x := e | ?Q | α ; β | α ∪ β | α∗

Continuous dynamics are modeled using systems of ordinary

differential equations (ODEs) x ′ = f (x)&Q evolving within do-

main Q ; the ODE is written as x ′ = f (x) when there is no domain

constraint, i.e., Q ≡ true. Discrete dynamics are modeled using

assignments (x := e assigns the value of term e to x) and tests (?Q
checks whether condition Q is true in the current state). The pro-

gram combinators are used to piece together sub-programs to form

programs with hybrid dynamics; the combinators are: sequential

composition (α ; β runs α followed by β), nondeterministic choice

(α ∪ β runs α or β nondeterministically), and nondeterministic

repetition (α∗ repeats α for any number of iterations).

Throughout this paper, x = (x1, . . . ,xn ) denotes the vector

of continuous state variables for the system under consideration.

Other variables are used for program auxiliaries, e.g., to describe

memory and timing components of switching controllers.

2.1.2 Switched systems. A switched system is described by a finite

family P of ODEs x ′ = fp (x),p ∈ P and a set of switching signals
σ : [0,∞) → P that prescribe the ODE x ′ = fσ (t )(x) to follow

at time t along the system’s evolution. Tan and Platzer [46] use

hybrid programs as formal models for various classes of switching

mechanisms; one example is arbitrary switching [22], where the

system is allowed to follow any switching signal, i.e., it switches

arbitrarily (at any time) between the ODEs x ′ = fp (x),p ∈ P. This

can be used to model real world systems whose switching behavior

is uncontrolled or a priori unknown. Arbitrary switching is modeled

by the hybrid program αarb [46, Proposition 1]:

αarb ≡

( ⋃
p∈P

x ′ = fp (x)
)∗

(1)

The behavior of program αarb is analogous to a computer simula-

tion of arbitrary switching: on each iteration, the program makes a

(discrete) nondeterministic choice of switching decision

⋃
p∈P

(
·
)

to select an ODE x ′ = fp (x) which it then follows continuously for

some duration before repeating the simulation loop.

The hybrid programs language can be used to model various

other classes of switching mechanisms [22, 46], including general

controlled switching, as illustrated in Section 1, where a (discrete)

control law u := ctrl(x) decides the ODE x ′ = fu (x) to switch to on

each loop iteration. Stability for these models is explained next.

2.2 Stability as Quantified Loop Safety
This paper studies uniform global pre-asymptotic stability (UGpAS)

for switched systems [16, 17, 22], defined as follows:

Definition 1 (UGpAS [16, 17]). Let Φ(x) denote the set of all

(domain-obeying) solutions
2 φ : [0,Tφ ] → R

n
for a switched sys-

tem from state x ∈ Rn . The origin 0 ∈ Rn is:

• uniformly globally pre-asymptotically stable if the sys-
tem is uniformly stable and uniformly globally pre-attractive,

• uniformly stable if, for all ε > 0, there exists δ > 0 such

that from all initial states x ∈ Rn with ∥x ∥ < δ , all solutions
φ ∈ Φ(x) satisfy ∥φ(t)∥ < ε for all times 0 ≤ t ≤ Tφ , and

2
A formal construction of the (right-maximal) solution ϕ for a given switching signal

σ is available elsewhere [46, Appendix A].

2
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• uniformly globally pre-attractive if, for all ε > 0,δ > 0,

there exists T ≥ 0 such that from all initial states x ∈ Rn

with ∥x ∥ < δ , all solutions φ ∈ Φ(x) satisfy ∥φ(t)∥ < ε for
all times T ≤ t ≤ Tφ .

The UGpAS definition can be understood intuitively for a system

with a switching control mechanism:

• stability means the mechanism keeps the system close to the

origin if the system is initially perturbed close to the origin,

• global pre-attractivity means the mechanism drives the sys-

tem to the origin asymptotically as t → ∞, and

• uniform means the stability and pre-attractivity properties

are independent of both the nondeterminism in the switching

mechanism (e.g., arbitrary switching) and the choice of initial

states satisfying ∥x ∥ < δ ; for brevity in subsequent sections,

“uniform” is elided when describing stability properties.

Remark 1. Switched systems whose solutions are all uniformly

bounded in time, i.e., there exists Tm such that for all solutions φ,
Tφ ≤ Tm , are trivially pre-attractive. Goebel et al. [16, 17] intro-

duce the notion of pre-attractivity as opposed to attractivity for

hybrid systems because it separates considerations about whether

a hybrid system’s solutions are complete, i.e., solutions exist for
all (forward) time, from conditions for stability and attractivity.

Indeed, it is common in the hybrid and switched systems literature

to either ignore incomplete solutions or assume the models under

consideration only have complete solutions [22, 26, 49]. Instead of

predicating proofs on these hypotheses, this paper formalizes the

(weaker) notion of UGpAS for switched systems directly.

The definition of UGpAS nests alternating quantification over

real numbers with temporal quantification over the solutions φ of

switched systems. This combination of quantifiers can be expressed

formally using the formula language of dL [33, 34], whose grammar

is shown below, ∼ ∈ {=,,, ≥, >, ≤, <} is a comparison operator

between dL terms e, ẽ and α is a hybrid program:

ϕ,ψ ::= e ∼ ẽ | ϕ ∧ψ | ϕ ∨ψ | ¬ϕ | ∀v ϕ | ∃v ϕ | [α]ϕ | ⟨α⟩ϕ

This grammar extends the first-order language of real arithmetic

(FOLR) with the box ([α]ϕ) and diamond (⟨α⟩ϕ) modality formulas

which express that all or some runs of hybrid program α satisfy

postcondition ϕ, respectively. Real arithmetic FOLR is decidable by

quantifier elimination [47] and serves as a useful base specification

language. Various specifications are equivalently definable in FOLR,

e.g., Euclidean norm bounds ∥x ∥ ∼ ε
def

≡ ∥x ∥2 ∼ ε2 (for ε ≥ 0) and

topological operations such as the boundary ∂ϕ and closure ϕ of

the set characterized by formula ϕ [3].

The box modality formula [α]ϕ expresses safety properties ϕ of

program α that must hold along all of its executions [34]. When α
models a switched system, the box modality quantifies (uniformly)

over all times for all solutions arising from the switching mecha-

nism. Accordingly, UGpAS for switched systems is formally speci-

fied by nesting the box modality with the first-order quantifiers.

Lemma 2 (UGpAS in differential dynamic logic). The origin
0 ∈ Rn for a switched system modeled by program α is UGpAS iff the
dL formula UGpAS(α) is valid. Variables ε,δ ,T , t are fresh in α :

UGpAS(α) ≡ UStab(α) ∧ UGpAttr(α)

UStab(α) ≡ ∀ε>0∃δ>0∀x (
∥x ∥ < δ → [α] ∥x ∥ < ε

)
UGpAttr(α) ≡ ∀ε>0∀δ>0∃T≥0∀x (

∥x ∥ < δ →

[t := 0;α , t ′ = 1] (t ≥ T → ∥x ∥ < ε)
)

Here, UStab(α) and UGpAttr(α) characterize stability and global
pre-attractivity of α , respectively. In UGpAttr(α), α , t ′ = 1 denotes
the hybrid program obtained from α by augmenting its continuous
dynamics so that variable t tracks the progression of time.

Formulas UStab(α) and UGpAttr(α) syntactically formalize in

dL the corresponding quantifiers in Def. 1. In UGpAttr(α), the fresh
clock variable t is initialized to 0 and syntactically tracks the pro-

gression of time along switched system solutions. The program

α , t ′ = 1 can, e.g., be constructed by adding a clock ODE t ′ = 1 to

all ODEs in the switched system model α . Accordingly, the post-
condition t ≥ T → ∥x ∥ < ε expresses that the system state norm is

bounded by ε afterT time units along any switching trajectory, as re-

quired in Def. 1. Various other stability notions are of interest in the

continuous and hybrid systems literature [13, 17, 22, 29, 36, 44, 45].

These variations can also be formally specified in dL [45] but are

left out of scope for this paper.

2.3 Proof Calculus
The dL proof calculus enables formal, deductive verification of

UGpAS stability specifications through compositional reasoning

principles for hybrid programs [33, 34] and a complete axiomatiza-

tion for ODE invariants [35]. For example, an important syntactic

tool for differential equations reasoning is the Lie derivative of term

e along ODE x ′ = f (x), defined as Lf (e)
def

= ∇e · f . The sound

calculation and manipulation of Lie derivatives is enabled in dL
through the use of syntactic differentials [33].

All proofs are presented in a classical sequent calculus with the

usual rules for manipulating logical connectives and sequents. The

semantics of sequent Γ ⊢ ϕ is equivalent to the formula (
∧
ψ ∈Γψ ) →

ϕ and a sequent is valid iff its corresponding formula is valid. The

key (derived) dL proof rule used in this paper is:

loop

Γ ⊢ Inv Inv ⊢ [α] Inv Inv ⊢ ϕ
Γ ⊢ [α∗]ϕ

The loop rule says that, in order to prove validity of the conclu-

sion (below the rule bar), it suffices to prove the three premises

(above the rule bar), respectively from left to right: i) the initial

assumptions Γ imply Inv, ii) Inv is preserved across the loop body α ,
i.e., Inv is a loop invariant for α∗, and iii) Inv implies the postcondi-

tion ϕ. The identification of loop invariants Inv is crucial for formal

proofs of UGpAS, as illustrated by the following deductive proof

skeleton for stability (a similar skeleton is used for pre-attractivity):

Deductionx
loop

...

Γ ⊢ Inv

Γ1 ⊢ ϕ1 · · · Γk ⊢ ϕk

...
(
hybrid program

reasoning for α

)
Inv ⊢ [α] Inv

...

Inv ⊢ ∥x ∥ < ε

Γ ⊢ [α∗] ∥x ∥ < ε

...
(
logic/arithmetic

reasoning for Γ

)
⊢ UStab(α∗)

3
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ε

δ
0

V <W

Lfp
(V )≤0

ε

δ

0

V <W
(bounded)

V ≥U→
V <W +ktV <U

Figure 1: Loop invariants for UGpAS (arbitrary switching),
stability (left) and pre-attractivity (right). Switching trajec-
tories are illustrated by alternating black and green arrows.

Proofs proceed upwards by deduction, where each reasoning step

is justified by sound dL axioms and rules of inference, e.g., the loop

rule. The skeleton above syntactically derives a proof rule that

reduces a stability proof for α∗ to proofs of the top-most premises,

Γ1 ⊢ ϕ1 · · · Γk ⊢ ϕk , which corresponding to required logical

and arithmetical conditions on Lyapunov functions for various

switching mechanisms. The loop invariant step (highlighted in red)

crucially ties together these conditions on Lyapunov functions and

hybrid program reasoning for switched systems.

3 LOOP INVARIANTS FOR SWITCHED
SYSTEM STABILITY

This section identifies loop invariants for proving UGpAS under

various classes of switching mechanisms with Lyapunov func-

tions [5, 21, 22]; relevant mathematical arguments are presented

briefly, see AppendixA for more details. Throughout the section,

loop invariants are progressively tweaked to account for new design

insights behind increasingly complex switching mechanisms.

3.1 Arbitrary and State-Dependent Switching
3.1.1 Arbitrary Switching. Stability for the arbitrary switching

model αarb from (1) can be verified by finding a so-called com-
mon Lyapunov function V for all of the ODEs x ′ = fp (x),p ∈ P

satisfying the following arithmetical conditions [22, 44]:

i) V (0) = 0 and V (x) > 0 for all ∥x ∥ > 0,

ii) V is radially unbounded, i.e., for all b, there exists γ > 0 such

that ∥x ∥ < γ for all V (x) ≤ b, and
iii) for each ODE x ′ = fp (x),p ∈ P, the Lie derivative Lfp

(V )

satisfies: Lfp
(V )(0) = 0 and Lfp

(V )(x) < 0 for all ∥x ∥ > 0.

Conditions i)–iii) are generalizations of well-known conditions

for stability of ODEs [8, 21] to arbitrary switching. Intuitively, con-

ditions i) and iii) ensure thatV acts as an auxiliary energy function

whose value decreases asymptotically to zero (at the origin) along

all switching trajectories of the system; the radial unboundedness

condition ii) ensures that this argument applies to all system states

for global pre-attractivity [21]. Correctness of these conditions can

be proved in dL using loop invariants, see Fig. 1 (explained below).

Stability. The specification UStab(αarb) requires that all trajec-
tories of αarb stay in the grey ball ∥x ∥ < ε , starting from a chosen

ball ∥x ∥ < δ , see Fig. 1 (left). Condition i) guarantees that the ball

∥x ∥ < ε contains a sublevel set of the Lyapunov function satis-

fying V < W (dashed blue curve) and this sublevel set contains

a smaller ball ∥x ∥ < δ [8, 21]. Condition iii) shows that this sub-
level set is invariant for each ODE x ′ = fp (x),p ∈ P because

Lfp
(V )(x) ≤ 0, as illustrated by the dashed black and green arrows

for two different switching choices p ∈ P both locally pointing

inwards on the boundary of the sublevel set. Thus, the formula

Invs ≡ ∥x ∥ < ε ∧V <W , which characterizes the blue sublevel set,

is an invariant for all possible switching choices in the loop body of

αarb, which makes Invs a suitable loop invariant for UStab(αarb).

Pre-attractivity. The specification UGpAttr(αarb) requires that
all trajectories of αarb stay in the grey ball ∥x ∥ < ε after a cho-

sen time T , starting from the initial ball ∥x ∥ < δ , see Fig. 1 (right).
The ball ∥x ∥ < δ is compact, i.e., contained in a sublevel set sat-

isfying V < W for someW > 0 (outer dashed blue curve); this

sublevel set is bounded by condition ii). Like the stability argu-

ment, condition i) guarantees that there is a sublevel set V < U
(inner dashed blue curve) contained in the ball ∥x ∥ < ε , and con-

dition iii) shows that both sublevel sets characterized by V < W
and V < U are invariants for every ODE in the loop body of αarb.
The set characterized by formula V ≥ U ∧V ≤W is compact and

bounded away from the origin, which implies by condition iii) that
there is a uniform bound k < 0 on this set, where for each ODE

x ′ = fp (x),p ∈ P, Lfp
(V )(x) ≤ k . Thus, the value of Lyapunov

function V decreases at rate k , regardless of switching choices in
the loop body of αarb, as long as it has not enteredV < U . The loop

invariant for UGpAttr(αarb) syntactically expresses this intuition:

Inva ≡ V <W ∧ (V ≥ U → V <W + kt). For a sufficiently large

choice of T withW + kT ≤ U , trajectories at time t ≥ T satisfy

V < U so they are contained in the ∥x ∥ < ε ball.
The loop invariants identified above enable derivation of a for-

mal dL stability proof rule for αarb (deferred to a more general

version in Corollary 3 below). In fact, since arbitrary switching is

the most permissive form of switching [22], UGpAS for any switch-

ing mechanism can be soundly justified using the loop invariants

above in case a suitable common Lyapunov function can be found.

3.1.2 State-dependent Switching. The state-dependent switching
mechanism [22] constrains arbitrary switching by allowing execu-

tion of (and switching to) an ODE x ′ = fp (x),p ∈ P only when

the system state is in domain Qp . This is modeled by the hybrid

program αstate ≡

( ⋃
p∈P x ′ = fp (x)&Qp

)∗
[46, Proposition 2],

where arbitrary switching αarb corresponds to the special case with
Qp ≡ true for all p ∈ P.

The same loop invariants for αarb are used for αstate to derive

the following proof rule. For brevity, premises of all derived stability

proof rules are implicitly conjunctively quantified over p ∈ P.

Corollary 3 (UGpAS for state-dependent switching, CLF).

The following proof rule for common Lyapunov functionV with three
stacked premises is derivable in dL.

CLF

⊢ V (0) = 0 ∧ ∀x (∥x ∥ > 0 → V (x) > 0)

⊢ ∀b ∃γ ∀x (V (x) ≤ b → ∥x ∥ ≤ γ )

⊢ Lfp
(V )(0) = 0 ∧ ∀x (∥x ∥ > 0 ∧Qp → Lfp

(V )(x) < 0)

⊢ UGpAS(αstate)

4
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Figure 2: A switching trajectory for Example 7 from Sec-
tion 4.2 with state-dependent switching (left) and the value
of two Lyapunov functions along that trajectory (right).
Solid lines indicate the active Lyapunov function at time t .
Two sublevel sets Vp ,Vq < W = 0.012 are shown dashed on
the left withinwhich the switching trajectory is respectively
trapped at any given time.

Corollary 3 syntactically derives a slight generalization of condi-

tions i)–iii) from Section 3.1.1 for αstate, where the Lie derivatives
Lfp

(V )(x) for each p ∈ P are required to be negative on their re-

spective domain closures
3 Qp . This generalization is justified by the

same loop invariants in Section 3.1.1 because the ODE invariance

properties are only required to hold in their respective domains.

The domain asymmetry in αstate suggests another way of gener-
alizing the stability arguments, namely, through the use of multiple
Lyapunov functions, where a (possibly) different Lyapunov function
Vp is associated to each p ∈ P [5]. Here, the functionVp is responsi-

ble for justifying stability within domainQp , i.e., its value decreases

along system trajectories whenever the system is within Qp , as il-

lustrated in Fig. 2. Constraints on these functions are obtained by

modifying the loop invariants to account for this intuition.

Stability. The stability loop invariant is modified by case split-

ting disjunctively on the domains Qp ,p ∈ P, and requiring that

the sublevel set characterized by Vp < W is invariant within its

respective domain: Invs ≡ ∥x ∥ < ε∧
∨
p∈P

(
Qp ∧Vp <W

)
. Similar

to Section 3.1.1, the boundW is chosen so that each sublevel set

characterized by Vp <W is contained in the ball ∥x ∥ < ε .

Pre-attractivity. The pre-attractivity loop invariant is similarly

modified by disjunctively requiring that Vp decreases along system

trajectories when the system is in their respective domains Qp :

Inva ≡
∨
p∈P

(
Qp ∧ Vp < W ∧ (Vp ≥ U → Vp < W + kt)

)
.

The constants U ,W ,k,T are chosen as appropriate lower or upper

bounds for all the Lyapunov functions (see proof of Corollary 4).

Arithmetical conditions for the Lyapunov functions Vp ,p ∈ P

are derived from the modified invariants in the following rule.

Corollary 4 (UGpAS for state-dependent switching, MLF).

The following proof rule for multiple Lyapunov functions Vp ,p ∈ P

with four stacked premises is derivable in dL.

3
The topological closure Q of domain Q is needed for soundness of a technical

compactness argument used in the pre-attractivity proof, see AppendixA for details.

MLF

⊢ Vp (0) = 0 ∧ ∀x (∥x ∥ > 0 → Vp (x) > 0)

⊢ ∀b ∃γ ∀x (Vp (x) ≤ b → ∥x ∥ ≤ γ )

⊢ Lfp
(Vp )(0)=0 ∧ ∀x (∥x ∥>0 ∧Qp → Lfp

(Vp )(x)<0)

⊢
∧
q∈P

(
Qp ∧Qq → Vp = Vq

)
⊢ UGpAS(αstate)

The top three premises of Corollary 4 are similar to those of Corol-

lary 3, but are now required to hold for each Lyapunov function

Vp ,p ∈ P separately. The (new) bottom premise corresponds to a

compatibility condition between the Lyapunov functions arising

from the loop invariants. For example, consider the stability loop

invariant (similarly for pre-attractivity) and suppose the system

currently satisfies disjunctQp ∧Vp < w withVp justifying stability

in domainQp . If the system switches to the ODE x ′ = fq (x) within
domain Qq , then Lyapunov function Vq becomes the active Lya-

punov function which must satisfyVq < w to preserve the stability

loop invariant. The premise Qp ∧ Qq → Vp = Vq says that the

Lyapunov functions Vp ,Vq are equal whenever such a switch is

possible (in either direction), i.e., when their domains overlap.

3.2 Controlled Switching
This section turns to controlled switching models [46], where an ex-

plicit controller program is responsible for making logical switching

decisions between the ODEs x ′ = fp (x),p ∈ P. This is in contrast

to earlier models αarb,αstate which exhibit autonomous switching,
i.e., without an explicit control logic [6, 22]. General controlled

switching is modeled by the hybrid program αctrl:

αctrl ≡ αi
↓

initialization

;

(switching controller

↑

αu ;

αp (plant, actuate decision)︷                                                        ︸︸                                                        ︷⋃
p∈P

(
?u = p;x ′ = fp (x ,y),y

′ = дp (x ,y)&Qp
) )∗

The model αctrl uses three subprograms: αi initializes the sys-
tem, then αu (modeling the switching controller) and αp (modeling

the continuous plant dynamics) are run in a switching loop. The

discrete programs αi ,αu decide on values for the control output

u = p,p ∈ P and the program αp responds to this output by evolv-

ing the corresponding ODE x ′ = fp (x ,y),y
′ = дp (x ,y)&Qp . The

programs αi ,αu must not modify the system state variables x , but
they may modify other auxiliaries, including auxiliary continuous
state variables y used to model timers or integral terms used in con-

trollers, see Section 5.2. This control-plant loop is a typical structure

for hybrid systems modeled in dL [32, 34], e.g., the controller αu
below models the discrete switching logic present in hybrid au-

tomata [6, 18, 32] (without jumps in the system state):

αu ≡
⋃
p∈P

(
?u = p;

⋃
q∈P

(
?Gp,q ;Rp,q ;u :=q

) )
Rp,q ≡ y1 := e1;y2 := e2; . . . ;yk := ek

(2)

For each mode p ∈ P, the switching controller may decide to

transition to mode q ∈ P. This transition can only be taken if the

guard formula Gp,q is true in the current state
4
; if the transition is

taken, the reset map Rp,q sets the values of auxiliary state variables

y1, . . . ,yk respectively to the value of terms e1, . . . , ek .

4
The controller can allow trivial self-transitions with Gp,p ≡ true.

5
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Stability analysis for controlled switching proceeds by identify-

ing suitable loop invariants Inv for αctrl. A powerful proof tech-

nique applied here is compositional reasoning [32, 34] which sepa-

rately analyses the discrete (αi ,αu ) and continuous (αp ) dynamics,

and then lifts those results to the full hybrid dynamics. This idea is

exemplified by the following derived variation of the loop rule:

loopT

Γ ⊢ [αi ]Inv Inv ⊢ [αu ]Inv Inv ⊢ [αp ]Inv Inv ⊢ ϕ

Γ ⊢ [αi ; (αu ;αp )
∗]ϕ

The premises of rule loopT say that system initialization αi puts
the system in a state satisfying the invariant Inv, and that Inv is

compositionally preserved by both the discrete switching logic αu
and the continuous dynamics αp . This rule is applied to analyze

stability for two important special instances of αctrl next.

3.2.1 Guarded State-dependent Switching. The instance αguard cor-
responds to the automata controller from (2) with αi ≡

⋃
p∈P u :=p

and guard formulas Gp,q . It does not use auxiliaries y nor the reset

map Rp,q . This model adds hysteresis [19] to the state-dependent
switching model from Section 3.1.2, so that switching decisions

at each Gp,q depend explicitly on the current discrete mode u in

addition to the continuous state. This design change is reflected in

the loop invariants and in the corresponding proof rule below.

Stability. The stability loop invariant ismodified (cf. Section 3.1.2)

to case split on the possible discrete modes u = p rather than the

ODE domains: Invs ≡ ∥x ∥ < ε ∧
∨
p∈P

(
u = p ∧Vp <W

)
.

Pre-attractivity. The pre-attractivity loop invariant is modified

similarly: Inva ≡
∨
p∈P

(
u=p∧Vp<W ∧(Vp ≥ U → Vp <W +kt)

)
.

Corollary 5 (UGpAS for guarded state-dependent switch-

ing, MLF). The following proof rule for multiple Lyapunov functions
Vp ,p ∈ P with four stacked premises is derivable in dL.

MLFG

⊢ Vp (0) = 0 ∧ ∀x (∥x ∥ > 0 → Vp (x) > 0)

⊢ ∀b ∃γ ∀x (Vp (x) ≤ b → ∥x ∥ ≤ γ )

⊢ Lfp
(Vp )(0)=0 ∧ ∀x (∥x ∥>0 ∧Qp → Lfp

(Vp )(x)<0)

⊢
∧
q∈P

(
Gp,q → Vq ≤ Vp

)
⊢ UGpAS(αguard)

The premises of rule MLFG are identical to those from MLF ex-

cept the bottom premise, which derives from loopT and unfolding

the controller αu with dL’s hybrid program axioms, e.g., the fol-

lowing proof skeleton shows the unfolding for the stability loop

invariant Invs corresponding to a switch from mode p to mode q:

x
Unfold

⊢ Gp,q → Vq ≤ Vp
Vp <W ⊢ Gp,q → Vq <W

u = p ∧Vp <W ⊢ [?Gp,q ;u :=q](u = q ∧Vq <W )

Invs ⊢ [αu ]Invs

Arithmeticx
Unlike rule MLF, the bottom premise of rule MLFG only uses an in-

equality, because the guards Gp,q determine permissible switching.

3.2.2 Time-dependent Switching. The instance αtime shown below

models time-dependent switching, where the controller αu makes

switching decisions based on the time τ elapsed in each mode.

αtime ≡



αi ≡ τ := 0;
⋃
p∈P

u :=p

αu ≡
⋃
p∈P

(
?u = p;

⋃
q∈P

(
?θp,q ≤ τ ;τ := 0;u :=q

) )
αp ≡

⋃
p∈P

(
?u = p;x ′ = fp (x),τ

′ = 1&τ ≤ Θp
)

The controller αu enables switching from mode p to q when a

minimum dwell time 0 ≤ θp,q ≤ τ has elapsed and resets the timer

whenever such a switch occurs. Conversely, the plant αp restricts

modes with a maximum dwell time τ ≤ Θp ,Θp > 0; an unbounded

dwell time Θp = ∞ is represented by the domain constraint true.
Dwell time restrictions can be used to stabilize systems that switch

between stable and unstable modes [48]. Intuitively, the system

should stay in stable modes for sufficient duration (θp,q ≤ τ ) while
it should avoid staying in unstable modes for too long (τ ≤ Θp ).

To reason about stability for αtime, consider Lyapunov function

conditions Lfp
(Vp )(x) ≤ −λpVp , where λp is a constant associated

with each mode p ∈ P. This condition bounds the value ofVp along

the solution of x ′ = fp (x) by either a decaying exponential for

stable modes (λp > 0) or a growing exponential for unstable modes

(λp ≤ 0). Let S = {p ∈ P, λp > 0} and U = {p ∈ P, λp ≤ 0} be

the indexes of the stable and unstable modes in the loop invariants

below, and let e(·) denote the real exponential function, which is

definable in dL by differential axiomatization [32, 35].

Stability. The stability loop invariant expresses the required ex-

ponential bounds with a case split depending if p ∈ S or p ∈ U:

Invs ≡ τ ≥ 0 ∧ ∥x ∥ < ε ∧

©­­­­«
∨
p∈S

(
u = p ∧Vp <We−λpτ

)
∨∨

p∈U

(
u = p ∧Vp <We−λp (τ−Θp ) ∧ τ ≤ Θp

)ª®®®®¬
For p ∈ S, e−λpτ is the accumulated decay factor for Vp after

staying in the stable mode for time τ . For p ∈ U, e−λp (τ−Θp ) is
a buffer factor for the growth of Vp in the unstable mode so that

Vp < W still holds at the maximum dwell time τ = Θp . In both

cases, the internal timer variable is non-negative (τ ≥ 0).

Pre-attractivity. The pre-attractivity loop invariant has similar

exponential decay and growth bounds for each p ∈ P in the current

mode. In addition, it has an overall exponential decay term e−σ (t−τ )

for some σ > 0, which ensures that the value of Vp tends to 0 as

t → ∞ for all switching trajectories; recall t is the global clock

introduced in the specification of pre-attractivity in Lemma 2.

Inva ≡ τ ≥ 0 ∧ t ≥ τ ∧

©­­­­«
∨
p∈S

(
u = p ∧Vp <We−σ (t−τ )e−λpτ

)
∨∨

p∈U

(
u = p ∧Vp <We−σ (t−τ )e−λp (τ−Θp ) ∧ τ ≤ Θp

)ª®®®®¬
Intuitively, e−σ (t−τ ) is the accumulated overall decay factor for

Vp until the previous switch, which occurred at time t − τ .

6
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Corollary 6 (UGpAS for time-dependent switching, MLF).

The following proof rule for multiple Lyapunov functions Vp ,p ∈ P

with five stacked premises is derivable in dL.

MLFτ

⊢ Vp (0) = 0 ∧ ∀x (∥x ∥ > 0 → Vp (x) > 0)

⊢ ∀b ∃γ ∀x (Vp (x) ≤ b → ∥x ∥ ≤ γ )
⊢ Lfp

(Vp ) ≤ −λpVp

Invs ⊢ [αu ]Invs Inva ⊢ [αu ]Inva
⊢ UGpAS(αtime)

The two red premises on the bottom row are expanded to arithmeti-
cal conditions on Vp in Appendix A.

The bottom premises of MLFτ andMLFG exemplify a key benefit

of dL stability reasoning: arithmetical conditions on Vp that arise

from αu , Invs , Inva are derived in a correct-by-construction manner

by systematically unfolding the discrete dynamics of αu with sound

dL axioms. This is especially important for controlled switching,

where the number of possible transitions scales quadratically with

the number of switching modes.

4 KEYMAERA X IMPLEMENTATION
This section presents a prototype implementation of switched sys-

tems support in the KeYmaera X prover based on dL [12]. The

implementation consists of ≈2700 lines and, crucially, does not re-

quire any extension to KeYmaera X’s existing soundness-critical

core. Accordingly, verification results for switched systems obtained

through this implementation directly inherit the strong correctness

properties guaranteed by KeYmaera X’s design [12, 25].

4.1 Modeling and Proof Interface
The implementation builds on KeYmaera X’s proof IDE [24] to pro-

vide a convenient interface for modeling switching mechanisms,

as shown in Fig. 3. The interface allows users to express switch-

ing mechanisms intuitively by rendering automaton plots while

abstracting away the underlying hybrid programs. It provide tem-

plates for switched systems following the switching mechanisms of

Section 3: state-dependent, guarded, timed, and general controlled

switching (tabs “Autonomous”, “Timed”, “Guarded”, “Generic” in

Fig. 3). From these templates, KeYmaera X automatically generates

programs and stability specifications, ensuring that they have the

correct structure. This saves user effort from having to manually

expand switching designs to correctly structured hybrid programs.

Moreover, the generated programs and specifications follow a uni-

form structure that the proof tactics discussed below can rely on.

Switched systems are represented internally with a common

interface SwitchedSystem which is currently implemented by four

classes: StateDependentαstate, Guardedαguard, Timedαtime, and
Controlled αctrl. The SwitchedSystem interface provides default
stability and pre-attractivity specifications, which can be adapted

by users on the UI if needed. Corollaries 3–6 are implemented as UG-

pAS proof tactics in KeYmaera X’s Bellerophon tactic language [11].

These tactics automate all of the reasoning steps underlying sta-

bility proofs for their respective switching mechanisms, so that

users only need to input candidate Lyapunov functions for KeY-

maera X to (attempt to) complete their proofs. Additionally, when

candidates are not provided by the user, the implementation uses

sum-of-squares programming [31, 38] to automatically generate

Figure 3: Screenshot of the KeYmaera X switched systems
modeling editor: automata input on top-left, rendered au-
tomaton top-right, generated hybrid program and specifica-
tion(s) in dL at the bottom

Table 1: Available tactics in KeYmaera X for switched sys-
tems stability proofs and Lyapunov function generation.

SwitchedSystem
Common Lyap. Multiple Lyap.

Proof Gen. Proof Gen.

StateDependent αstate ✓ ✓ ✓ ✓
Guarded αguard ✓ ✓ ✓ ✓
Timed αtime ✓ ✓ ✓ —

Controlled αctrl ✓ ✓ — —

candidate Lyapunov functions for a subset of switching designs. The

generated candidates are checked for correctness by KeYmaera X

so the generator does not need to be trusted for correctness of the

resulting proofs. Table 1 summarizes the available proof tactics and

Lyapunov function generation for classes of switching mechanisms.

4.2 Examples
The implementation is tested on a suite of examples drawn from

the literature [5, 19, 38, 44] featuring various switching mecha-

nisms. These examples have a 2 dimensional state space and switch

between 2 modes except Example 6 (3 dimensions, 2 modes) and Ex-

ample 4 (2 dimensions, 4 modes). Results are summarized in Table 2;

Lyapunov functions from the literature were used (if available) in

cases where generation failed or is inapplicable.

The proof tactics successfully prove most of the examples across

various switching mechanisms. For Example 6, a suitable Lyapunov

function (without numerical errors) could not be found. For the

time-dependent switching models (Examples 8–10), KeYmaera X

internally uses verified polynomial Taylor approximations to the ex-

ponential function for decidability of arithmetic [3, 47]. Example 10

requires a high degree approximation (15 terms) and its attractivity

proof could not be completed in reasonable time.

5 CASE STUDIES
This section presents three case studies applying the deductive

verification approach to justify various non-standard stability argu-

ments in KeYmaera X.

7
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Table 2: Stability proofs for examples drawn from the lit-
erature. The “Time” columns indicate time (in seconds) to
run the KeYmaera X proofs, × indicates incomplete proof. A
✓ in the “Gen.” column indicates successful Lyapunov func-
tion(s) generation, ? indicates that a candidatewas generated
but with numerical issues, and — indicates inapplicability.

Example Model Time (Stab.) Time (Attr.) Gen.

1 [5, Ex. 2.1] αstate 2.6 3.0 ✓
2 [19, Motiv. ex.] αstate 2.2 2.3 ✓
3 [19, Ex. 1] αstate 3.3 4.1 ✓
4 [19, Ex. 2 & 3] αguard 2.8 3.8 ?

5 [38, Ex. 6] αguard × × ?

6 [44, Ex. 2.45] αarb 19.4 11.1 ✓
7 [44, Ex. 3.25] αstate 2.4 2.9 ✓
8 [44, Ex. 3.49] αtime 4.4 5.6 —

9 [48, Ex. 1] αtime 4.7 5.3 —

10 [48, Ex. 2] αtime 256.9 × —

5.1 Canonical Max System
Branicky [4] investigates the longitudinal dynamics of an aircraft

with an elevator controller that mediates between two control ob-

jectives: i) tracking potentially unsafe pilot input and ii) respecting
safety constraints on the aircraft’s angle of attack. Assuming a state

feedback control law, the model is transformed to the following

canonical max system [4, Remark 5], with state variables x ,y and

parameters a,b, f ,д,γ satisfying a,b,a − f ,b − д > 0 and γ ≤ 0.

x ′ = y,y′ = −ax − by +max(f x + дy + γ , 0) (3)

The right-hand side of system (3) is non-differentiable but the

equations can be equivalently rewritten as a family of two ODEs

corresponding to either possibility for the max(f x +дy +γ , 0) term
in the equation for y′ as follows, where the system follows ODE A

in domain f x +дy +γ ≤ 0 and ODE B in domain f x +дy +γ ≥ 0.

A ≡ x ′ = y,y′ = −ax − by

B ≡ x ′ = y,y′ = −(a − f )x − (b − д)y + γ

Stability of this parametric system is not directly provable us-

ing standard techniques for state-dependent switching presented

in Section 3.1.2. For example, the ODE A stabilizes the system to

the origin but the ODE B stabilizes to the point (−
γ

a−f , 0) (away

from the origin for γ < 0). Branicky proves global asymptotic

stability of (3) with the following “noncustomary” [10] Lyapunov

function involving a nondifferentiable integrand:

V =
1

2

y2 +

∫ x

0

aξ −max(f ξ + γ , 0)dξ (4)

Instead, the key idea used to prove stability in this paper is ghost
switching: analogous to ghost variables in program verification

which are added for the sake of program proofs [30, 34, 35], ghost

switchingmodes do not change the physical dynamics of the system

but are introduced for the purposes of the stability analysis. Here,

ghost switching between f x + γ ≤ 0 and f x + γ ≥ 0 is used to

obtain closed form representations for the integral in (4). This yields

an instance of state-dependent switching αstate with 4 switching

modes and the corresponding stability specification Pm :

A
1
≡ A & f x + дy + γ ≤ 0 ∧ f x + γ ≤ 0

A
2
≡ A & f x + дy + γ ≤ 0 ∧ f x + γ ≥ 0

B
1
≡ B & f x + дy + γ ≥ 0 ∧ f x + γ ≤ 0

B
2
≡ B & f x + дy + γ ≥ 0 ∧ f x + γ ≥ 0

αm ≡

(
A

1
∪ A

2
∪ B

1
∪ B

2

)∗
Pm ≡ a>0 ∧ b>0 ∧ a−f >0 ∧ b−д>0 ∧ f ,0 ∧ γ≤0 → UGpAS(αm )

The ghost switching modes enable a multiple Lyapunov function

argument for stability using the following modified closed-form

representations of Branicky’s Lyapunov function (4), with V1 =
1

2
(bcx2 + 2cxy + y2) + a

2
x2 for A

1
, B

1
and V2 =

1

2
(bcx2 + 2cxy +

y2)+ a
2
x2 −

(f x+γ )2

2f for A
2
, B

2
.
5
The sub-terms highlighted in red

forV1,V2 are closed form expressions for

∫ x
0
aξ −max(f ξ +γ , 0)dξ

where f ξ + γ ≤ 0 and f ξ + γ ≥ 0 respectively. The Lyapunov

functions V1,V2 are modified from (4) to use a quadratic form with

an additional constant c satisfying constraints 0 < c < b, c <

b − д, c <
(a−f )(b−д)
a−f +д2 , c <

a(b−д)
a+д2 (such a constant always exists

under the assumptions on a,b, f ,д). This technical modification

is required to prove UGpAS for αm directly with the Lyapunov

functions. Branicky’s earlier proof requires LaSalle’s principle [4].

Another challenging aspect of this case study is verification of

the parametric arithmetical conditions for V1,V2, i.e., stability is

verified for all possible parameter values a,b, f ,д,γ that satisfy

the assumptions in Pm . Such questions are decidable in theory [3,

47], but are difficult for automated solvers in practice (even out of

reach of solvers that require numerically bounded parameters [14]).

KeYmaera X enables a user-aided proof of the required arithmetic

conditions. For example, the Lie derivative of the Lyapunov function

V1 for B
1
is given byV ′

1
= −(b−c)y2−acx2+ (cx +y)(f x +дy+γ ),

whereV ′
1
is required to be strictly negative away from the origin for

stability. The arithmetical argument is as follows: if cx +y ≤ 0, then

by constraint f x + дy + γ ≥ 0, V ′
1
satisfies V ′

1
≤ −(b − c)y2 − acx2.

Otherwise, cx + y > 0, then by constraint f x + γ ≤ 0, V ′
1
satisfies

V ′
1
≤ −(b−д−c)y2−acx2+дcxy. In either case, the RHS bound is a

negative definite quadratic form by the earlier choice of parameter

c and therefore, V ′
1
is negative away from the origin.

5.2 Automated Cruise Control
Oehlerking [29, Sect. 4.6] verifies the stability of an automatic

cruise controller modeled as a hybrid automaton with 6 operat-

ing modes and 11 transitions between them: normal proportional-

integral (PI) control, acceleration, service braking (2 modes), and

emergency braking (2 modes). Figure 4 shows an abridged version

of the corresponding KeYmaera X model (using αctrl) with the PI

control mode, where v is the relative velocity to be controlled to

v = 0 and x , t are auxiliary integral and timer variables used in the

controller. Briefly, this controller is designed to use the PI controller

near v = 0 for stability, while its other control modes drive the

system toward v = 0 by accelerating or braking.

5
An important technical requirement forV2 to be well-defined is f , 0. The case with

f = 0 is also verified in KeYmaera X but the details are omitted here for brevity. It

does not require ghost switching and uses only V1 as its common Lyapunov function.
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normalPI("v' = -0.001*x-0.052*v, x' = v, t' = 0
& -15 <= v & v <= 15 & -500 <= x & x <= 500")

normalPI -->|"?(13 <= v & v <= 15 &
-500 <= x & x <= 500); t := 0;"| sbrakeact

normalPI -->|"?(-15 <= v & v <= -14 &
-500 <= x & x <= 500);"| accelerate

... // Other modes

\forall eps ( eps > 0 -> // Abridged stability specification
...
[ ... // Initialize
{ { ... ++ // Transitions for other modes

?mode = normalPI();
{ {?13 <= v & v <= 15 & -500 <= x & x <= 500; t := 0;}

mode := sbrakeact(); ++
?-15 <= v & v <= -14 & -500 <= x & x <= 500;
mode := accelerate(); ++
mode := mode; } }

{ ... ++ // Plant ODEs for other modes
?mode = normalPI();
{ v' = -0.001*x-0.052*v, x' = v, t' = 0 &

-15 <= v & v <= 15 & -500 <= x & x <= 500 } }
}*] v^2 < eps^2

Figure 4: Snippets of an automated cruise controller [29]modeled as a (switching) hybrid automaton. Users express the automa-
ton within the description language (top left) and KeYmaera X visualizes the automaton on-the-fly (bottom left). The imple-
mentation automatically generates the appropriate hybrid program representation and UGpAS specification (right); ++,&,()
denote choice, conjunction, and constants in KeYmaera X’s ASCII syntax respectively.

Lyapunov function candidates for this model can be successfully

generated using the Stabhyli [26] stability tool for hybrid automata.

However, Stabhyli (with default configurations) outputs a Lyapunov

function candidate for the PI control mode that is numerically un-

sound, see Appendix B for the output and a counterexample; this is

a known issue with Stabhyli for control modes at the origin [26]. For

this case study, the issue is manually resolved by truncating terms

with very small magnitude coefficients in the generated output and

then checking in KeYmaera X that the arithmetical conditions for

the PI mode are satisfied exactly for the truncated candidate.

Further insights from the controller design are used in the UGpAS

proof in KeYmaera X. Briefly, stability only concerns states and

modes that are active near the origin. Hence, the stability argument

and loop invariant only need to mention a single Lyapunov function

for the PI control mode, while choosing δ (in Def. 1) sufficiently

small so that none of the other modes can be entered.
6
Similarly, pre-

attractivity only requires reasoning about asymptotic convergence
to the origin for the PI control mode, hence it suffices to show that

the system leaves all other modes in finite time.

5.3 Brockett’s Nonholonomic Integrator
Verification of stabilizing control laws for Brockett’s nonholonomic

integrator [7] is of significant interest because stability for a large

class of models can be reduced to that of the integrator via co-

ordinate transformations, e.g., Liberzon [22] transforms a unicy-

cle model to the integrator and provides a stabilizing switching

control law corresponding to parking of the unicycle. The non-

holonomic integrator is described by the system of differential

equations x ′ = u,y′ = v, z′ = xv − yu, with state variables x ,y, z
and state feedback control inputs u = u(x ,y, z),v = v(x ,y, z) (to be
determined below). Notably, this is a classical example of a system

6
In fact, the PI controller equations are exactly those of a linearized pendulum, which

has known Lyapunov functions [21, 45]. It could be interesting to modify Stabhyli to

accept user-provided Lyapunov function hints for certain modes.

that is not stabilizable by purely continuous feedback control. In-

tuitively, no choice of controls u,v can produce motion along the

z-axis (x = y = 0). Thus, to stabilize the system to the origin, the

controller must first drive the system away from the z-axis before
switching to a control law that stabilizes the system from states

away from the z-axis. This intuition can be realized using two differ-
ent switching strategies that are analogous to the event-triggered

and time-triggered CPS design paradigms respectively [34].

5.3.1 Event-triggered Controller. Bloch and Drakunov [2] use the

switching controller u = −x + ay sign(z),v = −y − ax sign(z) to
asymptotically stabilize the integrator in the region

a
2
(x2+y2) ≥ |z |

for any given constant a > 0. This controller first drives the system

towards the plane z = 0 and, once it reaches the plane, slides along
the plane towards the origin. The closed-loop system is modeled

as an instance of state-dependent switching αstate with 3 modes

depending on the sign of z and specification Pe :

A ≡ x ′ = −x + ay,y′ = −y − ax , z′ = −a(x2 + y2)& z ≥ 0

B ≡ x ′ = −x − ay,y′ = −y + ax , z′ = a(x2 + y2)& z ≤ 0

C ≡ x ′ = −x ,y′ = −y, z′ = 0& z = 0

αe ≡

(
A ∪ B ∪ C

)∗
Pe ≡ a > 0 → UStab(α)∧

∀δ>0∀ε>0∃T≥0∀x ,y, z
(
∥x ,y, z∥ < δ ∧

a

2

(x2 + y2) ≥ |z | →

[t := 0;αe , t
′ = 1](t ≥ T → ∥x ,y, z∥ < ε

)
The specification Pe is identical to UGpAS except it restricts

pre-attractivity to the applicable region
a
2
(x2 + y2) ≥ |z | for the

controller.
7
Its verification uses the squared normV = x2 +y2 + z2

as a common Lyapunov function. The key modification to the pre-

attractivity proof, cf. Section 3.1, is to use (and verify) the fact that

7
The applicable region is equivalently characterized by the real arithmetic formula

(z≥0 → a
2
(x 2 + y2)≥z) ∧ (z≤0 → a

2
(x 2 + y2)≥−z) but this is omitted for brevity.
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a
2
(x2 + y2) ≥ |z | is a loop invariant of αe . This additional invariant

corresponds to the fact that the controller keeps the system within

its applicable region (if the system is initially within that region).

In fact, αe can be extended to a globally stabilizing controller,

as modeled by αê below (if, else branching is supported as an

abbreviation in KeYmaera X [34]):

D ≡ x ′ = u,y′ = v, z′ = xv − yu &
a

2

(x2 + y2) ≤ |z |

E ≡ x ′ = u,y′ = v, z′ = xv − yu &
a

2

(x2 + y2) ≥ |z |

αê ≡

(
if

(a
2

(x2 + y2) ≥ |z |
) {

A ∪ B ∪ C

}
else

{
if((x − y)z ≤ 0){u := c;v := c}

else{u :=−c;v :=−c};{
D ∪ E

} })∗
If the system is in the applicable region (outer if branch), then

the previous controller from αe is used. Otherwise, outside the

applicable region (outer else branch), the system applies a constant

control c > 0 chosen to drive the system into the applicable region.

The pair of ODEs D and E model an event-trigger in dL [34],

where the switching controller is triggered to make its next decision

when the system reaches the switching surface
a
2
(x2 + y2) = |z |.

The specification Pê ≡ a > 0∧c > 0 → UGpAS(αê ) is proved by
modifying the loop invariants to account for the initial period where

the system is outside the applicable region, e.g., the stability loop in-

variant Invs ≡ (¬a
2
(x2 + y2) ≥ |z | → |z |<δ )∧(a

2
(x2 + y2) ≥ |z | →

∥x ,y, z∥<ε) expresses that the controller keeps |z | sufficiently small

to preserve stability outside the applicable region.

5.3.2 Time-triggered Controller. The time-triggered switching strat-

egy [34], modeled by ατ below, is similar to that proposed by Liber-

zon [22, Section 4.2]. If the system is on the z-axis and away from

the origin A , the controller sets an internal stopwatch τ and drives

the system away from the axis for maximum duration T0 > 0 with

u = z,v = z. Otherwise B , the controller drives the system towards

the origin along a parabolic curve of the form
a
2
(x2 + y2) = z.

ατ ≡

(
if(x = 0 ∧ y = 0 ∧ z , 0)

{
A τ := 0;x ′ = z,y′ = z, z′ = xz − yz &τ ≤ T0

}
else

{
a :=

2z

x2 + y2
;

B x ′ = −x + ay,y′ = −y − ax , z′ = −a(x2 + y2)
})∗

The specification Pτ ≡ T0 > 0 → UGpAS(ατ ) is again proved by

analyzing both cases of the controller in the loop invariants, e.g.,

with the pre-attractivity invariant Inva :(
x = 0 ∧ y = 0 ∧ z , 0 → |z | < δ ∧ t = 0

)
∧(

¬(x = 0 ∧ y = 0 ∧ z , 0) →

∥x ,y, z∥ > ε → ∥x ,y, z∥2 < δ2(2T 2

0
+ 1) − ε2(t −T0)

)
The left conjunct says the system may start transiently on the

z-axis (away from z = 0) at time t = 0. The right conjunct gives ex-

plicit bounds on ∥x ,y, z∥, which, for sufficiently large t ≥ T implies

that the system enters ∥x ,y, z∥ < ε as required for pre-attractivity.

The transient term δ2(2T 2

0
+ 1) upper bounds the (squared) norm of

the system state after starting on the z-axis in ball ∥x ,y, z∥ < δ and

following mode A for the maximum stopwatch duration τ = T0.

6 RELATEDWORK
Switched Systems. Comprehensive introductions to the analysis

and design of switching control can be found in the literature [10, 22,

44]. An important design consideration (which this paper sidesteps,

cf. Remark 1) is whether a given switched or hybrid system has com-

plete solutions [16, 17, 23, 49]. Justification of such design consider-

ations, and other stability notions of interest for switching designs,

e.g., quadratic, region, or set-based stability [16, 17, 22, 36, 44], can

be done in dL with appropriate formal specifications of the desired

properties from the literature [32, 34, 45, 46]. Another complemen-

tary question is how to design a switching control law that stabilizes
a given system. Switching design approaches are often guided by

underlying stability arguments [22, 39, 44]; the loop invariants

from Section 3 are expected to help guide correct-by-construction

synthesis of such controllers.

Stability Analysis and Verification. Corollaries 3–6 formalize var-

ious Lyapunov function-based stability arguments from the litera-

ture [5, 48] using loop invariants, yielding trustworthy, computer-

checked stability proofs in KeYmaera X [11, 12]. Other computer-

aided approaches for switched system stability analysis are based

on finding Lyapunov functions that satisfy the requisite arith-

metical conditions [20, 26, 29, 38, 41, 42]. Although the search for

such functions can often be done efficiently with numerical tech-

niques [26, 31, 38], various authors have emphasized the need to

check that their outputs satisfy the arithmetical conditions exactly,
i.e., without numerical errors compromising the resulting stabil-

ity claims [1, 20, 40] (see, e.g., Section 5.2). This paper’s deductive

approach goes further as it comprehensively verifies all steps of
the stability argument down to its underlying discrete and contin-

uous reasoning steps [33, 34]. The generality of this approach is

precisely what enables verification of various classes of switching

mechanisms all within a common logical framework (Section 3)

and verification of non-standard stability arguments (Section 5).

Alternative approaches to stability verification are based on ab-

straction [15, 43] and model checking [36].

7 CONCLUSION
This paper shows how to deductively verify switched system sta-

bility, using dL’s nested quantification over hybrid programs to

specify stability, and dL’s axiomatics to prove those specifications.

Loop invariants—a classical technique from verification—are used

to succinctly capture the desired properties of a given switching

design; through deductive proofs, these invariants yield system-

atic, correct-by-construction derivation of the requisite arithmetical

conditions on Lyapunov functions for stability arguments in imple-

mentations. An interesting direction for future work is to use other

Lyapunov function generation techniques [20, 26, 29, 42], which—

thanks to the presented approach—do not have to be trusted since

their results can be checked independently by KeYmaera X. This

would enable fully automated, yet sound and trustworthy verifica-

tion of switched system stability based on dL’s parsimonious hybrid

program reasoning principles.
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A PROOFS
This appendix provides proofs for the results presented in the main

paper. Relevant background for dL’s semantics and axiomatics is

given, expanding on the material in Section 2. Full definitions are

available in the literature [33, 34].

A dL state ω : V → R assigns a real value to each variable in

V . The set of variables V consists of the continuously evolving

state variables x = (x1, . . . ,xn ) of a switched system model and

additional variables V \ {x} used as program auxiliaries for those

models. Following Tan and Platzer [46], dL states are projected on

the state variables x and the (projected) dL statesω are equivalently

treated as points in Rn . The semantics of program auxiliaries is as

usual [34]. The axioms and proof rules of dL used in the proofs are

as follows.

[:=] [x := e]P(x) ↔ P(e) (e free for x in P )

[?] [?Q]P ↔ (Q → P)

[;] [α ; β]P ↔ [α][β]P

[∪] [α ∪ β]P ↔ [α]P ∧ [β]P

[∗] [α∗]P ↔ P ∧ [α][α∗]P

loop

Γ ⊢ Inv Inv ⊢ [α] Inv Inv ⊢ ϕ
Γ ⊢ [α∗]ϕ

loopT

Γ ⊢ [αi ]Inv Inv ⊢ [αu ]Inv Inv ⊢ [αp ]Inv Inv ⊢ ϕ

Γ ⊢ [αi ; (αu ;αp )
∗]ϕ

G

⊢ P

Γ ⊢ [α]P
M[·]

R ⊢ P Γ ⊢ [α]R

Γ ⊢ [α]P

dI≽

Γ,Q ⊢ p≽q Q ⊢ Lf (x )(p)≥Lf (x )(q)

Γ ⊢ [x ′ = f (x)&Q]p≽q
(≽ is either ≥ or >)

dC

Γ ⊢ [x ′ = f (x)&Q]C Γ ⊢ [x ′ = f (x)&Q ∧C]P

Γ ⊢ [x ′ = f (x)&Q]P

dW

Q ⊢ P

Γ ⊢ [x ′ = f (x)&Q]P

dbx≽

Q ⊢ Lf (x )(p) ≥ дp

p ≽ 0 ⊢ [x ′ = f (x)&Q]p ≽ 0

(≽ is either ≥ or >)

Barr

Q,p = 0 ⊢ Lf (x )(p) > 0

Γ,p ≽ 0 ⊢ [x ′ = f (x)&Q]p ≽ 0

(≽ is either ≥ or >)

DCC

[x ′=f (x)&Q∧P]R ∧ [x ′=f (x)&Q](¬P→[x ′=f (x)&Q]¬P)

→ [x ′=f (x)&Q](P → R)

DX [x ′=f (x)&Q]P ↔ (Q → P ∧ [x ′=f (x)&Q]P) (x ′ < P ,Q)

Axioms [:=], [?], [;], [∪], [∗] unfold box modalities of their re-

spective hybrid programs according to their semantics [33, 34].

These equivalences are especially useful for obtaining correct-by-

construction arithmetical conditions on Lyapunov functions in

derivations and implementations (see Corollaries 5 and 6). The de-

rived loop induction rules loop, loopT are used to prove stability

properties of switched system models with suitably chosen loop

invariants Inv (see Section 3). Rule G is Gödel generalization, and

rule M[·] is the derived monotonicity rule for box modality post-

conditions; antecedents that have no free variables bound in α are

soundly kept across uses of rules loop, loopT, G, M[·] [33, 34].

The remaining axioms and proof rules are used in dL to reason

about differential equations x ′ = f (x)&Q [33–35, 45]. Differential

invariants dI≽ proves ODE invariance for an inequality p ≽ q
if their Lie derivatives satisfy Lf (x )(p) ≥ Lf (x )(q). Differential

cuts dC say that if one can separately prove that formula C is al-

ways satisfied along the solution, then C may be assumed in the

domain constraint when proving the same for formula P . Differ-
ential weakening dW says that postcondition P is always satisfied

along solutions if it is already implied by the domain constraint.

Rule dbx≽ is the Darboux inequality proof rule for the invariance

of p ≽ 0, where д is an arbitrary cofactor term [35]. Rule Barr is

a dL rendition of the strict barrier certificates proof rule [37] for

invariance of p ≽ 0. Axiom DCC says that to prove that an impli-

cation P → R is always true along an ODE, it suffices to prove it

assuming P in the domain if ¬P is invariant along the ODE [45].

Differential skip DX unfolds the effect of a differential equation on

the initial state in the box modality.

To improve readability in the proofs below, formula and premises

are often abbreviated, e.g., with a○, 1○. To avoid confusion, the scope

of these abbreviations always extend to the end of each paragraph
label, i.e., the abbreviations used in the Stability proofs should not

be confused with those used in the Pre-attractivity proofs.

Proof of Lemma 2. LetΦ(x) denote the set of all domain-obeying

solutions φ : [0,Tφ ] → R
n
for a given switched system from state

x ∈ Rn as in Def. 1. Hybrid program α models this switched system
if for any initial state ω ∈ Rn , the state ν is reachable from ω, i.e.,
(ω,ν ) ∈ [[α]], iff ν = φ(τ ) for some φ ∈ Φ(ω) and τ ∈ [0,Tφ ]. For the
augmented program α , t ′ = 1, in particular, t syntactically tracks

the progression of time so that (ω,ν ) ∈ [[α , t ′ = 1]] iff ν = φ(τ ) for
some φ ∈ Φ(ω) and τ = ν (t) − ω(t). Tan and Platzer [46] prove the

adequacy of hybrid program models for several switching designs.

The formulas UStab(α) and UGpAttr(α) syntactically express

their respective quantifiers from Def. 1, where the box modality [·]

is used in both formulas to quantify over all reachable states of α
(and α , t ′ = 1), i.e., all times τ ∈ [0,Tφ ] along all solutions φ ∈ Φ.
Thus, the correctness of these specifications follows directly from

the definition of dL’s formula semantics [33, 34]. In UGpAttr(α),
variable t is set to 0 initially, so the implication t ≥ T → . . . in

the postcondition of the box modality further restricts temporal

quantification to all times ω(T ) ≤ τ ≤ Tφ for φ ∈ Φ(ω), as required
in the definition of uniform pre-attractivity. □

Proof of Corollary 3. The proof rule CLF is an instance of

rule MLF from Corollary 4 where the Lyapunov functions for all

modes p ∈ P are chosen identically with Vp = V . Nevertheless, a
full derivation of CLF is given here because it provides the building

blocks used in later derivations. The stability and pre-attractivity

conjuncts of UGpAS(αstate) are proved separately with ∧R:

⊢ UStab(αstate) ⊢ UGpAttr(αstate)
∧R

⊢ UGpAS(αstate)

Stability. The derivation for stability begins by Skolemizing the

succedent with ∀R,→R, followed by two arithmetic cuts which are

justified as follows. For any ε > 0, the Lyapunov functionV attains a

minimum value on the compact set characterized by ∥x ∥ = ε . From
the first (topmost) premise of rule CLF, this minimum is attained

away from the origin so it is positive, which proves the first cut

of formula ∃W >0 a○ where a○ ≡ ∀x (∥x ∥ = ε → V ≥ W ). After

SkolemizingW with ∃L, the premiseV (0) = 0 implies, by continuity

12
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of dL term semantics [33], that the sublevel set characterized by

V <W withW > 0 (see Fig. 1) contains a sufficiently small δ ball

around the origin. This proves the second arithmetic cut with the

formula ∃δ (0 < δ ≤ ε ∧ b○) where b○ ≡ ∀x (∥x ∥ < δ → V <W ).

After both cuts, the antecedent δ is used to witness the succedent

by ∃R.
a○, δ ≤ ε, b○ ⊢ ∀x (

∥x ∥ < δ → [αstate] ∥x ∥ < ε
)

∃R
a○, 0 < δ ≤ ε, b○ ⊢ ∃δ>0∀x (

∥x ∥ < δ → [αstate] ∥x ∥ < ε
)

cut, R, ∃L ε>0,W >0, a○ ⊢ ∃δ>0∀x (
∥x ∥ < δ → [αstate] ∥x ∥ < ε

)
cut, R, ∃L ε>0 ⊢ ∃δ>0∀x (

∥x ∥ < δ → [αstate] ∥x ∥ < ε
)

∀R, →R
⊢ UStab(αstate)

The derivation continues from the open premise by Skolemiz-

ing with ∀R,→R and proving the LHS of the implication in b○
with ∀L, →L. Then, the loop rule is used with the stability loop in-

variant Invs ≡ ∥x ∥ < ε ∧V <W . This results in three premises, 1○
which shows that the invariant is implied by the initial antecedent

assumptions, 2○, the crucial premise, which shows that the invari-

ant Invs is preserved across the loop body of αstate, and 3○ which

shows that the invariant implies the postcondition. These premises

are shown and proved further below.

1○ 2○ 3○
loop

a○, δ ≤ ε, ∥x ∥ < δ, V <W ⊢ [αstate] ∥x ∥ < ε
∀L,→L

a○, δ ≤ ε, b○, ∥x ∥ < δ ⊢ [αstate] ∥x ∥ < ε
∀R, →R

a○, δ ≤ ε, b○ ⊢ ∀x (
∥x ∥<δ → [αstate] ∥x ∥ < ε

)
Premise 1○ proves by R from the antecedents using the inequali-

ties ∥x ∥ < δ and δ ≤ ε .
∗

Rδ ≤ ε, ∥x ∥ < δ, V <W ⊢ Invs

Premise 3○ proves trivially since the postcondition ∥x ∥ < ε is
part of the loop invariant:

∗
RInvs ⊢ ∥x ∥ < ε

The derivation continues from premise 2○ by unfolding the loop

body of αstate with [∪], ∧R. This results in one premise for each

switching choice p ∈ P, indexed below by p.
a○, Invs ⊢ [x ′ = fp (x )&Qp ]Invs

[∪], ∧R
a○, Invs ⊢ [

⋃
p∈P x ′ = fp (x )&Qp ]Invs

Each of these p ∈ P premises is an ODE invariance question,

which is decidable in dL [35]. The derivation below shows how

to derive arithmetical conditions on V from these premises. The

right conjunct of Invs , V <W , is added to the domain constraint

with a dC step; the cut premise is labeled 4○ and proved below. A

subsequent dC step adds ∥x ∥ , ε to the domain constraint using

the contrapositive of antecedent a○ and the derivation is completed

with rule Barr since the resulting assumptions are contradictory.

∗
R

∥x ∥ , ε, ∥x ∥=ε ⊢ false
Barr

∥x ∥ < ε ⊢ [x ′=fp (x )&Qp ∧V <W ∧ ∥x ∥ , ε ] ∥x ∥ < ε
dC

a○, ∥x ∥ < ε ⊢ [x ′=fp (x )&Qp ∧V <W ] ∥x ∥ < ε 4○
dC

a○, Invs ⊢ [x ′=fp (x )&Qp ]Invs

The derivation from 4○ is completed with a dI≽ step whose

resulting arithmetic is implied by the bottom premise of rule CLF.

∗
R Qp ⊢ Lfp

(V ) ≤ 0

dI≽V <W ⊢ [x ′ = fp (x )&Qp ]V <W

Pre-attractivity. The derivation for pre-attractivity begins by

Skolemizing δ , ε with ∀R,→R, followed by a series of arithmetic

cuts which are justified stepwise. First, the Lyapunov function V is

bounded above on the ball characterized by ∥x ∥ < δ , which justifies
a cut of the formula ∃W >0 a○ with a○ ≡ ∀x (

∥x ∥ < δ → V <W
)
.

After Skolemizing the upper boundW , note that the set charac-

terized by formula V ≤ W is compact by radial unboundedness

(middle premise of rule CLF). Therefore, the set characterized by

formula V ≤ W ∧ ∥x ∥ ≥ ε is an intersection of a compact and

closed set, which is itself compact. Thus, V attains a minimum

U on that set which, by the first (topmost) premise is positive.

This justifies the next arithmetic cut of the formula ∃U>0 b○ with

b○ ≡ ∀x (V ≤ W ∧ ∥x ∥ ≥ ε → V ≥ U ), where U is subsequently

Skolemized with ∃L. The steps are shown below, with the box

modality in UGpAttr(αstate) temporarily hidden with . . . as it is

not relevant for this part of the derivation.

ε>0,W >0, a○, U >0, b○ ⊢ ∃T ≥0∀x (
∥x ∥ < δ → . . .

)
cut, R, ∃L ε>0,W >0, a○ ⊢ ∃T ≥0∀x (

∥x ∥ < δ → . . .
)

cut, R, ∃L ε>0 ⊢ ∃T ≥0∀x (
∥x ∥ < δ → . . .

)
∀R, →R

⊢ UGpAttr(αstate)

Intuitively (see Fig. 1) the next arithmetic steps syntactically

determine T ≥ 0 such that the value of V is guaranteed to decrease

fromW toU along all switching trajectories within timeT . Consider
the set characterized by formula Qp ∧U ≤ V ≤ W , which is the

set of states (before reaching V < U ) where switching to ODE

x ′ = fp (x)&Qp ,p ∈ P is possible. From the third (bottom) premise

of rule CLF, Lfp
(V ) is negative on the set characterized by the

formula Qp ∧U ≤ V ≤W because conjunct U ≤ V bounds the set

away from the origin asU > 0. Using radial unboundedness again,

V ≤W is compact, so the set characterized by Qp ∧U ≤ V ≤W is

an intersection of closed sets and compact sets which is therefore

compact. Accordingly, Lfp
(V ) attains a maximum value kp < 0

on that set, which justifies the following arithmetic cut, where the

bound k < 0 is chosen uniformly across all choices of p, e.g., as the
maximum over all kp for p ∈ P:

∃k<0
∧
p∈P

∀x (
Qp ∧U ≤ V ≤W → Lfp

(V ) ≤ k
)

︸                                                    ︷︷                                                    ︸
c○

After Skolemizing k , it suffices to pick T ≥ 0 for the succedent

such thatW + kT ≤ U . Such a T always exists since k < 0.

a○, b○, k<0, c○,W + kT ≤ U ⊢ ∀x (
∥x ∥ < δ → . . .

)
∃R ε>0,W >0, a○, U >0, b○, k<0, c○ ⊢ ∃T ≥0∀x (

∥x ∥ < δ → . . .
)

cut, R, ∃L ε>0,W >0, a○, U >0, b○ ⊢ ∃T ≥0∀x (
∥x ∥ < δ → . . .

)
The derivation continues by Skolemizing with ∀R,→R and prov-

ing the LHS of the implication in a○ with ∀L,→L. The assignment

t := 0 is unfolded with axioms [;], [:=], then the loop rule is used

with the pre-attractivity loop invariant Inva ≡ V <W ∧ (V ≥ U →

V <W +kt). Similar to the stability derivation, this results in three

premises, where the crucial premise 2○ requires showing that Inva
is preserved across the loop body, while the other premises are

labeled 1○ and 3○ (all three premises are shown further below).
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1○ 2○ 3○
loop V <W , b○, k<0, c○,W + kT ≤ U , t=0 ⊢ [αstate, t ′ = 1] . . .

[;], [:=] V <W , b○, k<0, c○,W + kT ≤ U ⊢ [t := 0;αstate, t ′ = 1] . . .
∀L,→L

a○, b○, k<0, c○,W + kT ≤ U , ∥x ∥<δ ⊢ [t := 0;αstate, t ′ = 1] . . .
∀R, →R

a○, b○, k<0, c○,W + kT ≤ U ⊢ ∀x (
∥x ∥<δ → . . .

)
Premise 1○ proves by R from the antecedents.

∗
RV <W , t = 0 ⊢ Inva

Premise 3○ proves by R from the loop invariant using the fol-

lowing arithmetic argument. Suppose for contradiction that there

is a state satisfying the negation of the postcondition, i.e., assume

the negation t ≥ T ∧ ∥x ∥ ≥ ε . Then, using the left conjunct of Inva
together with ∥x ∥ ≥ ε to prove the LHS of the implication in b○
gives assumption V ≥ U . The right conjunct of Inva then yields

the chain of inequalities V < W + kt ≤ W + kT ≤ U , which is a

contradiction. The steps are outlined below.

∗
RV ≥ U , k<0,W + kT ≤ U , V <W + kt, t ≥ T ⊢ false
R V ≥ U , k<0,W + kT ≤ U , Inva, t ≥ T ⊢ false
R

b○, k<0,W + kT ≤ U , Inva, t ≥ T , ∥x ∥ ≥ ε ⊢ false
R

b○, k<0,W + kT ≤ U , Inva ⊢ t ≥ T → ∥x ∥ < ε

The proof for premise 2○ proceeds by unfolding the loop body

with [∪], ∧R, yielding one premise for each switching choice p ∈ P.

A dC step proves the invariance of the left conjunctV <W of Inva
with dI≽ (see the stability proof, sublevel sets of V are invariant).

The right conjunct of Inva is the implication abbreviated I ≡ V ≥

U → V <W +kt and this is proved below using axiom DCC, which

results in premises 4○ and 5○ (shown and proved further below).

4○ 5○
DCC, ∧R

c○, I ⊢ [x ′ = fp (x ), t ′ = 1&Qp ∧V <W ]I
dC, dI≽

c○, Inva ⊢ [x ′ = fp (x ), t ′ = 1&Qp ]Inva
[∪], ∧R

c○, Inva ⊢ [
⋃
p∈P x ′ = fp (x ), t ′ = 1&Qp ]Inva

From premise 4○, the proof is completed with a dI≽ step using

the quantified assumption c○ and the domain constraint. Note that

the Lie derivative of the RHSW + kt is k using t ′ = 1.

dI≽

R
∗

c○, Qp ∧V <W ∧V ≥ U ⊢ Lfp
(V ) ≤ k

c○, I ⊢ [x ′ = fp (x ), t ′ = 1&Qp ∧V <W ∧V ≥ U ]V <W + kt

From premise 5○, the proof is completed with a generalization G

step followed by dI≽ to prove the invariance of formula V < U
(see the stability proof, sublevel sets of V are invariant). The ODE

in the outer box modality is elided with . . . here.

∗
dI≽ V <U ⊢ [x ′ = fp (x ), t ′ = 1&Qp ∧V <W ]V <U

G,→R
⊢ [. . .](V <U → [x ′ = fp (x ), t ′ = 1&Qp ∧V <W ]V <U ) □

Proof of Corollary 4. The derivation of rule MLF builds on

the ideas of the derivation of rule CLF so similar proof steps are

explained in less detail here. The derivation starts with an ∧R step

for the stability and pre-attractivity conjuncts which are proved

separately below.

⊢ UStab(αstate) ⊢ UGpAttr(αstate)
∧R

⊢ UGpAS(αstate)

Stability. The derivation for stability similarly begins with cut

and Skolemization steps. The difference compared to the deriva-

tion of rule CLF is the cut formulas are now conjunctions over all

possible modes p ∈ P for the Lyapunov functions Vp . The first cut
is ∃W >0 a○ with a○ ≡

∧
p∈P ∀x (∥x ∥ = ε → Vp ≥W ), where the

upper boundW >0 is chosen to be the maximum of the respective

bounds for each Vp on the compact set characterized by ∥x ∥ = ε .
After Skolemizing W , the second arithmetic cut is the formula

∃δ (0 < δ ≤ ε ∧ b○) with b○ ≡
∧
p∈P ∀x (∥x ∥ < δ → Vp <W ).

Such a δ exists by continuity for each Vp ,p ∈ P since Vp (0) = 0

from the first (topmost) premise of rule MLF. After both cuts, the

antecedent δ is used to witness the succedent by ∃R.
a○, δ ≤ ε, b○ ⊢ ∀x (

∥x ∥ < δ → [αstate] ∥x ∥ < ε
)

∃R
a○, 0 < δ ≤ ε, b○ ⊢ ∃δ>0∀x (

∥x ∥ < δ → [αstate] ∥x ∥ < ε
)

cut, R, ∃L ε>0,W >0, a○ ⊢ ∃δ>0∀x (
∥x ∥ < δ → [αstate] ∥x ∥ < ε

)
cut, R, ∃L ε>0 ⊢ ∃δ>0∀x (

∥x ∥ < δ → [αstate] ∥x ∥ < ε
)

∀R, →R
⊢ UStab(αstate)

The derivation continueswith logical simplification steps, Skolem-

izing the succedent and then proving the LHS of the implications

in antecedent b○.

∀R, →R

∀L, →L

a○, δ ≤ ε, ∥x ∥ < δ,
∧
p∈P Vp <W ⊢ [αstate] ∥x ∥ < ε

a○, δ ≤ ε, b○, ∥x ∥ < δ ⊢ [αstate] ∥x ∥ < ε
a○, δ ≤ ε, b○ ⊢ ∀x (

∥x ∥<δ → [αstate] ∥x ∥ < ε
)

Next, a cut, ∨L step case splits on whether the switched system

is initially in its domain of definition characterized by formula

Q ≡
∨
p∈P Qp . The case where the system is not in its domain is

labeled 0○, and the proof of this case is deferred to the end. In case

the system is in its domain, the loop rule is used with stability loop

invariant Invs ≡ ∥x ∥ < ε ∧
∨
p∈P

(
Qp ∧Vp <W

)
. This yields three

premises labeled 1○– 3○ shown and proved further below.

1○ 2○ 3○
loop

a○, δ ≤ ε, ∥x ∥ < δ,
∧
p∈P Vp <W , Q ⊢ [αstate] ∥x ∥ < ε 0○

cut, ∨L
a○, δ ≤ ε, ∥x ∥ < δ,

∧
p∈P Vp <W ⊢ [αstate] ∥x ∥ < ε

Premise 1○ proves by R from the antecedents using the inequal-

ities ∥x ∥ < δ and δ ≤ ε for the left conjunct and propositionally

from antecedents Q and

∧
p∈P Vp <W for the right conjunct.

∗
Rδ ≤ ε, ∥x ∥ < δ,

∧
p∈P Vp <W , Q ⊢ Invs

Premise 3○ proves trivially since the postcondition ∥x ∥ < ε is
part of the loop invariant:

∗
RInvs ⊢ ∥x ∥ < ε

The derivation continues from premise 2○ by unfolding the loop

body of αstate with [∪], ∧R. Premises are indexed by p ∈ P in

the derivation. The M[·] step propositionally strengthens the post-

condition to its constituent disjunct ∥x ∥ < ε ∧ Vp < W for the

chosen mode p. Then, DX assumes domain Qp in the antecedent

and a cut step adds the assumption ∥x ∥ < ε ∧ Vp < W . This cut

corresponds to the last (bottom) premise of rule MLF. It is labeled

4○ and explained below. The rest of the proof after the cut proceeds

identically to the corresponding derivation for rule CLF using the

respective conjunct for p ∈ P from a○. The steps are omitted here.
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∗

a○, ∥x ∥<ε ∧Vp<W ⊢ [x ′ = fp (x )&Qp ]( ∥x ∥<ε ∧Vp<W ) 4○
cut

a○, Invs , Qp ⊢ [x ′ = fp (x )&Qp ]( ∥x ∥<ε ∧Vp<W )
DX

a○, Invs ⊢ [x ′ = fp (x )&Qp ]( ∥x ∥<ε ∧Vp<W )
M[·]

a○, Invs ⊢ [x ′ = fp (x )&Qp ]Invs
[∪], ∧R

a○, Invs ⊢ [
⋃
p∈P x ′ = fp (x )&Qp ]Invs

The cut premise 4○ is proved by splitting the disjunction in

Invs (indexed by q ∈ P below). The disjunct corresponding to

mode p proves trivially. For modes q , p, the derivation yields a

compatibility condition which is proved using the last (bottom)

premise of rule MLF.

∗
R Qq, Qp ⊢ Vp ≤ Vq
R p , q, Qq, Vq <W , Qp ⊢ Vp<W
∨L∨

q∈P
(
Qq ∧Vq <W

)
, Qp ⊢ Vp<W

Invs , Qp ⊢ ∥x ∥<ε ∧Vp<W

Returning to premise 0○, for initial states not in the switched

system’s domain, i.e., satisfying ¬Q , no continuous motion is pos-

sible within the model. This is proved using the loop invariant

Inv0s ≡ ∥x ∥ < ε ∧ ¬Q . The first and third premise resulting from

the loop rule are proved trivially (not shown below). For the remain-

ing premise, ¬Q is preserved (trivially) across the loop body after

unfolding it with [∪], ∧R and using DX to show that the system is

unable to switch to the ODE with domain Qp .

∗

¬Q, Qp ⊢ false
DX

¬Q ⊢ [x ′ = fp (x )&Qp ]Inv0s
[∪], ∧R Inv0a ⊢ [

⋃
p∈P x ′ = fp (x )&Qp ]Inv0s

loop δ ≤ ε, ∥x ∥ < δ, ¬Q ⊢ [αstate] ∥x ∥ < ε

Pre-attractivity. The derivation for pre-attractivity begins with

logical simplification followed by a series of arithmetic cuts. First,

the multiple Lyapunov functions Vp ,p ∈ P are simultaneously

bounded above on the ball characterized by ∥x ∥ < δ , with the cut

∃W >0 a○ where a○ ≡
∧
p∈P ∀x (

∥x ∥ < δ → Vp <W
)
. The upper

boundW is Skolemized, then the next arithmetic cut uses ∃U>0 b○
with b○ ≡

∧
p∈P ∀x (Vp ≤W ∧ ∥x ∥ ≥ ε → Vp ≥ U ) (using radial

unboundedness of all functionsVp from the second premise of MLF).

Then, U is Skolemized with ∃L. The steps are shown below, with

the box modality in UGpAttr(αstate) temporarily hidden with . . .

as it is not relevant for this part of the derivation.

ε>0,W >0, a○, U >0, b○ ⊢ ∃T ≥0∀x (
∥x ∥ < δ → . . .

)
cut, R, ∃L ε>0,W >0, a○ ⊢ ∃T ≥0∀x (

∥x ∥ < δ → . . .
)

cut, R, ∃L ε>0 ⊢ ∃T ≥0∀x (
∥x ∥ < δ → . . .

)
∀R, →R

⊢ UGpAttr(αstate)

Identically to rule CLF, the premises of rule MLF prove that, for

each p ∈ P, the respective Lie derivatives Lfp
(Vp ) are bounded

above by some kp < 0 on the compact set characterized by formula

Qp∧U ≤ Vp ≤W . This justifies the following arithmetic cut, where

the bound k < 0 is chosen to be the maximum over all kp across all

switching choices p ∈ P:

∃k<0
∧
p∈P

∀x (
→ Lfp

(Vp ) ≤ k
)

︸                            ︷︷                            ︸
c○

The derivation proceeds similarly to rule CLF, pickingT > 0 such

thatW + kT ≤ U , then unfolding the quantifiers in the succedent.

a○, b○, k<0, c○, T >0,W +kT ≤U , ∥x ∥<δ ⊢ . . .
∀R, →R

a○, b○, k<0, c○, T >0,W +kT ≤U ⊢ ∀x (
∥x ∥<δ → . . .

)
∃R ε>0,W >0, a○, U >0, b○, k<0, c○ ⊢ ∃T ≥0. . .

cut, R, ∃L ε>0,W >0, a○, U >0, b○ ⊢ ∃T ≥0. . .

The LHS in antecedent a○ is proved and the succedent is further

unfolded with [;], [:=]. The antecedents are abbreviated with Γ ≡

b○,k<0, c○,T > 0,W +kT ≤ U below. Similar to the stability proof,

the derivation continues with a cut, ∨L step that case splits on

whether the switched system is initially in its domain of definition

Q ≡
∨
p∈P Qp . The case where the system is not in its domain is

labeled 0○, and its proof is deferred to the end. In case the system

is in domain Q , the loop rule is used with pre-attractivity loop

invariant Inva ≡
∨
p∈P

(
Qp ∧Vp <W ∧(Vp ≥ U → Vp <W +kt)

)
.

This results in three premises 1○– 3○ which are proved below.

1○ 2○ 3○
loop Γ,

∧
p∈P Vp<W , t = 0, Q ⊢ [αstate, t ′ = 1] . . . 0○

cut, ∨L Γ,
∧
p∈P Vp<W , t = 0 ⊢ [αstate, t ′ = 1] . . .

[;], [:=] Γ,
∧
p∈P Vp<W ⊢ [t := 0;αstate, t ′ = 1] . . .

∀L,→L Γ, a○, ∥x ∥<δ ⊢ [t := 0;αstate, t ′ = 1] . . .

Premise 1○ proves by R from the antecedents.

∗
R∧

p∈P Vp<W , t = 0, Q ⊢ Inva
Premise 3○ proves by R from the loop invariant after using ∨L

to split the disjuncts of the loop invariant. The disjunct for mode

p ∈ P is abbreviated R ≡ Vp <W ∧ (Vp ≥ U → Vp <W +kt). The
rest of the arithmetic argument is identical to the corresponding

premise for CLF using the conjunct for p in b○ (summarized below).

∗
RVp ≥ U , k<0,W + kT ≤ U , Vp <W + kt, t ≥ T ⊢ false
R Vp ≥ U , k<0,W + kT ≤ U , R, t ≥ T ⊢ false
R

b○, k<0,W + kT ≤ U , R, t ≥ T , ∥x ∥ ≥ ε ⊢ false
R

b○, k<0,W + kT ≤ U , R ⊢ t ≥ T → ∥x ∥ < ε
∨L

b○, k<0,W + kT ≤ U , Inva ⊢ t ≥ T → ∥x ∥ < ε

The derivation from premise 2○ proceeds by unfolding the loop

body with [∪], ∧R, DX, yielding one premise for each switching

choice p ∈ P. The M[·] step selects the disjunct R (as defined above

for premise 3○) in the postcondition corresponding to mode p and

the cut adds this disjunct to the antecedents (the cut premise 4○
is shown and proved below). The rest of the proof after the cut is

omitted here as it is identical to the corresponding derivation for

rule CLF using the respective conjunct in c○.

∗

4○ c○, R ⊢ [x ′ = fp (x ), t ′ = 1&Qp ]R
cut

c○, Inva, Qp ⊢ [x ′ = fp (x ), t ′ = 1&Qp ]R
M[·]

c○, Inva, Qp ⊢ [x ′ = fp (x ), t ′ = 1&Qp ]Inva
[∪], ∧R, DX

c○, Inva ⊢ [
⋃
p∈P x ′ = fp (x ), t ′ = 1&Qp ]Inva

The cut premise 4○ is proved by splitting the disjunction in

Inva with ∨L (indexed by q ∈ P below). For modes q , p, the
derivation leaves a compatibility condition which proves using the

last (bottom) premise of rule MLF. Note that the rule uses succedent

Vp = Vq since a symmetric condition (Vq ≤ Vp ) is obtained when

the roles of modes p,q ∈ P are swapped.

∗
R Qq, Qp ⊢ Vp ≤ Vq
R p , q, Qq ∧Vq <W ∧ (Vq ≥ U → Vq <W + kt ), Qp ⊢ R
∨L∨

q∈P
(
Qq ∧Vq <W ∧ (Vq ≥ U → Vq <W + kt )

)
, Qp ⊢ R

Inva, Qp ⊢ R
15
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Returning to premise 0○, similar to the case for stability, initial

states satisfying ¬Q have no continuous motion possible so they

are stuck at the initial state (with global clock t = 0). This is proved

using the loop invariant Inv0a ≡ t = 0 ∧ ¬Q . The first and third

premise resulting from the loop rule are proved trivially (not shown

below). For the remaining premise,¬Q is preserved (trivially) across

the loop body after unfolding it with [∪], ∧R and using DX to show

that the system is unable to switch to the ODE with domain Qp .

∗

¬Q, Qp ⊢ false
DX

¬Q ⊢ [x ′ = fp (x ), t ′ = 1&Qp ]Inv0a
[∪], ∧R Inv0a ⊢ [

⋃
p∈P x ′ = fp (x ), t ′ = 1&Qp ]Inv0a

loop T > 0, t = 0, ¬Q ⊢ [αstate, t ′ = 1](t ≥ T → ∥x ∥ < ε ) □

Proof of Corollary 5. The derivation of rule MLFG is similar

to MLF, but adapted to the shape of the guarded switching model

αguard and its corresponding loop invariants. The derivation starts

with an ∧R step for the stability and pre-attractivity conjuncts

which are proved separately below.

⊢ UStab(αguard) ⊢ UGpAttr(αguard)
∧R

⊢ UGpAS(αguard)

Stability. The derivation for stability proceeds identically to the

derivation for rule MLF until the step before the stability loop

invariant is used. These steps are omitted below with . . . and

the resulting premise has antecedent formula abbreviated a○ ≡∧
p∈P ∀x (∥x ∥ = ε → Vp ≥W ).

a○, δ ≤ ε, ∥x ∥ < δ,
∧
p∈P Vp <W ⊢ [αguard] ∥x ∥ < ε

. . .

⊢ UStab(αguard)

The derivation continues using the loopT rule with stability loop

invariant Invs ≡ ∥x ∥ < ε ∧
∨
p∈P

(
u = p ∧Vp <W

)
. This yields

four premises labeled 1○– 4○, shown and proved further below.

1○ 2○ 3○ 4○
loopT

a○, δ ≤ ε, ∥x ∥ < δ,
∧
p∈P Vp <W ⊢ [αguard] ∥x ∥ < ε

Premise 1○ shows that the system state satisfies the invariant

Invs after running the initialization program αi ≡
⋃
p∈P u :=p.

This is proved by R after unfolding αi using [∪], [:=].
∗

R δ ≤ ε, ∥x ∥ < δ,
∧
p∈P Vp <W , u = p ⊢ Invs

[∪], [:=] δ ≤ ε, ∥x ∥ < δ,
∧
p∈P Vp <W ⊢ [αi ]Invs

Premise 4○ proves trivially since the postcondition ∥x ∥ < ε is
part of the loop invariant.

∗
RInvs ⊢ ∥x ∥ < ε

The derivation from premise 2○ yields correct-by-construction
arithmetical conditions on the Lyapunov functions from unfolding

the guarded switching controller in αguard, recall

αu ≡
⋃
p∈P

(
?u = p;

⋃
q∈P

(
?Gp,q ;u :=q

) )
Axiom [∪] unfolds the outer choice

⋃
p∈P

(
·
)
, yielding one

premise for each mode p ∈ P. Then, axioms [;], [?] add the cur-

rent mode u = p (before switching) to the assumptions. The cut

step propositionally unfolds antecedent loop invariant assumption

Invs to the corresponding disjunct for u = p. The inner choice⋃
q∈P

(
·
)
is unfolded next with axioms [∪], [;], [?], yielding one

premise for each possible transition to mode q ∈ P guarded by

formula Gp,q . The assignment u :=q is unfolded with [:=], so the

succedent simplifies to the disjunct for u = q in Invs . An arithmetic

simplification step yields the bottom premise of rule MLFG .

∗
R Gp,q ⊢ Vq ≤ Vp
R Vp <W , Gp,q ⊢ Vq <W
[:=]

∥x ∥ < ε, Vp <W , Gp,q ⊢ [u := q]Invs
[∪], [;], [?]

∥x ∥ < ε, Vp <W ⊢ [
⋃
q∈P

(
?Gp,q ;u := q

)
]Invs

cut Invs , u = p ⊢ [
⋃
q∈P

(
?Gp,q ;u := q

)
]Invs

[;], [?] Invs ⊢ [?u = p ;
⋃
q∈P

(
?Gp,q ;u := q

)
]Invs

[∪] Invs ⊢ [αu ]Invs

The derivation from premise 3○ unfolds the plant model αp ≡⋃
p∈P

(
?u = p;x ′ = fp (x ,y)&Qp

)
. The choice

⋃
p∈P

(
·
)
is unfolded

first with axiom [∪], yielding one premise for each mode p ∈ P.

Then, axioms [;], [?] adds the mode selected by αu to the antecedent,

where the antecedent loop invariant assumption Invs is simplified

by cut to the disjunct for u = p. Similarly M[·] strengthens the

postcondition to the disjunct for u = p. The rest of the proof pro-
ceeds identically to the corresponding derivation for rule CLF so it

is omitted here.

∗

a○, ∥x ∥<ε, Vp<W ⊢ [x ′ = fp (x )&Qp ]( ∥x ∥<ε ∧Vp<W )
M[·]

a○, ∥x ∥<ε, Vp<W , u = p ⊢ [x ′ = fp (x )&Qp ]Invs
cut

a○, Invs , u = p ⊢ [x ′ = fp (x )&Qp ]Invs
[;], [?]

a○, Invs ⊢ [?u = p ; x ′ = fp (x, y)&Qp ]Invs
[∪]

a○, Invs ⊢ [αp ]Invs

Pre-attractivity. The derivation for pre-attractivity is also identi-

cal to MLF until the step before the pre-attractivity loop invariant

is used. These steps are omitted below with . . . and the resulting

premise has antecedent formulas abbreviated with:

b○ ≡
∧
p∈P

∀x (Vp ≤W ∧ ∥x ∥ ≥ ε → Vp ≥ U )

c○ ≡
∧
p∈P

∀x (
Qp ∧U ≤ Vp ≤W → Lfp

(Vp ) ≤ k
)

∧
p∈P Vp<W , b○, k<0, c○,W + kT ≤ U , t = 0 ⊢ [αguard, t ′ = 1] . . .

. . .

⊢ UGpAttr(αguard)

The derivation continues using the loopT rulewith pre-attractivity

loop invariant Inva ≡
∨
p∈P

(
u=p∧Vp<W∧(Vp≥U → Vp<W+kt)

)
.

This yields four premises labeled 1○– 4○ which are shown and

proved further below.

1○ 2○ 3○ 4○
loopT

∧
p∈P Vp<W , b○, k<0, c○,W +kT ≤U , t=0 ⊢ [αguard, t ′ = 1] . . .

Premise 1○ proves the invariant Inva after unfolding the initial-

ization program αi using [∪], [:=].

∗
R ∧

p∈P Vp<W , t=0, u = p ⊢ Inva
[∪], [:=] ∧

p∈P Vp<W , t=0 ⊢ [αi ]Inva

Premise 4○ is proved by R after unfolding the disjuncts of the

loop invariant with ∨L (the arithmetical argument is identical to

earlier proofs). The selected disjunct (indexed by p) is abbreviated
R ≡ u=p ∧Vp<W ∧ (Vp≥U → Vp<W+kt).
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∗
R

b○, k<0,W + kT ≤ U , R ⊢ t ≥ T → ∥x ∥ < ε
∨L

b○, k<0,W + kT ≤ U , Inva ⊢ t ≥ T → ∥x ∥ < ε

The derivation from premise 2○ unfolds αu using dL’s hybrid
program axioms similar to the stability proof, and an arithmetic

simplification step yields the premises of MLFG for guarded mode

switches from p to q, p,q ∈ P.

∗
R Gp,q ⊢ Vq ≤ Vp
R R, Gp,q ⊢ Vq<W ∧ (Vq ≥U → Vq<W +kt )
[:=] R, Gp,q ⊢ [u := q]Inva

[∪], [;], [?] R ⊢ [
⋃
q∈P

(
?Gp,q ;u := q

)
]Inva

cut Inva, u = p ⊢ [
⋃
q∈P

(
?Gp,q ;u := q

)
]Inva

[;], [?] Inva ⊢ [?u = p ;
⋃
q∈P

(
?Gp,q ;u := q

)
]Inva

[∪] Inva ⊢ [αu ]Inva

The derivation from premise 3○ unfolds the plant model and then

proceeds identically to the corresponding derivation for rule CLF.

∗

c○, R ⊢ [x ′ = fp (x ), t ′ = 1&Qp ]R
M[·]

c○, R ⊢ [x ′ = fp (x ), t ′ = 1&Qp ]Inva
cut

c○, Inva, u = p ⊢ [x ′ = fp (x ), t ′ = 1&Qp ]Inva
[;], [?]

c○, Inva ⊢ [?u = p ; x ′=fp (x, y), t ′ = 1&Qp ]Inva
[∪]

c○, Inva ⊢ [αp, t ′ = 1]Inva □

Proof of Corollary 6. The derivation of rule MLFτ departs

more significantly from the derivations of rules CLF, MLF, MLFG .

For this proof, Rexp is used to indicate arithmetic steps that use

properties of the real exponential function. Tools are available for

answering such questions [14] although they are not known to

be decidable; additional explanation is given below for steps that

only require elementary properties of the exponential function. The

proof also shows how to derive arithmetic conditions (arising from

the time-dependent switching controller) in a correct by construc-

tion manner. Recall from that the modes p ∈ P are partitioned

into two subsets consisting of the stable S = {p ∈ P, λp > 0} and

unstable U = {p ∈ P, λp ≤ 0} modes. The derivation starts with

an ∧R step for the stability and pre-attractivity conjuncts which

are proved separately below.

⊢ UStab(αtime) ⊢ UGpAttr(αtime)
∧R

⊢ UGpAS(αtime)

Stability. The stability derivation begins with cut and Skolem-

ization steps. The first cut is ∃W >0 a○ with the abbreviation a○ ≡∧
p∈P ∀x (∥x ∥ = ε → Vp ≥W ), where the upper bound W >0 is

chosen to be the maximum of the respective bounds for each Vp
on the compact set characterized by ∥x ∥ = ε . After Skolemizing

W , the second arithmetic cut is the formula ∃δ (0 < δ ≤ ε ∧ b○),

where the conjuncts for p ∈ U use eλpΘp > 0.

b○ ≡
∧
p∈S

∀x (∥x ∥ < δ → Vp <W )

∧
∧
p∈U

∀x (∥x ∥ < δ → Vp <WeλpΘp )

Such a δ exists by continuity for each Vp ,p ∈ P, Vp (0) = 0 from

the premise of rule MLFτ . After both cuts, the antecedent δ is used

to witness the succedent by ∃R.

a○, δ ≤ ε, b○ ⊢ ∀x (
∥x ∥ < δ → [αtime] ∥x ∥ < ε

)
∃R

a○, 0 < δ ≤ ε, b○ ⊢ ∃δ>0∀x (
∥x ∥ < δ → [αtime] ∥x ∥ < ε

)
cut, Rexp , ∃L ε>0,W >0, a○ ⊢ ∃δ>0∀x (

∥x ∥ < δ → [αtime] ∥x ∥ < ε
)

cut, R, ∃L ε>0 ⊢ ∃δ>0∀x (
∥x ∥ < δ → [αtime] ∥x ∥ < ε

)
∀R, →R

⊢ UStab(αtime)

The derivation continues after both cuts similarly to MLF by

unfolding and proving the LHS of the implications in antecedent

b○. The resulting assumption on the initial state is abbreviated

B ≡
∧
p∈S Vp<W ∧

∧
p∈U Vp<WeλpΘp . Then, the loopT rule is

used with the following stability loop invariant Invs , which yields

premises 1○– 4○ shown and proved further below:

Invs ≡ τ ≥ 0 ∧ ∥x ∥ < ε ∧

©­­­­«
∨
p∈S

(
u = p ∧Vp <We−λpτ

)
∨∨

p∈U

(
u = p ∧Vp <We−λp (τ−Θp ) ∧ τ ≤ Θp

)ª®®®®¬
1○ 2○ 3○ 4○

loopT
a○, δ ≤ε, ∥x ∥<δ, B ⊢ [αtime] ∥x ∥<ε

∀L, →L
a○, δ ≤ε, b○, ∥x ∥<δ ⊢ [αtime] ∥x ∥<ε

∀R, →R
a○, δ ≤ε, b○ ⊢ ∀x (

∥x ∥<δ → [αtime] ∥x ∥<ε
)

Premise 1○ shows that the system state satisfies the invariant

Invs after initialization with program αi ≡ τ := 0;
⋃
p∈P u :=p. This

is proved from B after unfolding αi using [∪], [:=] and substituting

τ = 0 in the loop invariant (using e0 = 1).

∗
Rexp δ ≤ ε, ∥x ∥ < δ, B, τ = 0, u = p ⊢ Invs

[∪], [:=] δ ≤ ε, ∥x ∥ < δ, B ⊢ [αi ]Invs

Premise 4○ proves trivially since the postcondition ∥x ∥ < ε is
part of the loop invariant.

∗
RInvs ⊢ ∥x ∥ < ε

The derivation from premise 2○ unfolds the switching controller

αu in αtime with dL’s hybrid program axioms, recall:

αu ≡
⋃
p∈P

(
?u = p;

⋃
q∈P

(
?θp,q ≤ τ ;τ := 0;u :=q

) )
This unfolding yields four possible shapes of premises (abbrevi-

ated as . . . and shown immediately below) for a switch from the

current mode p to mode q. In each case, the antecedent assumption

corresponds to the disjunct of Invs for mode p, while the succedent
assumption corresponds to the disjunct for mode q with timer τ
reset to 0 by the switching controller. The four cases correspond to

whether p ∈ S or p ∈ U and similarly for q, as labeled below.

[∪]

[;], [?]

[∪], [;], [?], [:=]
. . .

Invs , u = p ⊢ [
⋃
q∈P

(
?θp,q ≤ τ ; τ := 0;u := q

)
]Invs

Invs ⊢ [?u = p ;
⋃
q∈P

(
?θp,q ≤ τ ; τ := 0;u := q

)
]Invs

Invs ⊢ [αu ]Invs

θp,q ≤ τ , Vp <We−λpτ ⊢ Vq <W (p∈S, q∈S)

θp,q ≤ τ , Vp <We−λpτ ⊢ Vq <WeλqΘq (p∈S, q∈U)

θp,q ≤ τ , Vp <We−λp (τ−Θp ), τ ≤ Θp ⊢ Vq <W (p∈U, q∈S)

θp,q ≤ τ , Vp <We−λp (τ−Θp ), τ ≤ Θp ⊢ Vq <WeλqΘq (p∈U, q∈U)
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These premises are correct-by-construction and can be handed

to an arithmetic solver directly. They can also be simplified, e.g., for

p∈S,q∈S, the inequalities can be rearranged to eliminateW and τ .
The first R step uses transitivity of < . ≤, while the second Rexp step

uses eλpθp,q ≤ eλpτ whenever λp > 0 (since p ∈ S) and θp,q ≤ τ .

⊢ Vq ≤ Vpeλpθp,q

Rexp θp,q ≤ τ ⊢ Vq ≤ Vpeλpτ

R θp,q ≤ τ , Vp <We−λpτ ⊢ Vq <W

Intuitively, the resulting (simplified) premise says that by choos-

ing sufficiently large dwell time θp,q (for stable mode p), one can
offset an increase in value when switching fromVp toVq . The proof
of this premise requires Rexp.

The derivation from premise 3○ unfolds the plant model αp ≡⋃
p∈P

(
?u = p;x ′ = fp (x),τ

′ = 1&τ ≤ Θp
)
using dL axioms. There

are two possible shapes of the premises resulting from this unfold-

ing, depending if p ∈ S or p ∈ U, these are abbreviated 5○ and 6○
respectively. In either case, the derivation shows that the appropri-

ate upper bound on Vp is preserved for the invariant.

5○ 6○
[;], [?]

a○, Invs , u = p ⊢ [x ′ = fp (x ), τ ′ = 1& τ ≤ Θp ]Invs
[;], [?]

a○, Invs ⊢ [?u = p ; x ′ = fp (x ), τ ′ = 1& τ ≤ Θp ]Invs
[∪]

a○, Invs ⊢ [αp ]Invs

For premise 5○, the proof uses dbx≽ with cofactor −λp , where

the Lie derivative of subtermWe−λpτ is (−λp )We−λpτ from τ ′ = 1.

The resulting premise simplifies to the third premise of rule MLFτ .

∗

⊢ Lfp
(Vp )≤−λpVp

⊢ Lfp
(Vp )−(−λp )We−λpτ ≤−λp (Vp−We−λpτ )

dbx≽ Vp−We−λpτ < 0 ⊢ [x ′ = fp (x ), τ ′ = 1& τ ≤Θp ]Vp−We−λpτ < 0

cut, M[·] Vp <We−λpτ ⊢ [x ′ = fp (x ), τ ′ = 1& τ ≤Θp ]Vp <We−λpτ

The proof for premise 6○ similarly uses dbx≽ with cofactor −λp ,
yielding the third premise of rule MLFτ .

∗

⊢ Lfp
(Vp ) ≤ −λpVp

dbx≽Vp<We−λp (τ−Θp ) ⊢ [x ′ = fp (x ), τ ′ = 1& τ ≤ Θp ]Vp<We−λp (τ−Θp )

Pre-attractivity. The derivation for pre-attractivity begins with

logical simplification followed by a series of arithmetic cuts. First,

the multiple Lyapunov functions Vp ,p ∈ P are simultaneously

bounded above on the ball characterized by ∥x ∥ < δ , with the cut

∃W >0 a○ where

a○ ≡
∧
p∈S

∀x (∥x ∥ < δ → Vp <W )∧

∧
∧
p∈U

∀x (∥x ∥ < δ → Vp <WeλpΘp )

The upper boundW is Skolemized, then the next arithmetic cut

uses∃U>0 b○with b○ ≡
∧
p∈P ∀x (Vp ≤W ∧ ∥x ∥ ≥ ε → Vp ≥ U ),

whereU is Skolemized with ∃L.
ε>0,W >0, a○, U >0, b○ ⊢ ∃T ≥0∀x (

∥x ∥ < δ → . . .
)

cut, R, ∃L ε>0,W >0, a○ ⊢ ∃T ≥0∀x (
∥x ∥ < δ → . . .

)
cut, R, ∃L ε>0 ⊢ ∃T ≥0∀x (

∥x ∥ < δ → . . .
)

∀R, →R
⊢ UGpAttr(αtime)

The derivation continues by picking T ≥ 0 such that R ≡W ≤

UeσT ∧
∧
p∈UW ≤ UeσT e−σΘp , such a T exists since σ > 0. The

quantifiers in the succedent are unfolded and the LHS of the im-

plications in a○ are proved. The resulting antecedent (from a○)

is abbreviated B ≡
∧
p∈S Vp<W ∧

∧
p∈U Vp<WeλpΘp . The loopT

rule is used with the following pre-attractivity loop invariant Invs ,
which yields premises 1○– 4○ shown and proved further below:

Inva ≡ τ ≥ 0 ∧ t ≥ τ ∧

©­­­­«
∨
p∈S

(
u = p ∧Vp <We−σ (t−τ )e−λpτ

)
∨∨

p∈U

(
u = p ∧Vp <We−σ (t−τ )e−λp (τ−Θp ) ∧ τ ≤ Θp

)ª®®®®¬
1○ 2○ 3○ 4○

loopT
b○, T ≥ 0, R, B, t = 0 ⊢ [αguard, t ′ = 1] . . .

∀L, →L
a○, b○, T ≥ 0, R, ∥x ∥<δ, t = 0 ⊢ [αguard, t ′ = 1] . . .

[;], [:=]
a○, b○, T ≥ 0, R, ∥x ∥<δ ⊢ [t := 0;αguard, t ′ = 1] . . .

∀R, →R
a○, b○, T ≥ 0, R ⊢ ∀x (

∥x ∥ < δ → . . .
)

∃R ε>0,W >0, a○, U >0, b○ ⊢ ∃T ≥0∀x (
∥x ∥ < δ → . . .

)
Premise 1○ is proved by unfolding the initialization program αi

This is proved from B after unfolding αi using axioms [∪], [:=] and

substituting τ = 0 and t = 0 in the loop invariant (using e0 = 1).

∗
Rexp B, t = 0, τ = 0, u = p ⊢ Inva

[∪], [:=] B, t = 0 ⊢ [αi ]Inva

Premise 4○ is proved by unfolding the loop invariant with ∨L.

This yields two possible premise shapes, corresponding to p ∈ S or

p ∈ U. In both cases, assuming the negation of the succedent proves

the corresponding implication LHS in the antecedent assumption

b○, which givesV < U as an assumption. The remaining arithmetic

argument underlying these premises proceeds by contradicting this

assumption (below).

∗
∨L, R

b○, R, Inva ⊢ t ≥ T → ∥x ∥ < ε

For p ∈ S, the following sequence of inequalities is used (note

that σ < λp is implied by the later premises):

Vp <We−σ (t−τ )e−λpτ (from invariant)

=We−σte−τ (λp−σ )

≤We−σT e−τ (λp−σ ) (from t ≥ T ,σ > 0)

≤ Ue−τ (λp−σ ) (from R)

≤ U (from σ < λp ,τ ≥ 0, contradiction)

For p ∈ U, the following sequence of inequalities is used (note

that τ ≤ Θp is in the invariant Inva for p ∈ U):

Vp <We−σ (t−τ )e−λp (τ−Θp ) (from invariant)

≤We−σ (t−τ ) (from τ ≤ Θp , λp ≤ 0)

=We−σteστ

≤We−σteσΘp (from σ > 0,τ ≤ Θp )

≤We−σT eσΘp (from t ≥ T ,σ > 0)

≤ U (from R, contradiction)
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The derivation from premise 2○ unfolds the switching controller

αu in αtime with dL’s hybrid program axioms. Similar to the deriva-

tion for the stability conjunct, this unfolding yields four possible

shapes of premises (abbreviated as . . . and shown immediately

below) for maintaining the invariant Inva after a switch from the

current mode p to the next mode q.

[∪]

[;], [?]

[∪], [;], [?], [:=]
. . .

Inva, u = p ⊢ [
⋃
q∈P

(
?θp,q ≤ τ ; τ := 0;u := q

)
]Inva

Inva ⊢ [?u = p ;
⋃
q∈P

(
?θp,q ≤ τ ; τ := 0;u := q

)
]Inva

Inva ⊢ [αu ]Inva

t ≥τ , θp,q ≤τ , Vp<We−σ (t−τ )e−λpτ ⊢Vq<We−σ t

(p∈S, q∈S)

t ≥τ , θp,q ≤τ , Vp<We−σ (t−τ )e−λpτ ⊢Vq<We−σ t eλqΘq

(p∈S, q∈U)

t ≥τ , θp,q ≤τ , Vp<We−σ (t−τ )e−λp (τ−Θp ), τ ≤Θp⊢Vq<We−σ t

(p∈U, q∈S)

t ≥τ , θp,q ≤τ , Vp<We−σ (t−τ )e−λp (τ−Θp ), τ ≤Θp⊢Vq<We−σ t eλqΘq

(p∈U, q∈U)

The derivation from premise 3○ unfolds the plant model αp . This
results in two possible shapes of premises, depending if p ∈ S or

p ∈ U, which are abbreviated 5○ and 6○ respectively. In either

case, the key step shows that the appropriate upper bound on Vp is

preserved.

5○ 6○
[;], [?]Inva, u = p ⊢ [x ′ = fp (x ), τ ′ = 1, t ′ = 1& τ ≤ Θp ]Inva
[;], [?] Inva ⊢ [?u = p ; x ′ = fp (x ), τ ′ = 1, t ′ = 1& τ ≤ Θp ]Inva
[∪] Inva ⊢ [αp ]Inva
For premise 5○, the proof uses dbx≽ with cofactor −λp , with

abbreviation Ps =We−σ (t−τ )e−λpτ , noting that the Lie derivative
of Ps is −λpPs . This yields the third premise of rule MLFτ .

∗

⊢ Lfp
(Vp ) ≤ −λpVp

dbx≽Vp<Ps ⊢ [x ′ = fp (x ), τ ′ = 1, t ′ = 1& τ ≤ Θp ]Vp<Ps
The proof for premise 6○ is similar using dbx≽ with cofactor

−λp , with abbreviation Pu = We−σ (t−τ )e−λp (τ−Θp ), noting that

the Lie derivative of Pa is −λpPa . This yields the third premise of

rule MLFτ .
∗

⊢ Lfp
(Vp ) ≤ −λpVp

dbx≽Vp<Pu ⊢ [x ′ = fp (x ), τ ′ = 1, t ′ = 1& τ ≤ Θp ]Vp<Pu □

B COUNTEREXAMPLE
The cruise controller automaton from Section 5.2 is taken from

the suite of examples for the Stabhyli tool [26, 27]. Using the de-

fault instructions on a Linux machine, Stabhyli generates a success

message with the following output (newlines added for readability):

...
SOSSolution( Problem is solved. (accepted); ...
...
### Lyapunov template for mode normal_PI: \

+V_23*relV^2+V_22*intV^2+V_21*intV*relV \
+V_20*relV+V_19*intV

### Lyapunov function for mode normal_PI: \
+572572089848357/144115188075855872*intV*relV \
+256336575597239/281474976710656*relV^2 \
+6008302119812893/4611686018427387904*intV^2 \
+5787253314511645/618970019642690137449562112*relV \
+5661677770976729/39614081257132168796771975168*intV

...
The hybrid system is stable

The generated Lyapunov function candidate V does not exactly

satisfy all of the required arithmetical conditions for the normal PI

mode [26]. For example, one requirement is that it should be non-

negative in the mode invariant −15≤relV≤15∧−500≤intV≤500. It

can be checked that intV = − 1

17179869184
, relV = 0 is a counterex-

ample, with V = −3.90488 × 10
−24

.

A heuristic approach to resolve this numerical issue is to truncate

terms in the candidateV with extremely small coefficients and then

check the resulting truncated candidate. This heuristic is applied

for the case study in Section 5.2, where the KeYmaera X proof

succeeded using the truncated candidate together with the rest of

the Lyapunov function candidates generated by Stabhyli (for other

automaton modes).
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