
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Verifying Switched System Stability With Logic
Anonymous Author(s)

ABSTRACT
Switched systems are known to exhibit subtle (in)stability behav-

iors requiring system designers to carefully analyze the stability

of closed-loop systems that arise from their proposed switching

control laws. This paper presents a formal approach for verifying

switched system stability that blends classical ideas from the con-

trols and verification literature using differential dynamic logic (dL),
a logic for deductive verification of hybrid systems. From controls,

we use standard stability notions for various classes of switching

mechanisms and their corresponding Lyapunov function-based

analysis techniques. From verification, we use dL’s ability to verify

quantified properties of hybrid systems and dL models of switched

systems as looping hybrid programs whose stability can be for-

mally specified and proven by finding appropriate loop invariants,
i.e., properties that are preserved across each loop iteration. This

blend of ideas enables a trustworthy implementation of switched

system stability verification in the KeYmaera X prover based on dL.
For standard classes of switching mechanisms, the implementation

provides fully automated stability proofs, including searching for

suitable Lyapunov functions. Moreover, the generality of the deduc-

tive approach also enables verification of switching control laws

that require non-standard stability arguments through the design of

loop invariants that suitably express specific intuitions behind those

control laws. This flexibility is demonstrated on three case studies:

a model for longitudinal flight control by Branicky, an automatic

cruise controller, and Brockett’s nonholonomic integrator.

CCS CONCEPTS
• Theory of computation → Logic and verification; Timed
and hybrid models; • Computing methodologies → Compu-
tational control theory; • Computer systems organization →

Embedded systems.

KEYWORDS
switched system stability, loop invariants, differential dynamic logic

ACM Reference Format:
Anonymous Author(s). 2021. Verifying Switched System Stability With

Logic. In Proceedings of ACM Conference (Conference’17). ACM, New York,

NY, USA, 19 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Switched systems provide a powerful mathematical paradigm for

the design and analysis of discontinuous (or nondifferentiable) con-

trol mechanisms [10, 22, 28, 44]. Examples of such mechanisms

include: bang-bang controllers that switch between on/off modes;

gain schedulers that switch between a family of locally valid linear

controllers; and supervisory control, where a supervisor switches

between candidate controllers based on logical criteria [22, 28].

However, switched systems are known to exhibit subtle (in)stability

behaviors, e.g., switching between stable subsystems can lead to

instability [22], so it is important for system designers to adequately

justify the stability of their proposed switching designs. Verification

and validation are complementary approaches for such justifica-

tions: validation approaches, such as system simulations or lab

experiments, allow designers to check that their models and con-

trollers conform to real world behavior; verification approaches

yield formal mathematical proofs that the stability properties hold

for all possible switching decisions everywhere in the model’s infi-

nite state space, not just for finitely-many simulated trajectories.

This paper presents a logic-based, deductive approach for veri-

fying switched system stability under various classes of switching

mechanisms. The key insight is that control-theoretic stability ar-

guments for switching control can be formally justified by blending

techniques from discrete program verification with continuous dif-

ferential equations analysis using differential dynamic logic (dL),
a logic for deductive verification of hybrid systems [33, 34]. In-

tuitively, switched systems are modeled in dL as looping hybrid
programs [46], as in the following snippet ({·}∗ denotes repetition):

{ u := ctrl(x); // switching controller (discrete dynamics)

x ′ = fu (x) // actuate decision (continuous dynamics)

}∗@invariant(...) // switching loop with invariant annotation

Accordingly, switched system stability is formally specified in dL
as first-order quantified safety properties of such loops (Section 2.2),

and these safety properties can then be proved rigorously by com-

bining fundamental ideas from verification and control, namely:

i) identification of loop invariants (@invariant above), i.e., proper-

ties of the (discrete) loop that are preserved across all executions

of the loop body, ii) compositional verification for separately ana-

lyzing the discrete and continuous dynamics of the loop body, and

iii) Lyapunov functions, i.e., auxiliary energy functions that enable

stability analysis for the continuous dynamics.

Section 3 identifies key loop invariants underlying stability ar-

guments for various classes of switching mechanisms and derives

sound stability proof rules for those mechanisms. Crucially, these

syntactic derivations are built from dL’s sound foundations for hy-

brid program reasoning [33, 34], without the need to introduce

new mathematical concepts such as non-classical weak solutions or

nondifferentiable Lyapunov functions [9, 16]. Section 4 uses these

derivations to implement support for switched systems in the KeY-

maera X prover based on dL [12], including a modeling interface

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

for switched systems, automatic search for Lyapunov function can-

didates, and sound verification of switched system stability spec-

ifications. Notably, the implementation requires no extensions to
KeYmaera X’s soundness-critical core and thereby directly inherits

all of KeYmaera X’s correctness guarantees [12, 25]. This trustwor-

thiness is necessary for computer-aided verification of complex,

controlled switching designs, where the number of correctness con-

ditions on their Lyapunov functions scales quadratically with the

number of switching modes (Section 3.2), making pen-and-paper

proofs error-prone or infeasible. Section 5 further applies the deduc-

tive approach on three case studies, chosen because each require

subtle twists to standard switched system stability arguments:

• Longitudinal flight control [4]: This model is parametric (5

parameters, 2 state variables) and its stability justification

due to Branicky [4] uses a “noncustomary” Lyapunov func-

tion [10], whose correctness requires intricate arithmetic

reasoning. The proof is enabled through the use of ghost
switching where virtual switching modes are introduced for

the sake of the stability analysis, similar to the use of ghost

variables in program verification [30, 34, 35].

• Automatic cruise control [29]: This hybrid automaton switches

between several operating modes, e.g., standard/emergency

braking, accelerating, and PI control, based on specific guard

conditions. Lyapunov function candidates can be numeri-

cally generated [26], but must be corrected for soundness.

• Brockett’s nonholonomic integrator [7]: A large class of con-

trol systems can be transformed to the nonholonomic in-

tegrator but this system is not stabilizable by continuous

feedback [7, 22]. Instead, the system must be initially con-

trolled into a suitable region where a stabilizing control law

can be applied. The stability argument must show that the

initial control mode does not destabilize the system.

These case studies are verified semi-automatically in KeYmaera X,

with user guidance to design and prove modified loop invariants

that suitably capture the specific intuitions behind their respective

control laws. The flexibility and generality of this paper’s deductive

approach enables suchmodifications while ensuring that the overall

stability argument remains valid. In fact, these modified stability

proofs enjoy exactly the same, strong correctness guarantees thanks

to their formalization within the uniform dL logical foundations.

All proofs are in the appendix. The KeYmaera X implementation,

examples, and case studies are available at:
1

https://figshare.com/s/00b273eb0a5fc61c175d

2 BACKGROUND
This section briefly recalls switched systems and their hybrid pro-

gram models introduced by Tan and Platzer [46]. The section then

explains how stability for these models can be formally specified

and verified using differential dynamic logic (dL) [33, 34].

2.1 Switched Systems as Hybrid Programs
2.1.1 Hybrid Programs. The language of hybrid programs is gen-
erated by the following grammar, where x is a variable, e is a dL

1
While an artifact will be submitted for artifact evaluation if this paper is accepted

according to the guidelines for regular papers, we already provide a double-blind

anonymized link to a prototype implementation for interested reviewers now.

term, and Q is a formula of first-order real arithmetic [33, 34].

α , β ::= x ′ = f (x)&Q | x := e | ?Q | α ; β | α ∪ β | α∗

Continuous dynamics are modeled using systems of ordinary

differential equations (ODEs) x ′ = f (x)&Q evolving within do-

main Q ; the ODE is written as x ′ = f (x) when there is no domain

constraint, i.e., Q ≡ true. Discrete dynamics are modeled using

assignments (x := e assigns the value of term e to x) and tests (?Q
checks whether condition Q is true in the current state). The pro-

gram combinators are used to piece together sub-programs to form

programs with hybrid dynamics; the combinators are: sequential

composition (α ; β runs α followed by β), nondeterministic choice

(α ∪ β runs α or β nondeterministically), and nondeterministic

repetition (α∗ repeats α for any number of iterations).

Throughout this paper, x = (x1, . . . ,xn) denotes the vector

of continuous state variables for the system under consideration.

Other variables are used for program auxiliaries, e.g., to describe

memory and timing components of switching controllers.

2.1.2 Switched systems. A switched system is described by a finite

family P of ODEs x ′ = fp (x),p ∈ P and a set of switching signals
σ : [0,∞) → P that prescribe the ODE x ′ = fσ (t)(x) to follow

at time t along the system’s evolution. Tan and Platzer [46] use

hybrid programs as formal models for various classes of switching

mechanisms; one example is arbitrary switching [22], where the

system is allowed to follow any switching signal, i.e., it switches

arbitrarily (at any time) between the ODEs x ′ = fp (x),p ∈ P. This

can be used to model real world systems whose switching behavior

is uncontrolled or a priori unknown. Arbitrary switching is modeled

by the hybrid program αarb [46, Proposition 1]:

αarb ≡

(⋃
p∈P

x ′ = fp (x)
)∗

(1)

The behavior of program αarb is analogous to a computer simula-

tion of arbitrary switching: on each iteration, the program makes a

(discrete) nondeterministic choice of switching decision

⋃
p∈P

(
·
)

to select an ODE x ′ = fp (x) which it then follows continuously for

some duration before repeating the simulation loop.

The hybrid programs language can be used to model various

other classes of switching mechanisms [22, 46], including general

controlled switching, as illustrated in Section 1, where a (discrete)

control law u := ctrl(x) decides the ODE x ′ = fu (x) to switch to on

each loop iteration. Stability for these models is explained next.

2.2 Stability as Quantified Loop Safety
This paper studies uniform global pre-asymptotic stability (UGpAS)

for switched systems [16, 17, 22], defined as follows:

Definition 1 (UGpAS [16, 17]). Let Φ(x) denote the set of all

(domain-obeying) solutions
2 φ : [0,Tφ] → R

n
for a switched sys-

tem from state x ∈ Rn . The origin 0 ∈ Rn is:

• uniformly globally pre-asymptotically stable if the sys-
tem is uniformly stable and uniformly globally pre-attractive,

• uniformly stable if, for all ε > 0, there exists δ > 0 such

that from all initial states x ∈ Rn with ∥x ∥ < δ , all solutions
φ ∈ Φ(x) satisfy ∥φ(t)∥ < ε for all times 0 ≤ t ≤ Tφ , and

2
A formal construction of the (right-maximal) solution ϕ for a given switching signal

σ is available elsewhere [46, Appendix A].

2

https://figshare.com/s/00b273eb0a5fc61c175d

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

Verifying Switched System Stability With Logic Conference’17, July 2017, Washington, DC, USA

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

• uniformly globally pre-attractive if, for all ε > 0,δ > 0,

there exists T ≥ 0 such that from all initial states x ∈ Rn

with ∥x ∥ < δ , all solutions φ ∈ Φ(x) satisfy ∥φ(t)∥ < ε for
all times T ≤ t ≤ Tφ .

The UGpAS definition can be understood intuitively for a system

with a switching control mechanism:

• stability means the mechanism keeps the system close to the

origin if the system is initially perturbed close to the origin,

• global pre-attractivity means the mechanism drives the sys-

tem to the origin asymptotically as t → ∞, and

• uniform means the stability and pre-attractivity properties

are independent of both the nondeterminism in the switching

mechanism (e.g., arbitrary switching) and the choice of initial

states satisfying ∥x ∥ < δ ; for brevity in subsequent sections,

“uniform” is elided when describing stability properties.

Remark 1. Switched systems whose solutions are all uniformly

bounded in time, i.e., there exists Tm such that for all solutions φ,
Tφ ≤ Tm , are trivially pre-attractive. Goebel et al. [16, 17] intro-

duce the notion of pre-attractivity as opposed to attractivity for

hybrid systems because it separates considerations about whether

a hybrid system’s solutions are complete, i.e., solutions exist for
all (forward) time, from conditions for stability and attractivity.

Indeed, it is common in the hybrid and switched systems literature

to either ignore incomplete solutions or assume the models under

consideration only have complete solutions [22, 26, 49]. Instead of

predicating proofs on these hypotheses, this paper formalizes the

(weaker) notion of UGpAS for switched systems directly.

The definition of UGpAS nests alternating quantification over

real numbers with temporal quantification over the solutions φ of

switched systems. This combination of quantifiers can be expressed

formally using the formula language of dL [33, 34], whose grammar

is shown below, ∼ ∈ {=,,, ≥, >, ≤, <} is a comparison operator

between dL terms e, ẽ and α is a hybrid program:

ϕ,ψ ::= e ∼ ẽ | ϕ ∧ψ | ϕ ∨ψ | ¬ϕ | ∀v ϕ | ∃v ϕ | [α]ϕ | ⟨α⟩ϕ

This grammar extends the first-order language of real arithmetic

(FOLR) with the box ([α]ϕ) and diamond (⟨α⟩ϕ) modality formulas

which express that all or some runs of hybrid program α satisfy

postcondition ϕ, respectively. Real arithmetic FOLR is decidable by

quantifier elimination [47] and serves as a useful base specification

language. Various specifications are equivalently definable in FOLR,

e.g., Euclidean norm bounds ∥x ∥ ∼ ε
def

≡ ∥x ∥2 ∼ ε2 (for ε ≥ 0) and

topological operations such as the boundary ∂ϕ and closure ϕ of

the set characterized by formula ϕ [3].

The box modality formula [α]ϕ expresses safety properties ϕ of

program α that must hold along all of its executions [34]. When α
models a switched system, the box modality quantifies (uniformly)

over all times for all solutions arising from the switching mecha-

nism. Accordingly, UGpAS for switched systems is formally speci-

fied by nesting the box modality with the first-order quantifiers.

Lemma 2 (UGpAS in differential dynamic logic). The origin
0 ∈ Rn for a switched system modeled by program α is UGpAS iff the
dL formula UGpAS(α) is valid. Variables ε,δ ,T , t are fresh in α :

UGpAS(α) ≡ UStab(α) ∧ UGpAttr(α)

UStab(α) ≡ ∀ε>0∃δ>0∀x (
∥x ∥ < δ → [α] ∥x ∥ < ε

)
UGpAttr(α) ≡ ∀ε>0∀δ>0∃T≥0∀x (

∥x ∥ < δ →

[t := 0;α , t ′ = 1] (t ≥ T → ∥x ∥ < ε)
)

Here, UStab(α) and UGpAttr(α) characterize stability and global
pre-attractivity of α , respectively. In UGpAttr(α), α , t ′ = 1 denotes
the hybrid program obtained from α by augmenting its continuous
dynamics so that variable t tracks the progression of time.

Formulas UStab(α) and UGpAttr(α) syntactically formalize in

dL the corresponding quantifiers in Def. 1. In UGpAttr(α), the fresh
clock variable t is initialized to 0 and syntactically tracks the pro-

gression of time along switched system solutions. The program

α , t ′ = 1 can, e.g., be constructed by adding a clock ODE t ′ = 1 to

all ODEs in the switched system model α . Accordingly, the post-
condition t ≥ T → ∥x ∥ < ε expresses that the system state norm is

bounded by ε afterT time units along any switching trajectory, as re-

quired in Def. 1. Various other stability notions are of interest in the

continuous and hybrid systems literature [13, 17, 22, 29, 36, 44, 45].

These variations can also be formally specified in dL [45] but are

left out of scope for this paper.

2.3 Proof Calculus
The dL proof calculus enables formal, deductive verification of

UGpAS stability specifications through compositional reasoning

principles for hybrid programs [33, 34] and a complete axiomatiza-

tion for ODE invariants [35]. For example, an important syntactic

tool for differential equations reasoning is the Lie derivative of term

e along ODE x ′ = f (x), defined as Lf (e)
def

= ∇e · f . The sound

calculation and manipulation of Lie derivatives is enabled in dL
through the use of syntactic differentials [33].

All proofs are presented in a classical sequent calculus with the

usual rules for manipulating logical connectives and sequents. The

semantics of sequent Γ ⊢ ϕ is equivalent to the formula (
∧
ψ ∈Γψ) →

ϕ and a sequent is valid iff its corresponding formula is valid. The

key (derived) dL proof rule used in this paper is:

loop

Γ ⊢ Inv Inv ⊢ [α] Inv Inv ⊢ ϕ
Γ ⊢ [α∗]ϕ

The loop rule says that, in order to prove validity of the conclu-

sion (below the rule bar), it suffices to prove the three premises

(above the rule bar), respectively from left to right: i) the initial

assumptions Γ imply Inv, ii) Inv is preserved across the loop body α ,
i.e., Inv is a loop invariant for α∗, and iii) Inv implies the postcondi-

tion ϕ. The identification of loop invariants Inv is crucial for formal

proofs of UGpAS, as illustrated by the following deductive proof

skeleton for stability (a similar skeleton is used for pre-attractivity):

Deductionx
loop

...

Γ ⊢ Inv

Γ1 ⊢ ϕ1 · · · Γk ⊢ ϕk

...
(
hybrid program

reasoning for α

)
Inv ⊢ [α] Inv

...

Inv ⊢ ∥x ∥ < ε

Γ ⊢ [α∗] ∥x ∥ < ε

...
(
logic/arithmetic

reasoning for Γ

)
⊢ UStab(α∗)

3

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

Conference’17, July 2017, Washington, DC, USA Anon.

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530

ε

δ
0

V <W

Lfp
(V)≤0

ε

δ

0

V <W
(bounded)

V ≥U→
V <W +ktV <U

Figure 1: Loop invariants for UGpAS (arbitrary switching),
stability (left) and pre-attractivity (right). Switching trajec-
tories are illustrated by alternating black and green arrows.

Proofs proceed upwards by deduction, where each reasoning step

is justified by sound dL axioms and rules of inference, e.g., the loop

rule. The skeleton above syntactically derives a proof rule that

reduces a stability proof for α∗ to proofs of the top-most premises,

Γ1 ⊢ ϕ1 · · · Γk ⊢ ϕk , which corresponding to required logical

and arithmetical conditions on Lyapunov functions for various

switching mechanisms. The loop invariant step (highlighted in red)

crucially ties together these conditions on Lyapunov functions and

hybrid program reasoning for switched systems.

3 LOOP INVARIANTS FOR SWITCHED
SYSTEM STABILITY

This section identifies loop invariants for proving UGpAS under

various classes of switching mechanisms with Lyapunov func-

tions [5, 21, 22]; relevant mathematical arguments are presented

briefly, see AppendixA for more details. Throughout the section,

loop invariants are progressively tweaked to account for new design

insights behind increasingly complex switching mechanisms.

3.1 Arbitrary and State-Dependent Switching
3.1.1 Arbitrary Switching. Stability for the arbitrary switching

model αarb from (1) can be verified by finding a so-called com-
mon Lyapunov function V for all of the ODEs x ′ = fp (x),p ∈ P

satisfying the following arithmetical conditions [22, 44]:

i) V (0) = 0 and V (x) > 0 for all ∥x ∥ > 0,

ii) V is radially unbounded, i.e., for all b, there exists γ > 0 such

that ∥x ∥ < γ for all V (x) ≤ b, and
iii) for each ODE x ′ = fp (x),p ∈ P, the Lie derivative Lfp

(V)

satisfies: Lfp
(V)(0) = 0 and Lfp

(V)(x) < 0 for all ∥x ∥ > 0.

Conditions i)–iii) are generalizations of well-known conditions

for stability of ODEs [8, 21] to arbitrary switching. Intuitively, con-

ditions i) and iii) ensure thatV acts as an auxiliary energy function

whose value decreases asymptotically to zero (at the origin) along

all switching trajectories of the system; the radial unboundedness

condition ii) ensures that this argument applies to all system states

for global pre-attractivity [21]. Correctness of these conditions can

be proved in dL using loop invariants, see Fig. 1 (explained below).

Stability. The specification UStab(αarb) requires that all trajec-
tories of αarb stay in the grey ball ∥x ∥ < ε , starting from a chosen

ball ∥x ∥ < δ , see Fig. 1 (left). Condition i) guarantees that the ball

∥x ∥ < ε contains a sublevel set of the Lyapunov function satis-

fying V < W (dashed blue curve) and this sublevel set contains

a smaller ball ∥x ∥ < δ [8, 21]. Condition iii) shows that this sub-
level set is invariant for each ODE x ′ = fp (x),p ∈ P because

Lfp
(V)(x) ≤ 0, as illustrated by the dashed black and green arrows

for two different switching choices p ∈ P both locally pointing

inwards on the boundary of the sublevel set. Thus, the formula

Invs ≡ ∥x ∥ < ε ∧V <W , which characterizes the blue sublevel set,

is an invariant for all possible switching choices in the loop body of

αarb, which makes Invs a suitable loop invariant for UStab(αarb).

Pre-attractivity. The specification UGpAttr(αarb) requires that
all trajectories of αarb stay in the grey ball ∥x ∥ < ε after a cho-

sen time T , starting from the initial ball ∥x ∥ < δ , see Fig. 1 (right).
The ball ∥x ∥ < δ is compact, i.e., contained in a sublevel set sat-

isfying V < W for someW > 0 (outer dashed blue curve); this

sublevel set is bounded by condition ii). Like the stability argu-

ment, condition i) guarantees that there is a sublevel set V < U
(inner dashed blue curve) contained in the ball ∥x ∥ < ε , and con-

dition iii) shows that both sublevel sets characterized by V < W
and V < U are invariants for every ODE in the loop body of αarb.
The set characterized by formula V ≥ U ∧V ≤W is compact and

bounded away from the origin, which implies by condition iii) that
there is a uniform bound k < 0 on this set, where for each ODE

x ′ = fp (x),p ∈ P, Lfp
(V)(x) ≤ k . Thus, the value of Lyapunov

function V decreases at rate k , regardless of switching choices in
the loop body of αarb, as long as it has not enteredV < U . The loop

invariant for UGpAttr(αarb) syntactically expresses this intuition:

Inva ≡ V <W ∧ (V ≥ U → V <W + kt). For a sufficiently large

choice of T withW + kT ≤ U , trajectories at time t ≥ T satisfy

V < U so they are contained in the ∥x ∥ < ε ball.
The loop invariants identified above enable derivation of a for-

mal dL stability proof rule for αarb (deferred to a more general

version in Corollary 3 below). In fact, since arbitrary switching is

the most permissive form of switching [22], UGpAS for any switch-

ing mechanism can be soundly justified using the loop invariants

above in case a suitable common Lyapunov function can be found.

3.1.2 State-dependent Switching. The state-dependent switching
mechanism [22] constrains arbitrary switching by allowing execu-

tion of (and switching to) an ODE x ′ = fp (x),p ∈ P only when

the system state is in domain Qp . This is modeled by the hybrid

program αstate ≡

(⋃
p∈P x ′ = fp (x)&Qp

)∗
[46, Proposition 2],

where arbitrary switching αarb corresponds to the special case with
Qp ≡ true for all p ∈ P.

The same loop invariants for αarb are used for αstate to derive

the following proof rule. For brevity, premises of all derived stability

proof rules are implicitly conjunctively quantified over p ∈ P.

Corollary 3 (UGpAS for state-dependent switching, CLF).

The following proof rule for common Lyapunov functionV with three
stacked premises is derivable in dL.

CLF

⊢ V (0) = 0 ∧ ∀x (∥x ∥ > 0 → V (x) > 0)

⊢ ∀b ∃γ ∀x (V (x) ≤ b → ∥x ∥ ≤ γ)

⊢ Lfp
(V)(0) = 0 ∧ ∀x (∥x ∥ > 0 ∧Qp → Lfp

(V)(x) < 0)

⊢ UGpAS(αstate)

4

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

Verifying Switched System Stability With Logic Conference’17, July 2017, Washington, DC, USA

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668

p : x ′
1
=−4.6x

1
+5.5x

2
,x ′

2
=−5.5x

1
+4.4x

2
&x

1
x
2
≥0

q : x ′
1
=4.4x

1
+5.5x

2
,x ′

2
=−5.5x

1
−4.6x

2
&x

1
x
2
≤0

-0.2 -0.1 0.1 0.2 x1

-0.15

-0.1

-0.05

0.05

0.1

0.15

x2

Vp=x2
1
−1.65x

1
x
2
+x2

2

Vq=x2
1
+1.65x

1
x
2
+x2

2

0 2 4 6 t

0.005

0.01

0.015

0.02

0.025

V

Figure 2: A switching trajectory for Example 7 from Sec-
tion 4.2 with state-dependent switching (left) and the value
of two Lyapunov functions along that trajectory (right).
Solid lines indicate the active Lyapunov function at time t .
Two sublevel sets Vp ,Vq < W = 0.012 are shown dashed on
the left withinwhich the switching trajectory is respectively
trapped at any given time.

Corollary 3 syntactically derives a slight generalization of condi-

tions i)–iii) from Section 3.1.1 for αstate, where the Lie derivatives
Lfp

(V)(x) for each p ∈ P are required to be negative on their re-

spective domain closures
3 Qp . This generalization is justified by the

same loop invariants in Section 3.1.1 because the ODE invariance

properties are only required to hold in their respective domains.

The domain asymmetry in αstate suggests another way of gener-
alizing the stability arguments, namely, through the use of multiple
Lyapunov functions, where a (possibly) different Lyapunov function
Vp is associated to each p ∈ P [5]. Here, the functionVp is responsi-

ble for justifying stability within domainQp , i.e., its value decreases

along system trajectories whenever the system is within Qp , as il-

lustrated in Fig. 2. Constraints on these functions are obtained by

modifying the loop invariants to account for this intuition.

Stability. The stability loop invariant is modified by case split-

ting disjunctively on the domains Qp ,p ∈ P, and requiring that

the sublevel set characterized by Vp < W is invariant within its

respective domain: Invs ≡ ∥x ∥ < ε∧
∨
p∈P

(
Qp ∧Vp <W

)
. Similar

to Section 3.1.1, the boundW is chosen so that each sublevel set

characterized by Vp <W is contained in the ball ∥x ∥ < ε .

Pre-attractivity. The pre-attractivity loop invariant is similarly

modified by disjunctively requiring that Vp decreases along system

trajectories when the system is in their respective domains Qp :

Inva ≡
∨
p∈P

(
Qp ∧ Vp < W ∧ (Vp ≥ U → Vp < W + kt)

)
.

The constants U ,W ,k,T are chosen as appropriate lower or upper

bounds for all the Lyapunov functions (see proof of Corollary 4).

Arithmetical conditions for the Lyapunov functions Vp ,p ∈ P

are derived from the modified invariants in the following rule.

Corollary 4 (UGpAS for state-dependent switching, MLF).

The following proof rule for multiple Lyapunov functions Vp ,p ∈ P

with four stacked premises is derivable in dL.

3
The topological closure Q of domain Q is needed for soundness of a technical

compactness argument used in the pre-attractivity proof, see AppendixA for details.

MLF

⊢ Vp (0) = 0 ∧ ∀x (∥x ∥ > 0 → Vp (x) > 0)

⊢ ∀b ∃γ ∀x (Vp (x) ≤ b → ∥x ∥ ≤ γ)

⊢ Lfp
(Vp)(0)=0 ∧ ∀x (∥x ∥>0 ∧Qp → Lfp

(Vp)(x)<0)

⊢
∧
q∈P

(
Qp ∧Qq → Vp = Vq

)
⊢ UGpAS(αstate)

The top three premises of Corollary 4 are similar to those of Corol-

lary 3, but are now required to hold for each Lyapunov function

Vp ,p ∈ P separately. The (new) bottom premise corresponds to a

compatibility condition between the Lyapunov functions arising

from the loop invariants. For example, consider the stability loop

invariant (similarly for pre-attractivity) and suppose the system

currently satisfies disjunctQp ∧Vp < w withVp justifying stability

in domainQp . If the system switches to the ODE x ′ = fq (x) within
domain Qq , then Lyapunov function Vq becomes the active Lya-

punov function which must satisfyVq < w to preserve the stability

loop invariant. The premise Qp ∧ Qq → Vp = Vq says that the

Lyapunov functions Vp ,Vq are equal whenever such a switch is

possible (in either direction), i.e., when their domains overlap.

3.2 Controlled Switching
This section turns to controlled switching models [46], where an ex-

plicit controller program is responsible for making logical switching

decisions between the ODEs x ′ = fp (x),p ∈ P. This is in contrast

to earlier models αarb,αstate which exhibit autonomous switching,
i.e., without an explicit control logic [6, 22]. General controlled

switching is modeled by the hybrid program αctrl:

αctrl ≡ αi
↓

initialization

;

(switching controller

↑

αu ;

αp (plant, actuate decision)︷ ︸︸ ︷⋃
p∈P

(
?u = p;x ′ = fp (x ,y),y

′ = дp (x ,y)&Qp
))∗

The model αctrl uses three subprograms: αi initializes the sys-
tem, then αu (modeling the switching controller) and αp (modeling

the continuous plant dynamics) are run in a switching loop. The

discrete programs αi ,αu decide on values for the control output

u = p,p ∈ P and the program αp responds to this output by evolv-

ing the corresponding ODE x ′ = fp (x ,y),y
′ = дp (x ,y)&Qp . The

programs αi ,αu must not modify the system state variables x , but
they may modify other auxiliaries, including auxiliary continuous
state variables y used to model timers or integral terms used in con-

trollers, see Section 5.2. This control-plant loop is a typical structure

for hybrid systems modeled in dL [32, 34], e.g., the controller αu
below models the discrete switching logic present in hybrid au-

tomata [6, 18, 32] (without jumps in the system state):

αu ≡
⋃
p∈P

(
?u = p;

⋃
q∈P

(
?Gp,q ;Rp,q ;u :=q

))
Rp,q ≡ y1 := e1;y2 := e2; . . . ;yk := ek

(2)

For each mode p ∈ P, the switching controller may decide to

transition to mode q ∈ P. This transition can only be taken if the

guard formula Gp,q is true in the current state
4
; if the transition is

taken, the reset map Rp,q sets the values of auxiliary state variables

y1, . . . ,yk respectively to the value of terms e1, . . . , ek .

4
The controller can allow trivial self-transitions with Gp,p ≡ true.

5

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

Conference’17, July 2017, Washington, DC, USA Anon.

727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806

Stability analysis for controlled switching proceeds by identify-

ing suitable loop invariants Inv for αctrl. A powerful proof tech-

nique applied here is compositional reasoning [32, 34] which sepa-

rately analyses the discrete (αi ,αu) and continuous (αp) dynamics,

and then lifts those results to the full hybrid dynamics. This idea is

exemplified by the following derived variation of the loop rule:

loopT

Γ ⊢ [αi]Inv Inv ⊢ [αu]Inv Inv ⊢ [αp]Inv Inv ⊢ ϕ

Γ ⊢ [αi ; (αu ;αp)
∗]ϕ

The premises of rule loopT say that system initialization αi puts
the system in a state satisfying the invariant Inv, and that Inv is

compositionally preserved by both the discrete switching logic αu
and the continuous dynamics αp . This rule is applied to analyze

stability for two important special instances of αctrl next.

3.2.1 Guarded State-dependent Switching. The instance αguard cor-
responds to the automata controller from (2) with αi ≡

⋃
p∈P u :=p

and guard formulas Gp,q . It does not use auxiliaries y nor the reset

map Rp,q . This model adds hysteresis [19] to the state-dependent
switching model from Section 3.1.2, so that switching decisions

at each Gp,q depend explicitly on the current discrete mode u in

addition to the continuous state. This design change is reflected in

the loop invariants and in the corresponding proof rule below.

Stability. The stability loop invariant ismodified (cf. Section 3.1.2)

to case split on the possible discrete modes u = p rather than the

ODE domains: Invs ≡ ∥x ∥ < ε ∧
∨
p∈P

(
u = p ∧Vp <W

)
.

Pre-attractivity. The pre-attractivity loop invariant is modified

similarly: Inva ≡
∨
p∈P

(
u=p∧Vp<W ∧(Vp ≥ U → Vp <W +kt)

)
.

Corollary 5 (UGpAS for guarded state-dependent switch-

ing, MLF). The following proof rule for multiple Lyapunov functions
Vp ,p ∈ P with four stacked premises is derivable in dL.

MLFG

⊢ Vp (0) = 0 ∧ ∀x (∥x ∥ > 0 → Vp (x) > 0)

⊢ ∀b ∃γ ∀x (Vp (x) ≤ b → ∥x ∥ ≤ γ)

⊢ Lfp
(Vp)(0)=0 ∧ ∀x (∥x ∥>0 ∧Qp → Lfp

(Vp)(x)<0)

⊢
∧
q∈P

(
Gp,q → Vq ≤ Vp

)
⊢ UGpAS(αguard)

The premises of rule MLFG are identical to those from MLF ex-

cept the bottom premise, which derives from loopT and unfolding

the controller αu with dL’s hybrid program axioms, e.g., the fol-

lowing proof skeleton shows the unfolding for the stability loop

invariant Invs corresponding to a switch from mode p to mode q:

x
Unfold

⊢ Gp,q → Vq ≤ Vp
Vp <W ⊢ Gp,q → Vq <W

u = p ∧Vp <W ⊢ [?Gp,q ;u :=q](u = q ∧Vq <W)

Invs ⊢ [αu]Invs

Arithmeticx
Unlike rule MLF, the bottom premise of rule MLFG only uses an in-

equality, because the guards Gp,q determine permissible switching.

3.2.2 Time-dependent Switching. The instance αtime shown below

models time-dependent switching, where the controller αu makes

switching decisions based on the time τ elapsed in each mode.

αtime ≡



αi ≡ τ := 0;
⋃
p∈P

u :=p

αu ≡
⋃
p∈P

(
?u = p;

⋃
q∈P

(
?θp,q ≤ τ ;τ := 0;u :=q

))
αp ≡

⋃
p∈P

(
?u = p;x ′ = fp (x),τ

′ = 1&τ ≤ Θp
)

The controller αu enables switching from mode p to q when a

minimum dwell time 0 ≤ θp,q ≤ τ has elapsed and resets the timer

whenever such a switch occurs. Conversely, the plant αp restricts

modes with a maximum dwell time τ ≤ Θp ,Θp > 0; an unbounded

dwell time Θp = ∞ is represented by the domain constraint true.
Dwell time restrictions can be used to stabilize systems that switch

between stable and unstable modes [48]. Intuitively, the system

should stay in stable modes for sufficient duration (θp,q ≤ τ) while
it should avoid staying in unstable modes for too long (τ ≤ Θp).

To reason about stability for αtime, consider Lyapunov function

conditions Lfp
(Vp)(x) ≤ −λpVp , where λp is a constant associated

with each mode p ∈ P. This condition bounds the value ofVp along

the solution of x ′ = fp (x) by either a decaying exponential for

stable modes (λp > 0) or a growing exponential for unstable modes

(λp ≤ 0). Let S = {p ∈ P, λp > 0} and U = {p ∈ P, λp ≤ 0} be

the indexes of the stable and unstable modes in the loop invariants

below, and let e(·) denote the real exponential function, which is

definable in dL by differential axiomatization [32, 35].

Stability. The stability loop invariant expresses the required ex-

ponential bounds with a case split depending if p ∈ S or p ∈ U:

Invs ≡ τ ≥ 0 ∧ ∥x ∥ < ε ∧

©­­­­«
∨
p∈S

(
u = p ∧Vp <We−λpτ

)
∨∨

p∈U

(
u = p ∧Vp <We−λp (τ−Θp) ∧ τ ≤ Θp

)ª®®®®¬
For p ∈ S, e−λpτ is the accumulated decay factor for Vp after

staying in the stable mode for time τ . For p ∈ U, e−λp (τ−Θp) is
a buffer factor for the growth of Vp in the unstable mode so that

Vp < W still holds at the maximum dwell time τ = Θp . In both

cases, the internal timer variable is non-negative (τ ≥ 0).

Pre-attractivity. The pre-attractivity loop invariant has similar

exponential decay and growth bounds for each p ∈ P in the current

mode. In addition, it has an overall exponential decay term e−σ (t−τ)

for some σ > 0, which ensures that the value of Vp tends to 0 as

t → ∞ for all switching trajectories; recall t is the global clock

introduced in the specification of pre-attractivity in Lemma 2.

Inva ≡ τ ≥ 0 ∧ t ≥ τ ∧

©­­­­«
∨
p∈S

(
u = p ∧Vp <We−σ (t−τ)e−λpτ

)
∨∨

p∈U

(
u = p ∧Vp <We−σ (t−τ)e−λp (τ−Θp) ∧ τ ≤ Θp

)ª®®®®¬
Intuitively, e−σ (t−τ) is the accumulated overall decay factor for

Vp until the previous switch, which occurred at time t − τ .

6

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

Verifying Switched System Stability With Logic Conference’17, July 2017, Washington, DC, USA

865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944

Corollary 6 (UGpAS for time-dependent switching, MLF).

The following proof rule for multiple Lyapunov functions Vp ,p ∈ P

with five stacked premises is derivable in dL.

MLFτ

⊢ Vp (0) = 0 ∧ ∀x (∥x ∥ > 0 → Vp (x) > 0)

⊢ ∀b ∃γ ∀x (Vp (x) ≤ b → ∥x ∥ ≤ γ)
⊢ Lfp

(Vp) ≤ −λpVp

Invs ⊢ [αu]Invs Inva ⊢ [αu]Inva
⊢ UGpAS(αtime)

The two red premises on the bottom row are expanded to arithmeti-
cal conditions on Vp in Appendix A.

The bottom premises of MLFτ andMLFG exemplify a key benefit

of dL stability reasoning: arithmetical conditions on Vp that arise

from αu , Invs , Inva are derived in a correct-by-construction manner

by systematically unfolding the discrete dynamics of αu with sound

dL axioms. This is especially important for controlled switching,

where the number of possible transitions scales quadratically with

the number of switching modes.

4 KEYMAERA X IMPLEMENTATION
This section presents a prototype implementation of switched sys-

tems support in the KeYmaera X prover based on dL [12]. The

implementation consists of ≈2700 lines and, crucially, does not re-

quire any extension to KeYmaera X’s existing soundness-critical

core. Accordingly, verification results for switched systems obtained

through this implementation directly inherit the strong correctness

properties guaranteed by KeYmaera X’s design [12, 25].

4.1 Modeling and Proof Interface
The implementation builds on KeYmaera X’s proof IDE [24] to pro-

vide a convenient interface for modeling switching mechanisms,

as shown in Fig. 3. The interface allows users to express switch-

ing mechanisms intuitively by rendering automaton plots while

abstracting away the underlying hybrid programs. It provide tem-

plates for switched systems following the switching mechanisms of

Section 3: state-dependent, guarded, timed, and general controlled

switching (tabs “Autonomous”, “Timed”, “Guarded”, “Generic” in

Fig. 3). From these templates, KeYmaera X automatically generates

programs and stability specifications, ensuring that they have the

correct structure. This saves user effort from having to manually

expand switching designs to correctly structured hybrid programs.

Moreover, the generated programs and specifications follow a uni-

form structure that the proof tactics discussed below can rely on.

Switched systems are represented internally with a common

interface SwitchedSystem which is currently implemented by four

classes: StateDependentαstate, Guardedαguard, Timedαtime, and
Controlled αctrl. The SwitchedSystem interface provides default
stability and pre-attractivity specifications, which can be adapted

by users on the UI if needed. Corollaries 3–6 are implemented as UG-

pAS proof tactics in KeYmaera X’s Bellerophon tactic language [11].

These tactics automate all of the reasoning steps underlying sta-

bility proofs for their respective switching mechanisms, so that

users only need to input candidate Lyapunov functions for KeY-

maera X to (attempt to) complete their proofs. Additionally, when

candidates are not provided by the user, the implementation uses

sum-of-squares programming [31, 38] to automatically generate

Figure 3: Screenshot of the KeYmaera X switched systems
modeling editor: automata input on top-left, rendered au-
tomaton top-right, generated hybrid program and specifica-
tion(s) in dL at the bottom

Table 1: Available tactics in KeYmaera X for switched sys-
tems stability proofs and Lyapunov function generation.

SwitchedSystem
Common Lyap. Multiple Lyap.

Proof Gen. Proof Gen.

StateDependent αstate ✓ ✓ ✓ ✓
Guarded αguard ✓ ✓ ✓ ✓
Timed αtime ✓ ✓ ✓ —

Controlled αctrl ✓ ✓ — —

candidate Lyapunov functions for a subset of switching designs. The

generated candidates are checked for correctness by KeYmaera X

so the generator does not need to be trusted for correctness of the

resulting proofs. Table 1 summarizes the available proof tactics and

Lyapunov function generation for classes of switching mechanisms.

4.2 Examples
The implementation is tested on a suite of examples drawn from

the literature [5, 19, 38, 44] featuring various switching mecha-

nisms. These examples have a 2 dimensional state space and switch

between 2 modes except Example 6 (3 dimensions, 2 modes) and Ex-

ample 4 (2 dimensions, 4 modes). Results are summarized in Table 2;

Lyapunov functions from the literature were used (if available) in

cases where generation failed or is inapplicable.

The proof tactics successfully prove most of the examples across

various switching mechanisms. For Example 6, a suitable Lyapunov

function (without numerical errors) could not be found. For the

time-dependent switching models (Examples 8–10), KeYmaera X

internally uses verified polynomial Taylor approximations to the ex-

ponential function for decidability of arithmetic [3, 47]. Example 10

requires a high degree approximation (15 terms) and its attractivity

proof could not be completed in reasonable time.

5 CASE STUDIES
This section presents three case studies applying the deductive

verification approach to justify various non-standard stability argu-

ments in KeYmaera X.

7

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

Conference’17, July 2017, Washington, DC, USA Anon.

1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082

Table 2: Stability proofs for examples drawn from the lit-
erature. The “Time” columns indicate time (in seconds) to
run the KeYmaera X proofs, × indicates incomplete proof. A
✓ in the “Gen.” column indicates successful Lyapunov func-
tion(s) generation, ? indicates that a candidatewas generated
but with numerical issues, and — indicates inapplicability.

Example Model Time (Stab.) Time (Attr.) Gen.

1 [5, Ex. 2.1] αstate 2.6 3.0 ✓
2 [19, Motiv. ex.] αstate 2.2 2.3 ✓
3 [19, Ex. 1] αstate 3.3 4.1 ✓
4 [19, Ex. 2 & 3] αguard 2.8 3.8 ?

5 [38, Ex. 6] αguard × × ?

6 [44, Ex. 2.45] αarb 19.4 11.1 ✓
7 [44, Ex. 3.25] αstate 2.4 2.9 ✓
8 [44, Ex. 3.49] αtime 4.4 5.6 —

9 [48, Ex. 1] αtime 4.7 5.3 —

10 [48, Ex. 2] αtime 256.9 × —

5.1 Canonical Max System
Branicky [4] investigates the longitudinal dynamics of an aircraft

with an elevator controller that mediates between two control ob-

jectives: i) tracking potentially unsafe pilot input and ii) respecting
safety constraints on the aircraft’s angle of attack. Assuming a state

feedback control law, the model is transformed to the following

canonical max system [4, Remark 5], with state variables x ,y and

parameters a,b, f ,д,γ satisfying a,b,a − f ,b − д > 0 and γ ≤ 0.

x ′ = y,y′ = −ax − by +max(f x + дy + γ , 0) (3)

The right-hand side of system (3) is non-differentiable but the

equations can be equivalently rewritten as a family of two ODEs

corresponding to either possibility for the max(f x +дy +γ , 0) term
in the equation for y′ as follows, where the system follows ODE A

in domain f x +дy +γ ≤ 0 and ODE B in domain f x +дy +γ ≥ 0.

A ≡ x ′ = y,y′ = −ax − by

B ≡ x ′ = y,y′ = −(a − f)x − (b − д)y + γ

Stability of this parametric system is not directly provable us-

ing standard techniques for state-dependent switching presented

in Section 3.1.2. For example, the ODE A stabilizes the system to

the origin but the ODE B stabilizes to the point (−
γ

a−f , 0) (away

from the origin for γ < 0). Branicky proves global asymptotic

stability of (3) with the following “noncustomary” [10] Lyapunov

function involving a nondifferentiable integrand:

V =
1

2

y2 +

∫ x

0

aξ −max(f ξ + γ , 0)dξ (4)

Instead, the key idea used to prove stability in this paper is ghost
switching: analogous to ghost variables in program verification

which are added for the sake of program proofs [30, 34, 35], ghost

switchingmodes do not change the physical dynamics of the system

but are introduced for the purposes of the stability analysis. Here,

ghost switching between f x + γ ≤ 0 and f x + γ ≥ 0 is used to

obtain closed form representations for the integral in (4). This yields

an instance of state-dependent switching αstate with 4 switching

modes and the corresponding stability specification Pm :

A
1
≡ A & f x + дy + γ ≤ 0 ∧ f x + γ ≤ 0

A
2
≡ A & f x + дy + γ ≤ 0 ∧ f x + γ ≥ 0

B
1
≡ B & f x + дy + γ ≥ 0 ∧ f x + γ ≤ 0

B
2
≡ B & f x + дy + γ ≥ 0 ∧ f x + γ ≥ 0

αm ≡

(
A

1
∪ A

2
∪ B

1
∪ B

2

)∗
Pm ≡ a>0 ∧ b>0 ∧ a−f >0 ∧ b−д>0 ∧ f ,0 ∧ γ≤0 → UGpAS(αm)

The ghost switching modes enable a multiple Lyapunov function

argument for stability using the following modified closed-form

representations of Branicky’s Lyapunov function (4), with V1 =
1

2
(bcx2 + 2cxy + y2) + a

2
x2 for A

1
, B

1
and V2 =

1

2
(bcx2 + 2cxy +

y2)+ a
2
x2 −

(f x+γ)2

2f for A
2
, B

2
.
5
The sub-terms highlighted in red

forV1,V2 are closed form expressions for

∫ x
0
aξ −max(f ξ +γ , 0)dξ

where f ξ + γ ≤ 0 and f ξ + γ ≥ 0 respectively. The Lyapunov

functions V1,V2 are modified from (4) to use a quadratic form with

an additional constant c satisfying constraints 0 < c < b, c <

b − д, c <
(a−f)(b−д)
a−f +д2 , c <

a(b−д)
a+д2 (such a constant always exists

under the assumptions on a,b, f ,д). This technical modification

is required to prove UGpAS for αm directly with the Lyapunov

functions. Branicky’s earlier proof requires LaSalle’s principle [4].

Another challenging aspect of this case study is verification of

the parametric arithmetical conditions for V1,V2, i.e., stability is

verified for all possible parameter values a,b, f ,д,γ that satisfy

the assumptions in Pm . Such questions are decidable in theory [3,

47], but are difficult for automated solvers in practice (even out of

reach of solvers that require numerically bounded parameters [14]).

KeYmaera X enables a user-aided proof of the required arithmetic

conditions. For example, the Lie derivative of the Lyapunov function

V1 for B
1
is given byV ′

1
= −(b−c)y2−acx2+ (cx +y)(f x +дy+γ),

whereV ′
1
is required to be strictly negative away from the origin for

stability. The arithmetical argument is as follows: if cx +y ≤ 0, then

by constraint f x + дy + γ ≥ 0, V ′
1
satisfies V ′

1
≤ −(b − c)y2 − acx2.

Otherwise, cx + y > 0, then by constraint f x + γ ≤ 0, V ′
1
satisfies

V ′
1
≤ −(b−д−c)y2−acx2+дcxy. In either case, the RHS bound is a

negative definite quadratic form by the earlier choice of parameter

c and therefore, V ′
1
is negative away from the origin.

5.2 Automated Cruise Control
Oehlerking [29, Sect. 4.6] verifies the stability of an automatic

cruise controller modeled as a hybrid automaton with 6 operat-

ing modes and 11 transitions between them: normal proportional-

integral (PI) control, acceleration, service braking (2 modes), and

emergency braking (2 modes). Figure 4 shows an abridged version

of the corresponding KeYmaera X model (using αctrl) with the PI

control mode, where v is the relative velocity to be controlled to

v = 0 and x , t are auxiliary integral and timer variables used in the

controller. Briefly, this controller is designed to use the PI controller

near v = 0 for stability, while its other control modes drive the

system toward v = 0 by accelerating or braking.

5
An important technical requirement forV2 to be well-defined is f , 0. The case with

f = 0 is also verified in KeYmaera X but the details are omitted here for brevity. It

does not require ghost switching and uses only V1 as its common Lyapunov function.

8

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

Verifying Switched System Stability With Logic Conference’17, July 2017, Washington, DC, USA

1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220

normalPI("v' = -0.001*x-0.052*v, x' = v, t' = 0
& -15 <= v & v <= 15 & -500 <= x & x <= 500")

normalPI -->|"?(13 <= v & v <= 15 &
-500 <= x & x <= 500); t := 0;"| sbrakeact

normalPI -->|"?(-15 <= v & v <= -14 &
-500 <= x & x <= 500);"| accelerate

... // Other modes

\forall eps (eps > 0 -> // Abridged stability specification
...
[... // Initialize
{ { ... ++ // Transitions for other modes

?mode = normalPI();
{ {?13 <= v & v <= 15 & -500 <= x & x <= 500; t := 0;}

mode := sbrakeact(); ++
?-15 <= v & v <= -14 & -500 <= x & x <= 500;
mode := accelerate(); ++
mode := mode; } }

{ ... ++ // Plant ODEs for other modes
?mode = normalPI();
{ v' = -0.001*x-0.052*v, x' = v, t' = 0 &

-15 <= v & v <= 15 & -500 <= x & x <= 500 } }
}*] v^2 < eps^2

Figure 4: Snippets of an automated cruise controller [29]modeled as a (switching) hybrid automaton. Users express the automa-
ton within the description language (top left) and KeYmaera X visualizes the automaton on-the-fly (bottom left). The imple-
mentation automatically generates the appropriate hybrid program representation and UGpAS specification (right); ++,&,()
denote choice, conjunction, and constants in KeYmaera X’s ASCII syntax respectively.

Lyapunov function candidates for this model can be successfully

generated using the Stabhyli [26] stability tool for hybrid automata.

However, Stabhyli (with default configurations) outputs a Lyapunov

function candidate for the PI control mode that is numerically un-

sound, see Appendix B for the output and a counterexample; this is

a known issue with Stabhyli for control modes at the origin [26]. For

this case study, the issue is manually resolved by truncating terms

with very small magnitude coefficients in the generated output and

then checking in KeYmaera X that the arithmetical conditions for

the PI mode are satisfied exactly for the truncated candidate.

Further insights from the controller design are used in the UGpAS

proof in KeYmaera X. Briefly, stability only concerns states and

modes that are active near the origin. Hence, the stability argument

and loop invariant only need to mention a single Lyapunov function

for the PI control mode, while choosing δ (in Def. 1) sufficiently

small so that none of the other modes can be entered.
6
Similarly, pre-

attractivity only requires reasoning about asymptotic convergence
to the origin for the PI control mode, hence it suffices to show that

the system leaves all other modes in finite time.

5.3 Brockett’s Nonholonomic Integrator
Verification of stabilizing control laws for Brockett’s nonholonomic

integrator [7] is of significant interest because stability for a large

class of models can be reduced to that of the integrator via co-

ordinate transformations, e.g., Liberzon [22] transforms a unicy-

cle model to the integrator and provides a stabilizing switching

control law corresponding to parking of the unicycle. The non-

holonomic integrator is described by the system of differential

equations x ′ = u,y′ = v, z′ = xv − yu, with state variables x ,y, z
and state feedback control inputs u = u(x ,y, z),v = v(x ,y, z) (to be
determined below). Notably, this is a classical example of a system

6
In fact, the PI controller equations are exactly those of a linearized pendulum, which

has known Lyapunov functions [21, 45]. It could be interesting to modify Stabhyli to

accept user-provided Lyapunov function hints for certain modes.

that is not stabilizable by purely continuous feedback control. In-

tuitively, no choice of controls u,v can produce motion along the

z-axis (x = y = 0). Thus, to stabilize the system to the origin, the

controller must first drive the system away from the z-axis before
switching to a control law that stabilizes the system from states

away from the z-axis. This intuition can be realized using two differ-
ent switching strategies that are analogous to the event-triggered

and time-triggered CPS design paradigms respectively [34].

5.3.1 Event-triggered Controller. Bloch and Drakunov [2] use the

switching controller u = −x + ay sign(z),v = −y − ax sign(z) to
asymptotically stabilize the integrator in the region

a
2
(x2+y2) ≥ |z |

for any given constant a > 0. This controller first drives the system

towards the plane z = 0 and, once it reaches the plane, slides along
the plane towards the origin. The closed-loop system is modeled

as an instance of state-dependent switching αstate with 3 modes

depending on the sign of z and specification Pe :

A ≡ x ′ = −x + ay,y′ = −y − ax , z′ = −a(x2 + y2)& z ≥ 0

B ≡ x ′ = −x − ay,y′ = −y + ax , z′ = a(x2 + y2)& z ≤ 0

C ≡ x ′ = −x ,y′ = −y, z′ = 0& z = 0

αe ≡

(
A ∪ B ∪ C

)∗
Pe ≡ a > 0 → UStab(α)∧

∀δ>0∀ε>0∃T≥0∀x ,y, z
(
∥x ,y, z∥ < δ ∧

a

2

(x2 + y2) ≥ |z | →

[t := 0;αe , t
′ = 1](t ≥ T → ∥x ,y, z∥ < ε

)
The specification Pe is identical to UGpAS except it restricts

pre-attractivity to the applicable region
a
2
(x2 + y2) ≥ |z | for the

controller.
7
Its verification uses the squared normV = x2 +y2 + z2

as a common Lyapunov function. The key modification to the pre-

attractivity proof, cf. Section 3.1, is to use (and verify) the fact that

7
The applicable region is equivalently characterized by the real arithmetic formula

(z≥0 → a
2
(x 2 + y2)≥z) ∧ (z≤0 → a

2
(x 2 + y2)≥−z) but this is omitted for brevity.

9

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

Conference’17, July 2017, Washington, DC, USA Anon.

1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358

a
2
(x2 + y2) ≥ |z | is a loop invariant of αe . This additional invariant

corresponds to the fact that the controller keeps the system within

its applicable region (if the system is initially within that region).

In fact, αe can be extended to a globally stabilizing controller,

as modeled by αê below (if, else branching is supported as an

abbreviation in KeYmaera X [34]):

D ≡ x ′ = u,y′ = v, z′ = xv − yu &
a

2

(x2 + y2) ≤ |z |

E ≡ x ′ = u,y′ = v, z′ = xv − yu &
a

2

(x2 + y2) ≥ |z |

αê ≡

(
if

(a
2

(x2 + y2) ≥ |z |
) {

A ∪ B ∪ C

}
else

{
if((x − y)z ≤ 0){u := c;v := c}

else{u :=−c;v :=−c};{
D ∪ E

} })∗
If the system is in the applicable region (outer if branch), then

the previous controller from αe is used. Otherwise, outside the

applicable region (outer else branch), the system applies a constant

control c > 0 chosen to drive the system into the applicable region.

The pair of ODEs D and E model an event-trigger in dL [34],

where the switching controller is triggered to make its next decision

when the system reaches the switching surface
a
2
(x2 + y2) = |z |.

The specification Pê ≡ a > 0∧c > 0 → UGpAS(αê) is proved by
modifying the loop invariants to account for the initial period where

the system is outside the applicable region, e.g., the stability loop in-

variant Invs ≡ (¬a
2
(x2 + y2) ≥ |z | → |z |<δ)∧(a

2
(x2 + y2) ≥ |z | →

∥x ,y, z∥<ε) expresses that the controller keeps |z | sufficiently small

to preserve stability outside the applicable region.

5.3.2 Time-triggered Controller. The time-triggered switching strat-

egy [34], modeled by ατ below, is similar to that proposed by Liber-

zon [22, Section 4.2]. If the system is on the z-axis and away from

the origin A , the controller sets an internal stopwatch τ and drives

the system away from the axis for maximum duration T0 > 0 with

u = z,v = z. Otherwise B , the controller drives the system towards

the origin along a parabolic curve of the form
a
2
(x2 + y2) = z.

ατ ≡

(
if(x = 0 ∧ y = 0 ∧ z , 0)

{
A τ := 0;x ′ = z,y′ = z, z′ = xz − yz &τ ≤ T0

}
else

{
a :=

2z

x2 + y2
;

B x ′ = −x + ay,y′ = −y − ax , z′ = −a(x2 + y2)
})∗

The specification Pτ ≡ T0 > 0 → UGpAS(ατ) is again proved by

analyzing both cases of the controller in the loop invariants, e.g.,

with the pre-attractivity invariant Inva :(
x = 0 ∧ y = 0 ∧ z , 0 → |z | < δ ∧ t = 0

)
∧(

¬(x = 0 ∧ y = 0 ∧ z , 0) →

∥x ,y, z∥ > ε → ∥x ,y, z∥2 < δ2(2T 2

0
+ 1) − ε2(t −T0)

)
The left conjunct says the system may start transiently on the

z-axis (away from z = 0) at time t = 0. The right conjunct gives ex-

plicit bounds on ∥x ,y, z∥, which, for sufficiently large t ≥ T implies

that the system enters ∥x ,y, z∥ < ε as required for pre-attractivity.

The transient term δ2(2T 2

0
+ 1) upper bounds the (squared) norm of

the system state after starting on the z-axis in ball ∥x ,y, z∥ < δ and

following mode A for the maximum stopwatch duration τ = T0.

6 RELATEDWORK
Switched Systems. Comprehensive introductions to the analysis

and design of switching control can be found in the literature [10, 22,

44]. An important design consideration (which this paper sidesteps,

cf. Remark 1) is whether a given switched or hybrid system has com-

plete solutions [16, 17, 23, 49]. Justification of such design consider-

ations, and other stability notions of interest for switching designs,

e.g., quadratic, region, or set-based stability [16, 17, 22, 36, 44], can

be done in dL with appropriate formal specifications of the desired

properties from the literature [32, 34, 45, 46]. Another complemen-

tary question is how to design a switching control law that stabilizes
a given system. Switching design approaches are often guided by

underlying stability arguments [22, 39, 44]; the loop invariants

from Section 3 are expected to help guide correct-by-construction

synthesis of such controllers.

Stability Analysis and Verification. Corollaries 3–6 formalize var-

ious Lyapunov function-based stability arguments from the litera-

ture [5, 48] using loop invariants, yielding trustworthy, computer-

checked stability proofs in KeYmaera X [11, 12]. Other computer-

aided approaches for switched system stability analysis are based

on finding Lyapunov functions that satisfy the requisite arith-

metical conditions [20, 26, 29, 38, 41, 42]. Although the search for

such functions can often be done efficiently with numerical tech-

niques [26, 31, 38], various authors have emphasized the need to

check that their outputs satisfy the arithmetical conditions exactly,
i.e., without numerical errors compromising the resulting stabil-

ity claims [1, 20, 40] (see, e.g., Section 5.2). This paper’s deductive

approach goes further as it comprehensively verifies all steps of
the stability argument down to its underlying discrete and contin-

uous reasoning steps [33, 34]. The generality of this approach is

precisely what enables verification of various classes of switching

mechanisms all within a common logical framework (Section 3)

and verification of non-standard stability arguments (Section 5).

Alternative approaches to stability verification are based on ab-

straction [15, 43] and model checking [36].

7 CONCLUSION
This paper shows how to deductively verify switched system sta-

bility, using dL’s nested quantification over hybrid programs to

specify stability, and dL’s axiomatics to prove those specifications.

Loop invariants—a classical technique from verification—are used

to succinctly capture the desired properties of a given switching

design; through deductive proofs, these invariants yield system-

atic, correct-by-construction derivation of the requisite arithmetical

conditions on Lyapunov functions for stability arguments in imple-

mentations. An interesting direction for future work is to use other

Lyapunov function generation techniques [20, 26, 29, 42], which—

thanks to the presented approach—do not have to be trusted since

their results can be checked independently by KeYmaera X. This

would enable fully automated, yet sound and trustworthy verifica-

tion of switched system stability based on dL’s parsimonious hybrid

program reasoning principles.

10

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

Verifying Switched System Stability With Logic Conference’17, July 2017, Washington, DC, USA

1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496

REFERENCES
[1] Daniele Ahmed, Andrea Peruffo, and Alessandro Abate. 2020. Automated and

Sound Synthesis of Lyapunov Functions with SMT Solvers. In TACAS (LNCS),
Armin Biere and David Parker (Eds.), Vol. 12078. Springer, 97–114. https://doi.

org/10.1007/978-3-030-45190-5_6

[2] Anthony Bloch and Sergey Drakunov. 1996. Stabilization and tracking in the

nonholonomic integrator via sliding modes. Systems & Control Letters 29, 2 (1996),
91–99. https://doi.org/10.1016/S0167-6911(96)00049-7

[3] Jacek Bochnak, Michel Coste, and Marie-Françoise Roy. 1998. Real Algebraic
Geometry. Springer, Heidelberg. https://doi.org/10.1007/978-3-662-03718-8

[4] Michael S. Branicky. 1994. Analyzing continuous switching systems: theory and

examples. In ACC, Vol. 3. 3110–3114. https://doi.org/10.1109/ACC.1994.735143

[5] Michael S. Branicky. 1998. Multiple Lyapunov functions and other analysis

tools for switched and hybrid systems. IEEE Trans. Autom. Control. 43, 4 (1998),
475–482. https://doi.org/10.1109/9.664150

[6] Michael S. Branicky. 2005. Introduction to Hybrid Systems. In Handbook of Net-
worked and Embedded Control Systems, Dimitrios Hristu-Varsakelis andWilliam S.

Levine (Eds.). Birkhäuser, 91–116. https://doi.org/10.1007/0-8176-4404-0_5

[7] R. W. Brockett. 1983. Asymptotic stability and feedback stabilization. In Differen-
tial Geometric Control Theory. Birkhauser, 181–191.

[8] Carmen Chicone. 2006. Ordinary Differential Equations with Applications, Second
Edition. Springer-Verlag New York. https://doi.org/10.1007/0-387-35794-7

[9] Jorge Cortes. 2008. Discontinuous dynamical systems. IEEE Control Systems
Magazine 28, 3 (2008), 36–73. https://doi.org/10.1109/MCS.2008.919306

[10] Raymond A. Decarlo, Michael S. Branicky, Stefan Pettersson, and Bengt Lennart-

son. 2000. Perspectives and results on the stability and stabilizability of hybrid

systems. Proc. IEEE 88, 7 (2000), 1069–1082. https://doi.org/10.1109/5.871309

[11] Nathan Fulton, Stefan Mitsch, Brandon Bohrer, and André Platzer. 2017.

Bellerophon: Tactical Theorem Proving for Hybrid Systems. In ITP (LNCS),
Mauricio Ayala-Rincón and César A. Muñoz (Eds.), Vol. 10499. Springer, 207–224.

https://doi.org/10.1007/978-3-319-66107-0_14

[12] Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp, and André Platzer.

2015. KeYmaera X: An Axiomatic Tactical Theorem Prover for Hybrid Systems.

In CADE (LNCS), Amy P. Felty and Aart Middeldorp (Eds.), Vol. 9195. Springer,

Cham, 527–538. https://doi.org/10.1007/978-3-319-21401-6_36

[13] Sicun Gao, James Kapinski, Jyotirmoy V. Deshmukh, Nima Roohi, Armando Solar-

Lezama, Nikos Aréchiga, and Soonho Kong. 2019. Numerically-Robust Inductive

Proof Rules for Continuous Dynamical Systems. In CAV (LNCS), Isil Dillig and
Serdar Tasiran (Eds.), Vol. 11562. Springer, 137–154. https://doi.org/10.1007/978-

3-030-25543-5_9

[14] Sicun Gao, Soonho Kong, and Edmund M. Clarke. 2013. dReal: An SMT Solver for

Nonlinear Theories over the Reals. In CADE (LNCS), Maria Paola Bonacina (Ed.),

Vol. 7898. Springer, 208–214. https://doi.org/10.1007/978-3-642-38574-2_14

[15] Miriam García Soto and Pavithra Prabhakar. 2020. Abstraction based verification

of stability of polyhedral switched systems. Nonlinear Analysis: Hybrid Systems
36 (2020), 100856. https://doi.org/10.1016/j.nahs.2020.100856

[16] Rafal Goebel, Ricardo G. Sanfelice, and Andrew R. Teel. 2009. Hybrid dynamical

systems. IEEE Control Systems Magazine 29, 2 (2009), 28–93. https://doi.org/10.

1109/MCS.2008.931718

[17] Rafal Goebel, Ricardo G. Sanfelice, and Andrew R. Teel. 2012. Hybrid Dynamical
Systems: Modeling, Stability, and Robustness. Princeton University Press.

[18] Thomas A. Henzinger. 1996. The Theory of Hybrid Automata. In LICS. IEEE
Computer Society, 278–292.

[19] Martin Johansson and Anders Rantzer. 1998. Computation of piecewise quadratic

Lyapunov functions for hybrid systems. IEEE Trans. Autom. Control. 43, 4 (1998),
555–559. https://doi.org/10.1109/9.664157

[20] James Kapinski, Jyotirmoy V. Deshmukh, Sriram Sankaranarayanan, and Nikos

Aréchiga. 2014. Simulation-guided Lyapunov analysis for hybrid dynamical

systems. In HSCC, Martin Fränzle and John Lygeros (Eds.). ACM, 133–142. https:

//doi.org/10.1145/2562059.2562139

[21] Hassan K. Khalil. 1992. Nonlinear systems. Macmillan Publishing Company, New

York. xii+564 pages.

[22] Daniel Liberzon. 2003. Switching in Systems and Control. Birkhäuser. https:

//doi.org/10.1007/978-1-4612-0017-8

[23] John Lygeros, Karl Henrik Johansson, Slobodan N. Simic, Jun Zhang, and

Shankar S. Sastry. 2003. Dynamical properties of hybrid automata. IEEE Trans.
Autom. Control. 48, 1 (2003), 2–17. https://doi.org/10.1109/TAC.2002.806650

[24] Stefan Mitsch and André Platzer. 2016. The KeYmaera X proof IDE: Concepts

on usability in hybrid systems theorem proving. In 3rd Workshop on Formal
Integrated Development Environment (EPTCS), Catherine Dubois, Paolo Masci,

and Dominique Méry (Eds.), Vol. 240. 67–81. https://doi.org/10.4204/EPTCS.240.5

[25] Stefan Mitsch and André Platzer. 2020. A Retrospective on Developing Hybrid

Systems Provers in the KeYmaera Family - A Tale of Three Provers. In Deductive
Software Verification: Future Perspectives - Reflections on the Occasion of 20 Years
of KeY, Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, and

Matthias Ulbrich (Eds.). LNCS, Vol. 12345. Springer, 21–64. https://doi.org/10.

1007/978-3-030-64354-6_2

[26] Eike Möhlmann and Oliver E. Theel. 2013. Stabhyli: a tool for automatic stability

verification of non-linear hybrid systems. In HSCC, Calin Belta and Franjo Ivancic
(Eds.). ACM, 107–112. https://doi.org/10.1145/2461328.2461347

[27] Eike Möhlmann and Oliver E. Theel. 2021. Stabhyli. https://uol.de/svs/forschung/

avacs/stabhyli [Online; accessed 27-October-2021].

[28] A. S. Morse. 1995. Control Using Logic-Based Switching. In Trends in Control,
Alberto Isidori (Ed.). Springer London, London, 69–113. https://doi.org/10.1007/

978-1-4471-3061-1_4

[29] Jens Oehlerking. 2011. Decomposition of stability proofs for hybrid systems. Ph.D.
Dissertation. Carl von Ossietzky University of Oldenburg. https://oops.uni-

oldenburg.de/id/eprint/1375

[30] Susan S. Owicki and David Gries. 1976. Verifying Properties of Parallel Programs:

An Axiomatic Approach. Commun. ACM 19, 5 (1976), 279–285. https://doi.org/

10.1145/360051.360224

[31] A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler, P. A.

Parrilo, M. M. Peet, and D. Jagt. 2021. SOSTOOLS: Sum of squares optimization
toolbox for MATLAB. http://arxiv.org/abs/1310.4716. Available from

https://github.com/oxfordcontrol/SOSTOOLS.
[32] André Platzer. 2010. Logical Analysis of Hybrid Systems - Proving Theorems for

Complex Dynamics. Springer. https://doi.org/10.1007/978-3-642-14509-4

[33] André Platzer. 2017. A Complete Uniform Substitution Calculus for Differential

Dynamic Logic. J. Autom. Reasoning 59, 2 (2017), 219–265. https://doi.org/10.

1007/s10817-016-9385-1

[34] André Platzer. 2018. Logical Foundations of Cyber-Physical Systems. Springer,
Cham. https://doi.org/10.1007/978-3-319-63588-0

[35] André Platzer and Yong Kiam Tan. 2020. Differential Equation Invariance Axiom-

atization. J. ACM 67, 1, Article 6 (2020), 66 pages. https://doi.org/10.1145/3380825

[36] Andreas Podelski and Silke Wagner. 2006. Model Checking of Hybrid Systems:

From Reachability Towards Stability. In HSCC (LNCS), João P. Hespanha and

Ashish Tiwari (Eds.), Vol. 3927. Springer, 507–521. https://doi.org/10.1007/

11730637_38

[37] Stephen Prajna, Ali Jadbabaie, and George J. Pappas. 2007. A Framework for

Worst-Case and Stochastic Safety Verification Using Barrier Certificates. IEEE
Trans. Automat. Contr. 52, 8 (2007), 1415–1428. https://doi.org/10.1109/TAC.2007.

902736

[38] S. Prajna and A. Papachristodoulou. 2003. Analysis of switched and hybrid

systems - beyond piecewise quadratic methods. In ACC, Vol. 4. 2779–2784 vol.4.
https://doi.org/10.1109/ACC.2003.1243743

[39] Hadi Ravanbakhsh and Sriram Sankaranarayanan. 2015. Counter-Example

Guided Synthesis of control Lyapunov functions for switched systems. In CDC.
IEEE, 4232–4239. https://doi.org/10.1109/CDC.2015.7402879

[40] Pierre Roux, Yuen-Lam Voronin, and Sriram Sankaranarayanan. 2018. Validating

numerical semidefinite programming solvers for polynomial invariants. Formal
Methods Syst. Des. 53, 2 (2018), 286–312. https://doi.org/10.1007/s10703-017-

0302-y

[41] Sriram Sankaranarayanan, Xin Chen, and Erika Ábrahám. 2013. Lyapunov

Function Synthesis Using Handelman Representations. In NOLCOS, Sophie Tar-
bouriech and Miroslav Krstic (Eds.). International Federation of Automatic Con-

trol, 576–581. https://doi.org/10.3182/20130904-3-FR-2041.00198

[42] Zhikun She and Bai Xue. 2014. Discovering Multiple Lyapunov Functions for

Switched Hybrid Systems. SIAM J. Control. Optim. 52, 5 (2014), 3312–3340.

https://doi.org/10.1137/130934313

[43] Miriam García Soto and Pavithra Prabhakar. 2018. Averist: Algorithmic Verifier

for Stability of Linear Hybrid Systems. In HSCC, Maria Prandini and Jyotirmoy V.

Deshmukh (Eds.). ACM, 259–264. https://doi.org/10.1145/3178126.3178154

[44] Zhendong Sun and Shuzhi Sam Ge. 2011. Stability Theory of Switched Dynamical
Systems. Springer. https://doi.org/10.1007/978-0-85729-256-8

[45] Yong Kiam Tan and André Platzer. 2021. Deductive Stability Proofs for Ordinary

Differential Equations. In TACAS (LNCS), Jan Friso Groote and Kim Guldstrand

Larsen (Eds.), Vol. 12652. Springer, 181–199. https://doi.org/10.1007/978-3-030-

72013-1_10

[46] Yong KiamTan andAndré Platzer. 2021. Switched Systems as Hybrid Programs. In

ADHS (IFAC-PapersOnLine), Raphaël M. Jungers, Necmiye Ozay, and Alessandro

Abate (Eds.), Vol. 54. Elsevier, 247–252. https://doi.org/10.1016/j.ifacol.2021.08.506

[47] Alfred Tarski. 1951. A Decision Method for Elementary Algebra and Geometry.
RAND Corporation, Santa Monica, CA.

[48] Guisheng Zhai, Bo Hu, Kazunori Yasuda, and Anthony N. Michel. 2001. Stability

analysis of switched systems with stable and unstable subsystems: An average

dwell time approach. Int. J. Syst. Sci. 32, 8 (2001), 1055–1061. https://doi.org/10.

1080/00207720116692

[49] Jun Zhang, Karl Henrik Johansson, John Lygeros, and Shankar Sastry. 2001.

Zeno hybrid systems. Int. J. Robust Nonlinear Control. 11, 5 (2001), 435–451.

https://doi.org/10.1002/rnc.592

11

https://doi.org/10.1007/978-3-030-45190-5_6
https://doi.org/10.1007/978-3-030-45190-5_6
https://doi.org/10.1016/S0167-6911(96)00049-7
https://doi.org/10.1007/978-3-662-03718-8
https://doi.org/10.1109/ACC.1994.735143
https://doi.org/10.1109/9.664150
https://doi.org/10.1007/0-8176-4404-0_5
https://doi.org/10.1007/0-387-35794-7
https://doi.org/10.1109/MCS.2008.919306
https://doi.org/10.1109/5.871309
https://doi.org/10.1007/978-3-319-66107-0_14
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-030-25543-5_9
https://doi.org/10.1007/978-3-030-25543-5_9
https://doi.org/10.1007/978-3-642-38574-2_14
https://doi.org/10.1016/j.nahs.2020.100856
https://doi.org/10.1109/MCS.2008.931718
https://doi.org/10.1109/MCS.2008.931718
https://doi.org/10.1109/9.664157
https://doi.org/10.1145/2562059.2562139
https://doi.org/10.1145/2562059.2562139
https://doi.org/10.1007/978-1-4612-0017-8
https://doi.org/10.1007/978-1-4612-0017-8
https://doi.org/10.1109/TAC.2002.806650
https://doi.org/10.4204/EPTCS.240.5
https://doi.org/10.1007/978-3-030-64354-6_2
https://doi.org/10.1007/978-3-030-64354-6_2
https://doi.org/10.1145/2461328.2461347
https://uol.de/svs/forschung/avacs/stabhyli
https://uol.de/svs/forschung/avacs/stabhyli
https://doi.org/10.1007/978-1-4471-3061-1_4
https://doi.org/10.1007/978-1-4471-3061-1_4
https://oops.uni-oldenburg.de/id/eprint/1375
https://oops.uni-oldenburg.de/id/eprint/1375
https://doi.org/10.1145/360051.360224
https://doi.org/10.1145/360051.360224
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1145/3380825
https://doi.org/10.1007/11730637_38
https://doi.org/10.1007/11730637_38
https://doi.org/10.1109/TAC.2007.902736
https://doi.org/10.1109/TAC.2007.902736
https://doi.org/10.1109/ACC.2003.1243743
https://doi.org/10.1109/CDC.2015.7402879
https://doi.org/10.1007/s10703-017-0302-y
https://doi.org/10.1007/s10703-017-0302-y
https://doi.org/10.3182/20130904-3-FR-2041.00198
https://doi.org/10.1137/130934313
https://doi.org/10.1145/3178126.3178154
https://doi.org/10.1007/978-0-85729-256-8
https://doi.org/10.1007/978-3-030-72013-1_10
https://doi.org/10.1007/978-3-030-72013-1_10
https://doi.org/10.1016/j.ifacol.2021.08.506
https://doi.org/10.1080/00207720116692
https://doi.org/10.1080/00207720116692
https://doi.org/10.1002/rnc.592

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

Conference’17, July 2017, Washington, DC, USA Anon.

1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634

A PROOFS
This appendix provides proofs for the results presented in the main

paper. Relevant background for dL’s semantics and axiomatics is

given, expanding on the material in Section 2. Full definitions are

available in the literature [33, 34].

A dL state ω : V → R assigns a real value to each variable in

V . The set of variables V consists of the continuously evolving

state variables x = (x1, . . . ,xn) of a switched system model and

additional variables V \ {x} used as program auxiliaries for those

models. Following Tan and Platzer [46], dL states are projected on

the state variables x and the (projected) dL statesω are equivalently

treated as points in Rn . The semantics of program auxiliaries is as

usual [34]. The axioms and proof rules of dL used in the proofs are

as follows.

[:=] [x := e]P(x) ↔ P(e) (e free for x in P)

[?] [?Q]P ↔ (Q → P)

[;] [α ; β]P ↔ [α][β]P

[∪] [α ∪ β]P ↔ [α]P ∧ [β]P

[∗] [α∗]P ↔ P ∧ [α][α∗]P

loop

Γ ⊢ Inv Inv ⊢ [α] Inv Inv ⊢ ϕ
Γ ⊢ [α∗]ϕ

loopT

Γ ⊢ [αi]Inv Inv ⊢ [αu]Inv Inv ⊢ [αp]Inv Inv ⊢ ϕ

Γ ⊢ [αi ; (αu ;αp)
∗]ϕ

G

⊢ P

Γ ⊢ [α]P
M[·]

R ⊢ P Γ ⊢ [α]R

Γ ⊢ [α]P

dI≽

Γ,Q ⊢ p≽q Q ⊢ Lf (x)(p)≥Lf (x)(q)

Γ ⊢ [x ′ = f (x)&Q]p≽q
(≽ is either ≥ or >)

dC

Γ ⊢ [x ′ = f (x)&Q]C Γ ⊢ [x ′ = f (x)&Q ∧C]P

Γ ⊢ [x ′ = f (x)&Q]P

dW

Q ⊢ P

Γ ⊢ [x ′ = f (x)&Q]P

dbx≽

Q ⊢ Lf (x)(p) ≥ дp

p ≽ 0 ⊢ [x ′ = f (x)&Q]p ≽ 0

(≽ is either ≥ or >)

Barr

Q,p = 0 ⊢ Lf (x)(p) > 0

Γ,p ≽ 0 ⊢ [x ′ = f (x)&Q]p ≽ 0

(≽ is either ≥ or >)

DCC

[x ′=f (x)&Q∧P]R ∧ [x ′=f (x)&Q](¬P→[x ′=f (x)&Q]¬P)

→ [x ′=f (x)&Q](P → R)

DX [x ′=f (x)&Q]P ↔ (Q → P ∧ [x ′=f (x)&Q]P) (x ′ < P ,Q)

Axioms [:=], [?], [;], [∪], [∗] unfold box modalities of their re-

spective hybrid programs according to their semantics [33, 34].

These equivalences are especially useful for obtaining correct-by-

construction arithmetical conditions on Lyapunov functions in

derivations and implementations (see Corollaries 5 and 6). The de-

rived loop induction rules loop, loopT are used to prove stability

properties of switched system models with suitably chosen loop

invariants Inv (see Section 3). Rule G is Gödel generalization, and

rule M[·] is the derived monotonicity rule for box modality post-

conditions; antecedents that have no free variables bound in α are

soundly kept across uses of rules loop, loopT, G, M[·] [33, 34].

The remaining axioms and proof rules are used in dL to reason

about differential equations x ′ = f (x)&Q [33–35, 45]. Differential

invariants dI≽ proves ODE invariance for an inequality p ≽ q
if their Lie derivatives satisfy Lf (x)(p) ≥ Lf (x)(q). Differential

cuts dC say that if one can separately prove that formula C is al-

ways satisfied along the solution, then C may be assumed in the

domain constraint when proving the same for formula P . Differ-
ential weakening dW says that postcondition P is always satisfied

along solutions if it is already implied by the domain constraint.

Rule dbx≽ is the Darboux inequality proof rule for the invariance

of p ≽ 0, where д is an arbitrary cofactor term [35]. Rule Barr is

a dL rendition of the strict barrier certificates proof rule [37] for

invariance of p ≽ 0. Axiom DCC says that to prove that an impli-

cation P → R is always true along an ODE, it suffices to prove it

assuming P in the domain if ¬P is invariant along the ODE [45].

Differential skip DX unfolds the effect of a differential equation on

the initial state in the box modality.

To improve readability in the proofs below, formula and premises

are often abbreviated, e.g., with a○, 1○. To avoid confusion, the scope

of these abbreviations always extend to the end of each paragraph
label, i.e., the abbreviations used in the Stability proofs should not

be confused with those used in the Pre-attractivity proofs.

Proof of Lemma 2. LetΦ(x) denote the set of all domain-obeying

solutions φ : [0,Tφ] → R
n
for a given switched system from state

x ∈ Rn as in Def. 1. Hybrid program α models this switched system
if for any initial state ω ∈ Rn , the state ν is reachable from ω, i.e.,
(ω,ν) ∈ [[α]], iff ν = φ(τ) for some φ ∈ Φ(ω) and τ ∈ [0,Tφ]. For the
augmented program α , t ′ = 1, in particular, t syntactically tracks

the progression of time so that (ω,ν) ∈ [[α , t ′ = 1]] iff ν = φ(τ) for
some φ ∈ Φ(ω) and τ = ν (t) − ω(t). Tan and Platzer [46] prove the

adequacy of hybrid program models for several switching designs.

The formulas UStab(α) and UGpAttr(α) syntactically express

their respective quantifiers from Def. 1, where the box modality [·]

is used in both formulas to quantify over all reachable states of α
(and α , t ′ = 1), i.e., all times τ ∈ [0,Tφ] along all solutions φ ∈ Φ.
Thus, the correctness of these specifications follows directly from

the definition of dL’s formula semantics [33, 34]. In UGpAttr(α),
variable t is set to 0 initially, so the implication t ≥ T → . . . in

the postcondition of the box modality further restricts temporal

quantification to all times ω(T) ≤ τ ≤ Tφ for φ ∈ Φ(ω), as required
in the definition of uniform pre-attractivity. □

Proof of Corollary 3. The proof rule CLF is an instance of

rule MLF from Corollary 4 where the Lyapunov functions for all

modes p ∈ P are chosen identically with Vp = V . Nevertheless, a
full derivation of CLF is given here because it provides the building

blocks used in later derivations. The stability and pre-attractivity

conjuncts of UGpAS(αstate) are proved separately with ∧R:

⊢ UStab(αstate) ⊢ UGpAttr(αstate)
∧R

⊢ UGpAS(αstate)

Stability. The derivation for stability begins by Skolemizing the

succedent with ∀R,→R, followed by two arithmetic cuts which are

justified as follows. For any ε > 0, the Lyapunov functionV attains a

minimum value on the compact set characterized by ∥x ∥ = ε . From
the first (topmost) premise of rule CLF, this minimum is attained

away from the origin so it is positive, which proves the first cut

of formula ∃W >0 a○ where a○ ≡ ∀x (∥x ∥ = ε → V ≥ W). After

SkolemizingW with ∃L, the premiseV (0) = 0 implies, by continuity

12

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

Verifying Switched System Stability With Logic Conference’17, July 2017, Washington, DC, USA

1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772

of dL term semantics [33], that the sublevel set characterized by

V <W withW > 0 (see Fig. 1) contains a sufficiently small δ ball

around the origin. This proves the second arithmetic cut with the

formula ∃δ (0 < δ ≤ ε ∧ b○) where b○ ≡ ∀x (∥x ∥ < δ → V <W).

After both cuts, the antecedent δ is used to witness the succedent

by ∃R.
a○, δ ≤ ε, b○ ⊢ ∀x (

∥x ∥ < δ → [αstate] ∥x ∥ < ε
)

∃R
a○, 0 < δ ≤ ε, b○ ⊢ ∃δ>0∀x (

∥x ∥ < δ → [αstate] ∥x ∥ < ε
)

cut, R, ∃L ε>0,W >0, a○ ⊢ ∃δ>0∀x (
∥x ∥ < δ → [αstate] ∥x ∥ < ε

)
cut, R, ∃L ε>0 ⊢ ∃δ>0∀x (

∥x ∥ < δ → [αstate] ∥x ∥ < ε
)

∀R, →R
⊢ UStab(αstate)

The derivation continues from the open premise by Skolemiz-

ing with ∀R,→R and proving the LHS of the implication in b○
with ∀L, →L. Then, the loop rule is used with the stability loop in-

variant Invs ≡ ∥x ∥ < ε ∧V <W . This results in three premises, 1○
which shows that the invariant is implied by the initial antecedent

assumptions, 2○, the crucial premise, which shows that the invari-

ant Invs is preserved across the loop body of αstate, and 3○ which

shows that the invariant implies the postcondition. These premises

are shown and proved further below.

1○ 2○ 3○
loop

a○, δ ≤ ε, ∥x ∥ < δ, V <W ⊢ [αstate] ∥x ∥ < ε
∀L,→L

a○, δ ≤ ε, b○, ∥x ∥ < δ ⊢ [αstate] ∥x ∥ < ε
∀R, →R

a○, δ ≤ ε, b○ ⊢ ∀x (
∥x ∥<δ → [αstate] ∥x ∥ < ε

)
Premise 1○ proves by R from the antecedents using the inequali-

ties ∥x ∥ < δ and δ ≤ ε .
∗

Rδ ≤ ε, ∥x ∥ < δ, V <W ⊢ Invs

Premise 3○ proves trivially since the postcondition ∥x ∥ < ε is
part of the loop invariant:

∗
RInvs ⊢ ∥x ∥ < ε

The derivation continues from premise 2○ by unfolding the loop

body of αstate with [∪], ∧R. This results in one premise for each

switching choice p ∈ P, indexed below by p.
a○, Invs ⊢ [x ′ = fp (x)&Qp]Invs

[∪], ∧R
a○, Invs ⊢ [

⋃
p∈P x ′ = fp (x)&Qp]Invs

Each of these p ∈ P premises is an ODE invariance question,

which is decidable in dL [35]. The derivation below shows how

to derive arithmetical conditions on V from these premises. The

right conjunct of Invs , V <W , is added to the domain constraint

with a dC step; the cut premise is labeled 4○ and proved below. A

subsequent dC step adds ∥x ∥ , ε to the domain constraint using

the contrapositive of antecedent a○ and the derivation is completed

with rule Barr since the resulting assumptions are contradictory.

∗
R

∥x ∥ , ε, ∥x ∥=ε ⊢ false
Barr

∥x ∥ < ε ⊢ [x ′=fp (x)&Qp ∧V <W ∧ ∥x ∥ , ε] ∥x ∥ < ε
dC

a○, ∥x ∥ < ε ⊢ [x ′=fp (x)&Qp ∧V <W] ∥x ∥ < ε 4○
dC

a○, Invs ⊢ [x ′=fp (x)&Qp]Invs

The derivation from 4○ is completed with a dI≽ step whose

resulting arithmetic is implied by the bottom premise of rule CLF.

∗
R Qp ⊢ Lfp

(V) ≤ 0

dI≽V <W ⊢ [x ′ = fp (x)&Qp]V <W

Pre-attractivity. The derivation for pre-attractivity begins by

Skolemizing δ , ε with ∀R,→R, followed by a series of arithmetic

cuts which are justified stepwise. First, the Lyapunov function V is

bounded above on the ball characterized by ∥x ∥ < δ , which justifies
a cut of the formula ∃W >0 a○ with a○ ≡ ∀x (

∥x ∥ < δ → V <W
)
.

After Skolemizing the upper boundW , note that the set charac-

terized by formula V ≤ W is compact by radial unboundedness

(middle premise of rule CLF). Therefore, the set characterized by

formula V ≤ W ∧ ∥x ∥ ≥ ε is an intersection of a compact and

closed set, which is itself compact. Thus, V attains a minimum

U on that set which, by the first (topmost) premise is positive.

This justifies the next arithmetic cut of the formula ∃U>0 b○ with

b○ ≡ ∀x (V ≤ W ∧ ∥x ∥ ≥ ε → V ≥ U), where U is subsequently

Skolemized with ∃L. The steps are shown below, with the box

modality in UGpAttr(αstate) temporarily hidden with . . . as it is

not relevant for this part of the derivation.

ε>0,W >0, a○, U >0, b○ ⊢ ∃T ≥0∀x (
∥x ∥ < δ → . . .

)
cut, R, ∃L ε>0,W >0, a○ ⊢ ∃T ≥0∀x (

∥x ∥ < δ → . . .
)

cut, R, ∃L ε>0 ⊢ ∃T ≥0∀x (
∥x ∥ < δ → . . .

)
∀R, →R

⊢ UGpAttr(αstate)

Intuitively (see Fig. 1) the next arithmetic steps syntactically

determine T ≥ 0 such that the value of V is guaranteed to decrease

fromW toU along all switching trajectories within timeT . Consider
the set characterized by formula Qp ∧U ≤ V ≤ W , which is the

set of states (before reaching V < U) where switching to ODE

x ′ = fp (x)&Qp ,p ∈ P is possible. From the third (bottom) premise

of rule CLF, Lfp
(V) is negative on the set characterized by the

formula Qp ∧U ≤ V ≤W because conjunct U ≤ V bounds the set

away from the origin asU > 0. Using radial unboundedness again,

V ≤W is compact, so the set characterized by Qp ∧U ≤ V ≤W is

an intersection of closed sets and compact sets which is therefore

compact. Accordingly, Lfp
(V) attains a maximum value kp < 0

on that set, which justifies the following arithmetic cut, where the

bound k < 0 is chosen uniformly across all choices of p, e.g., as the
maximum over all kp for p ∈ P:

∃k<0
∧
p∈P

∀x (
Qp ∧U ≤ V ≤W → Lfp

(V) ≤ k
)

︸ ︷︷ ︸
c○

After Skolemizing k , it suffices to pick T ≥ 0 for the succedent

such thatW + kT ≤ U . Such a T always exists since k < 0.

a○, b○, k<0, c○,W + kT ≤ U ⊢ ∀x (
∥x ∥ < δ → . . .

)
∃R ε>0,W >0, a○, U >0, b○, k<0, c○ ⊢ ∃T ≥0∀x (

∥x ∥ < δ → . . .
)

cut, R, ∃L ε>0,W >0, a○, U >0, b○ ⊢ ∃T ≥0∀x (
∥x ∥ < δ → . . .

)
The derivation continues by Skolemizing with ∀R,→R and prov-

ing the LHS of the implication in a○ with ∀L,→L. The assignment

t := 0 is unfolded with axioms [;], [:=], then the loop rule is used

with the pre-attractivity loop invariant Inva ≡ V <W ∧ (V ≥ U →

V <W +kt). Similar to the stability derivation, this results in three

premises, where the crucial premise 2○ requires showing that Inva
is preserved across the loop body, while the other premises are

labeled 1○ and 3○ (all three premises are shown further below).

13

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

Conference’17, July 2017, Washington, DC, USA Anon.

1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910

1○ 2○ 3○
loop V <W , b○, k<0, c○,W + kT ≤ U , t=0 ⊢ [αstate, t ′ = 1] . . .

[;], [:=] V <W , b○, k<0, c○,W + kT ≤ U ⊢ [t := 0;αstate, t ′ = 1] . . .
∀L,→L

a○, b○, k<0, c○,W + kT ≤ U , ∥x ∥<δ ⊢ [t := 0;αstate, t ′ = 1] . . .
∀R, →R

a○, b○, k<0, c○,W + kT ≤ U ⊢ ∀x (
∥x ∥<δ → . . .

)
Premise 1○ proves by R from the antecedents.

∗
RV <W , t = 0 ⊢ Inva

Premise 3○ proves by R from the loop invariant using the fol-

lowing arithmetic argument. Suppose for contradiction that there

is a state satisfying the negation of the postcondition, i.e., assume

the negation t ≥ T ∧ ∥x ∥ ≥ ε . Then, using the left conjunct of Inva
together with ∥x ∥ ≥ ε to prove the LHS of the implication in b○
gives assumption V ≥ U . The right conjunct of Inva then yields

the chain of inequalities V < W + kt ≤ W + kT ≤ U , which is a

contradiction. The steps are outlined below.

∗
RV ≥ U , k<0,W + kT ≤ U , V <W + kt, t ≥ T ⊢ false
R V ≥ U , k<0,W + kT ≤ U , Inva, t ≥ T ⊢ false
R

b○, k<0,W + kT ≤ U , Inva, t ≥ T , ∥x ∥ ≥ ε ⊢ false
R

b○, k<0,W + kT ≤ U , Inva ⊢ t ≥ T → ∥x ∥ < ε

The proof for premise 2○ proceeds by unfolding the loop body

with [∪], ∧R, yielding one premise for each switching choice p ∈ P.

A dC step proves the invariance of the left conjunctV <W of Inva
with dI≽ (see the stability proof, sublevel sets of V are invariant).

The right conjunct of Inva is the implication abbreviated I ≡ V ≥

U → V <W +kt and this is proved below using axiom DCC, which

results in premises 4○ and 5○ (shown and proved further below).

4○ 5○
DCC, ∧R

c○, I ⊢ [x ′ = fp (x), t ′ = 1&Qp ∧V <W]I
dC, dI≽

c○, Inva ⊢ [x ′ = fp (x), t ′ = 1&Qp]Inva
[∪], ∧R

c○, Inva ⊢ [
⋃
p∈P x ′ = fp (x), t ′ = 1&Qp]Inva

From premise 4○, the proof is completed with a dI≽ step using

the quantified assumption c○ and the domain constraint. Note that

the Lie derivative of the RHSW + kt is k using t ′ = 1.

dI≽

R
∗

c○, Qp ∧V <W ∧V ≥ U ⊢ Lfp
(V) ≤ k

c○, I ⊢ [x ′ = fp (x), t ′ = 1&Qp ∧V <W ∧V ≥ U]V <W + kt

From premise 5○, the proof is completed with a generalization G

step followed by dI≽ to prove the invariance of formula V < U
(see the stability proof, sublevel sets of V are invariant). The ODE

in the outer box modality is elided with . . . here.

∗
dI≽ V <U ⊢ [x ′ = fp (x), t ′ = 1&Qp ∧V <W]V <U

G,→R
⊢ [. . .](V <U → [x ′ = fp (x), t ′ = 1&Qp ∧V <W]V <U) □

Proof of Corollary 4. The derivation of rule MLF builds on

the ideas of the derivation of rule CLF so similar proof steps are

explained in less detail here. The derivation starts with an ∧R step

for the stability and pre-attractivity conjuncts which are proved

separately below.

⊢ UStab(αstate) ⊢ UGpAttr(αstate)
∧R

⊢ UGpAS(αstate)

Stability. The derivation for stability similarly begins with cut

and Skolemization steps. The difference compared to the deriva-

tion of rule CLF is the cut formulas are now conjunctions over all

possible modes p ∈ P for the Lyapunov functions Vp . The first cut
is ∃W >0 a○ with a○ ≡

∧
p∈P ∀x (∥x ∥ = ε → Vp ≥W), where the

upper boundW >0 is chosen to be the maximum of the respective

bounds for each Vp on the compact set characterized by ∥x ∥ = ε .
After Skolemizing W , the second arithmetic cut is the formula

∃δ (0 < δ ≤ ε ∧ b○) with b○ ≡
∧
p∈P ∀x (∥x ∥ < δ → Vp <W).

Such a δ exists by continuity for each Vp ,p ∈ P since Vp (0) = 0

from the first (topmost) premise of rule MLF. After both cuts, the

antecedent δ is used to witness the succedent by ∃R.
a○, δ ≤ ε, b○ ⊢ ∀x (

∥x ∥ < δ → [αstate] ∥x ∥ < ε
)

∃R
a○, 0 < δ ≤ ε, b○ ⊢ ∃δ>0∀x (

∥x ∥ < δ → [αstate] ∥x ∥ < ε
)

cut, R, ∃L ε>0,W >0, a○ ⊢ ∃δ>0∀x (
∥x ∥ < δ → [αstate] ∥x ∥ < ε

)
cut, R, ∃L ε>0 ⊢ ∃δ>0∀x (

∥x ∥ < δ → [αstate] ∥x ∥ < ε
)

∀R, →R
⊢ UStab(αstate)

The derivation continueswith logical simplification steps, Skolem-

izing the succedent and then proving the LHS of the implications

in antecedent b○.

∀R, →R

∀L, →L

a○, δ ≤ ε, ∥x ∥ < δ,
∧
p∈P Vp <W ⊢ [αstate] ∥x ∥ < ε

a○, δ ≤ ε, b○, ∥x ∥ < δ ⊢ [αstate] ∥x ∥ < ε
a○, δ ≤ ε, b○ ⊢ ∀x (

∥x ∥<δ → [αstate] ∥x ∥ < ε
)

Next, a cut, ∨L step case splits on whether the switched system

is initially in its domain of definition characterized by formula

Q ≡
∨
p∈P Qp . The case where the system is not in its domain is

labeled 0○, and the proof of this case is deferred to the end. In case

the system is in its domain, the loop rule is used with stability loop

invariant Invs ≡ ∥x ∥ < ε ∧
∨
p∈P

(
Qp ∧Vp <W

)
. This yields three

premises labeled 1○– 3○ shown and proved further below.

1○ 2○ 3○
loop

a○, δ ≤ ε, ∥x ∥ < δ,
∧
p∈P Vp <W , Q ⊢ [αstate] ∥x ∥ < ε 0○

cut, ∨L
a○, δ ≤ ε, ∥x ∥ < δ,

∧
p∈P Vp <W ⊢ [αstate] ∥x ∥ < ε

Premise 1○ proves by R from the antecedents using the inequal-

ities ∥x ∥ < δ and δ ≤ ε for the left conjunct and propositionally

from antecedents Q and

∧
p∈P Vp <W for the right conjunct.

∗
Rδ ≤ ε, ∥x ∥ < δ,

∧
p∈P Vp <W , Q ⊢ Invs

Premise 3○ proves trivially since the postcondition ∥x ∥ < ε is
part of the loop invariant:

∗
RInvs ⊢ ∥x ∥ < ε

The derivation continues from premise 2○ by unfolding the loop

body of αstate with [∪], ∧R. Premises are indexed by p ∈ P in

the derivation. The M[·] step propositionally strengthens the post-

condition to its constituent disjunct ∥x ∥ < ε ∧ Vp < W for the

chosen mode p. Then, DX assumes domain Qp in the antecedent

and a cut step adds the assumption ∥x ∥ < ε ∧ Vp < W . This cut

corresponds to the last (bottom) premise of rule MLF. It is labeled

4○ and explained below. The rest of the proof after the cut proceeds

identically to the corresponding derivation for rule CLF using the

respective conjunct for p ∈ P from a○. The steps are omitted here.

14

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

Verifying Switched System Stability With Logic Conference’17, July 2017, Washington, DC, USA

1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048

∗

a○, ∥x ∥<ε ∧Vp<W ⊢ [x ′ = fp (x)&Qp](∥x ∥<ε ∧Vp<W) 4○
cut

a○, Invs , Qp ⊢ [x ′ = fp (x)&Qp](∥x ∥<ε ∧Vp<W)
DX

a○, Invs ⊢ [x ′ = fp (x)&Qp](∥x ∥<ε ∧Vp<W)
M[·]

a○, Invs ⊢ [x ′ = fp (x)&Qp]Invs
[∪], ∧R

a○, Invs ⊢ [
⋃
p∈P x ′ = fp (x)&Qp]Invs

The cut premise 4○ is proved by splitting the disjunction in

Invs (indexed by q ∈ P below). The disjunct corresponding to

mode p proves trivially. For modes q , p, the derivation yields a

compatibility condition which is proved using the last (bottom)

premise of rule MLF.

∗
R Qq, Qp ⊢ Vp ≤ Vq
R p , q, Qq, Vq <W , Qp ⊢ Vp<W
∨L∨

q∈P
(
Qq ∧Vq <W

)
, Qp ⊢ Vp<W

Invs , Qp ⊢ ∥x ∥<ε ∧Vp<W

Returning to premise 0○, for initial states not in the switched

system’s domain, i.e., satisfying ¬Q , no continuous motion is pos-

sible within the model. This is proved using the loop invariant

Inv0s ≡ ∥x ∥ < ε ∧ ¬Q . The first and third premise resulting from

the loop rule are proved trivially (not shown below). For the remain-

ing premise, ¬Q is preserved (trivially) across the loop body after

unfolding it with [∪], ∧R and using DX to show that the system is

unable to switch to the ODE with domain Qp .

∗

¬Q, Qp ⊢ false
DX

¬Q ⊢ [x ′ = fp (x)&Qp]Inv0s
[∪], ∧R Inv0a ⊢ [

⋃
p∈P x ′ = fp (x)&Qp]Inv0s

loop δ ≤ ε, ∥x ∥ < δ, ¬Q ⊢ [αstate] ∥x ∥ < ε

Pre-attractivity. The derivation for pre-attractivity begins with

logical simplification followed by a series of arithmetic cuts. First,

the multiple Lyapunov functions Vp ,p ∈ P are simultaneously

bounded above on the ball characterized by ∥x ∥ < δ , with the cut

∃W >0 a○ where a○ ≡
∧
p∈P ∀x (

∥x ∥ < δ → Vp <W
)
. The upper

boundW is Skolemized, then the next arithmetic cut uses ∃U>0 b○
with b○ ≡

∧
p∈P ∀x (Vp ≤W ∧ ∥x ∥ ≥ ε → Vp ≥ U) (using radial

unboundedness of all functionsVp from the second premise of MLF).

Then, U is Skolemized with ∃L. The steps are shown below, with

the box modality in UGpAttr(αstate) temporarily hidden with . . .

as it is not relevant for this part of the derivation.

ε>0,W >0, a○, U >0, b○ ⊢ ∃T ≥0∀x (
∥x ∥ < δ → . . .

)
cut, R, ∃L ε>0,W >0, a○ ⊢ ∃T ≥0∀x (

∥x ∥ < δ → . . .
)

cut, R, ∃L ε>0 ⊢ ∃T ≥0∀x (
∥x ∥ < δ → . . .

)
∀R, →R

⊢ UGpAttr(αstate)

Identically to rule CLF, the premises of rule MLF prove that, for

each p ∈ P, the respective Lie derivatives Lfp
(Vp) are bounded

above by some kp < 0 on the compact set characterized by formula

Qp∧U ≤ Vp ≤W . This justifies the following arithmetic cut, where

the bound k < 0 is chosen to be the maximum over all kp across all

switching choices p ∈ P:

∃k<0
∧
p∈P

∀x (
→ Lfp

(Vp) ≤ k
)

︸ ︷︷ ︸
c○

The derivation proceeds similarly to rule CLF, pickingT > 0 such

thatW + kT ≤ U , then unfolding the quantifiers in the succedent.

a○, b○, k<0, c○, T >0,W +kT ≤U , ∥x ∥<δ ⊢ . . .
∀R, →R

a○, b○, k<0, c○, T >0,W +kT ≤U ⊢ ∀x (
∥x ∥<δ → . . .

)
∃R ε>0,W >0, a○, U >0, b○, k<0, c○ ⊢ ∃T ≥0. . .

cut, R, ∃L ε>0,W >0, a○, U >0, b○ ⊢ ∃T ≥0. . .

The LHS in antecedent a○ is proved and the succedent is further

unfolded with [;], [:=]. The antecedents are abbreviated with Γ ≡

b○,k<0, c○,T > 0,W +kT ≤ U below. Similar to the stability proof,

the derivation continues with a cut, ∨L step that case splits on

whether the switched system is initially in its domain of definition

Q ≡
∨
p∈P Qp . The case where the system is not in its domain is

labeled 0○, and its proof is deferred to the end. In case the system

is in domain Q , the loop rule is used with pre-attractivity loop

invariant Inva ≡
∨
p∈P

(
Qp ∧Vp <W ∧(Vp ≥ U → Vp <W +kt)

)
.

This results in three premises 1○– 3○ which are proved below.

1○ 2○ 3○
loop Γ,

∧
p∈P Vp<W , t = 0, Q ⊢ [αstate, t ′ = 1] . . . 0○

cut, ∨L Γ,
∧
p∈P Vp<W , t = 0 ⊢ [αstate, t ′ = 1] . . .

[;], [:=] Γ,
∧
p∈P Vp<W ⊢ [t := 0;αstate, t ′ = 1] . . .

∀L,→L Γ, a○, ∥x ∥<δ ⊢ [t := 0;αstate, t ′ = 1] . . .

Premise 1○ proves by R from the antecedents.

∗
R∧

p∈P Vp<W , t = 0, Q ⊢ Inva
Premise 3○ proves by R from the loop invariant after using ∨L

to split the disjuncts of the loop invariant. The disjunct for mode

p ∈ P is abbreviated R ≡ Vp <W ∧ (Vp ≥ U → Vp <W +kt). The
rest of the arithmetic argument is identical to the corresponding

premise for CLF using the conjunct for p in b○ (summarized below).

∗
RVp ≥ U , k<0,W + kT ≤ U , Vp <W + kt, t ≥ T ⊢ false
R Vp ≥ U , k<0,W + kT ≤ U , R, t ≥ T ⊢ false
R

b○, k<0,W + kT ≤ U , R, t ≥ T , ∥x ∥ ≥ ε ⊢ false
R

b○, k<0,W + kT ≤ U , R ⊢ t ≥ T → ∥x ∥ < ε
∨L

b○, k<0,W + kT ≤ U , Inva ⊢ t ≥ T → ∥x ∥ < ε

The derivation from premise 2○ proceeds by unfolding the loop

body with [∪], ∧R, DX, yielding one premise for each switching

choice p ∈ P. The M[·] step selects the disjunct R (as defined above

for premise 3○) in the postcondition corresponding to mode p and

the cut adds this disjunct to the antecedents (the cut premise 4○
is shown and proved below). The rest of the proof after the cut is

omitted here as it is identical to the corresponding derivation for

rule CLF using the respective conjunct in c○.

∗

4○ c○, R ⊢ [x ′ = fp (x), t ′ = 1&Qp]R
cut

c○, Inva, Qp ⊢ [x ′ = fp (x), t ′ = 1&Qp]R
M[·]

c○, Inva, Qp ⊢ [x ′ = fp (x), t ′ = 1&Qp]Inva
[∪], ∧R, DX

c○, Inva ⊢ [
⋃
p∈P x ′ = fp (x), t ′ = 1&Qp]Inva

The cut premise 4○ is proved by splitting the disjunction in

Inva with ∨L (indexed by q ∈ P below). For modes q , p, the
derivation leaves a compatibility condition which proves using the

last (bottom) premise of rule MLF. Note that the rule uses succedent

Vp = Vq since a symmetric condition (Vq ≤ Vp) is obtained when

the roles of modes p,q ∈ P are swapped.

∗
R Qq, Qp ⊢ Vp ≤ Vq
R p , q, Qq ∧Vq <W ∧ (Vq ≥ U → Vq <W + kt), Qp ⊢ R
∨L∨

q∈P
(
Qq ∧Vq <W ∧ (Vq ≥ U → Vq <W + kt)

)
, Qp ⊢ R

Inva, Qp ⊢ R
15

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

Conference’17, July 2017, Washington, DC, USA Anon.

2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186

Returning to premise 0○, similar to the case for stability, initial

states satisfying ¬Q have no continuous motion possible so they

are stuck at the initial state (with global clock t = 0). This is proved

using the loop invariant Inv0a ≡ t = 0 ∧ ¬Q . The first and third

premise resulting from the loop rule are proved trivially (not shown

below). For the remaining premise,¬Q is preserved (trivially) across

the loop body after unfolding it with [∪], ∧R and using DX to show

that the system is unable to switch to the ODE with domain Qp .

∗

¬Q, Qp ⊢ false
DX

¬Q ⊢ [x ′ = fp (x), t ′ = 1&Qp]Inv0a
[∪], ∧R Inv0a ⊢ [

⋃
p∈P x ′ = fp (x), t ′ = 1&Qp]Inv0a

loop T > 0, t = 0, ¬Q ⊢ [αstate, t ′ = 1](t ≥ T → ∥x ∥ < ε) □

Proof of Corollary 5. The derivation of rule MLFG is similar

to MLF, but adapted to the shape of the guarded switching model

αguard and its corresponding loop invariants. The derivation starts

with an ∧R step for the stability and pre-attractivity conjuncts

which are proved separately below.

⊢ UStab(αguard) ⊢ UGpAttr(αguard)
∧R

⊢ UGpAS(αguard)

Stability. The derivation for stability proceeds identically to the

derivation for rule MLF until the step before the stability loop

invariant is used. These steps are omitted below with . . . and

the resulting premise has antecedent formula abbreviated a○ ≡∧
p∈P ∀x (∥x ∥ = ε → Vp ≥W).

a○, δ ≤ ε, ∥x ∥ < δ,
∧
p∈P Vp <W ⊢ [αguard] ∥x ∥ < ε

. . .

⊢ UStab(αguard)

The derivation continues using the loopT rule with stability loop

invariant Invs ≡ ∥x ∥ < ε ∧
∨
p∈P

(
u = p ∧Vp <W

)
. This yields

four premises labeled 1○– 4○, shown and proved further below.

1○ 2○ 3○ 4○
loopT

a○, δ ≤ ε, ∥x ∥ < δ,
∧
p∈P Vp <W ⊢ [αguard] ∥x ∥ < ε

Premise 1○ shows that the system state satisfies the invariant

Invs after running the initialization program αi ≡
⋃
p∈P u :=p.

This is proved by R after unfolding αi using [∪], [:=].
∗

R δ ≤ ε, ∥x ∥ < δ,
∧
p∈P Vp <W , u = p ⊢ Invs

[∪], [:=] δ ≤ ε, ∥x ∥ < δ,
∧
p∈P Vp <W ⊢ [αi]Invs

Premise 4○ proves trivially since the postcondition ∥x ∥ < ε is
part of the loop invariant.

∗
RInvs ⊢ ∥x ∥ < ε

The derivation from premise 2○ yields correct-by-construction
arithmetical conditions on the Lyapunov functions from unfolding

the guarded switching controller in αguard, recall

αu ≡
⋃
p∈P

(
?u = p;

⋃
q∈P

(
?Gp,q ;u :=q

))
Axiom [∪] unfolds the outer choice

⋃
p∈P

(
·
)
, yielding one

premise for each mode p ∈ P. Then, axioms [;], [?] add the cur-

rent mode u = p (before switching) to the assumptions. The cut

step propositionally unfolds antecedent loop invariant assumption

Invs to the corresponding disjunct for u = p. The inner choice⋃
q∈P

(
·
)
is unfolded next with axioms [∪], [;], [?], yielding one

premise for each possible transition to mode q ∈ P guarded by

formula Gp,q . The assignment u :=q is unfolded with [:=], so the

succedent simplifies to the disjunct for u = q in Invs . An arithmetic

simplification step yields the bottom premise of rule MLFG .

∗
R Gp,q ⊢ Vq ≤ Vp
R Vp <W , Gp,q ⊢ Vq <W
[:=]

∥x ∥ < ε, Vp <W , Gp,q ⊢ [u := q]Invs
[∪], [;], [?]

∥x ∥ < ε, Vp <W ⊢ [
⋃
q∈P

(
?Gp,q ;u := q

)
]Invs

cut Invs , u = p ⊢ [
⋃
q∈P

(
?Gp,q ;u := q

)
]Invs

[;], [?] Invs ⊢ [?u = p ;
⋃
q∈P

(
?Gp,q ;u := q

)
]Invs

[∪] Invs ⊢ [αu]Invs

The derivation from premise 3○ unfolds the plant model αp ≡⋃
p∈P

(
?u = p;x ′ = fp (x ,y)&Qp

)
. The choice

⋃
p∈P

(
·
)
is unfolded

first with axiom [∪], yielding one premise for each mode p ∈ P.

Then, axioms [;], [?] adds the mode selected by αu to the antecedent,

where the antecedent loop invariant assumption Invs is simplified

by cut to the disjunct for u = p. Similarly M[·] strengthens the

postcondition to the disjunct for u = p. The rest of the proof pro-
ceeds identically to the corresponding derivation for rule CLF so it

is omitted here.

∗

a○, ∥x ∥<ε, Vp<W ⊢ [x ′ = fp (x)&Qp](∥x ∥<ε ∧Vp<W)
M[·]

a○, ∥x ∥<ε, Vp<W , u = p ⊢ [x ′ = fp (x)&Qp]Invs
cut

a○, Invs , u = p ⊢ [x ′ = fp (x)&Qp]Invs
[;], [?]

a○, Invs ⊢ [?u = p ; x ′ = fp (x, y)&Qp]Invs
[∪]

a○, Invs ⊢ [αp]Invs

Pre-attractivity. The derivation for pre-attractivity is also identi-

cal to MLF until the step before the pre-attractivity loop invariant

is used. These steps are omitted below with . . . and the resulting

premise has antecedent formulas abbreviated with:

b○ ≡
∧
p∈P

∀x (Vp ≤W ∧ ∥x ∥ ≥ ε → Vp ≥ U)

c○ ≡
∧
p∈P

∀x (
Qp ∧U ≤ Vp ≤W → Lfp

(Vp) ≤ k
)

∧
p∈P Vp<W , b○, k<0, c○,W + kT ≤ U , t = 0 ⊢ [αguard, t ′ = 1] . . .

. . .

⊢ UGpAttr(αguard)

The derivation continues using the loopT rulewith pre-attractivity

loop invariant Inva ≡
∨
p∈P

(
u=p∧Vp<W∧(Vp≥U → Vp<W+kt)

)
.

This yields four premises labeled 1○– 4○ which are shown and

proved further below.

1○ 2○ 3○ 4○
loopT

∧
p∈P Vp<W , b○, k<0, c○,W +kT ≤U , t=0 ⊢ [αguard, t ′ = 1] . . .

Premise 1○ proves the invariant Inva after unfolding the initial-

ization program αi using [∪], [:=].

∗
R ∧

p∈P Vp<W , t=0, u = p ⊢ Inva
[∪], [:=] ∧

p∈P Vp<W , t=0 ⊢ [αi]Inva

Premise 4○ is proved by R after unfolding the disjuncts of the

loop invariant with ∨L (the arithmetical argument is identical to

earlier proofs). The selected disjunct (indexed by p) is abbreviated
R ≡ u=p ∧Vp<W ∧ (Vp≥U → Vp<W+kt).

16

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

Verifying Switched System Stability With Logic Conference’17, July 2017, Washington, DC, USA

2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324

∗
R

b○, k<0,W + kT ≤ U , R ⊢ t ≥ T → ∥x ∥ < ε
∨L

b○, k<0,W + kT ≤ U , Inva ⊢ t ≥ T → ∥x ∥ < ε

The derivation from premise 2○ unfolds αu using dL’s hybrid
program axioms similar to the stability proof, and an arithmetic

simplification step yields the premises of MLFG for guarded mode

switches from p to q, p,q ∈ P.

∗
R Gp,q ⊢ Vq ≤ Vp
R R, Gp,q ⊢ Vq<W ∧ (Vq ≥U → Vq<W +kt)
[:=] R, Gp,q ⊢ [u := q]Inva

[∪], [;], [?] R ⊢ [
⋃
q∈P

(
?Gp,q ;u := q

)
]Inva

cut Inva, u = p ⊢ [
⋃
q∈P

(
?Gp,q ;u := q

)
]Inva

[;], [?] Inva ⊢ [?u = p ;
⋃
q∈P

(
?Gp,q ;u := q

)
]Inva

[∪] Inva ⊢ [αu]Inva

The derivation from premise 3○ unfolds the plant model and then

proceeds identically to the corresponding derivation for rule CLF.

∗

c○, R ⊢ [x ′ = fp (x), t ′ = 1&Qp]R
M[·]

c○, R ⊢ [x ′ = fp (x), t ′ = 1&Qp]Inva
cut

c○, Inva, u = p ⊢ [x ′ = fp (x), t ′ = 1&Qp]Inva
[;], [?]

c○, Inva ⊢ [?u = p ; x ′=fp (x, y), t ′ = 1&Qp]Inva
[∪]

c○, Inva ⊢ [αp, t ′ = 1]Inva □

Proof of Corollary 6. The derivation of rule MLFτ departs

more significantly from the derivations of rules CLF, MLF, MLFG .

For this proof, Rexp is used to indicate arithmetic steps that use

properties of the real exponential function. Tools are available for

answering such questions [14] although they are not known to

be decidable; additional explanation is given below for steps that

only require elementary properties of the exponential function. The

proof also shows how to derive arithmetic conditions (arising from

the time-dependent switching controller) in a correct by construc-

tion manner. Recall from that the modes p ∈ P are partitioned

into two subsets consisting of the stable S = {p ∈ P, λp > 0} and

unstable U = {p ∈ P, λp ≤ 0} modes. The derivation starts with

an ∧R step for the stability and pre-attractivity conjuncts which

are proved separately below.

⊢ UStab(αtime) ⊢ UGpAttr(αtime)
∧R

⊢ UGpAS(αtime)

Stability. The stability derivation begins with cut and Skolem-

ization steps. The first cut is ∃W >0 a○ with the abbreviation a○ ≡∧
p∈P ∀x (∥x ∥ = ε → Vp ≥W), where the upper bound W >0 is

chosen to be the maximum of the respective bounds for each Vp
on the compact set characterized by ∥x ∥ = ε . After Skolemizing

W , the second arithmetic cut is the formula ∃δ (0 < δ ≤ ε ∧ b○),

where the conjuncts for p ∈ U use eλpΘp > 0.

b○ ≡
∧
p∈S

∀x (∥x ∥ < δ → Vp <W)

∧
∧
p∈U

∀x (∥x ∥ < δ → Vp <WeλpΘp)

Such a δ exists by continuity for each Vp ,p ∈ P, Vp (0) = 0 from

the premise of rule MLFτ . After both cuts, the antecedent δ is used

to witness the succedent by ∃R.

a○, δ ≤ ε, b○ ⊢ ∀x (
∥x ∥ < δ → [αtime] ∥x ∥ < ε

)
∃R

a○, 0 < δ ≤ ε, b○ ⊢ ∃δ>0∀x (
∥x ∥ < δ → [αtime] ∥x ∥ < ε

)
cut, Rexp , ∃L ε>0,W >0, a○ ⊢ ∃δ>0∀x (

∥x ∥ < δ → [αtime] ∥x ∥ < ε
)

cut, R, ∃L ε>0 ⊢ ∃δ>0∀x (
∥x ∥ < δ → [αtime] ∥x ∥ < ε

)
∀R, →R

⊢ UStab(αtime)

The derivation continues after both cuts similarly to MLF by

unfolding and proving the LHS of the implications in antecedent

b○. The resulting assumption on the initial state is abbreviated

B ≡
∧
p∈S Vp<W ∧

∧
p∈U Vp<WeλpΘp . Then, the loopT rule is

used with the following stability loop invariant Invs , which yields

premises 1○– 4○ shown and proved further below:

Invs ≡ τ ≥ 0 ∧ ∥x ∥ < ε ∧

©­­­­«
∨
p∈S

(
u = p ∧Vp <We−λpτ

)
∨∨

p∈U

(
u = p ∧Vp <We−λp (τ−Θp) ∧ τ ≤ Θp

)ª®®®®¬
1○ 2○ 3○ 4○

loopT
a○, δ ≤ε, ∥x ∥<δ, B ⊢ [αtime] ∥x ∥<ε

∀L, →L
a○, δ ≤ε, b○, ∥x ∥<δ ⊢ [αtime] ∥x ∥<ε

∀R, →R
a○, δ ≤ε, b○ ⊢ ∀x (

∥x ∥<δ → [αtime] ∥x ∥<ε
)

Premise 1○ shows that the system state satisfies the invariant

Invs after initialization with program αi ≡ τ := 0;
⋃
p∈P u :=p. This

is proved from B after unfolding αi using [∪], [:=] and substituting

τ = 0 in the loop invariant (using e0 = 1).

∗
Rexp δ ≤ ε, ∥x ∥ < δ, B, τ = 0, u = p ⊢ Invs

[∪], [:=] δ ≤ ε, ∥x ∥ < δ, B ⊢ [αi]Invs

Premise 4○ proves trivially since the postcondition ∥x ∥ < ε is
part of the loop invariant.

∗
RInvs ⊢ ∥x ∥ < ε

The derivation from premise 2○ unfolds the switching controller

αu in αtime with dL’s hybrid program axioms, recall:

αu ≡
⋃
p∈P

(
?u = p;

⋃
q∈P

(
?θp,q ≤ τ ;τ := 0;u :=q

))
This unfolding yields four possible shapes of premises (abbrevi-

ated as . . . and shown immediately below) for a switch from the

current mode p to mode q. In each case, the antecedent assumption

corresponds to the disjunct of Invs for mode p, while the succedent
assumption corresponds to the disjunct for mode q with timer τ
reset to 0 by the switching controller. The four cases correspond to

whether p ∈ S or p ∈ U and similarly for q, as labeled below.

[∪]

[;], [?]

[∪], [;], [?], [:=]
. . .

Invs , u = p ⊢ [
⋃
q∈P

(
?θp,q ≤ τ ; τ := 0;u := q

)
]Invs

Invs ⊢ [?u = p ;
⋃
q∈P

(
?θp,q ≤ τ ; τ := 0;u := q

)
]Invs

Invs ⊢ [αu]Invs

θp,q ≤ τ , Vp <We−λpτ ⊢ Vq <W (p∈S, q∈S)

θp,q ≤ τ , Vp <We−λpτ ⊢ Vq <WeλqΘq (p∈S, q∈U)

θp,q ≤ τ , Vp <We−λp (τ−Θp), τ ≤ Θp ⊢ Vq <W (p∈U, q∈S)

θp,q ≤ τ , Vp <We−λp (τ−Θp), τ ≤ Θp ⊢ Vq <WeλqΘq (p∈U, q∈U)

17

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

Conference’17, July 2017, Washington, DC, USA Anon.

2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462

These premises are correct-by-construction and can be handed

to an arithmetic solver directly. They can also be simplified, e.g., for

p∈S,q∈S, the inequalities can be rearranged to eliminateW and τ .
The first R step uses transitivity of < . ≤, while the second Rexp step

uses eλpθp,q ≤ eλpτ whenever λp > 0 (since p ∈ S) and θp,q ≤ τ .

⊢ Vq ≤ Vpeλpθp,q

Rexp θp,q ≤ τ ⊢ Vq ≤ Vpeλpτ

R θp,q ≤ τ , Vp <We−λpτ ⊢ Vq <W

Intuitively, the resulting (simplified) premise says that by choos-

ing sufficiently large dwell time θp,q (for stable mode p), one can
offset an increase in value when switching fromVp toVq . The proof
of this premise requires Rexp.

The derivation from premise 3○ unfolds the plant model αp ≡⋃
p∈P

(
?u = p;x ′ = fp (x),τ

′ = 1&τ ≤ Θp
)
using dL axioms. There

are two possible shapes of the premises resulting from this unfold-

ing, depending if p ∈ S or p ∈ U, these are abbreviated 5○ and 6○
respectively. In either case, the derivation shows that the appropri-

ate upper bound on Vp is preserved for the invariant.

5○ 6○
[;], [?]

a○, Invs , u = p ⊢ [x ′ = fp (x), τ ′ = 1& τ ≤ Θp]Invs
[;], [?]

a○, Invs ⊢ [?u = p ; x ′ = fp (x), τ ′ = 1& τ ≤ Θp]Invs
[∪]

a○, Invs ⊢ [αp]Invs

For premise 5○, the proof uses dbx≽ with cofactor −λp , where

the Lie derivative of subtermWe−λpτ is (−λp)We−λpτ from τ ′ = 1.

The resulting premise simplifies to the third premise of rule MLFτ .

∗

⊢ Lfp
(Vp)≤−λpVp

⊢ Lfp
(Vp)−(−λp)We−λpτ ≤−λp (Vp−We−λpτ)

dbx≽ Vp−We−λpτ < 0 ⊢ [x ′ = fp (x), τ ′ = 1& τ ≤Θp]Vp−We−λpτ < 0

cut, M[·] Vp <We−λpτ ⊢ [x ′ = fp (x), τ ′ = 1& τ ≤Θp]Vp <We−λpτ

The proof for premise 6○ similarly uses dbx≽ with cofactor −λp ,
yielding the third premise of rule MLFτ .

∗

⊢ Lfp
(Vp) ≤ −λpVp

dbx≽Vp<We−λp (τ−Θp) ⊢ [x ′ = fp (x), τ ′ = 1& τ ≤ Θp]Vp<We−λp (τ−Θp)

Pre-attractivity. The derivation for pre-attractivity begins with

logical simplification followed by a series of arithmetic cuts. First,

the multiple Lyapunov functions Vp ,p ∈ P are simultaneously

bounded above on the ball characterized by ∥x ∥ < δ , with the cut

∃W >0 a○ where

a○ ≡
∧
p∈S

∀x (∥x ∥ < δ → Vp <W)∧

∧
∧
p∈U

∀x (∥x ∥ < δ → Vp <WeλpΘp)

The upper boundW is Skolemized, then the next arithmetic cut

uses∃U>0 b○with b○ ≡
∧
p∈P ∀x (Vp ≤W ∧ ∥x ∥ ≥ ε → Vp ≥ U),

whereU is Skolemized with ∃L.
ε>0,W >0, a○, U >0, b○ ⊢ ∃T ≥0∀x (

∥x ∥ < δ → . . .
)

cut, R, ∃L ε>0,W >0, a○ ⊢ ∃T ≥0∀x (
∥x ∥ < δ → . . .

)
cut, R, ∃L ε>0 ⊢ ∃T ≥0∀x (

∥x ∥ < δ → . . .
)

∀R, →R
⊢ UGpAttr(αtime)

The derivation continues by picking T ≥ 0 such that R ≡W ≤

UeσT ∧
∧
p∈UW ≤ UeσT e−σΘp , such a T exists since σ > 0. The

quantifiers in the succedent are unfolded and the LHS of the im-

plications in a○ are proved. The resulting antecedent (from a○)

is abbreviated B ≡
∧
p∈S Vp<W ∧

∧
p∈U Vp<WeλpΘp . The loopT

rule is used with the following pre-attractivity loop invariant Invs ,
which yields premises 1○– 4○ shown and proved further below:

Inva ≡ τ ≥ 0 ∧ t ≥ τ ∧

©­­­­«
∨
p∈S

(
u = p ∧Vp <We−σ (t−τ)e−λpτ

)
∨∨

p∈U

(
u = p ∧Vp <We−σ (t−τ)e−λp (τ−Θp) ∧ τ ≤ Θp

)ª®®®®¬
1○ 2○ 3○ 4○

loopT
b○, T ≥ 0, R, B, t = 0 ⊢ [αguard, t ′ = 1] . . .

∀L, →L
a○, b○, T ≥ 0, R, ∥x ∥<δ, t = 0 ⊢ [αguard, t ′ = 1] . . .

[;], [:=]
a○, b○, T ≥ 0, R, ∥x ∥<δ ⊢ [t := 0;αguard, t ′ = 1] . . .

∀R, →R
a○, b○, T ≥ 0, R ⊢ ∀x (

∥x ∥ < δ → . . .
)

∃R ε>0,W >0, a○, U >0, b○ ⊢ ∃T ≥0∀x (
∥x ∥ < δ → . . .

)
Premise 1○ is proved by unfolding the initialization program αi

This is proved from B after unfolding αi using axioms [∪], [:=] and

substituting τ = 0 and t = 0 in the loop invariant (using e0 = 1).

∗
Rexp B, t = 0, τ = 0, u = p ⊢ Inva

[∪], [:=] B, t = 0 ⊢ [αi]Inva

Premise 4○ is proved by unfolding the loop invariant with ∨L.

This yields two possible premise shapes, corresponding to p ∈ S or

p ∈ U. In both cases, assuming the negation of the succedent proves

the corresponding implication LHS in the antecedent assumption

b○, which givesV < U as an assumption. The remaining arithmetic

argument underlying these premises proceeds by contradicting this

assumption (below).

∗
∨L, R

b○, R, Inva ⊢ t ≥ T → ∥x ∥ < ε

For p ∈ S, the following sequence of inequalities is used (note

that σ < λp is implied by the later premises):

Vp <We−σ (t−τ)e−λpτ (from invariant)

=We−σte−τ (λp−σ)

≤We−σT e−τ (λp−σ) (from t ≥ T ,σ > 0)

≤ Ue−τ (λp−σ) (from R)

≤ U (from σ < λp ,τ ≥ 0, contradiction)

For p ∈ U, the following sequence of inequalities is used (note

that τ ≤ Θp is in the invariant Inva for p ∈ U):

Vp <We−σ (t−τ)e−λp (τ−Θp) (from invariant)

≤We−σ (t−τ) (from τ ≤ Θp , λp ≤ 0)

=We−σteστ

≤We−σteσΘp (from σ > 0,τ ≤ Θp)

≤We−σT eσΘp (from t ≥ T ,σ > 0)

≤ U (from R, contradiction)

18

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

Verifying Switched System Stability With Logic Conference’17, July 2017, Washington, DC, USA

2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600

The derivation from premise 2○ unfolds the switching controller

αu in αtime with dL’s hybrid program axioms. Similar to the deriva-

tion for the stability conjunct, this unfolding yields four possible

shapes of premises (abbreviated as . . . and shown immediately

below) for maintaining the invariant Inva after a switch from the

current mode p to the next mode q.

[∪]

[;], [?]

[∪], [;], [?], [:=]
. . .

Inva, u = p ⊢ [
⋃
q∈P

(
?θp,q ≤ τ ; τ := 0;u := q

)
]Inva

Inva ⊢ [?u = p ;
⋃
q∈P

(
?θp,q ≤ τ ; τ := 0;u := q

)
]Inva

Inva ⊢ [αu]Inva

t ≥τ , θp,q ≤τ , Vp<We−σ (t−τ)e−λpτ ⊢Vq<We−σ t

(p∈S, q∈S)

t ≥τ , θp,q ≤τ , Vp<We−σ (t−τ)e−λpτ ⊢Vq<We−σ t eλqΘq

(p∈S, q∈U)

t ≥τ , θp,q ≤τ , Vp<We−σ (t−τ)e−λp (τ−Θp), τ ≤Θp⊢Vq<We−σ t

(p∈U, q∈S)

t ≥τ , θp,q ≤τ , Vp<We−σ (t−τ)e−λp (τ−Θp), τ ≤Θp⊢Vq<We−σ t eλqΘq

(p∈U, q∈U)

The derivation from premise 3○ unfolds the plant model αp . This
results in two possible shapes of premises, depending if p ∈ S or

p ∈ U, which are abbreviated 5○ and 6○ respectively. In either

case, the key step shows that the appropriate upper bound on Vp is

preserved.

5○ 6○
[;], [?]Inva, u = p ⊢ [x ′ = fp (x), τ ′ = 1, t ′ = 1& τ ≤ Θp]Inva
[;], [?] Inva ⊢ [?u = p ; x ′ = fp (x), τ ′ = 1, t ′ = 1& τ ≤ Θp]Inva
[∪] Inva ⊢ [αp]Inva
For premise 5○, the proof uses dbx≽ with cofactor −λp , with

abbreviation Ps =We−σ (t−τ)e−λpτ , noting that the Lie derivative
of Ps is −λpPs . This yields the third premise of rule MLFτ .

∗

⊢ Lfp
(Vp) ≤ −λpVp

dbx≽Vp<Ps ⊢ [x ′ = fp (x), τ ′ = 1, t ′ = 1& τ ≤ Θp]Vp<Ps
The proof for premise 6○ is similar using dbx≽ with cofactor

−λp , with abbreviation Pu = We−σ (t−τ)e−λp (τ−Θp), noting that

the Lie derivative of Pa is −λpPa . This yields the third premise of

rule MLFτ .
∗

⊢ Lfp
(Vp) ≤ −λpVp

dbx≽Vp<Pu ⊢ [x ′ = fp (x), τ ′ = 1, t ′ = 1& τ ≤ Θp]Vp<Pu □

B COUNTEREXAMPLE
The cruise controller automaton from Section 5.2 is taken from

the suite of examples for the Stabhyli tool [26, 27]. Using the de-

fault instructions on a Linux machine, Stabhyli generates a success

message with the following output (newlines added for readability):

...
SOSSolution(Problem is solved. (accepted); ...
...
Lyapunov template for mode normal_PI: \

+V_23*relV^2+V_22*intV^2+V_21*intV*relV \
+V_20*relV+V_19*intV

Lyapunov function for mode normal_PI: \
+572572089848357/144115188075855872*intV*relV \
+256336575597239/281474976710656*relV^2 \
+6008302119812893/4611686018427387904*intV^2 \
+5787253314511645/618970019642690137449562112*relV \
+5661677770976729/39614081257132168796771975168*intV

...
The hybrid system is stable

The generated Lyapunov function candidate V does not exactly

satisfy all of the required arithmetical conditions for the normal PI

mode [26]. For example, one requirement is that it should be non-

negative in the mode invariant −15≤relV≤15∧−500≤intV≤500. It

can be checked that intV = − 1

17179869184
, relV = 0 is a counterex-

ample, with V = −3.90488 × 10
−24

.

A heuristic approach to resolve this numerical issue is to truncate

terms in the candidateV with extremely small coefficients and then

check the resulting truncated candidate. This heuristic is applied

for the case study in Section 5.2, where the KeYmaera X proof

succeeded using the truncated candidate together with the rest of

the Lyapunov function candidates generated by Stabhyli (for other

automaton modes).

19

	Abstract
	1 Introduction
	2 Background
	2.1 Switched Systems as Hybrid Programs
	2.2 Stability as Quantified Loop Safety
	2.3 Proof Calculus

	3 Loop Invariants for Switched System Stability
	3.1 Arbitrary and State-Dependent Switching
	3.2 Controlled Switching

	4 KeYmaera X Implementation
	4.1 Modeling and Proof Interface
	4.2 Examples

	5 Case Studies
	5.1 Canonical Max System
	5.2 Automated Cruise Control
	5.3 Brockett's Nonholonomic Integrator

	6 Related Work
	7 Conclusion
	References
	A Proofs
	B Counterexample

