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ABSTRACT

Switched systems are known to exhibit subtle (in)stability behav-
iors requiring system designers to carefully analyze the stability
of closed-loop systems that arise from their proposed switching
control laws. This paper presents a formal approach for verifying
switched system stability that blends classical ideas from the con-
trols and verification literature using differential dynamic logic (dL),
a logic for deductive verification of hybrid systems. From controls,
we use standard stability notions for various classes of switching
mechanisms and their corresponding Lyapunov function-based
analysis techniques. From verification, we use dL’s ability to verify
quantified properties of hybrid systems and dL models of switched
systems as looping hybrid programs whose stability can be for-
mally specified and proven by finding appropriate loop invariants,
i.e., properties that are preserved across each loop iteration. This
blend of ideas enables a trustworthy implementation of switched
system stability verification in the KeYmaera X prover based on dL.
For standard classes of switching mechanisms, the implementation
provides fully automated stability proofs, including searching for
suitable Lyapunov functions. Moreover, the generality of the deduc-
tive approach also enables verification of switching control laws
that require non-standard stability arguments through the design of
loop invariants that suitably express specific intuitions behind those
control laws. This flexibility is demonstrated on three case studies:
a model for longitudinal flight control by Branicky, an automatic
cruise controller, and Brockett’s nonholonomic integrator.
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1 INTRODUCTION

Switched systems provide a powerful mathematical paradigm for
the design and analysis of discontinuous (or nondifferentiable) con-
trol mechanisms [10, 22, 28, 44]. Examples of such mechanisms
include: bang-bang controllers that switch between on/off modes;
gain schedulers that switch between a family of locally valid linear
controllers; and supervisory control, where a supervisor switches
between candidate controllers based on logical criteria [22, 28].
However, switched systems are known to exhibit subtle (in)stability
behaviors, e.g., switching between stable subsystems can lead to
instability [22], so it is important for system designers to adequately
justify the stability of their proposed switching designs. Verification
and validation are complementary approaches for such justifica-
tions: validation approaches, such as system simulations or lab
experiments, allow designers to check that their models and con-
trollers conform to real world behavior; verification approaches
yield formal mathematical proofs that the stability properties hold
for all possible switching decisions everywhere in the model’s infi-
nite state space, not just for finitely-many simulated trajectories.
This paper presents a logic-based, deductive approach for veri-
fying switched system stability under various classes of switching
mechanisms. The key insight is that control-theoretic stability ar-
guments for switching control can be formally justified by blending
techniques from discrete program verification with continuous dif-
ferential equations analysis using differential dynamic logic (dL),
a logic for deductive verification of hybrid systems [33, 34]. In-
tuitively, switched systems are modeled in dL as looping hybrid
programs [46], as in the following snippet ({-}* denotes repetition):

{ u:= ctrl(x);
x' = fu(x)

} @invariant(...)

// switching controller (discrete dynamics)
// actuate decision (continuous dynamics)

// switching loop with invariant annotation

Accordingly, switched system stability is formally specified in dL
as first-order quantified safety properties of such loops (Section 2.2),
and these safety properties can then be proved rigorously by com-
bining fundamental ideas from verification and control, namely:
i) identification of loop invariants (@invariant above), i.e., proper-
ties of the (discrete) loop that are preserved across all executions
of the loop body, ii) compositional verification for separately ana-
lyzing the discrete and continuous dynamics of the loop body, and
iii) Lyapunov functions, i.e., auxiliary energy functions that enable
stability analysis for the continuous dynamics.

Section 3 identifies key loop invariants underlying stability ar-
guments for various classes of switching mechanisms and derives
sound stability proof rules for those mechanisms. Crucially, these
syntactic derivations are built from dL’s sound foundations for hy-
brid program reasoning [33, 34], without the need to introduce
new mathematical concepts such as non-classical weak solutions or
nondifferentiable Lyapunov functions [9, 16]. Section 4 uses these
derivations to implement support for switched systems in the KeY-
maera X prover based on dL [12], including a modeling interface
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for switched systems, automatic search for Lyapunov function can-
didates, and sound verification of switched system stability spec-
ifications. Notably, the implementation requires no extensions to
KeYmaera X’s soundness-critical core and thereby directly inherits
all of KeYmaera X’s correctness guarantees [12, 25]. This trustwor-
thiness is necessary for computer-aided verification of complex,
controlled switching designs, where the number of correctness con-
ditions on their Lyapunov functions scales quadratically with the
number of switching modes (Section 3.2), making pen-and-paper
proofs error-prone or infeasible. Section 5 further applies the deduc-
tive approach on three case studies, chosen because each require
subtle twists to standard switched system stability arguments:

o Longitudinal flight control [4]: This model is parametric (5
parameters, 2 state variables) and its stability justification
due to Branicky [4] uses a “noncustomary” Lyapunov func-
tion [10], whose correctness requires intricate arithmetic
reasoning. The proof is enabled through the use of ghost
switching where virtual switching modes are introduced for
the sake of the stability analysis, similar to the use of ghost
variables in program verification [30, 34, 35].

o Automatic cruise control [29]: This hybrid automaton switches
between several operating modes, e.g., standard/emergency
braking, accelerating, and PI control, based on specific guard
conditions. Lyapunov function candidates can be numeri-
cally generated [26], but must be corrected for soundness.

o Brockett’s nonholonomic integrator [7]: A large class of con-
trol systems can be transformed to the nonholonomic in-
tegrator but this system is not stabilizable by continuous
feedback [7, 22]. Instead, the system must be initially con-
trolled into a suitable region where a stabilizing control law
can be applied. The stability argument must show that the
initial control mode does not destabilize the system.

These case studies are verified semi-automatically in KeYmaera X,
with user guidance to design and prove modified loop invariants
that suitably capture the specific intuitions behind their respective
control laws. The flexibility and generality of this paper’s deductive
approach enables such modifications while ensuring that the overall
stability argument remains valid. In fact, these modified stability
proofs enjoy exactly the same, strong correctness guarantees thanks
to their formalization within the uniform dL logical foundations.

All proofs are in the appendix. The KeYmaera X implementation,
examples, and case studies are available at:!

https://figshare.com/s/00b273eb0a5fc61c175d

2 BACKGROUND

This section briefly recalls switched systems and their hybrid pro-
gram models introduced by Tan and Platzer [46]. The section then
explains how stability for these models can be formally specified
and verified using differential dynamic logic (dL) [33, 34].

2.1 Switched Systems as Hybrid Programs

2.1.1 Hybrid Programs. The language of hybrid programs is gen-
erated by the following grammar, where x is a variable, e is a dL

!While an artifact will be submitted for artifact evaluation if this paper is accepted
according to the guidelines for regular papers, we already provide a double-blind
anonymized link to a prototype implementation for interested reviewers now.

Anon.

term, and Q is a formula of first-order real arithmetic [33, 34].
a,f = x"=f(x)&Q|x:=e|?Q|a;B|aUB|a”
Continuous dynamics are modeled using systems of ordinary
differential equations (ODEs) x” = f(x) & Q evolving within do-
main Q; the ODE is written as x” = f(x) when there is no domain
constraint, i.e., Q = true. Discrete dynamics are modeled using
assignments (x := e assigns the value of term e to x) and tests (?Q
checks whether condition Q is true in the current state). The pro-
gram combinators are used to piece together sub-programs to form
programs with hybrid dynamics; the combinators are: sequential
composition («; f runs « followed by f), nondeterministic choice
(¢ U B runs a or f nondeterministically), and nondeterministic
repetition (a* repeats  for any number of iterations).
Throughout this paper, x = (xi,...,x,) denotes the vector
of continuous state variables for the system under consideration.
Other variables are used for program auxiliaries, e.g., to describe
memory and timing components of switching controllers.

2.1.2  Switched systems. A switched system is described by a finite
family # of ODEs x” = fy(x),p € P and a set of switching signals
o : [0,00) — P that prescribe the ODE x’ = f;;(;)(x) to follow
at time t along the system’s evolution. Tan and Platzer [46] use
hybrid programs as formal models for various classes of switching
mechanisms; one example is arbitrary switching [22], where the
system is allowed to follow any switching signal, i.e., it switches
arbitrarily (at any time) between the ODEs x” = f,(x),p € . This
can be used to model real world systems whose switching behavior
is uncontrolled or a priori unknown. Arbitrary switching is modeled
by the hybrid program a,y, [46, Proposition 1]:

Xarb = ( U x' = fp(x)) (1)
peP

The behavior of program a,rp is analogous to a computer simula-
tion of arbitrary switching: on each iteration, the program makes a
(discrete) nondeterministic choice of switching decision U, cp (+)
to select an ODE x” = f,(x) which it then follows continuously for
some duration before repeating the simulation loop.

The hybrid programs language can be used to model various
other classes of switching mechanisms [22, 46], including general
controlled switching, as illustrated in Section 1, where a (discrete)
control law u := ctrl(x) decides the ODE x’ = f;,(x) to switch to on
each loop iteration. Stability for these models is explained next.

2.2 Stability as Quantified Loop Safety

This paper studies uniform global pre-asymptotic stability (UGpAS)
for switched systems [16, 17, 22], defined as follows:

Definition 1 (UGpAS [16, 17]). Let ®(x) denote the set of all
(domain-obeying) solutions? ¢ : [0, Ty] — R" for a switched sys-
tem from state x € R™. The origin 0 € R" is:

¢ uniformly globally pre-asymptotically stable if the sys-
tem is uniformly stable and uniformly globally pre-attractive,

e uniformly stable if, for all ¢ > 0, there exists § > 0 such
that from all initial states x € R" with ||x|| < &, all solutions
¢ € O(x) satisfy ||@(t)]| < & for all times 0 < t < Ty, and

2 A formal construction of the (right-maximal) solution ¢ for a given switching signal
o is available elsewhere [46, Appendix A].
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¢ uniformly globally pre-attractive if, for all e > 0, > 0,
there exists T > 0 such that from all initial states x € R"
with ||x|| < &, all solutions ¢ € ®(x) satisfy ||o(¢)|| < ¢ for
all times T < t < Tpp.

The UGpAS definition can be understood intuitively for a system
with a switching control mechanism:

o stability means the mechanism keeps the system close to the
origin if the system is initially perturbed close to the origin,

o global pre-attractivity means the mechanism drives the sys-
tem to the origin asymptotically as t — oo, and

e uniform means the stability and pre-attractivity properties
are independent of both the nondeterminism in the switching
mechanism (e.g., arbitrary switching) and the choice of initial
states satisfying ||x|| < §; for brevity in subsequent sections,
“uniform” is elided when describing stability properties.

Remark 1. Switched systems whose solutions are all uniformly
bounded in time, i.e., there exists T, such that for all solutions ¢,
Ty < T, are trivially pre-attractive. Goebel et al. [16, 17] intro-
duce the notion of pre-attractivity as opposed to attractivity for
hybrid systems because it separates considerations about whether
a hybrid system’s solutions are complete, i.e., solutions exist for
all (forward) time, from conditions for stability and attractivity.
Indeed, it is common in the hybrid and switched systems literature
to either ignore incomplete solutions or assume the models under
consideration only have complete solutions [22, 26, 49]. Instead of
predicating proofs on these hypotheses, this paper formalizes the
(weaker) notion of UGpAS for switched systems directly.

The definition of UGpAS nests alternating quantification over
real numbers with temporal quantification over the solutions ¢ of
switched systems. This combination of quantifiers can be expressed
formally using the formula language of dL [33, 34], whose grammar
is shown below, ~ € {=,#, >,>, <, <} is a comparison operator
between dL terms e, € and « is a hybrid program:

Y wme~e| gAY oV Y=g Vo[ Tug|[alg|(a)d

This grammar extends the first-order language of real arithmetic
(FOLR) with the box ([«]¢) and diamond ({er)¢) modality formulas
which express that all or some runs of hybrid program « satisfy
postcondition ¢, respectively. Real arithmetic FOLR is decidable by
quantifier elimination [47] and serves as a useful base specification
language. Various specifications are equivalently definable in FOLg,

e.g., Euclidean norm bounds ||x|| ~ ¢ &«f llx]|? ~ €2 (for & > 0) and
topological operations such as the boundary d¢ and closure ¢ of
the set characterized by formula ¢ [3].

The box modality formula [a]¢ expresses safety properties ¢ of
program « that must hold along all of its executions [34]. When «
models a switched system, the box modality quantifies (uniformly)
over all times for all solutions arising from the switching mecha-
nism. Accordingly, UGpAS for switched systems is formally speci-
fied by nesting the box modality with the first-order quantifiers.

LEmMA 2 (UGPAS IN DIFFERENTIAL DYNAMIC LOGIC). The origin
0 € R" for a switched system modeled by program a is UGpAS iff the
dL formula UGpAS(«) is valid. Variables €, 5, T, t are fresh in a:

UGpAS(a) = UStab(a) A UGpAttr(a)

Conference’17, July 2017, Washington, DC, USA

UStab(a) = Ve>036>0 Vx (||x]| <8 — [a] l|x]| <€)
UGpAttr(a) = Ye>0 ¥6>03T>0Vx (||x|| < § —
[t:=0;a,t" =1](t 2 T — |Ix]| <¢))

Here, UStab(a) and UGpAttr(a) characterize stability and global
pre-attractivity of a, respectively. In UGpAttr(a), a,t’ = 1 denotes
the hybrid program obtained from o by augmenting its continuous
dynamics so that variable t tracks the progression of time.

Formulas UStab(ar) and UGpAttr(«) syntactically formalize in
dL the corresponding quantifiers in Def. 1. In UGpAttr(«), the fresh
clock variable ¢ is initialized to 0 and syntactically tracks the pro-
gression of time along switched system solutions. The program
a,t’ =1 can, e.g., be constructed by adding a clock ODE ¢’ = 1 to
all ODE:s in the switched system model a. Accordingly, the post-
condition t > T — [|x|| < € expresses that the system state norm is
bounded by ¢ after T time units along any switching trajectory, as re-
quired in Def. 1. Various other stability notions are of interest in the
continuous and hybrid systems literature [13, 17, 22, 29, 36, 44, 45].
These variations can also be formally specified in dL [45] but are
left out of scope for this paper.

2.3 Proof Calculus

The dL proof calculus enables formal, deductive verification of
UGPAS stability specifications through compositional reasoning
principles for hybrid programs [33, 34] and a complete axiomatiza-
tion for ODE invariants [35]. For example, an important syntactic
tool for differential equations reasoning is the Lie derivative of term

e along ODE x” = f(x), defined as Lf(e) def Ve - f. The sound

calculation and manipulation of Lie derivatives is enabled in dL
through the use of syntactic differentials [33].

All proofs are presented in a classical sequent calculus with the
usual rules for manipulating logical connectives and sequents. The
semantics of sequent I' - ¢ is equivalent to the formula (A y er ¥) —
¢ and a sequent is valid iff its corresponding formula is valid. The
key (derived) dL proof rule used in this paper is:

I'tInv Invk [a]Inv Invi ¢
T'r [a*]¢

The loop rule says that, in order to prove validity of the conclu-
sion (below the rule bar), it suffices to prove the three premises
(above the rule bar), respectively from left to right: i) the initial
assumptions I imply Inv, ii) Invis preserved across the loop body a,
i.e., Invis a loop invariant for a*, and iii) Inv implies the postcondi-
tion ¢. The identification of loop invariants Invis crucial for formal
proofs of UGpAS, as illustrated by the following deductive proof
skeleton for stability (a similar skeleton is used for pre-attractivity):

loop

Deduction I+ ¢ Iy F P
( hybrid program )
reasoning for a
I'+ Inv Invt [a] Inv Invk ||x|]| <&
loop

T+ [a*]]lx]]| <&

( logic/arithmetic )
reasoning for T

+ UStab(a*)
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pr(V)go ~

’
<w’
< (bounded)

Figure 1: Loop invariants for UGpAS (arbitrary switching),
stability (left) and pre-attractivity (right). Switching trajec-
tories are illustrated by alternating black and green arrows.

Proofs proceed upwards by deduction, where each reasoning step
is justified by sound dL axioms and rules of inference, e.g., the loop
rule. The skeleton above syntactically derives a proof rule that
reduces a stability proof for ¢* to proofs of the top-most premises,
It v ¢1 -+ Tx F ¢, which corresponding to required logical
and arithmetical conditions on Lyapunov functions for various
switching mechanisms. The loop invariant step (highlighted in red)
crucially ties together these conditions on Lyapunov functions and
hybrid program reasoning for switched systems.

3 LOOP INVARIANTS FOR SWITCHED
SYSTEM STABILITY

This section identifies loop invariants for proving UGpAS under
various classes of switching mechanisms with Lyapunov func-
tions [5, 21, 22]; relevant mathematical arguments are presented
briefly, see Appendix A for more details. Throughout the section,
loop invariants are progressively tweaked to account for new design
insights behind increasingly complex switching mechanisms.

3.1 Arbitrary and State-Dependent Switching

3.1.1 Arbitrary Switching. Stability for the arbitrary switching
model a,rp from (1) can be verified by finding a so-called com-
mon Lyapunov function V for all of the ODEs x” = f,(x).p € P
satisfying the following arithmetical conditions [22, 44]:

i) V(0) = 0and V(x) > 0 for all ||x|| > 0,

ii) V is radially unbounded, i.e., for all b, there exists y > 0 such

that ||x|| < y for all V(x) < b, and

iii) for each ODE x’ = f,(x),p € P, the Lie derivative L (V)

satisfies: .L (V)(O) =0and L (V)(x) < 0 for all ||x|| > O

Conditions l) iii) are generahzatmns of well-known conditions
for stability of ODEs [8, 21] to arbitrary switching. Intuitively, con-
ditions i) and iii) ensure that V acts as an auxiliary energy function
whose value decreases asymptotically to zero (at the origin) along
all switching trajectories of the system; the radial unboundedness
condition ii) ensures that this argument applies to all system states
for global pre-attractivity [21]. Correctness of these conditions can
be proved in dL using loop invariants, see Fig. 1 (explained below).

Stability. The specification UStab(aarp) requires that all trajec-
tories of aarp stay in the grey ball ||x|| < ¢, starting from a chosen
ball ||x|| < 8, see Fig. 1 (left). Condition i) guarantees that the ball

Anon.

[[x|| < € contains a sublevel set of the Lyapunov function satis-
fying V. < W (dashed blue curve) and this sublevel set contains
a smaller ball ||x|| < § [8, 21]. Condition iii) shows that this sub-
level set is invariant for each ODE x” = fy(x),p € P because
L £, (V)(x) < 0, as illustrated by the dashed black and green arrows

for two different switching choices p € P both locally pointing
inwards on the boundary of the sublevel set. Thus, the formula
Invg = ||x|| < e AV < W, which characterizes the blue sublevel set,
is an invariant for all possible switching choices in the loop body of
Qarb, which makes Invg a suitable loop invariant for UStab(aarp)-

Pre-attractivity. The specification UGpAttr(aarp) requires that
all trajectories of arp stay in the grey ball ||x|| < ¢ after a cho-
sen time T, starting from the initial ball ||x|| < J, see Fig. 1 (right).
The ball ||x|| < § is compact, i.e., contained in a sublevel set sat-
isfying V. < W for some W > 0 (outer dashed blue curve); this
sublevel set is bounded by condition ii). Like the stability argu-
ment, condition i) guarantees that there is a sublevel set V. < U
(inner dashed blue curve) contained in the ball ||x|| < ¢, and con-
dition iii) shows that both sublevel sets characterized by V. < W
and V < U are invariants for every ODE in the loop body of app.
The set characterized by formula V > U AV < W is compact and
bounded away from the origin, which implies by condition iii) that
there is a uniform bound k < 0 on this set, where for each ODE

"= frx).peP, L £, (V)(x) < k. Thus, the value of Lyapunov
function V decreases at rate k, regardless of switching choices in
the loop body of a4y, as long as it has not entered V' < U. The loop
invariant for UGpAttr(aarp) syntactically expresses this intuition:
Invg =V < WAV 2U — V < W +kt). For a sufficiently large
choice of T with W + kT < U, trajectories at time t > T satisfy
V < U so they are contained in the ||x|| < ¢ ball.

The loop invariants identified above enable derivation of a for-
mal dL stability proof rule for a,rp (deferred to a more general
version in Corollary 3 below). In fact, since arbitrary switching is
the most permissive form of switching [22], UGpAS for any switch-
ing mechanism can be soundly justified using the loop invariants
above in case a suitable common Lyapunov function can be found.

3.1.2  State-dependent Switching. The state-dependent switching
mechanism [22] constrains arbitrary switching by allowing execu-
tion of (and switching to) an ODE x’ = f,(x),p € P only when
the system state is in domain Q,. This is modeled by the hybrid

program Qstate = ( Upep x' = fr(x)& Qp) [46, Proposition 2],
where arbitrary switching arp, corresponds to the special case with
Qp = trueforallp € P.

The same loop invariants for a,, are used for astate to derive
the following proof rule. For brevity, premises of all derived stability
proof rules are implicitly conjunctively quantified over p € P.

COROLLARY 3 (UGPAS FOR STATE-DEPENDENT SWITCHING, CLF).
The following proof rule for common Lyapunov function V with three
stacked premises is derivable in dL.

FV(O)=0AVYx(|lx]| >0— V(x)>0)
F Vb 3y Vx (V(x) < b — [ixl| < y)
F pr(V)(O) =0AVx(llx]l >0AQp — pr(V)(x) <0)

+ UGpAS(astate)

CLF
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Figure 2: A switching trajectory for Example 7 from Sec-
tion 4.2 with state-dependent switching (left) and the value
of two Lyapunov functions along that trajectory (right).
Solid lines indicate the active Lyapunov function at time ¢.
Two sublevel sets V), V; < W = 0.012 are shown dashed on
the left within which the switching trajectory is respectively
trapped at any given time.

Corollary 3 syntactically derives a slight generalization of condi-
tions i)-iii) from Section 3.1.1 for @state, Where the Lie derivatives
L ’ (V)(x) for each p € P are required to be negative on their re-

p

spective domain closures® Q_p This generalization is justified by the
same loop invariants in Section 3.1.1 because the ODE invariance
properties are only required to hold in their respective domains.
The domain asymmetry in astate suggests another way of gener-
alizing the stability arguments, namely, through the use of multiple
Lyapunov functions, where a (possibly) different Lyapunov function
Vp is associated to each p € P [5]. Here, the function V}, is responsi-
ble for justifying stability within domain Q,, i.e., its value decreases
along system trajectories whenever the system is within Q,, as il-
lustrated in Fig. 2. Constraints on these functions are obtained by
modifying the loop invariants to account for this intuition.

Stability. The stability loop invariant is modified by case split-
ting disjunctively on the domains Q),p € ¥, and requiring that
the sublevel set characterized by V, < W is invariant within its
respective domain: Invs = [|x|| < e AV pep (Qp AVp < W). Similar
to Section 3.1.1, the bound W is chosen so that each sublevel set
characterized by V, < W is contained in the ball ||x|| < e.

Pre-attractivity. The pre-attractivity loop invariant is similarly
modified by disjunctively requiring that V}, decreases along system
trajectories when the system is in their respective domains Q,:
Inv, = \/peP(Qp/\Vp <WAWV, 2U -V, < W + kt)).
The constants U, W, k, T are chosen as appropriate lower or upper
bounds for all the Lyapunov functions (see proof of Corollary 4).

Arithmetical conditions for the Lyapunov functions Vj,p € ¥
are derived from the modified invariants in the following rule.

COROLLARY 4 (UGPAS FOR STATE-DEPENDENT SWITCHING, MLF).
The following proof rule for multiple Lyapunov functions Vy,p € P
with four stacked premises is derivable in dL.

3The topological closure Q of domain Q is needed for soundness of a technical
compactness argument used in the pre-attractivity proof, see Appendix A for details.
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F Vp(0) =0 A Vx(|x|| > 0 — Vp(x) > 0)
F Vb 3y Vx (Vp(x) < b — |Ix]| < y)
F .[pr (Vp)(0)=0 A Vx ([|lx||>0 A Qp — LfP(VP)(x)<0)
F Agep (Qp NQq = Vp = Vq)
+ UGpAS(astate)

MLF

The top three premises of Corollary 4 are similar to those of Corol-
lary 3, but are now required to hold for each Lyapunov function
Vp,p € P separately. The (new) bottom premise corresponds to a
compatibility condition between the Lyapunov functions arising
from the loop invariants. For example, consider the stability loop
invariant (similarly for pre-attractivity) and suppose the system
currently satisfies disjunct Qp AV, < w with V), justifying stability
in domain Qp. If the system switches to the ODE x” = f;(x) within
domain Qg, then Lyapunov function V4 becomes the active Lya-
punov function which must satisfy V4 < w to preserve the stability
loop invariant. The premise Qp A Qg — Vp = V4 says that the
Lyapunov functions V), V4 are equal whenever such a switch is
possible (in either direction), i.e., when their domains overlap.

3.2 Controlled Switching

This section turns to controlled switching models [46], where an ex-
plicit controller program is responsible for making logical switching
decisions between the ODEs x” = fy(x),p € . This is in contrast
to earlier models atarp, ®state Which exhibit autonomous switching,
i.e., without an explicit control logic [6, 22]. General controlled
switching is modeled by the hybrid program actr1:

switching controller a, (plant, actuate decision)

A
Uetrl = Qs (au; U (Pu=p;x" = fo(x,9). 4" = gp(x, ) & Qp) )
! PEP
initialization

The model ac¢r1 uses three subprograms: @; initializes the sys-
tem, then a;, (modeling the switching controller) and a;, (modeling
the continuous plant dynamics) are run in a switching loop. The
discrete programs «;, ay, decide on values for the control output
u = p,p € P and the program a responds to this output by evolv-
ing the corresponding ODE x” = f5(x,1),y’ = gp(x,y) & Qp. The
programs «;, @y, must not modify the system state variables x, but
they may modify other auxiliaries, including auxiliary continuous
state variables y used to model timers or integral terms used in con-
trollers, see Section 5.2. This control-plant loop is a typical structure
for hybrid systems modeled in dL [32, 34], e.g., the controller «,
below models the discrete switching logic present in hybrid au-
tomata [6, 18, 32] (without jumps in the system state):

ay = U (?u =p; U (?Gp,q;Rp,q;u = q))
peP qeP (2)
Rpg=y1:=ey2:=ez...;y =€
For each mode p € P, the switching controller may decide to
transition to mode g € #. This transition can only be taken if the
guard formula Gy, 4 is true in the current state?; if the transition is

taken, the reset map R ¢ sets the values of auxiliary state variables
Y1, . .., Yi respectively to the value of terms ey, . . ., ef.

“The controller can allow trivial self-transitions with Gy, p, = true.
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Stability analysis for controlled switching proceeds by identify-
ing suitable loop invariants Inv for actr1. A powerful proof tech-
nique applied here is compositional reasoning [32, 34] which sepa-
rately analyses the discrete (a;, @) and continuous (a,) dynamics,
and then lifts those results to the full hybrid dynamics. This idea is
exemplified by the following derived variation of the loop rule:

Tk [ailinv Invr [ay]llnv Inve [aplinv Invi ¢
T+ [ai; (au; ap)*1¢

loopT

The premises of rule loopT say that system initialization a; puts
the system in a state satisfying the invariant Inv, and that Inv is
compositionally preserved by both the discrete switching logic ay,
and the continuous dynamics aj. This rule is applied to analyze
stability for two important special instances of ac¢r1 next.

3.2.1 Guarded State-dependent Switching. The instance agyarq cor-
responds to the automata controller from (2) with a; = Upep u:=p
and guard formulas G, 4. It does not use auxiliaries y nor the reset
map Rp, ¢. This model adds hysteresis [19] to the state-dependent
switching model from Section 3.1.2, so that switching decisions
at each Gy, ¢ depend explicitly on the current discrete mode u in
addition to the continuous state. This design change is reflected in
the loop invariants and in the corresponding proof rule below.

Stability. The stability loop invariant is modified (cf. Section 3.1.2)
to case split on the possible discrete modes u = p rather than the
ODE domains: Invs = ||x]| < e A Vpep (u=pn Vp < w).

Pre-attractivity. The pre-attractivity loop invariant is modified
similarly: Inva = Vpep (u=pAVp<WA(V, 2 U — V, < W+kt)).

COROLLARY 5 (UGPAS FOR GUARDED STATE-DEPENDENT SWITCH-
ING, MLF). The following proof rule for multiple Lyapunov functions
Vp.p € P with four stacked premises is derivable in dL.

F Vp(0) = 0AVx(lx]| > 0 — Vp(x) > 0)
FVb3y Vx (Vp(x) <b — |lxll < y)
F pr(Vp)(0)=o AVx ([Ix]|>0 A Qp — ,Cfp(Vp)(x)<0)

F Ngep (Gp,q - Vg < VP)
F UGPAS(“guard)

MLFg

The premises of rule MLF; are identical to those from MLF ex-
cept the bottom premise, which derives from loopT and unfolding
the controller «;, with dL’s hybrid program axioms, e.g., the fol-
lowing proof skeleton shows the unfolding for the stability loop
invariant Invg corresponding to a switch from mode p to mode g:

Arithmetic
FGpg—=Vqg<Vp

Vo <WEGpg—oVg<W
u=pAVy <Wk[?Gp gsu=qllu=qAVy <W)
Unfold Invg + [ay |Invs
Unlike rule MLF, the bottom premise of rule MLFg only uses an in-
equality, because the guards Gp, 4 determine permissible switching.

3.22 Time-dependent Switching. The instance atipe shown below
models time-dependent switching, where the controller a;, makes

Anon.

switching decisions based on the time 7 elapsed in each mode.

a; =17:=0; U u=p
peP
Ftine = ay = U (?u =p; U (?9p’q <1;7:= 0;u::q))
pEP qeP
— ’ ’
ap = U (Pu=pix’ = fp(x), 7" = 1&1 < ©p)
peP

The controller o, enables switching from mode p to g when a
minimum dwell time 0 < 0, ¢ < 7 has elapsed and resets the timer
whenever such a switch occurs. Conversely, the plant &), restricts
modes with a maximum dwell time 7 < 0p,0p > 0;an unbounded
dwell time ®, = oo is represented by the domain constraint true.
Dwell time restrictions can be used to stabilize systems that switch
between stable and unstable modes [48]. Intuitively, the system
should stay in stable modes for sufficient duration (6, ¢ < 7) while
it should avoid staying in unstable modes for too long (r < ©p).

To reason about stability for @ ipe, consider Lyapunov function
conditions £ £ (Vp)(x) < =ApVp, where 4, is a constant associated
with each mode p € #. This condition bounds the value of V}, along
the solution of x” = f,(x) by either a decaying exponential for
stable modes (45, > 0) or a growing exponential for unstable modes
Ap <0).LetS={peP,Ap>0tand U = {p € P,Ap < 0} be
the indexes of the stable and unstable modes in the loop invariants
below, and let ¢() denote the real exponential function, which is
definable in dL by differential axiomatization [32, 35].

Stability. The stability loop invariant expresses the required ex-
ponential bounds with a case split depending if p € S or p € U:

Invs =7 2 0A ||x|| <eA

\/ (u=pAv, < we )y

peS

\/ (w=pavy<weO) a7 <0p)
peU

Forp € S, e~r7 is the accumulated decay factor for V), after
staying in the stable mode for time 7. For p € U, e p(T=6p) jg
a buffer factor for the growth of V}, in the unstable mode so that
Vp < W still holds at the maximum dwell time 7 = ©. In both
cases, the internal timer variable is non-negative (r > 0).

Pre-attractivity. The pre-attractivity loop invariant has similar
exponential decay and growth bounds for each p € # in the current
mode. In addition, it has an overall exponential decay term e~ot=1)
for some o > 0, which ensures that the value of V), tends to 0 as
t — oo for all switching trajectories; recall t is the global clock
introduced in the specification of pre-attractivity in Lemma 2.

Invg=71>20At>TA
\/ (u=pAv, < We oD~ ApT)y
peS
\ (w=pavp <we o0 n - <0,
peU

Intuitively, e=¢(!~7) is the accumulated overall decay factor for
17 until the previous switch, which occurred at time ¢ — 7.
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COROLLARY 6 (UGPAS FOR TIME-DEPENDENT SWITCHING, MLF).
The following proof rule for multiple Lyapunov functions Vy,p € P
with five stacked premises is derivable in dL.

FVp(0) = 0AVx([lx]] > 0 — Vj(x) > 0)
F Vb 3y Vx (Vp(x) < b — x|l <y)
F pr(Vp) < -V
Invs + oy |Invg
F UGpAS(atime)

The two red premises on the bottom row are expanded to arithmeti-

cal conditions on V), in Appendix A.

Invg + [ay |Invg
MLE,

The bottom premises of MLF; and MLF; exemplify a key benefit
of dL stability reasoning: arithmetical conditions on Vj, that arise
from ay,, Invs, Inv, are derived in a correct-by-construction manner
by systematically unfolding the discrete dynamics of a, with sound
dL axioms. This is especially important for controlled switching,
where the number of possible transitions scales quadratically with
the number of switching modes.

4 KEYMAERA X IMPLEMENTATION

This section presents a prototype implementation of switched sys-
tems support in the KeYmaera X prover based on dL [12]. The
implementation consists of #2700 lines and, crucially, does not re-
quire any extension to KeYmaera X’s existing soundness-critical
core. Accordingly, verification results for switched systems obtained
through this implementation directly inherit the strong correctness
properties guaranteed by KeYmaera X’s design [12, 25].

4.1 Modeling and Proof Interface

The implementation builds on KeYmaera X’s proof IDE [24] to pro-
vide a convenient interface for modeling switching mechanisms,
as shown in Fig. 3. The interface allows users to express switch-
ing mechanisms intuitively by rendering automaton plots while
abstracting away the underlying hybrid programs. It provide tem-
plates for switched systems following the switching mechanisms of
Section 3: state-dependent, guarded, timed, and general controlled
switching (tabs “Autonomous”, “Timed”, “Guarded”, “Generic” in
Fig. 3). From these templates, KeYmaera X automatically generates
programs and stability specifications, ensuring that they have the
correct structure. This saves user effort from having to manually
expand switching designs to correctly structured hybrid programs.
Moreover, the generated programs and specifications follow a uni-
form structure that the proof tactics discussed below can rely on.
Switched systems are represented internally with a common
interface SwitchedSystem which is currently implemented by four
classes: StateDependent astate, Guarded agyard, Timed atipme, and
Controlled actr1. The SwitchedSystem interface provides default
stability and pre-attractivity specifications, which can be adapted
by users on the Ulif needed. Corollaries 3-6 are implemented as UG-
PAS proof tactics in KeYmaera X’s Bellerophon tactic language [11].
These tactics automate all of the reasoning steps underlying sta-
bility proofs for their respective switching mechanisms, so that
users only need to input candidate Lyapunov functions for KeY-
maera X to (attempt to) complete their proofs. Additionally, when
candidates are not provided by the user, the implementation uses
sum-of-squares programming [31, 38] to automatically generate
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[ Switched Systems

B8 x|

Switching | Autonomous | Timed | Guarded | Generic
subgraph automaton Top-Down O,
Model("'x'=1 & x<=5")

Mode2("x'=-1 & x>=-5")

automaton

Model —->|"7x>=5; | Mode2 Modet: x=1 & x<=5
Mode2 —->|"7x<=-5 ?7-1<=x&x<=4;"| Model b
end
Init: x:20; ——» x: c37-1<exBx<=d;
Init("x:=0;") --> automaton
Specification | Stability | Attractivity Custom
{{mode:=Mode1(); ++ mode:=Mode2();} x:=0;}
{
?mode = Model(); {{?x >= 5; x:=0;} mode:=Mode2(); ++ mode:=mode;}
++

mode = Mode2(); {{?x <= (-5); xi=; ?(~1) <= x & x <= 4;} mode:=Model(); ++ mode:=mode;}

s {7mode = Model(); {x'=1 & x <= 5} ++ 7mode = Mode2(); {x'=(-1) & x >= (-5)}}
*

X"2 < eps™2

Figure 3: Screenshot of the KeYmaera X switched systems
modeling editor: automata input on top-left, rendered au-
tomaton top-right, generated hybrid program and specifica-
tion(s) in dL at the bottom

Table 1: Available tactics in KeYmaera X for switched sys-
tems stability proofs and Lyapunov function generation.

Common Lyap. Multiple Lyap.

SwitchedSystem Proof Gen. Proof  Gen.
StateDependent astate v v v v
Guarded agyard Vv v v v
Timed dttime v v v —
Controlled actr1 v v — —

candidate Lyapunov functions for a subset of switching designs. The
generated candidates are checked for correctness by KeYmaera X
so the generator does not need to be trusted for correctness of the
resulting proofs. Table 1 summarizes the available proof tactics and
Lyapunov function generation for classes of switching mechanisms.

4.2 Examples

The implementation is tested on a suite of examples drawn from
the literature [5, 19, 38, 44] featuring various switching mecha-
nisms. These examples have a 2 dimensional state space and switch
between 2 modes except Example 6 (3 dimensions, 2 modes) and Ex-
ample 4 (2 dimensions, 4 modes). Results are summarized in Table 2;
Lyapunov functions from the literature were used (if available) in
cases where generation failed or is inapplicable.

The proof tactics successfully prove most of the examples across
various switching mechanisms. For Example 6, a suitable Lyapunov
function (without numerical errors) could not be found. For the
time-dependent switching models (Examples 8-10), KeYmaera X
internally uses verified polynomial Taylor approximations to the ex-
ponential function for decidability of arithmetic [3, 47]. Example 10
requires a high degree approximation (15 terms) and its attractivity
proof could not be completed in reasonable time.

5 CASE STUDIES

This section presents three case studies applying the deductive
verification approach to justify various non-standard stability argu-
ments in KeYmaera X.
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Table 2: Stability proofs for examples drawn from the lit-
erature. The “Time” columns indicate time (in seconds) to
run the KeYmaera X proofs, X indicates incomplete proof. A
v in the “Gen.” column indicates successful Lyapunov func-
tion(s) generation, ? indicates that a candidate was generated
but with numerical issues, and — indicates inapplicability.

Example Model Time (Stab.) Time (Attr.) Gen.
1[5, Ex. 2.1] Astate 2.6 30 v
2 [19, Motiv. ex.]  a@state 2.2 2.3 v
3[19, Ex. 1] Astate 33 91 v
4[19,Ex.2&3]  dguard 2.8 38 ?
5 [38, Ex. 6] ®guard X X ?
6 [44, Ex. 2.45]  darp 19.4 11 v
7[44,Ex. 3.25]  astate 2.4 29
8[44,Ex. 3.49]  atipe 44 56 —
9 [48, Ex. 1] Qtime 47 53 —
10 [48, Ex. 2] Ctime 256.9 x -

5.1 Canonical Max System

Branicky [4] investigates the longitudinal dynamics of an aircraft
with an elevator controller that mediates between two control ob-
jectives: i) tracking potentially unsafe pilot input and ii) respecting
safety constraints on the aircraft’s angle of attack. Assuming a state
feedback control law, the model is transformed to the following
canonical max system [4, Remark 5], with state variables x, y and
parameters a, b, f, g,y satisfying a,b,a— f,b—g > 0andy < 0.

x" =y,y’ = —ax — by + max(fx + gy +y,0) (3)

The right-hand side of system (3) is non-differentiable but the
equations can be equivalently rewritten as a family of two ODEs
corresponding to either possibility for the max(fx + gy +y, 0) term
in the equation for y’ as follows, where the system follows ODE (&)
in domain fx + gy +y < 0 and ODE (B) in domain fx + gy +y > 0.

@A=x"=yy =-ax—by
®=x'=yy =-(a-flx-b-gy+y

Stability of this parametric system is not directly provable us-
ing standard techniques for state-dependent switching presented
in Section 3.1.2. For example, the ODE () stabilizes the system to
the origin but the ODE (B) stabilizes to the point (—#, 0) (away
from the origin for y < 0). Branicky proves global asymptotic
stability of (3) with the following “noncustomary” [10] Lyapunov
function involving a nondifferentiable integrand:

V= %yz + /Ox af — max(f¢ +y,0)d¢ @

Instead, the key idea used to prove stability in this paper is ghost
switching: analogous to ghost variables in program verification
which are added for the sake of program proofs [30, 34, 35], ghost
switching modes do not change the physical dynamics of the system
but are introduced for the purposes of the stability analysis. Here,
ghost switching between fx +y < 0 and fx + y > 0 is used to
obtain closed form representations for the integral in (4). This yields
an instance of state-dependent switching astate with 4 switching

Anon.

modes and the corresponding stability specification Pp,:
@A, =B®&fx+gy+y<O0Afx+y<0
@2 =@&fx+gy+y<O0Afx+y=0
B =®&fx+gy+y>0Afx+y <0
®,=®&fx+gy+y20Afx+y =0

kS
am = (@1 U@, u®; Uz)
Pp=a>0 Ab>0Aa—f>0Ab—g>0 A f#0 A y<0 — UGpAS(am)

The ghost switching modes enable a multiple Lyapunov function
argument for stability using the following modified closed-form
representations of Branicky’s Lyapunov function (4), with V; =
%(bcx2 + 2cxy + y?) + %xz for @1, ®; and V; = %(bcx2 + 2cxy +

y?)+ %xz - q%f)/)z for @2, ®),. The sub-terms highlighted in red

for V1, V; are closed form expressions for /Ox at —max(f&+y,0)d¢
where f&€ +y < 0and f& + y > 0 respectively. The Lyapunov
functions V1, V2 are modified from (4) to use a quadratic form with

an additional constant c¢ satisfying constraints 0 < ¢ < b,c <
(a=f)(b=g) . . alb=g) (
a—f+g* ’ a+g?

under the assumptions on a, b, f, g). This technical modification
is required to prove UGpAS for a,, directly with the Lyapunov
functions. Branicky’s earlier proof requires LaSalle’s principle [4].

Another challenging aspect of this case study is verification of
the parametric arithmetical conditions for V1, Vs, i.e., stability is
verified for all possible parameter values a, b, f, g,y that satisfy
the assumptions in Pp,. Such questions are decidable in theory [3,
47], but are difficult for automated solvers in practice (even out of
reach of solvers that require numerically bounded parameters [14]).
KeYmaera X enables a user-aided proof of the required arithmetic
conditions. For example, the Lie derivative of the Lyapunov function
V1 for B); is given by V) =-(b- o)y? —acx?® + (ex +y)(fx +gy+y),
where V| is required to be strictly negative away from the origin for
stability. The arithmetical argument is as follows: if cx +y < 0, then
by constraint fx + gy +y > 0, V/ satisfies V/ < (b - o)y? — acx?.
Otherwise, cx + y > 0, then by constraint fx +y < 0, V/ satisfies

b-g,c<

such a constant always exists

V)< —(b-g- ¢)y? — acx? + gexy. In either case, the RHS bound is a
negative definite quadratic form by the earlier choice of parameter
¢ and therefore, V is negative away from the origin.

5.2 Automated Cruise Control

Oehlerking [29, Sect. 4.6] verifies the stability of an automatic
cruise controller modeled as a hybrid automaton with 6 operat-
ing modes and 11 transitions between them: normal proportional-
integral (PI) control, acceleration, service braking (2 modes), and
emergency braking (2 modes). Figure 4 shows an abridged version
of the corresponding KeYmaera X model (using a¢r1) with the PI
control mode, where v is the relative velocity to be controlled to
v = 0 and x, t are auxiliary integral and timer variables used in the
controller. Briefly, this controller is designed to use the PI controller
near v = 0 for stability, while its other control modes drive the
system toward v = 0 by accelerating or braking.

5 An important technical requirement for V; to be well-defined is f # 0. The case with
f = 0is also verified in KeYmaera X but the details are omitted here for brevity. It
does not require ghost switching and uses only V; as its common Lyapunov function.
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normalPI("v' = -0.001*x-0.052*%v, x' = v, t' =0
& -15 <= v & v <= 15 & -500 <= x & x <= 500")
normalPI -->|"?(13 <= v & v <= 15 &
-500 <= x & x <= 500); t := 0;"| sbrakeact
normalPI -->|"?(-15 <= v & v <= -14 &
-500 <= x & x <= 500);"| accelerate
. // Other modes

normalPl: v' = -0.001*x-0.052*v, X' = v, t' = 0
&-15<=v&v<=15
& -500 <= X & X <= 500

?(13<=v&v<=15&
-500 <= X & X <= 500); t := 0;

?2(-15<=v&Vv<=-14 &
-500 <= x & x <= 500);

accelerate: ...

\forall eps ( eps > @ -> // Abridged stability specification

[ ... // Initialize

{ { ... ++ // Transitions for other modes
?mode = normalPI();
{ {73 <=v&Vv<=15&-500<=x&x<=0500; t :=0;}
mode := sbrakeact(); ++
?7-15 <= v & v <= -14 & -500 <= x & x <= 500;
mode := accelerate(); ++
mode := mode; } }
{ ... ++ // Plant ODEs for other modes
?mode = normalPI();
{ v' = -0.001%x-0.052xv, x' =v, t' =0 &

-15 <= v & v <=15 & -500 <= x & x <= 500 } }
I*] vr2 < eps*2

Figure 4: Snippets of an automated cruise controller [29] modeled as a (switching) hybrid automaton. Users express the automa-
ton within the description language (top left) and KeYmaera X visualizes the automaton on-the-fly (bottom left). The imple-
mentation automatically generates the appropriate hybrid program representation and UGpAS specification (right); ++,&, ()
denote choice, conjunction, and constants in KeYmaera X’s ASCII syntax respectively.

Lyapunov function candidates for this model can be successfully
generated using the Stabhyli [26] stability tool for hybrid automata.
However, Stabhyli (with default configurations) outputs a Lyapunov
function candidate for the PI control mode that is numerically un-
sound, see Appendix B for the output and a counterexample; this is
a known issue with Stabhyli for control modes at the origin [26]. For
this case study, the issue is manually resolved by truncating terms
with very small magnitude coefficients in the generated output and
then checking in KeYmaera X that the arithmetical conditions for
the PI mode are satisfied exactly for the truncated candidate.

Further insights from the controller design are used in the UGpAS
proof in KeYmaera X. Briefly, stability only concerns states and
modes that are active near the origin. Hence, the stability argument
and loop invariant only need to mention a single Lyapunov function
for the PI control mode, while choosing § (in Def. 1) sufficiently
small so that none of the other modes can be entered.® Similarly, pre-
attractivity only requires reasoning about asymptotic convergence
to the origin for the PI control mode, hence it suffices to show that
the system leaves all other modes in finite time.

5.3 Brockett’s Nonholonomic Integrator

Verification of stabilizing control laws for Brockett’s nonholonomic
integrator [7] is of significant interest because stability for a large
class of models can be reduced to that of the integrator via co-
ordinate transformations, e.g., Liberzon [22] transforms a unicy-
cle model to the integrator and provides a stabilizing switching
control law corresponding to parking of the unicycle. The non-
holonomic integrator is described by the system of differential
equations x’ = u,y’ = v,z = xv — yu, with state variables x, y, z
and state feedback control inputs u = u(x, y, z), v = v(x, y, z) (to be
determined below). Notably, this is a classical example of a system

®Tn fact, the PI controller equations are exactly those of a linearized pendulum, which
has known Lyapunov functions [21, 45]. It could be interesting to modify Stabhyli to
accept user-provided Lyapunov function hints for certain modes.

that is not stabilizable by purely continuous feedback control. In-
tuitively, no choice of controls u, v can produce motion along the
z-axis (x = y = 0). Thus, to stabilize the system to the origin, the
controller must first drive the system away from the z-axis before
switching to a control law that stabilizes the system from states
away from the z-axis. This intuition can be realized using two differ-
ent switching strategies that are analogous to the event-triggered
and time-triggered CPS design paradigms respectively [34].

5.3.1 Event-triggered Controller. Bloch and Drakunov [2] use the
switching controller u = —x + aysign(z),v = —y — ax sign(z) to
asymptotically stabilize the integrator in the region %(x2 +12) > |z|
for any given constant a > 0. This controller first drives the system
towards the plane z = 0 and, once it reaches the plane, slides along
the plane towards the origin. The closed-loop system is modeled
as an instance of state-dependent switching astate with 3 modes
depending on the sign of z and specification P,:

@A=x'=-x+ay,y =-y—ax,z’ = —a(x* +y) &z >0
®=x"=-x—ayy =-y+ax,z =ax*> +4?) &z < 0
O©=x"=-xy =-142=0&z=0

Q
)
Il

(@ueve)

a > 0 — UStab(a)A

o
i

V6>0VYe>03T>0Vx,y,z (||x,y,z|| <O A g(x2 +19) > |z| -
(=0 e, t = 1t 2 T — [lx,y. 2] <)

The specification P, is identical to UGpAS except it restricts
pre-attractivity to the applicable region %(x2 +1y?) > |2| for the
controller.” Its verification uses the squared norm V = x? + y? + 22
as a common Lyapunov function. The key modification to the pre-
attractivity proof, cf. Section 3.1, is to use (and verify) the fact that

7The applicable region is equivalently characterized by the real arithmetic formula
(220 = £(x* + y?)>2) A (220 — £(x* + y?)>—z) but this is omitted for brevity.
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%(x2 +1?) > |z| is a loop invariant of . This additional invariant
corresponds to the fact that the controller keeps the system within
its applicable region (if the system is initially within that region).

In fact, @, can be extended to a globally stabilizing controller,
as modeled by @z below (if, else branching is supported as an
abbreviation in KeYmaera X [34]):

a
O=x'=uy =07 =xv—yu&5(x2+y2) < ||

®
1l

' =uy =07 =xv—yu&g(x2 +1%) > 7]
...a
ae = (if(562 + ) 2 1) {BUBUE)

else { if((x - y)z < OV{u:=c;0:=c}

else{u:=—c;v:=—c};

©ve} )

If the system is in the applicable region (outer if branch), then
the previous controller from «, is used. Otherwise, outside the
applicable region (outer else branch), the system applies a constant
control ¢ > 0 chosen to drive the system into the applicable region.
The pair of ODEs (D) and (E) model an event-trigger in dL [34],
where the switching controller is triggered to make its next decision
when the system reaches the switching surface %(x2 +y%) = |z|.

The specification Ps = a > 0Ac¢ > 0 — UGpAS(a;) is proved by
modifying the loop invariants to account for the initial period where
the system is outside the applicable region, e.g., the stability loop in-
variant Invg = (—%(x2 +1%) 2 |z] = |z|<5)/\(%(x2 +y?) 2 |z| =
|lx, y, z|| <€) expresses that the controller keeps |z| sufficiently small
to preserve stability outside the applicable region.

5.3.2 Time-triggered Controller. The time-triggered switching strat-
egy [34], modeled by a; below, is similar to that proposed by Liber-
zon [22, Section 4.2]. If the system is on the z-axis and away from
the origin (8), the controller sets an internal stopwatch 7 and drives
the system away from the axis for maximum duration Ty > 0 with
u = z,v = z. Otherwise , the controller drives the system towards
the origin along a parabolic curve of the form %(x? + %) = z.

afz(if(x=0/\y=0/\z¢0){

@ 1:=0x" =2y =272 =xz-yz&r < Ty }
2z
else ya:= ——;
(o= 7
"
X' =-x+ayy =-y-axz = -a(* +¢’) })

The specification P; = Ty > 0 — UGpAS(«) is again proved by
analyzing both cases of the controller in the loop invariants, e.g.,
with the pre-attractivity invariant Inv,:

(x=0AYy=0Az£0>|z| <SALt=0)A
(F(x=0Ay=0Az#0)—>
lx.y.zll > & = |lx, y. 21> < 82(2T§ + 1) — €%(t — Tp))

The left conjunct says the system may start transiently on the

z-axis (away from z = 0) at time ¢ = 0. The right conjunct gives ex-

plicit bounds on ||x, y, z||, which, for sufficiently large ¢t > T implies
that the system enters ||x, y, z|| < ¢ as required for pre-attractivity.

10

Anon.

The transient term § 2(2T02 + 1) upper bounds the (squared) norm of
the system state after starting on the z-axis in ball ||x, y, z|| < § and
following mode (&) for the maximum stopwatch duration 7 = Ty.

6 RELATED WORK

Switched Systems. Comprehensive introductions to the analysis
and design of switching control can be found in the literature [10, 22,
44]. An important design consideration (which this paper sidesteps,
cf. Remark 1) is whether a given switched or hybrid system has com-
plete solutions [16, 17, 23, 49]. Justification of such design consider-
ations, and other stability notions of interest for switching designs,
e.g., quadratic, region, or set-based stability [16, 17, 22, 36, 44], can
be done in dL with appropriate formal specifications of the desired
properties from the literature [32, 34, 45, 46]. Another complemen-
tary question is how to design a switching control law that stabilizes
a given system. Switching design approaches are often guided by
underlying stability arguments [22, 39, 44]; the loop invariants
from Section 3 are expected to help guide correct-by-construction
synthesis of such controllers.

Stability Analysis and Verification. Corollaries 3—6 formalize var-
ious Lyapunov function-based stability arguments from the litera-
ture [5, 48] using loop invariants, yielding trustworthy, computer-
checked stability proofs in KeYmaera X [11, 12]. Other computer-
aided approaches for switched system stability analysis are based
on finding Lyapunov functions that satisfy the requisite arith-
metical conditions [20, 26, 29, 38, 41, 42]. Although the search for
such functions can often be done efficiently with numerical tech-
niques [26, 31, 38], various authors have emphasized the need to
check that their outputs satisfy the arithmetical conditions exactly,
i.e., without numerical errors compromising the resulting stabil-
ity claims [1, 20, 40] (see, e.g., Section 5.2). This paper’s deductive
approach goes further as it comprehensively verifies all steps of
the stability argument down to its underlying discrete and contin-
uous reasoning steps [33, 34]. The generality of this approach is
precisely what enables verification of various classes of switching
mechanisms all within a common logical framework (Section 3)
and verification of non-standard stability arguments (Section 5).
Alternative approaches to stability verification are based on ab-
straction [15, 43] and model checking [36].

7 CONCLUSION

This paper shows how to deductively verify switched system sta-
bility, using dL’s nested quantification over hybrid programs to
specify stability, and dL’s axiomatics to prove those specifications.
Loop invariants—a classical technique from verification—are used
to succinctly capture the desired properties of a given switching
design; through deductive proofs, these invariants yield system-
atic, correct-by-construction derivation of the requisite arithmetical
conditions on Lyapunov functions for stability arguments in imple-
mentations. An interesting direction for future work is to use other
Lyapunov function generation techniques [20, 26, 29, 42], which—
thanks to the presented approach—do not have to be trusted since
their results can be checked independently by KeYmaera X. This
would enable fully automated, yet sound and trustworthy verifica-
tion of switched system stability based on dL’s parsimonious hybrid
program reasoning principles.
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A PROOFS

This appendix provides proofs for the results presented in the main
paper. Relevant background for dL’s semantics and axiomatics is
given, expanding on the material in Section 2. Full definitions are
available in the literature [33, 34].

A dL state  : V — R assigns a real value to each variable in
V. The set of variables V consists of the continuously evolving
state variables x = (xi,...,xp) of a switched system model and
additional variables V \ {x} used as program auxiliaries for those
models. Following Tan and Platzer [46], dL states are projected on
the state variables x and the (projected) dL states w are equivalently
treated as points in R". The semantics of program auxiliaries is as
usual [34]. The axioms and proof rules of dL used in the proofs are
as follows.

[:=] [x:=e]P(x) <> P(e) (e free for x in P)

[?] [?QIP & (Q — P)
L] [a; BIP < [a][B]P

I'tInv Invk [a]Inv Invk ¢

T'r [a*]¢

Tk [aillnv Inve [ay]lnv Invr [ap]lnv Invi ¢

(U] [a U pIP & [a]P A [B]P

[*] [a"]P & P Ala]la*]P

loop

oort I [ @) 19
G P M[] R+ P T+ [a]R
Tk [a]P T+ [a]P
>
dly Lor ;)}:q[x’Q: '}éj;(;)g})p_;;ﬂx)(q) (= is either > or >)
i F'F[x' =f(x)&QIC T+ [x"=f(x)&QACIP
Ik [x’ = f(x)&QIP
aw QrP
Ik [x" = f(x) &QIP
Qr Lyp) 2 9p o
dbxy (%= is either > or >)

T prEOr[x=f(x)&Qlp =0
Qp=0r Ly )(p)>0

Lpz0r[x" = f(x)&Qlp =0
[x"=f(x) & QAPIR A [x"=f(x) & Q)(~P—[x"=f(x) & Q]-P)
— [x'=f(x) &Q](P — R)

DX [x'=f(x) &Q]P & (Q = P A [x'=f(x) & Q]P)

Axioms [:=], [?], [;], [U], [*] unfold box modalities of their re-
spective hybrid programs according to their semantics [33, 34].
These equivalences are especially useful for obtaining correct-by-
construction arithmetical conditions on Lyapunov functions in
derivations and implementations (see Corollaries 5 and 6). The de-
rived loop induction rules loop, loopT are used to prove stability
properties of switched system models with suitably chosen loop
invariants Inv (see Section 3). Rule G is Godel generalization, and
rule M[-] is the derived monotonicity rule for box modality post-
conditions; antecedents that have no free variables bound in « are
soundly kept across uses of rules loop, loopT, G, M[-] [33, 34].

The remaining axioms and proof rules are used in dL to reason
about differential equations x” = f(x) & Q [33-35, 45]. Differential

Barr (= is either > or >)
DCC

(x" ¢ P.Q)
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invariants dl,. proves ODE invariance for an inequality p > g
if their Lie derivatives satisfy £ f(x)(p) > L f(x)(q). Differential

cuts dC say that if one can separately prove that formula C is al-
ways satisfied along the solution, then C may be assumed in the
domain constraint when proving the same for formula P. Differ-
ential weakening dW says that postcondition P is always satisfied
along solutions if it is already implied by the domain constraint.
Rule dbxy. is the Darboux inequality proof rule for the invariance
of p = 0, where g is an arbitrary cofactor term [35]. Rule Barr is
a dL rendition of the strict barrier certificates proof rule [37] for
invariance of p = 0. Axiom DCC says that to prove that an impli-
cation P — R is always true along an ODE, it suffices to prove it
assuming P in the domain if —P is invariant along the ODE [45].
Differential skip DX unfolds the effect of a differential equation on
the initial state in the box modality.

To improve readability in the proofs below, formula and premises
are often abbreviated, e.g., with @), (D. To avoid confusion, the scope
of these abbreviations always extend to the end of each paragraph
label, i.e., the abbreviations used in the Stability proofs should not
be confused with those used in the Pre-attractivity proofs.

ProoF OF LEMMA 2. Let ®(x) denote the set of all domain-obeying
solutions ¢ : [0, Ty] — R" for a given switched system from state
x € R™ as in Def. 1. Hybrid program a models this switched system
if for any initial state @ € R", the state v is reachable from o, i.e.,
(w,v) € [[a]], iff v = ¢(7) for some ¢ € ®(w) and 7 € [0, T, ]. For the
augmented program «, t’ = 1, in particular, ¢ syntactically tracks
the progression of time so that (w, v) € [[a, ' = 1]] iff v = ¢(7) for
some ¢ € ®(w) and 7 = v(t) — w(t). Tan and Platzer [46] prove the
adequacy of hybrid program models for several switching designs.

The formulas UStab(a) and UGpAttr(a) syntactically express
their respective quantifiers from Def. 1, where the box modality [-]
is used in both formulas to quantify over all reachable states of
(and a,t” = 1), i.e., all times 7 € [0, T,y along all solutions ¢ € ®.
Thus, the correctness of these specifications follows directly from
the definition of dL’s formula semantics [33, 34]. In UGpAttr(a),
variable ¢ is set to 0 initially, so the implicationt > T — ... in
the postcondition of the box modality further restricts temporal
quantification to all times &(T) < 7 < Ty, for ¢ € ®(w), as required
in the definition of uniform pre-attractivity. O

ProoOF oF CorOLLARY 3. The proof rule CLF is an instance of
rule MLF from Corollary 4 where the Lyapunov functions for all
modes p € P are chosen identically with V), = V. Nevertheless, a
full derivation of CLF is given here because it provides the building
blocks used in later derivations. The stability and pre-attractivity
conjuncts of UGpAS(astate) are proved separately with AR:

+ UStab(astate) + UGpAttr(astate)
"R + UGpAS(astate)

Stability. The derivation for stability begins by Skolemizing the
succedent with VR, —R, followed by two arithmetic cuts which are
justified as follows. For any ¢ > 0, the Lyapunov function V attains a
minimum value on the compact set characterized by ||x|| = ¢. From
the first (topmost) premise of rule CLF, this minimum is attained
away from the origin so it is positive, which proves the first cut
of formula AW >0 @) where @ = Vx (||x|| = ¢ —» V > W). After
Skolemizing W with 3L, the premise V(0) = 0 implies, by continuity
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Verifying Switched System Stability With Logic

of dL term semantics [33], that the sublevel set characterized by
V < W with W > 0 (see Fig. 1) contains a sufficiently small § ball
around the origin. This proves the second arithmetic cut with the
formula 35 (0 < § < e A ®) where ® = Vx(||x|]| <6 = V < W).
After both cuts, the antecedent § is used to witness the succedent
by 3R.
@,5 <&, ®F ¥x (lIx]l <8 > [astate] lIx|| < &)
R @.0<5<e®F I5>0Vx ([x]| < 6 — [@state] x| < €)

Wt B350, W0, @ F 36>0Vx (|[x]| < 8 — [astate] Ix]| < )
cut, R, 3L £>0F 35>0Vx ([lx[ < & — [astate] [Ix]| < &)
VR, -»R

+ UStab(astate)

The derivation continues from the open premise by Skolemiz-
ing with VR, —R and proving the LHS of the implication in (®)
with VL, —L. Then, the loop rule is used with the stability loop in-
variant Invg = ||x|| < e AV < W. This results in three premises, D
which shows that the invariant is implied by the initial antecedent
assumptions, @), the crucial premise, which shows that the invari-
ant Invg is preserved across the loop body of ¢state, and 3) which
shows that the invariant implies the postcondition. These premises
are shown and proved further below.

) @ 3
O @, < e [Ixl[ < 6.V < W [aseace] lIx]l < ¢
Pl @0 <6 ® Xl <3k [astate] IxI[ < €
R @8 <e. ®F Yx (Ix[<8 = [astate] Ix[] < €]

Premise (D) proves by R from the antecedents using the inequali-
ties ||x|| < d and § < e.

*

Rs <& llxll <8,V < W Invs

Premise (3 proves trivially since the postcondition ||x|| < ¢ is
part of the loop invariant:
*

RInvS Flx] < e

The derivation continues from premise 2) by unfolding the loop
body of astate with [U], AR. This results in one premise for each
switching choice p € P, indexed below by p.

@, Invs + [x" = fp(x) & Qp|Invs
WEAR@, Invs + [Upep X' = f(x) & QplInvs

Each of these p € P premises is an ODE invariance question,
which is decidable in dL [35]. The derivation below shows how
to derive arithmetical conditions on V from these premises. The
right conjunct of Invs, V < W, is added to the domain constraint
with a dC step; the cut premise is labeled @ and proved below. A
subsequent dC step adds ||x|| # ¢ to the domain constraint using
the contrapositive of antecedent (@) and the derivation is completed
with rule Barr since the resulting assumptions are contradictory.

*

Rxl # & lIx||=¢ r false

B;rr lx|l < e [x'=fp(x)&0p AV < WA |Ix]| # €] |Ix]| < &
€ @ lxl <er [X=f,(0)&Qp AV < W]lxl[<e @
dc @, Invs + [x"=fp(x) & Qp|Invs

The derivation from @ is completed with a dI,. step whose
resulting arithmetic is implied by the bottom premise of rule CLF.
%
Opt+ L ﬁ, (V) <o
LV <Wr ¥ = f(x)&Qp]V < W

R
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Pre-attractivity. The derivation for pre-attractivity begins by
Skolemizing §, ¢ with VR, —R, followed by a series of arithmetic
cuts which are justified stepwise. First, the Lyapunov function V is
bounded above on the ball characterized by ||x|| < 8, which justifies
a cut of the formula IW>0 @ with @ = Vx (||x|| <6 - V < W).
After Skolemizing the upper bound W, note that the set charac-
terized by formula V' < W is compact by radial unboundedness
(middle premise of rule CLF). Therefore, the set characterized by
formula V.< W A ||x|| > ¢ is an intersection of a compact and
closed set, which is itself compact. Thus, V attains a minimum
U on that set which, by the first (topmost) premise is positive.
This justifies the next arithmetic cut of the formula 3U>0 () with
® =Vx(V<WA|x|| 2e— V > U), where U is subsequently
Skolemized with JL. The steps are shown below, with the box
modality in UGpAttr(astate) temporarily hidden with ... asitis
not relevant for this part of the derivation.

>0, W>0,@, U>0, ® + IT>0Vx (||x]| <5 > ...)

cut, R, 3L £>0, W>0, @ IT20Vx (|lx] <6 - ...)
cut, R, 3L e>0F IT>0Vx (Ixll <86 > ...)
VR, SR

F UGpAttr(astate)

Intuitively (see Fig. 1) the next arithmetic steps syntactically
determine T > 0 such that the value of V is guaranteed to decrease
from W to U along all switching trajectories within time T. Consider
the set characterized by formula Q) AU < V < W, which is the
set of states (before reaching V' < U) where switching to ODE
x" = fp(x) & Qp.p € P is possible. From the third (bottom) premise
of rule CLF, £ £ (V) is negative on the set characterized by the

formula Q_P AU <V < W because conjunct U < V bounds the set
away from the origin as U > 0. Using radial unboundedness again,
V < W is compact, so the set characterized by Qp AU <V < W is
an intersection of closed sets and compact sets which is therefore
compact. Accordingly, £ y (V) attains a maximum value kp < 0

on that set, which justifies the following arithmetic cut, where the
bound k < 0 is chosen uniformly across all choices of p, e.g., as the
maximum over all k;, for p € P:

k<o /\ Vx(Qp AU SV SW— L (V) <k)
peEP

©

After Skolemizing k, it suffices to pick T > 0 for the succedent
such that W + kT < U. Such a T always exists since k < 0.

@, ®, k<0, ©, W+kT <Ur Vx(|lx]| <6 —...)
R e>0, W>0, @, U>0, B, k<0, © - IT>0Vx ([[x[| <5 — ...)
cut, R, 3L £>0, W>0, @, U>0, ® F IT>0Vx (|[x][ < 6 — ...)

The derivation continues by Skolemizing with YR, —R and prov-
ing the LHS of the implication in @ with VL, —L. The assignment
t := 0 is unfolded with axioms [;], [:=], then the loop rule is used
with the pre-attractivity loop invariant Inv, =V < WA(V > U —
V < W +kt). Similar to the stability derivation, this results in three
premises, where the crucial premise (2) requires showing that Inv,
is preserved across the loop body, while the other premises are
labeled (D and ) (all three premises are shown further below).
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) ® 0O
loop VoW, ®), k<0, ©, W + kT < U, t=0 [astate, £’ = 1]. ..
Ll =] V<W, ®, k<0, ©, W + kT < U v [t:=0; astate, t' = 1] ...
VL=l@), ®), k<0, ©, W+ kT < U, [x[|<S F [ = 0; dstates £ = 1] ..
YR —R @, ®, k<0, ©, W+ kT < U F ¥x (|Ix[[<6 = ...)

Premise (D) proves by R from the antecedents.

*

Ry<w,t=0r Inv,

Premise (3) proves by R from the loop invariant using the fol-
lowing arithmetic argument. Suppose for contradiction that there
is a state satisfying the negation of the postcondition, i.e., assume
the negation ¢t > T A ||x|| > ¢. Then, using the left conjunct of Inv,
together with ||x|| > ¢ to prove the LHS of the implication in ()
gives assumption V > U. The right conjunct of Inv, then yields
the chain of inequalities V. < W + kt < W + kT < U, whichisa
contradiction. The steps are outlined below.

*
Ry > U k<O, W+kT <U,V<W+kt, t > Tt false
R V > U, k<0, W+kT < U, Invg, t > T F false
R ®, k<0, W + kT < U, Invg, t 2 T, ||x]|| = ¢+ false
R ®, k<O, W+ kT <U,Invgr t >T — ||x|| < &

The proof for premise @) proceeds by unfolding the loop body
with [U], AR, yielding one premise for each switching choice p € P.
A dC step proves the invariance of the left conjunct V- < W of Inv,
with dI_ (see the stability proof, sublevel sets of V are invariant).
The right conjunct of Inv, is the implication abbreviated I = V >
U — V < W+kt and this is proved below using axiom DCC, which
results in premises @ and ) (shown and proved further below).

®
©, IF[x'=fpx),t' =1&Qp AV < W]I
dC, dr- ©, Invg + [x" = fp(x). ' = 1&QplInvg
VLR @, Inva b [Upep X' = fp(x), t' = 1& QplInva
From premise (), the proof is completed with a dI.. step using

the quantified assumption () and the domain constraint. Note that
the Lie derivative of the RHS W + kt is k using ¢’ = 1.

DCC, AR

*
R
© QAV<WAV2UF L, (V)<k
dI
T IF[X =fp(x), ' =1&0p AV < WAV 2 UV < W +kt

From premise (5), the proof is completed with a generalization G
step followed by dI.. to prove the invariance of formula V < U
(see the stability proof, sublevel sets of V are invariant). The ODE
in the outer box modality is elided with ... here.

*
W VUt [x = fp(x), ' = 1&Qp A V<W]IV<U
G R FL.J(V<U > [x' = f,(x), ' =1&Qp AV<W]V<U) O

PROOF OF COROLLARY 4. The derivation of rule MLF builds on
the ideas of the derivation of rule CLF so similar proof steps are
explained in less detail here. The derivation starts with an AR step
for the stability and pre-attractivity conjuncts which are proved
separately below.

+ UStab(astate) + UGpAttr(astate)
R

+ UGpAS(astate)

A

14

Anon.

Stability. The derivation for stability similarly begins with cut
and Skolemization steps. The difference compared to the deriva-
tion of rule CLF is the cut formulas are now conjunctions over all
possible modes p € P for the Lyapunov functions Vj,. The first cut
is AIW>0 @ with @ = Npep Vx (|lx]l = ¢ = Vp 2 W), where the
upper bound W>0 is chosen to be the maximum of the respective
bounds for each V}, on the compact set characterized by ||x|| = «.
After Skolemizing W, the second arithmetic cut is the formula
B0 <d<en® with® = Apep Vx(llxll <6 = Vp < W),
Such a § exists by continuity for each Vp,p € P since V,(0) = 0
from the first (topmost) premise of rule MLF. After both cuts, the
antecedent ¢ is used to witness the succedent by 3R.

@, <& ®F Vx (llxll < 8 = [astate] x|l < &)
R @,0<6<e®FI5>0x (x| < 6 — [astate] x| < ¢)

b BRI 50, W0, @ F 35>0Vax (||x| < 6 — [astate] x|l < ¢)
cut, R, 3L e>0F 35>0Vx ([[x|| < & — [astate] [Ix]| < &)
VR, —»R

F UStab(astate)

The derivation continues with logical simplification steps, Skolem-
izing the succedent and then proving the LHS of the implications
in antecedent (B).

@.8 <& x|l <8, Apep Vp < W [astate] llx|| < &

@, 6 <& ®, lxll <5+ [astate] lIx]l < €
@. 5 <&, ®r Vx (llxl1<8 = [astate] x| < ¢)

VYL, -»L
VR, =R

Next, a cut, VL step case splits on whether the switched system
is initially in its domain of definition characterized by formula
Q = Vpep Qp- The case where the system is not in its domain is
labeled (0), and the proof of this case is deferred to the end. In case
the system is in its domain, the loop rule is used with stability loop
invariant Invs = |[x]| < €AV pep (QP AVp < W). This yields three
premises labeled D-@3) shown and proved further below.

©) @ O
P @8 <& Xl <8 Apep Vp < W, Or [astarel ¥ < ©
W VLTSS < 6 x| < O, Npep Vp < W [astate] x|l < €

Premise (D) proves by R from the antecedents using the inequal-
ities ||x|| < § and § < ¢ for the left conjunct and propositionally
from antecedents Q and /\pep Vp < W for the right conjunct.

*

Bs < e lIxll < 8. Npep Vp < W, Q+ Invg

Premise (3) proves trivially since the postcondition ||x|| < ¢ is
part of the loop invariant:

*

Rlnvs Flxll < e

The derivation continues from premise (2) by unfolding the loop
body of astate with [U], AR. Premises are indexed by p € # in
the derivation. The M[-] step propositionally strengthens the post-
condition to its constituent disjunct [|x|| < ¢ AV, < W for the
chosen mode p. Then, DX assumes domain Q) in the antecedent
and a cut step adds the assumption ||x|| < £ AV, < W. This cut
corresponds to the last (bottom) premise of rule MLF. It is labeled
@ and explained below. The rest of the proof after the cut proceeds
identically to the corresponding derivation for rule CLF using the
respective conjunct for p € P from @). The steps are omitted here.
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*

@, lIxll<e AVp<Wk [x" = fp(x) & Qp|(llx|l<e AV, <W) [©)

eut @, Invs, Qp F [x" = fp(x) & Qpl(llxlI<e AV, <W)
DX @, Invs v [x" = f,(x) & Qpl([Ix[[<e A V, <W)
M @, Invs + [x" = fp(x) & QplInvs
[U], AR

@, Invs + [Upe? x' = fp(x) & Qp]lnvs

The cut premise @ is proved by splitting the disjunction in
Invs (indexed by q € P below). The disjunct corresponding to
mode p proves trivially. For modes q # p, the derivation yields a
compatibility condition which is proved using the last (bottom)
premise of rule MLF.

*
Qg Op+ Vp < Vg4
R 24,00 Vg <W,QpF V,<W
Waep (Qqg A Vg < W), Qp + Vp<W
Invs, Qp + |lx|l<e A Vp<W

R

Returning to premise (0), for initial states not in the switched
system’s domain, i.e., satisfying —Q, no continuous motion is pos-
sible within the model. This is proved using the loop invariant
Invg = ||x|| < € A =Q. The first and third premise resulting from
the loop rule are proved trivially (not shown below). For the remain-
ing premise, ~Q is preserved (trivially) across the loop body after
unfolding it with [U], AR and using DX to show that the system is
unable to switch to the ODE with domain Q,.

*
-0, Op + false
DX ~Q + [ = fp(x) & QplIn'}
[Ukl)o IAJR ), F [Upep X' = fp(x) & QplIn'l
S < |lxll <8, ~QF [astate] x|l < ¢

Pre-attractivity. The derivation for pre-attractivity begins with
logical simplification followed by a series of arithmetic cuts. First,
the multiple Lyapunov functions V,,p € ¥ are simultaneously
bounded above on the ball characterized by ||x|| < §, with the cut
IW>0@ where @ = /\pep Vx (Ilx]l < 8 = V, < W). The upper
bound W is Skolemized, then the next arithmetic cut uses 3U>0 (b)
with ® = A\pep Vx (Vp < W A [Ix]| 2 ¢ > Vp 2 U) (using radial
unboundedness of all functions V), from the second premise of MLF).
Then, U is Skolemized with 3L. The steps are shown below, with
the box modality in UGpAttr(astate) temporarily hidden with . . .
as it is not relevant for this part of the derivation.

>0, W>0, @, U>0, ® + IT>0Vx (||x|| <5 —> ...)

cut, R, 3L £>0, W>0,@ + 3T>0Vx (||x|| <8 — ...)
cut, R, 3L e>0+ IT>0Vx ([lx]| < 5 — ...)
VR, =R

+ UGpAttr(astate)
Identically to rule CLF, the premises of rule MLF prove that, for
each p € P, the respective Lie derivatives £ y (Vp) are bounded
P

above by some kj < 0 on the compact set characterized by formula
Qp AU <V < W.This justifies the following arithmetic cut, where
the bound k < 0 is chosen to be the maximum over all k,, across all
switching choices p € P:

k<0 A Vx (= Ly (Vp) < k)
peEP ?

©

The derivation proceeds similarly to rule CLF, picking T > 0 such
that W + kT < U, then unfolding the quantifiers in the succedent.
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@, ®, k<0, ©, T>0, W+kT<U, ||x||[<dF ...

YR, =R @, ®, k<0, ©, T>0, W+kT <U + Vx ([[x[|<6 — ...)

R >0, W>0, @, U>0, ®), k<0, © + AT >0. ..

cut, R, 3L £>0, W>0, @, U>0, ® r 3T >0. . .

The LHS in antecedent @) is proved and the succedent is further
unfolded with [;], [:=]. The antecedents are abbreviated with T’ =
®,k<0,©,T > 0,W+kT < U below. Similar to the stability proof,
the derivation continues with a cut, VL step that case splits on
whether the switched system is initially in its domain of definition
Q = Vpep Qp- The case where the system is not in its domain is
labeled (0), and its proof is deferred to the end. In case the system
is in domain Q, the loop rule is used with pre-attractivity loop
invariant Invg = V yep (Qp AVp < WA(Vp 2 U — V, < W+kt)).
This results in three premises (D-@3) which are proved below.

loop @ ® 6
T Apep Vp<W, £ =0, Q¢ [astate, ' =1]... @
ok Y L /\PGP Vp<W,t=0+r [astate, £ =1] ...
\5l]j [::l L /\PEP VP<W F[t:=0;astate, ' =1] ...

I, @, ||x]|<8 F [t :=0; astate, £’ = 1] ...

Premise (D) proves by R from the antecedents.

*
BN pep Vo<W, 1= 0,0+ Invg

Premise () proves by R from the loop invariant after using VL
to split the disjuncts of the loop invariant. The disjunct for mode
p € P is abbreviated R=V, < WA(V, 2U — V, < W +kt). The
rest of the arithmetic argument is identical to the corresponding
premise for CLF using the conjunct for p in () (summarized below).

*

RV, 2 U k<O, W +kT <U,V, < W+ kt, t > T+ false
R

Vp >U, k<0, W+kT <U,R, t > Tt false

R ®, k<0, W+ kT <U,R, t 2T, ||x|| = ¢+ false
R ®, k<0, W+kT <U,R+t>T > x| <e
VL ®, k<0, W+kT <U,Invgr t >T — x| < ¢

The derivation from premise 2) proceeds by unfolding the loop
body with [U], AR, DX, yielding one premise for each switching
choice p € P. The M[:] step selects the disjunct R (as defined above
for premise (3)) in the postcondition corresponding to mode p and
the cut adds this disjunct to the antecedents (the cut premise (9
is shown and proved below). The rest of the proof after the cut is
omitted here as it is identical to the corresponding derivation for
rule CLF using the respective conjunct in (©.

*
@  ©RF[xX=fpx), ' =1&QpIR
U ©, Inva, Qp k [x' = fp(x), ' =1& 0, R
ML ©, Inva, Qp + [x" = fp(x), t' = 1& QplInvg
[V AR DX @), Inva + [Upep x7 = fp(x), ' = 1& QplInvg
The cut premise @ is proved by splitting the disjunction in
Inv, with VL (indexed by g € # below). For modes g # p, the
derivation leaves a compatibility condition which proves using the
last (bottom) premise of rule MLF. Note that the rule uses succedent
Vp = Vg since a symmetric condition (Vg < V)) is obtained when
the roles of modes p, g € P are swapped.

E

Qg Op+rVp < Vg

R g QuAVg <WA(Vg2U—Vy<W+kt),QpF R

W gep (Qg A Vg < WA (Vg 2U > Vg < W+kt), Qp kR
Invg, Qp + R

R
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Returning to premise (0), similar to the case for stability, initial
states satisfying —~Q have no continuous motion possible so they
are stuck at the initial state (with global clock ¢t = 0). This is proved
using the loop invariant Inv), = t = 0 A =Q. The first and third
premise resulting from the loop rule are proved trivially (not shown
below). For the remaining premise, —Q is preserved (trivially) across
the loop body after unfolding it with [U], AR and using DX to show
that the system is unable to switch to the ODE with domain Q,.

E3
-0, Op + false
DX Q0+ [xX' = fo(x), t' = 1& Qplin,
(U} AR 1V, F [Upep X' = fp(x), £ = 1& QplInvY,
loop 7570, £ =0, 7O F [astate, ' = 1J(t > T — ||x]|| < ¢) o

ProoF oF COROLLARY 5. The derivation of rule MLFg is similar
to MLF, but adapted to the shape of the guarded switching model
®guard and its corresponding loop invariants. The derivation starts
with an AR step for the stability and pre-attractivity conjuncts
which are proved separately below.

X + UStab(aguard) + UGpAttr(aguard)

+ UGpAS(arguard)

A

Stability. The derivation for stability proceeds identically to the
derivation for rule MLF until the step before the stability loop
invariant is used. These steps are omitted below with ... and
the resulting premise has antecedent formula abbreviated @ =
Apep Vx(llxll = ¢ = Vp = W).

@.8 <& x|l <8, Apep Vp < Wt [arguara] lIx]l < ¢

+ UStab(aguard)

The derivation continues using the loopT rule with stability loop
invariant Invs = ||x|| < e A Vpep (u=pn Vp < W). This yields
four premises labeled )—-®), shown and proved further below.

oog ©) @ 3 &
@,6 <& x|l <6, /\pG’P Vp <Wt [‘Xguard] x|l <&

Premise () shows that the system state satisfies the invariant
Invs after running the initialization program a; = Upep u:=p.
This is proved by R after unfolding «; using [U], [:=].

*

R S5 < e x|l <8, N\pep Vp < W, u=pt Invs
(V). =] S <e llxll <8, Apep Vp < W F [a;]Invs

Premise (9) proves trivially since the postcondition ||x|| < ¢ is
part of the loop invariant.
x
Rlnvs Fllx] < e
The derivation from premise (2) yields correct-by-construction
arithmetical conditions on the Lyapunov functions from unfolding
the guarded switching controller in agyarg, recall

ay = U (?u =p; U (?Gp’q;u::q))

peP qeP

Axiom [U] unfolds the outer choice Upep (+). yielding one
premise for each mode p € P. Then, axioms [;], [?] add the cur-
rent mode u = p (before switching) to the assumptions. The cut
step propositionally unfolds antecedent loop invariant assumption
Invs to the corresponding disjunct for v = p. The inner choice
Ugep (-) is unfolded next with axioms [U], [;], [?], yielding one
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Anon.

premise for each possible transition to mode g € # guarded by
formula Gp, 4. The assignment u := q is unfolded with [:=], so the
succedent simplifies to the disjunct for u = ¢ in Invs. An arithmetic
simplification step yields the bottom premise of rule MLFg.

*

R Gpgt Vg <V,
R Vy <W,Gpgb Vg<W
[=] Ixll <& Vp < W, Gp g+ [u:=qllnvs
(VL.G1. 171 lxll < & Vp < W [Ugep (?Gp.qiu = q)Invs
cut Invg, u =p+ [Ugep (?Gp, g u = q) lInvg
[, [7) Invs ¥ [?u = p;Ugep (?Gp,qs 4= q)1Invs
[u]

Invg + [ay |Invs

The derivation from premise () unfolds the plant model a; =
Upep (Pu=p;x’ = Splx, y)&Qp).The choice Upep (-)isunfolded
first with axiom [U], yielding one premise for each mode p € P.
Then, axioms [;], [?] adds the mode selected by a;, to the antecedent,
where the antecedent loop invariant assumption Invs is simplified
by cut to the disjunct for u = p. Similarly M[-] strengthens the
postcondition to the disjunct for u = p. The rest of the proof pro-
ceeds identically to the corresponding derivation for rule CLF so it
is omitted here.

*

@, lIxll<e, Vo<W k [x" = fp(x) & Qp|(llx|I<e AV, <W)
MU @, lxll<e, Vo<W, u=pt [x' = f(x) & Qpllnvs
cut @, Invs, u = p+ [x" = fp(x) & Op |Invs
L1l @, Invs + [?u = p;x’ = fp(x, y) & QplInvs
vl @, Invs + [ap|Invs

Pre-attractivity. The derivation for pre-attractivity is also identi-
cal to MLF until the step before the pre-attractivity loop invariant
is used. These steps are omitted below with ... and the resulting
premise has antecedent formulas abbreviated with:

® = /\Vx(VpSW/\||x||2€—>Vp2U)
peP

©= @VX(QPAUSVPSW*pr(VP)Sk)
pPE

Apep Vp<W, ®, k<0, ©, W+ kT <U,t=0F [oguards ' =1] . ..

+ UGpAttr(aguard)

The derivation continues using the loopT rule with pre-attractivity
loop invariant Invg = V pep (u:p/\Vp <WAVp2U — Vp <W+kt)).
This yields four premises labeled (D-@ which are shown and
proved further below.

©) ® 6 @
BT A cp Vo<W, ®. k<0, ©, W+kT<U, t=0+ [aguarg. ' = 1] . ..

Premise (D) proves the invariant Inv, after unfolding the initial-
ization program «; using [U], [:=].

*

Vo<W, t=0,u=pt+ Inv,
peP Vp P
Npep Vp<W, t=0+ [a;]Invg

R
[Ul. [:=]

Premise (@) is proved by R after unfolding the disjuncts of the
loop invariant with VL (the arithmetical argument is identical to
earlier proofs). The selected disjunct (indexed by p) is abbreviated
R=u=p AVp<W A (Vp2U — Vp<W+kt).
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£
R 0, k<O, W+kT <U,R+t>T — x| <e¢
VLB, k<0, W+ kT < U,InvaF t > T — ||x|| < ¢

The derivation from premise (2) unfolds @, using dL’s hybrid
program axioms similar to the stability proof, and an arithmetic
simplification step yields the premises of MLF for guarded mode
switches from p to ¢, p,q € P.

*
R GpogF Vg <V,
R R, Gp g+ Vg<W A (Vy2U — Vg <W+ki)
[:=] R, Gp,q + [u:=qllnvg
(V1 [ 2 R+ [Ugep (?Gp,q; 4 := q)lInva
U Tnvg,u=pr [Ugep (?Gp, g3 u:= q)1Invg
G171 Invg + [2u = p;Ugep (?Gp, g3 = q)lInva
v Invg + [ay |Invg

The derivation from premise (3) unfolds the plant model and then
proceeds identically to the corresponding derivation for rule CLF.

*
©, R+ [x" = fp(x), t' =1&Qp|R
M[] ©, R+ [x' = fp(x), t' = 1& QplInva
WO, Invg, u=pF [x = fp(x), t' = 1& QplInvg
[ 17 ©, Invg + [2u = p;x’:fp(x, y,t' =1& Qp]InVa
(vl ©, Invg + [ap, t' = 1]Inv, u}

PROOF OF COROLLARY 6. The derivation of rule MLF, departs
more significantly from the derivations of rules CLF, MLF, MLFg.
For this proof, Rey, is used to indicate arithmetic steps that use
properties of the real exponential function. Tools are available for
answering such questions [14] although they are not known to
be decidable; additional explanation is given below for steps that
only require elementary properties of the exponential function. The
proof also shows how to derive arithmetic conditions (arising from
the time-dependent switching controller) in a correct by construc-
tion manner. Recall from that the modes p € P are partitioned
into two subsets consisting of the stable S = {p € P, 1, > 0} and
unstable U = {p € P, /lp < 0} modes. The derivation starts with
an AR step for the stability and pre-attractivity conjuncts which
are proved separately below:.

+ UStab(atime) + UGpAttr(atime)
AR + UGpAS(artime)

Stability. The stability derivation begins with cut and Skolem-
ization steps. The first cut is IW>0 (@) with the abbreviation @ =
Apep ¥x (Ix]| = e = Vp > W), where the upper bound W>0 is
chosen to be the maximum of the respective bounds for each V),
on the compact set characterized by ||x|| = ¢. After Skolemizing
W, the second arithmetic cut is the formula 36 (0 < § < ¢ A B®),
where the conjuncts for p € U use et > 0.

® = A Vx (llxll < 8 = Vp < W)
peS
A A Vx (llxll < 8 — V, < We©r)
peU
Such a § exists by continuity for each Vp,p € P, V},(0) = 0 from

the premise of rule MLF. After both cuts, the antecedent ¢ is used
to witness the succedent by 3R.
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@, 0 <&, ®F Vx (llxll <& = [atine] llx|l < &)
R @,0<d<e ®F I5>0Vx (x| < 6 — [ovine] 1] < &)
cit Rep 3050, W>0, @ F 36>0Vax (|[x]| < 8 — [atine] x|l < é)
cut, R, 3L e>0F 35>0Vx ([[x] < 8 — [atine] x|l < £)

VR R + UStab(attine)

The derivation continues after both cuts similarly to MLF by
unfolding and proving the LHS of the implications in antecedent
(®. The resulting assumption on the initial state is abbreviated
B = Npes Vo<W A Npeus Vp<WeAi’®l’. Then, the loopT rule is
used with the following stability loop invariant Invs, which yields
premises D—-®@ shown and proved further below:

Invg =7 > 0A ||x|| < eA

\/ (u=pAV, <WerT)v
peS

\/ (u=pAv, < We (70) A < 0,)
pelU

©) @ 6 &

P! @, 5<e, [Ix[|<8. B [acine] lIx[[<e

L@, S<e, ®. llx <8 F [avine] lIx[<e

oK @. 5<e, ®r Vx ([x[1<8 = [acine] Ix[I<e)

Premise (I) shows that the system state satisfies the invariant

Invs after initialization with program a; = 7 :=0;Upep u := p. This
is proved from B after unfolding «; using [U], [:=] and substituting
7 = 0 in the loop invariant (using e® = 1).

*

Rexp 5 <e x|l <8, B, t=0,u=pt Invs
(V1. [=] 5<e |Ixll <8, Br [a;]Invs

Premise @ proves trivially since the postcondition ||x|| < ¢ is
part of the loop invariant.
*
Rlnvs Fllx]l < e
The derivation from premise (2) unfolds the switching controller
ay in atige With dL’s hybrid program axioms, recall:

ay = U (?u =p; U (?0p,q < r;r:zO;u::q))

peP qeP

This unfolding yields four possible shapes of premises (abbrevi-
ated as . .. and shown immediately below) for a switch from the
current mode p to mode g. In each case, the antecedent assumption
corresponds to the disjunct of Invg for mode p, while the succedent
assumption corresponds to the disjunct for mode q with timer 7
reset to 0 by the switching controller. The four cases correspond to
whether p € S or p € U and similarly for g, as labeled below.

- -
V1L [[_]] [[7]] Invs, u = p + [Ugep (?6p,q < 757 :=0;u:=q)lInvs
' [uj Invs F [?u = p;Ugep (?0p,q < 737 :=0;u:=q)]Invs

Invg + [ay ]Invs

Opq <T,Vp <We™ TV, <W (peS, q€S)
Op,qg < 7. Vp < We 27 1V < Weha®q (peS, qel)
Opg <7, Vp < We™T ) 7 <o, V, <W (pel, geS)
Op.qg <7, Vp < We™ 70 7 <0, V, < Weta®  (pel, geU)
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These premises are correct-by-construction and can be handed
to an arithmetic solver directly. They can also be simplified, e.g., for
pPES, q€8, the inequalities can be rearranged to eliminate W and 7.
The first R step uses transitivity of < . <, while the second Rey, step
uses e*r0.a < e*r” whenever Ap > 0 (sincep € S)and 0, 4 < 7.

Ap 0,
F Vg < Vpe'?Pra

Rexp Op,g <TFHVg < Vpe’lPT

R g<t,V,<WeT LV, <W

Intuitively, the resulting (simplified) premise says that by choos-
ing sufficiently large dwell time 6, 4 (for stable mode p), one can
offset an increase in value when switching from V}, to V. The proof
of this premise requires Reyp.

The derivation from premise 3) unfolds the plant model a;, =
Upep (Pu=p;x’ = fp(x), 7" = 1& T < Op) using dL axioms. There
are two possible shapes of the premises resulting from this unfold-
ing, depending if p € S or p € U, these are abbreviated (5) and ®
respectively. In either case, the derivation shows that the appropri-
ate upper bound on V}, is preserved for the invariant.

® ®
UBI@, Invs, u=pr [x = fy(x). 7' = 1& 7 < Oplinvs
[:1. 171 @, Invs + [?u = p;x" = fi(x), 7/ = 1& T < Op|Invg
(vl @, Invs + [ap|Invs

For premise (5, the proof uses dbx,. with cofactor —1,, where

the Lie derivative of subterm We 7 is (—Ap)We_’lPT from 7’ = 1.
The resulting premise simplifies to the third premise of rule MLF.

%
FL, (Vp)<=2pVp
[ Lfb(vp)—(—)tﬁ)We_APTS_AP(VP_We—Apr)

dbx; Vp—We_)‘PT <Ok [x' =fp(x), 7' = 1&r§®P]Vp—We_APT <0

WMLy < We AT b [x = fp(x), T = 1& T <OV, < We ™ 07

The proof for premise ) similarly uses dbxy. with cofactor —A,,
yielding the third premise of rule MLF;.

*

- L, Vo) <V

dbx, Vp<weflp(r7(-)‘,,) E [X', :fp(x)’ =1&7 < @p]vp<we*1p(‘r79p)

Pre-attractivity. The derivation for pre-attractivity begins with
logical simplification followed by a series of arithmetic cuts. First,
the multiple Lyapunov functions Vj,,p € ¥ are simultaneously
bounded above on the ball characterized by ||x|| < §, with the cut
AW >0 (@) where

@= A Vx (Jlx]| < 6 = Vp < W)A
peS
A A Vx (llxll < 8 — V, < We#Or)
pelU

The upper bound W is Skolemized, then the next arithmetic cut
uses IU>0 ® with® = Apep VX (V) S W A fIx]| 2 6 = Vp 2 V),
where U is Skolemized with L.

>0, W>0, @, U>0, ® + IT>0Vx (||x|| <5 —> ...)

cut, R, 3L £>0, W>0,@ + 3T>0Vx (||x|| <8 — ...)
cut, R, 3L e>0F IT>0Vx ([lx]| < 5 — ...)
VR, =R

+ UGpAttr(atime)
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Anon.

The derivation continues by picking T > 0 such that R= W <
UeT A Npeu W < Ue®Te=99p sucha T exists since o > 0. The
quantifiers in the succedent are unfolded and the LHS of the im-
plications in @ are proved. The resulting antecedent (from @)
is abbreviated B = Apes Vo<W A Aper Vp <WetrOr_ The loopT
rule is used with the following pre-attractivity loop invariant Invg,
which yields premises D-®@ shown and proved further below:

Invg=71>20At>TA

\/ (u=pAv, < We_”(t_f)e_’lf’r)v
peS

\ (w=pavy <we o0 nr <0,
peU

@ @ 3 &
®,T>0,R B, t =0+ [aguarg, ' =1] ...
Lol@, ®, T 2 0, R, [[x][<6, £ = 0F [ctguards & = 1] . ..

G =] @, ®, T 20, R, ||Ix]|<5 + [£:=0; atguard> £ =1]. ..
VR, —R ®,0, T 20, RrVx(llx[ <6 — ...)
R £>0, W>0,@, U>0, ® + IT>0Vx (Ix[[ <6 — ...)

loopT

Premise (D is proved by unfolding the initialization program «;
This is proved from B after unfolding «; using axioms [U], [:=] and
substituting 7 = 0 and t = 0 in the loop invariant (using e® = 1).

*
Rexp B,t=0,7=0,u=pt Inv,
[ [=] B, t=0F [a;]Inv,

Premise (@ is proved by unfolding the loop invariant with VL.
This yields two possible premise shapes, corresponding to p € S or
p € U.Inboth cases, assuming the negation of the succedent proves
the corresponding implication LHS in the antecedent assumption
®, which gives V < U as an assumption. The remaining arithmetic
argument underlying these premises proceeds by contradicting this
assumption (below).

3k
VLRGL, R Invar t > T — ||x|| < ¢

For p € S, the following sequence of inequalities is used (note
that o < A, is implied by the later premises):

Vp < We 00~ Ap7 (from invariant)
—_ We—o‘te—r(/lp—a)
<We Te ™ =9 (fromt > T, o > 0)
< Ue "™ =9) (from R)
< U (fromo < /lp, 7 > 0, contradiction)

For p € U, the following sequence of inequalities is used (note
that 7 < @, is in the invariant Inv, for p € U):

Vp < We ?(t=1e=2(7=6p) (from invariant)
<We o7 (from 7 < @p, 1, < 0)
=We "
<We e (fromo > 0,7 < 0p)
<We Te?®r (fromt > T,0 > 0)

< U (from R, contradiction)
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Verifying Switched System Stability With Logic

The derivation from premise (2) unfolds the switching controller
ay in atige with dL’s hybrid program axioms. Similar to the deriva-
tion for the stability conjunct, this unfolding yields four possible
shapes of premises (abbreviated as ... and shown immediately
below) for maintaining the invariant Inv, after a switch from the
current mode p to the next mode q.

UL
(WLEL LT ]Inva, u=pt [qup (?Gp,q <7;7:=0;u:= q)]Inva
L1121

T Invg F [u = 2 Ugep (?60p,q < T37:=0;u:=q)lInv,
[U]

Invg + [ay |Invg

t27, 0p g<7,Vp <We_‘7(t_f)e_’lPTl—Vq<We_Jt

(peS, qe8)
t21, Op ¢ <7, Vp<We’“(tfr)e”ll’Tr—Vq<We"”e’1q®‘7

(peS, geU)
127, Op g <7, Vp<We U Ap(T0p) <@, 1V, <We !

(pel, qeS)
127, 0p g <7, Vp<We o™ (770p) 1 <@ 1V, <We ot eha%a

(peU, qeU)

The derivation from premise (3) unfolds the plant model a,. This
results in two possible shapes of premises, depending if p € S or
p € U, which are abbreviated (5) and (& respectively. In either
case, the key step shows that the appropriate upper bound on Vj, is
preserved.

GL 171 ©

PIvg, u=pr [x' = fp(x), 7' =1, ' =1& 1 < Op]Inv,

(1. 17 Invg v [Pu=p;x’ = fp(x), 7' =1, t' =1&7 < Opllnvg

vl Invg + [ap]invg

For premise (9, the proof uses dbx,. with cofactor —1,, with
abbreviation Ps = We=?(!=)¢=47 noting that the Lie derivative
of Ps is —Ap Ps. This yields the third premise of rule MLF;.

*
F pr(Vp) <=1V
By <Ps b [x' = fp(x), o' = L, £/ = 1& < ©p]Vp<Ps

The proof for premise () is similar using dbxy. with cofactor
—)LP, with abbreviation P, = We_”(t_f)e_)‘ﬁ(f_@)l’), noting that
the Lie derivative of P, is —A,P,. This yields the third premise of
rule MLF,.

ES
FL () <2V
Y <Py b [X = fp(x), 7' = L, 1 = 1&7 < ©,]Vp<Py o

B COUNTEREXAMPLE

The cruise controller automaton from Section 5.2 is taken from
the suite of examples for the Stabhyli tool [26, 27]. Using the de-
fault instructions on a Linux machine, Stabhyli generates a success
message with the following output (newlines added for readability):

SO0SSolution( Problem is solved. (accepted);

### Lyapunov template for mode normal_PI: \
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+V_23%relVA2+V_22xintVA2+V_21*intVxrelV \
+V_20*relV+V_19*xintV

### Lyapunov function for mode normal_PI: \
+572572089848357/144115188075855872*intV*relV \
+256336575597239/281474976710656%relV*2 \
+6008302119812893/4611686018427387904*intV*2 \
+5787253314511645/618970019642690137449562112*xrelV \
+5661677770976729/39614081257132168796771975168*intV

The hybrid system is stable

The generated Lyapunov function candidate V' does not exactly
satisfy all of the required arithmetical conditions for the normal PI
mode [26]. For example, one requirement is that it should be non-
negative in the mode invariant —15<relV <15 A —500<intV <500. It
can be checked that intV = —m, relV = 0 is a counterex-
ample, with V = —3.90488 x 10724,

A heuristic approach to resolve this numerical issue is to truncate
terms in the candidate V with extremely small coefficients and then
check the resulting truncated candidate. This heuristic is applied
for the case study in Section 5.2, where the KeYmaera X proof
succeeded using the truncated candidate together with the rest of
the Lyapunov function candidates generated by Stabhyli (for other
automaton modes).
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