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Abstract 

In neuronal recordings, analysis can classify 

electrode waveforms into spikes and noise. 

However, many automated sorting 

algorithms are highly variable in 

classification across different recordings and 

different implant areas. Here we trained a 

Convolutional Neural Network (CNN) on 

prelabeled waveforms collected from in vivo 

cortical recordings. The network, once 

trained, outputs a likelihood value that an 

input waveform should be a spike. To 

compare our network, we used a previous 

design from our lab using only fully 

connected layers, making a case for the 

benefit of convolutional layers for spike 

classification. We also compared 

classification across multiple cortical areas, 

showing improvement in classification 

accuracy and sensitivity to threshold 

parameters. Our classifier serves as a robust 

preprocessing step that can be applied to a 

diverse array of waveforms with predictions 

similar to that of a human sorter. 

Introduction 

Within the field of neuroscience, there is a 

need to understand the patterns of neural 

activity we observe in the brain in response 

to sensory stimuli, and how they encode 

information about the external world. 

However, before this analysis can be done, a 

researcher must identify and isolate neuronal 

activity itself, evident in changes in the 

neuron’s membrane potential, known as an 

action potential or a spike. Spikes can be 

recorded from implanted electrodes, where 

the electrical potential or voltage signal can 

be attributed to the responses of neurons 

located in proximity to the electrode tip. The 

first step in processing the continuous 

voltage signal from an electrode is to 

identify which waveforms are neuronal 

spikes from random voltage fluctuations due 

to noise. 

Traditionally, a researcher would have to 

hand-sort an entire neural recording to 

identify the spike waveforms of individual 

neurons and separate them from the inherent 

noise of electrophysiology. This process 

unfortunately relies on the spike classifier's 

proficiency in identifying complex features 

of data under different transforms. 

Additionally, waveform labels are biased to 

the particular sorter as different individuals 

may be more conservative in their sorting, 

leaving out some waveforms that may have 

been spikes, or may have been overly 

generous, including noise in the spike 

category. Numerous research groups have 

sought to facilitate and automate this process 

[8-9,11-13,17,20-21,23,27]. 

The use of machine learning algorithms 

involving artificial neural networks 

simplifies the process of spike/noise 

classification. A neural network can be 

adapted to take waveforms as inputs and 

classify them as either spikes or noise. To 

achieve this, a researcher can train the 

network with their own hand-labeled data or 

use a pre-trained version optimized with 

millions of examples. Our laboratory’s 

previous effort created such an algorithm 

(named “Not A Sorter”, or NAS), a single 
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layer network able to separate spikes from 

noise within two different brain areas [12]. 

However, this simple network was not 

flexible in dealing with heterogeneous data 

types, performing inconsistently on 

waveforms from different brain areas and 

recording platforms. 

To improve upon our classifier and make it 

more general, we implement an extension 

based on a convolutional neural network 

(CNN). Unlike the original NAS, the 

structure of a convolutional neural network 

includes trained filters that can find the 

temporal structure of the data. This allows 

the CNN to generalize across different spike 

shapes, with high classification accuracy on 

untrained spike data types, a known pitfall 

of our previous algorithm. Our classifier 

works as an important tool for preprocessing 

waveform data; our ultimate goal is to 

generalize our network to any neural 

recording. 

Background 

To understand how information is 

represented in the brain, analysis of the 

electrophysiological signals from neurons 

can give valuable information. These 

electrical signals, measured by implanted 

electrodes recording a local voltage 

potential, can be used to find the action 

potential of nearby neurons. By 

understanding the times at which a neuron 

fires an action potential, also known as a 

“spike,” preceding stimuli can then be 

related to these spikes. After identifying the 

spikes within the electrical recordings, one 

has crucial information to understand how a 

specific event is encoded within the cortex. 

This identification of spikes from neural 

recordings is known as spike-sorting. The 

correlation of events to neuronal data has 

allowed for many practical applications of 

neuroscience such as the understanding of 

specific cortical areas’ function, how 

information is passed between multiple 

areas, and the use of neural signals to 

control brain computer interfaces (BCIs) 

[4,19,22]. 

In classical applications, spike-sorting is 

done by human supervision of the data 

acquired from each electrode. Triggered by 

a release of neurotransmitters at the synaptic 

cleft, the action potential results in a 

measurable fluctuation in the membrane 

potential, where changes in voltage are 

recorded by nearby electrodes. Depending 

on the recording configuration, such as the 

density of the electrode array or sampling 

frequency, different methods are preferred to 

identify spike waveforms [15,18]. Some 

common traits analyzed for spike sorting 

are: spatial data of the electrodes where a 

change in potential is seen across many 

different electrodes, the temporal spacing of 

spike data which accounts for the inhibition 

of further spikes after a neuron has recently 

fired, the voltage of neurons crossing a 

threshold of spike activation, and 

dimensionality reduction of the waveform 

into specific components allowing for 

clustering of waveform types[8,13,20,27]. 

Through a researcher’s previous experience 

and the application of a spike sorting 

method, one can determine either the single-

unit data, identifying different spikes of 

specific neurons and noise within the 

recording, or multi-unit data, identifying 

spikes from noise, with spikes originating 

from multiple neurons. 

However, by the nature of in vivo 

recordings, action potentials can vary 

greatly. The spatial placement of electrodes, 

or variation between subjects can cause vast 
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differences in the shape of the spike 

waveform, making spikes difficult to 

identify from noise [10,26]. Issues such as 

differences in recording software, 

degradation of the implant signal with time, 

and electrode density contribute to the 

addition of noise and the distortion of 

spikes. This causes difficulty for even the 

most trained researchers in correctly 

identifying spikes.  Although classic sorting 

methods, seen in Table 1 of the Appendix, 

have addressed many of these issues, their 

approaches vary in accuracy between sorters 

on the same datasets [15,18,26]. This causes 

the quality of the spikes identified to be 

dependent on both the skill of the researcher 

and the application of the spike-sorting 

algorithm. 

To simplify the problem, recent advances in 

automated spike-sorting have used 

previously sorted data to improve decoding 

accuracy. By providing the algorithm with 

prelabeled data, one can tune the classifier 

toward their specific dataset. This prelabeled 

data, collected through previous spike 

sorting methods using human input, is seen 

as the ground truth for training the sorting 

algorithm. However, these methods are still 

inconsistent in their classification, often due 

to drifting of the electrode signal from 

movement, or spikes overlapping at the 

same time interval being misclassified [8-

9,27]. As automated sorting algorithms use a 

ground truth which can vary from human 

input, these algorithms must be improved by 

using more complex classifiers and learning 

with better generalization to the dataset. 

Most recently, neural networks have been 

trained on this ground truth data, allowing 

for supervised learning of waveform 

classification. Machine learning algorithms 

have been able to classify at or above the 

accuracy of classical sorters, without the 

need for manual intervention once trained 

[9,11-12,17,21,23]. These networks train 

weights and biases of specific nodes for a 

waveform input. Through gradient descent, 

the network’s loss function is then optimized 

through training on hand-labeled spikes and 

comparing against a validation set. Outputs 

are placed through an activation function, 

giving classification of the waveform into a 

specified number of classes, with a binary 

classification for single-unit classification, 

or as many classes desired for multi-unit 

classification. 

The most successful neural networks for 

spike classification have used convolutional 

layers to recognize features throughout the 

waveform [17,21,23]. Instead of only 

training specific node weights, these 

convolutional networks train filters to 

recognize the presence of shapes within the 

waveform, then use activations of each 

feature as the input into the fully connected 

layers for classification. CNNs have had 

success in other areas of signal processing 

such as arrhythmia recognition and 

environmental sound detection, proving 

their worth in noisy signal classification [2-

3,14,17,28]. 

By applying a convolutional network design, 

we were able to achieve an automated 

method for spike-sorting with higher 

decoding accuracy on heterogeneous 

waveform data. This network design was 

able to classify spikes from various cortical 

areas and has been shown to generalize past 

common differences in spike waveform 

shape and threshold crossing. Our system is 

shown to classify a variety of waveforms, 

with better overall accuracy than our 

previous network and efficient classification 

speed. 
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Methods 

In our study, we used recordings from 

multiple brain areas to train our network. 

With this diverse data set, we used hand-

labeled spike waveforms to train a deep 

CNN network design, outlined in Figure 1. 

Neural Recordings. The datasets used in this 

study were collected across two lab groups 

at Carnegie Mellon University and the 

University of Pittsburgh: 

namely the Smith and 

Batista laboratories. Data 

was collected from 

electrodes implanted in the 

cortex of non-human 

primates (NHP). We 

analyzed data from five 

male rhesus macaques 

(Macaca mulatta) that had 

previously been spike-sorted 

for ongoing experiments in 

each laboratory. Smith lab 

recordings from two96-

electrode “Utah” arrays 

(Blackrock Microsystems, 

Salt Lake City, UT) and a 

16-channel linear 

microelectrode arrays (U-

Probe; Plexon, Dallas, TX) 

were band-pass filtered 

from 0.3 to 7,500 Hz, 

digitized at 30 kHz, and 

amplified by a Grapevine 

system (Ripple, Salt Lake 

City, UT). The 

interelectrode distance on 

the Utah arrays was 400 μm 

whereas the linear array was 

150 or 200 μm. For each 

recording session, a voltage 

threshold (VT) was defined 

for each channel 

independently based on the root-mean-

squared voltage (VRMS) of the waveforms 

recorded on that channel at the beginning of 

the session. Each time the signal crossed that 

threshold, a 52-sample waveform was 

captured. M1 data from the Batista lab data 

was also captured with the same 96-channel 

arrays (Blackrock Microsystems) recorded 

by 30-sample waveforms at 24414 Hz 

(Tucker Davis Technologies, Alachua, FL). 

Figure 1. A simplified graphic of our deep-CNN network design. Our network takes a 

specified waveform input of size 1 x S and returns the probability that the waveform 

is a spike. Trained filters (convolutional layers) or trained weights and biases (hidden 

layers) are represented with yellow lines, while untrained pooling functions are 

represented by grey lines. The features are processed in two stages, with one max 

pooling layer (IV) and one global average pooling layer (VII). The average-pooled 

matrix serves as the input to a fully connected classifier network (VIII-XI). The last 

three stages (IX-XI) are equivalent to the previous NAS network classifier, where a 

waveform was classified using a fully connected network to return spike probabilities. 

Hence, our CNN can be seen as an extension of our previous NAS network.  
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Hand Labeled Spike Sorting. All data in this 

work was offline spike-sorted to identify 

well-defined single units for training. For 

Smith lab data, waveform segments were 

initially sorted into spike units and noise 

with a custom, off-line MATLAB spike-

sorting algorithm that used an automated 

competitive mixture decomposition method 

[24]. These automated classifications for 

each recording session were subsequently 

refined manually by a researcher using 

custom MATLAB software (available at 

https://github.com/smithlabvision/spikesort). 

M1 data from the Batista lab was sorted by a 

researcher using the Plexon suite (Plexon, 

Dallas, TX). The researchers selected the 

classifications on each channel based on 

visualization of the overlaid waveform 

clusters, projections of the waveforms in 

principal component analysis (PCA) space, 

the interspike interval distribution of any 

potential single unit, and whether each 

potential single unit was present throughout 

the recording session. Although only a 

single researcher spike-sorted the 

waveforms from any particular session, the 

data in the training set, outlined in Table 2 

of the appendix with 120 sessions total, 

collectively consisted of data spike-sorted 

by four different researchers. If multiple 

unique spike waveform shapes were present 

on a channel, the sorter would label those as 

different units. As some files were initially 

sorted into multi-unit spikes, all spikes were 

given the same label (1) and all noise 

waveforms were labeled (0) to train with 

single-unit classification. 

Four distinct cortical areas were analyzed, 

motor area 1 (M1), visual area 4 (V4), 

prefrontal cortex (PFC), and the frontal eye 

fields (FEF). As M1 was recorded at a 

separate frequency and time period from 

other areas, waveforms were additionally 

processed by upsampling the signal from 

24414 Hz to 30 kHz and removing a section 

at the end of the waveform to match the 

captured time segment to the rest of the data. 

Network Implementation. For consistency 

across training sets, each area was given the 

same number of waveforms (500,000 

waveforms with 52 samples) in μV units. 

Cortical area data was randomly selected 

from available recordings, ensuring a 

distribution of 70% spikes and 30% noise 

across all areas. This proportion was 

selected due to higher diversity within spike 

waveforms over noise. CNN classifiers of 

similar approach have also used higher 

percentages for non-noise examples, shown 

to increase the overall accuracy of the 

network and reduce the training time needed 

for convergence [2-3,17]. Training data was 

used to optimize the network 

hyperparameters through Keras [7], while 

validation data was used to confirm the 

validity of the hyperparameters selected 

during training. Testing data consisted of 

waveforms unused in training and validation 

sets, used to calculate the post-training 

accuracy of each network. Waveforms were 

split into each set at 60% training, 20% 

validation, and 20% testing with equal 

contributions of waveforms from each 

cortical area. 

The network structure was initially 

compared across a variety of depths, finding 

the best trade off by comparing overfitting 

(seen by lower accuracy on the testing 

dataset) and loss function optimization (seen 

by the training accuracy on the validation 

dataset). Two networks were trained using 

TensorFlow and Keras within Python 3.8.10 

[1,7]. Each network accepted a waveform 

segment of s samples long (s = 52) at 30 

kHz (1.73 ms). Network training was cut off 



A CONVOLUTIONAL NEURAL NETWORK FOR GENERALIZED AND EFFICIENT SPIKE 

CLASSIFICATION 

P a g e  | 6 MJ Hall 

when the increase in validation accuracy 

was less than 0.001% between epochs. 

When excluding waveforms from a given 

area to train the network, such as in Figure 

2B, the training and validation sets from that 

area were removed from training. The 

general network design of the NAS network 

was unchanged from Issar et al. 2020, which 

had a single hidden layer of 50 nodes. The 

CNN network design, outlined in Figure 1, 

consisted of four interconnected 1D CNN 

layers separated by a Max pooling layer 

(taking the max of each 1x3 matrix within 

each feature 1 x n2). A stride, the spacing 

between successive convolutions, of 1 was 

used on all layers, sliding filters and the 

pooling matrix across the entire array 

without skipping values. The output of the 

final CNN was then globally averaged 

(taking the average across each 1 x n4 

feature), then placed through a two-layer 

hidden node classifier. Due to the 

complexity of the globally averaged CNN 

output, two hidden layers were needed for 

classification. However, it was found that a 

version of NAS with two hidden layers did 

not significantly improve generalized 

accuracy. The second hidden layer and 

activation function were the same size as the 

original NAS network, with 50 nodes fully 

summated into a sigmoid activation 

function. Hence, our CNN design can be 

seen as an extension of our previous NAS 

network. The final output of both networks, 

the probability of an initial waveform input 

being a spike (p­spike), was then used for 

network analysis. An initial gamma 

threshold, seen as the minimum probability 

needed for spike classification, was chosen 

as γ=0.2 for consistency with Issar et al. 

2020. In cases where an optimal gamma 

value was chosen, possible gamma values 

were swept from γ = 0.01 to 0.99, shown in 

Figure 3, selecting the best value for average 

test set accuracy of the NAS network. 

Therefore, the CNN can be shown to 

improve upon NAS despite optimal tuning 

to the NAS network. 

It is known that the most successful versions 

of neural networks have used CNNs in 

combination with human intervention, 

where the network serves as a selection set 

of the best channels for human sorting by 

PCA and K-means clustering [17,21,23]. 

However, as the goal of this paper was to 

fully automate spike classification and 

remove noise without the need for human 

intervention, our method placed an emphasis 

on the initial neural network classifier and 

implementation. We aimed to show the 

benefits of CNN classifiers over simple 

classifier networks like NAS, information 

which can be used to improve more complex 

CNN classifiers. 

Hyperparameter selection for CNN. To 

decide on the hyperparameters for optimal 

training, different CNN sizes were compared 

by validation accuracy. Hyperparameter 

sweeps were compared using 

“Weights&Biases” for experiment tracking 

and dataset visualization [5]. Parameters 

tested included the number of features of 

each 1D CNN, trained filter size, max pool 

size, and training batch size. A visualized 

sweep of accuracy by network can be found 

in Supplementary Figure 1. The average for 

each hyperparameter from the best networks 

during the sweep was used for the final 

network trained, with consideration toward  

a network which converges in a reasonable 

timeframe (less than 24 hours on the given 

hardware) and an optimal parameter count to 

reduce overfitting.  
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Results  

We trained a multi-layer Convolutional 

Neural Network (CNN) to evaluate in vivo 

neural recordings, outputting the likelihood 

each individual waveform was a spike. We 

used a diverse set of waveforms collected 

from four different cortical areas across six 

different implanted arrays with subjects 

performing a variety of tasks related to the 

recording region’s function. Additionally, 

differences in recording equipment and 

human sorters provided a variety of 

classification for ground truth labels. All 

waveforms were assigned a binary label of 

spike (1) or noise (0) and split into 

designated training, validation, and testing 

sets. Our CNN was compared to our lab’s 

previous NAS network trained with the 

same multi-area dataset. These networks 

were then compared using a variety of 

metrics to determine the benefit of 

convolutional layers in comparison to 

simple, hidden-layer classifier designs for 

waveform decoding. Both networks were 

trained for a sufficient number of epochs, 

denoted by a parameter search  through the 

randomized training data, such that the 

validation accuracy was able to converge 

within a 0.001% change from the previous 

epoch.  

Our network was considered a deep CNN 

due its complex network structure. Despite 

the increase in computational requirements 

of our CNN network from the simple NAS 

design by the addition of multiple layers 

requiring convolutions, multiplications, and 

summations, our CNN network was able to 

classify waveforms within real-time 

computing constraints on a modern CPU 

processor running at 4.2 GHz. Both 

networks were timed by classification speed 

over batches of 400 waveforms, then 

Figure 2. Gamma (γ) threshold values from 0.01 to 0.99 were swept and applied to each cortical area for 

classification. Accuracy was determined by the percentage of correct labels (at the given γ) when compared 

to the hand-labeled waveforms. (A) The accuracy on the entire test set of each area at each tested γ was 

averaged and plotted. We found no γ-threshold where the CNN had a lower accuracy than NAS. (B) The 

multi-area average accuracy of each network was also tested across only hand-labeled spikes, showing no γ-

threshold where CNN dropped below the spike accuracy of NAS. Unaveraged accuracies across each area 

can be found in Supplement Figure 2. An optimal γ was selected by taking the γ-threshold where accuracy 

was the highest for each area, then averaging across all four areas. The γ-threshold for CNN lies in a range 

from 0.44-0.53 with an average of γ = 0.47. The γ-threshold for NAS lies on a wider range from 0.41-0.56 

with an average of γ = 0.48, used as the best possible γ-threshold of NAS in figures 3 and 5. 
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averaged over 100 trials. Our CNN 

classified at an average speed of 3918 

waveforms/second. Although this metric 

was nearly four times slower than the NAS 

classifier, it remained well under our 

simulation target with an expected recording 

rate of 100 waveforms/s [12].  

 

Network Sensitivity to γ-

threshold Selection. To test 

classification accuracy of 

either network, an 

appropriate gamma (γ) 

value must be selected. The 

γ-threshold was defined as 

the minimum spike 

probability (Pspike) required 

for a waveform to be 

considered a spike 

waveform. As shown in the 

previous NAS paper, low 

γ-thresholds such as γ = 0.2 

assign most waveforms to 

classes a human sorter 

would deem appropriate. 

However, when training on 

a more diverse dataset, we 

noticed this γ-threshold 

could improve accuracy by 

choosing γ values closer to 

the midpoint of spike probability at 0.5. In 

Figure 2, we swept both classifier networks 

over γ-threshold values from 0.01 to 0.99. 

Accuracy was measured on the testing set 

from each cortical area by comparing the 

predicted labels of our CNN and NAS to 

hand-labeled classification, and averaging 

across all areas for each network. For 

accuracies separated by cortical area, see 

Supplemental Figure 2. Test set accuracy is 

summated in Figure 2B. As all waveforms 

are labeled as spikes at γ = 0.01, all spike 

waveforms are properly reported as spikes, 

with all noise waveforms being incorrectly 

labeled as spikes. The γ-threshold where 

each classifier achieved maximum accuracy 

was then averaged across all cortical areas, 

with NAS having a broader range  of 

optimal γ over each area (γ range of 0.15 

with an average γ of 0.48) than the CNN (γ 

range of 0.09 with an average γ of 0.47). 

This shows that the optimal γ is less 

sensitive to cortical area in our CNN over 

NAS. Values of γ = 0.2 and γ = 0.48 were 

chosen for further testing to compare 

networks with a previously published value 

[12] and the best possible value for NAS 

with this dataset.  

By a 10-fold cross validation on each area, 

CNN was shown to be less variant across a 

Figure 3. Changes in accuracy for each network across each cortical area tested. (A) 

Mean waveforms from identified spikes and noise from each area. (B-C) Accuracy of 

fully-trained networks at an appropriate γ-threshold, γ = 0.2 (B), and the best γ-

threshold for NAS, γ = 0.48 (C). (D-E) Accuracy on the area removed from each 

networks’ training set an appropriate γ-threshold, γ = 0.2 (D), and the best γ-threshold 

for NAS, γ = 0.48 (E). In all cases (every area B-E) except M1 at γ = 0.2, our CNN 

classified at higher accuracy than NAS. This effect is best demonstrated in D and E, 

where the classified area was completely removed from the training set. 
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handful of trials in either gamma. Variance 

for both networks was smallest at γ = 0.2, 

however the overall increases in accuracy 

caused selection of γ = 0.48 as the optimal 

gamma value for this dataset. 

Comparison of Classification on Single 

Cortical Areas. Once our two γ-threshold 

values were chosen, we applied both 

thresholds to the Pspike output from each 

network. By comparing hand-labeled 

waveforms as a ground truth, we compared 

accuracy between each network. Our testing 

set consisted of waveforms from four 

different cortical areas (V4, PFC, M1, and 

FEF). Each cortical area had distinct, 

representative waveform shapes, as given by 

the mean waveform shape across all hand-

labeled spike or noise waveforms from each 

area (see Fig 3A). All regions except M1 

were threshold aligned at sample 16, set by 

the recording software on initial data 

collection. M1 could not be threshold 

aligned due to the recording software saving 

less data before the threshold crossing than 

the other areas. 

V4 data had the closest mean waveform to 

all other areas, with a sharp depolarization 

(samples 13 to 16), repolarization (samples 

16 to 27), and short recovery period 

(samples 27 to 40). In contrast, PFC spikes 

displayed a longer waveform past the 

threshold, with slower repolarization and 

recovery periods in comparison to V4. M1 

data was collected with a different recording 

software, resulting in a different threshold 

alignment. Due to the large amplitude of M1 

recordings and large oscillations distinct 

from noise, its waveform shape  was 

considered as the most distinct for binary 

classification. In contrast, FEF data 

displayed the lowest signal (seen as the 

spike waveforms) to noise ratio, where 

labeled spikes are most difficult to classify 

from noise waveforms.  

At best, our CNN had an average accuracy 

of 86.23%, ranging from 79.62% to 89.55% 

across all areas. By comparing the accuracy 

of each network (Fig 3B-C), our CNN 

improved upon accuracy in every cortical 

area with all γ-thresholds except M1 data at 

low spike selectivity (γ = 0.2). On average, 

our CNN had a 2.46% increase in accuracy 

for the previously established γ (γ =0.2, Fig 

3B) and a 1.99% increase in accuracy at the 

best γ for NAS (γ =0.48, Fig 3C). Increases 

in accuracy were smallest on distinct 

waveforms, notably M1 and V4, while 

greater increases were seen in noisy FEF 

data. 

To test our CNN’s ability to generalize, we 

deliberately removed the waveforms for an 

entire area from the training and validation 

sets for each network. By hiding cortical 

areas, we sought to prove if our network was 

able to classify waveforms it had not 

previously seen by learning from other 

waveforms. We report this ability by 

showing the test accuracy on the area that 

was removed from the training set. Seen 

Figure 3D-E, differences in accuracy on the 

specific area removed were more drastic 

between networks. In all areas across both γ-

thresholds, accuracy was higher for the 

CNN network. Although maximum 

accuracy was slightly below the fully trained 

networks in M1 and FEF, this was expected 

since these networks had not seen any data 

from the tested area. When compared to 

networks trained on all areas (henceforth 

“fully trained”), the drop in accuracy to this 

test was smaller for the CNN, highlighting 

its ability to generalize across data types. 

Between NAS and the CNN, the accuracy 

more than doubled for M1 data, showing the 
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ability of the CNN to generalize past 

threshold alignment of waveforms. 

Additionally, maximum accuracy of our 

CNN at the best γ reached within 0.2% of 

fully trained networks for V4 and PFC, 

showing high accuracy in classification 

across similar areas in the training set (as 

mean waveforms are similar in shape and 

amplitude between V4 and PFC). 

Intensity of Classification in Comparison to 

Ground Truth Labels. As each network’s 

output is the probability of a waveform 

being a spike, comparisons can be made to 

the degree of confidence in each prediction 

between each network. In Figure 4, 

waveforms from a selected channel in V4 

(A-C) and a random subsection of M1 (D-F) 

were compared to best demonstrate 

differences in spike probability (Pspike) 

outputs. In Figure 4A and 4D, hand-labels 

for the waveforms are displayed with spikes 

in green and noise in red. Network spike 

prediction for NAS and CNN were then 

displayed as a bifurcating colormap between 

green (denoting 100% spike probability) and 

red (denoting 0% spike probability). 

To demonstrate the ability of our CNN to 

classify 

waveforms 

with greater 

confidence 

than NAS, V4 

waveforms 

were classified 

using networks 

trained on the 

entire training 

set. By 

qualitative 

inspection of 

Figure 4B and 

C, our CNN 

showed a 

greater 

confidence in 

spike 

waveforms by 

a darker green 

in the hand-

labeled spike 

region than 

NAS. Additionally, a more bimodal gradient 

is seen between spike and noise waveforms, 

noted by a reduction of yellow (Pspike = 0.5) 

waveforms, showing the CNN’s ability to 

classify at similar sensitivities to a human 

sorter. This effect is shown further in 

Supplemental Figure 3, where the 

distribution of Pspike is plotted for all 

waveforms. In this figure, the number of 

waveforms closest to 0 and 1 is much higher 

Figure 4. Comparison of hand-labeled waveforms to network classification by NAS and CNN. 

Predictions of spike probability from NAS and CNN were placed on a color map, where a value of 1 

(seen as most green) is 100% likely to be a spike and a value of 0 (seen as most red) is 100% likely 

to be noise. (A-C) Each sorter classified V4 data from a single channel. (D-F) M1 data was classified 

from a random subset of the testing data by each sorter. Both networks, NAS and CNN, had M1 

data removed during training and were trained using the other three areas (see Figure 3C-D). 
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for CNN than NAS. Therefore, 

our CNN predicts waveforms with 

a better bimodal separation than 

NAS.  

To demonstrate the ability of our 

CNN to generalize to unseen 

waveforms, M1 data was 

classified with networks trained 

without M1 data. By qualitative 

inspection of Figure 4E and F, our 

CNN showed high confidence in 

spikes within the hand-labeled 

spike region. In contrast, the 

predictions of NAS showed high 

confidence on all spike 

waveforms, but erroneously 

assigned them a high noise 

probability. This further illustrates 

the CNN’s ability to classify 

waveforms regardless of their 

presence in the training dataset. 

Changes in Classification by 

Waveform Peak Location. 

Waveforms can vary in many 

ways, with one metric of 

comparison being their peak 

location. The peak of each 

waveform, defined as the index of 

the max amplitude, was calculated 

across all waveforms in the testing 

dataset. Waveform peaks were binned into 

each of 52 possible peak positions, then 

counted based on the number of waveforms 

in each bin (Fig 5A), or the number of 

spikes in each bin (Fig 5C). Binned accuracy 

for each network was then calculated using 

the best γ for NAS (γ = 0.48). The difference 

in accuracy between CNN and NAS was 

then calculated for each bin and plotted for 

all waveforms (Fig 5B) or spike waveforms 

(Fig 5D). Positive values, plotted in blue, 

denoted a higher accuracy for CNN for each 

bin, while negative values, plotted in yellow, 

denoted a higher accuracy for NAS. 

For all waveforms (Fig 5B), all but one bin 

denoted a higher accuracy for the CNN. 

Similarly, for spike waveforms (Fig 5D), all 

but five bins denoted a higher accuracy for 

the CNN. Differences in accuracy increased 

with waveform peaks at the edges of the 

array, seen at peak maxes 0 to 10 and 33 to 

51. The highest differences in accuracy were 

seen on spike only bins, showing this effect 

at greater degrees on spike waveforms. 

Figure 5. Differences in accuracy between CNN and NAS binned by the 
index of the max amplitude for all waveforms (A and B) or hand-labeled 
spike waveforms (C and D). (A) A histogram with each bin showing the 
count of all test waveforms with a peak max at one of the 52 samples. (B) 
Marker points showing the difference in accuracy for a given bin between 
CNN and NAS where a positive value shows a higher accuracy for the CNN 
in that bin (marked in blue) and a negative value shows a higher accuracy 
for NAS in that bin (marked in yellow). The best possible γ-threshold for 
NAS (γ = 0.48) was used for classification. Out of 52 possible max 
locations, the CNN performed better at 51, with greater differences seen 
at edge values. (C) A histogram showing the count of spike waveforms 
with a peak amplitude in each max location. (D) The CNN performed at a 
higher accuracy at 47 of 52 possible peak locations for spike only 
waveforms. Maximum differences in accuracy were more than twice that 
of B, with a similar effect seen of greater differences toward edge values. 
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Overall, this shows our CNN's ability to 

generalize across waveforms of varying 

peak maxes, when compared to NAS. 

Discussion 

By training a neural network classifier on a 

variety of waveform data, we assessed the 

benefits of a multi-layer convolutional 

neural network (CNN) in comparison to a 

previous one-layer network (NAS). To 

demonstrate differences in classification, our 

CNN and NAS predicted testing data from 

four distinct cortical areas, outputting the 

probability of each waveform being a 

neuronal spike. This spike probability output 

was then divided by reasonably justified γ-

thresholds to assign binary labels of spike 

(1) and noise (0) to each waveform. By 

comparing the accuracy of each network’s 

predictions to hand-labels of human sorters, 

we showed that our CNN was able to better 

generalize across our dataset and classify 

waveforms with higher accuracy than our 

NAS network. 

Changes in Network Accuracy with Network 

Design. To test changes in accuracy across 

different networks, we chose a γ-threshold 

giving the best accuracy for the NAS 

network design, as well as a γ-threshold 

which predicts waveforms to classes a 

human sorter would deem appropriate. For 

both γ values selected, our CNN performed, 

on average, at higher classification accuracy 

than the NAS network. This effect was only 

counteracted by the high  amplitude M1 data 

at a low γ-threshold, possibly explained by 

NAS’s proved sensitivity to high SNR data, 

where spike waveforms are more 

distinguished from noise [12]. However, 

even when fitting γ to the best accuracy for 

NAS, our CNN performed at higher 

accuracy on every area, withan average 

increase in accuracy of 1.99%. Our CNN 

had an average accuracy of 86.23%, ranging 

from 79.62% to 89.55% across all areas. By 

showing the improvements our CNN has for 

binary classification, we concluded that 

convolutional network designs improve 

accuracy on diverse datasets of neuronal 

waveforms. 

Furthermore, increases in accuracy were 

most significant when the area tested was 

not used to train each network. Data 

recorded on different hardware, seen as a 

shift in wave position for M1 data, 

experienced an over 200% increase in 

accuracy from NAS to our CNN. This effect 

could be explained by the convolutional 

filters in CNN layers moving across the 

entire waveform, extracting features for 

hidden layer classification. However, 

improvements on low-SNR FEF data, where 

spike waveforms overlap with noise from 

other areas, were minimal, likely due to a 

lack of training examples to differentiate 

FEF spikes from the noise of other areas. 

Additionally, accuracy of the CNN trained 

without an area were similar to fully trained 

networks for areas PFC and V4, where mean 

waveforms displayed similar shapes, and 

hereby similar training examples, between 

each region. 

Confidence of Network Classification. To 

further investigate the improvements our 

CNN had over the previous NAS design, we 

compared the prediction of spike 

probabilities for each network to hand-

labeled waveforms. When predicting subsets 

of our testing dataset, our CNN showed a 

more bimodal separation between spike and 

noise waveforms, where the spike 

probability output  was closer to hand-

labeled data than NAS. Separation was 

highest on waveforms with more distinctive 
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peaks, where the most defined spike 

waveforms were given a near 100% spike 

prediction. As researchers must select an 

appropriate γ-threshold to assign binary 

labels, our CNN would be less sensitive to 

this value selection than NAS. 

Generalization capability of networks. 

Testing data was also classified using 

networks trained without waveforms from 

the specified area. When M1 data was 

removed from training, our CNN was still 

able to classify with reasonable accuracy as 

opposed to NAS. This can be further seen in 

spike probability, where our CNN was still 

confident in the high amplitude M1 

waveforms, showing similar separation to 

hand-labeled data. In contrast, NAS 

misclassified these waveforms as highly 

likely to be noise. This shows our CNN can 

generalize to waveforms despite differences 

in threshold alignment, whereas NAS would 

not recognize these spikes without trained 

examples. Additionally, distinctive 

waveforms were classified with high 

confidence, showing consistency in 

prediction of our CNN to hand-labels, even 

on untrained waveform shapes. Therefore, 

our CNN can differentiate waveforms with 

selectivity closer to that of human sorters. 

Classification Stability Across Variable 

Waveform Peaks. As each network had a 

higher accuracy on spikes with greater peak 

amplitudes, we considered the changes in 

classification at different waveform peak 

locations. By comparing the accuracy of 

each network on the group of waveforms at 

each possible max amplitude, we found that 

accuracy changed with peak location. 

Across our entire testing set, the highest 

increases classification accuracy of our 

CNN over NAS was seen when waveform 

peaks fell within the first and last 20% of 

possible max locations. Additionally, our 

CNN had a higher accuracy than NAS at 

98% of peak locations across all waveforms. 

Neuronal action potentials have been shown 

to vary in time, with most variability 

happening at the waveform peak [10]. As 

waveforms are prone to vary in peak 

location, the NAS network would 

misclassify more waveforms than our CNN 

in the presence of this variability. As our 

CNN uses features extracted from filters 

applied across the entire waveform, shifts in 

the location of these features are not as 

prone to affect the network’s classification 

accuracy. In contrast, hidden-layer networks 

like NAS are trained to give the most 

characteristic amplitude values a higher 

weight. If those values vary, such as the shift 

of the waveform by recording setup or 

longer depolarization periods shifting the 

peak, the network would be unable to 

recognize waveforms. We showed that our 

CNN is more resistant to variations in 

waveforms, proving the value of CNN 

networks for classifying diverse neuronal 

data. 

Limitations of our CNN Classifier. Although 

our CNN design was shown to be an 

improvement over the NAS network, 

limitations of this study may reduce its 

worth when compared to other classification 

methods. Due to findings from the previous 

NAS paper, training data was limited to 

channels with well-isolated units (SNR 

>2.2), and the effect of reduced noise in the 

training data was not further investigated. 

As this was shown to improve the 

classification accuracy of NAS [12], this 

may have also affected the accuracy of our 

CNN. Although the number of waveforms 

was balanced between each region, data 

variability in the number of subjects, 

recordings, and implant time differed greatly 
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between regions, limited by the amount of 

data available. 

Due to the deeper network structure and 

additional convolutional layers, the number 

of parameters for our CNN to train was 

much higher than NAS. Additionally, 

through hyperparameter sweeps seen in 

supplemental Figure 1, layers with a greater 

number of features were shown to improve 

accuracy. The addition of extra parameters 

may have improved accuracy; however, 

hidden layer networks with higher node 

counts did not substantially change decoding 

accuracy [12]. Our CNN was also limited in 

size due to computational hardware, as 

larger networks classified at slower speeds 

and were exponentially longer to train. Our 

network was kept at a size similar to other 

classifiers [14,17,23], with our final CNN 

implementation training at much slower 

rates than the NAS (from 10 minutes to 4 

hours on the given hardware). However, as 

networks can be pre-trained for application, 

this was not considered as a significant 

limitation. Given our goal to show the 

benefits of CNN designs over simple, 

hidden-layer classifiers like NAS, we 

considered our network implementation 

sufficient. 

Comparison to other CNN classifiers. In 

other studies, using CNNs for neural spike 

classification, training data often consisted 

of more selective examples across a larger 

pool of recordings [21,23], or simulated 

waveforms of varying complexity and 

background activity [11,17]. Given 

limitations in data availability across all 

cortical areas, we chose to limit the size of 

our data set to balance the amount of data 

from each region. Although other 

approaches allow for maximum possible 

accuracy of their final network by 

combining their network with other sorting 

methods, our study only aimed to identify 

the benefits of CNNs over simple network 

designs, despite the decoding accuracy of 

simple networks being comparable to human 

sorters. Given the high variability of 

classification accuracy across in vivo 

cortical recordings in both our results and 

other studies [21,23], understanding how to 

generalize classification to any spike 

waveform is key to creating a fully 

comprehensive spike sorter with reliable 

accuracy. Additionally, most neural network 

classifiers are used in conjunction with other 

offline spike-sorting methods, such as PCA, 

K-means, and other clustering methods, with 

network predictions serving as a pre-

processing step for analysis [9,14,21,23]. As 

CNNs can be pre-trained and applied at 

speeds faster than real-time recording, 

automated classification has already been 

used in low latency decoding, required for 

real-time applications such as BCIs [22].  By 

investigating the benefits of more complex 

network classifiers, we hope to influence 

future network designs toward the best 

possible classification systems. 

Extensions and Future Directions. Our CNN 

may provide better classification on more 

diverse datasets, however variation between 

regions could be improved. Each cortical 

area tested showed a different optimal γ-

threshold which, although our CNN was less 

sensitive to γ than NAS, would still vary the 

accuracy of classification between areas. 

Additionally, regions with less-isolated 

spikes and noise were consistently classified 

at lower accuracies. This decrease is likely 

the result of the SNR threshold chosen for 

the training data, where training examples 

did not include spikes and noise of similar 

shape. However, including examples with 

poor isolation in the training data has been 
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shown to reduce accuracy of the converged 

network [2-3,17].  

Another possible direction yet unexplored is 

the use of preprocessing on the input 

waveforms. As it has been shown that the 

introduction of Gaussian noise greatly 

reduces accuracy [2-3,17], filtering inputs 

could provide better separation for 

frequencies present at both classes. For this 

study, we upsampled M1 data to match the 

frequency and recording time of the other 

areas. Although our CNN had inputs of the 

same frequency and time window, creating a 

network that accepts any input size or 

frequency could reduce computational time 

and support more recording setups. Features 

may also be found at frequencies lost due to 

the Nyquist limit when recording a discrete, 

1D input. One classifier has addressed this 

by classifying estimated continuous 

waveforms with a 2D (waveform as an 

image) and 3D (images across channels) 

CNN network [21]. 

Overall, our CNN design classified a diverse 

selection of waveforms at appropriate levels 

when compared to a human sorter. We 

showed the value of a CNN over a simple, 

hidden-layer network at reducing output 

variability across changes in waveform 

shape and location. Furthermore, our CNN 

was shown to be less variable to threshold 

selection and can generalize classification to 

untrained waveforms. Given the ease of pre-

training a CNN for classification, their use 

in automated and offline spike-sorting 

allows for generalized and efficient 

waveform classification. 
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Appendix 

Table 1 - A comparison of Popular Sorting algorithms. 

*Classical Sorters: Compared across SpikeForest’s SYNTH_JANELIA dataset, used for 

accuracy figures in their paper 

**ML Classifiers: Machine Learning Algorithms, using some form of supervised learning in all 

cases but J. Eom’s autoencoder; Accuracies reported on either Wave_Clust or in vivo data 
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Sorting Algorithm Main 

Contributor 

Unique Appeal Accuracy 

Reported 

Classical Sorters*     

 

JRClust [13] J.J. Jun Using covariance of extracted features from density-based detection, best 

for high-density probes. 

87% 

KiloSort [20] M. Pachitariu Use of template matching at both spike detection and during spike 

clustering. Use of raw data allows fast processing. 

84% 

MountainSort4 [8] J.E. Chung Density-based clustering across a variety of electrode geometries with 

comparison through PCA space. 

68% 

SpyKingCircus [27] P. Yger A combination of template matching and density-based clustering, 

scalable across thousands of electrodes. 

87% 

ML Classifiers**       

1D-CNN [17] Z. Li A multi-unit classifier using 1D-CNNs to predict simulated data of 
varying noise levels. 

95.16%-99.82% 

Auto-Encoder 

Ensemble [9] 

J. Eom Use of three different auto-encoders to extract features of multi-unit data, 

then clustered. Tested with in-vivo and simulated data. 

90.49%-100% 

CNN-RNN [21] M. Rácz Use of a recurrent neural network (RNN) to extract spatiotemporal 
features from 2D and 3D CNN classifier outputs. 

81.8%-97.7% 

NAS (Not A Sorter) 

[12] 

D. Issar A simple, one-layer network to efficiently predict spike probability with 

γ-threshold selection. Initially designed for in-vivo data from two areas. 

Results reported from this study. 

74.82%-87.9% 

at best γ 

SpikeDeep [23] M. Saif-ur-

Rehman 

A combination of supervised learning for Channel selection, a deep-CNN 

for background activity rejection, and unsupervised clustering for 

analysis. 

86.95%-88.03% 

WMsorting [11] L. Huang A semi-supervised solution using wavelet decomposition into frequency 
resolution, then classified using a muli-layer network. Minimal 

disturbance from noise, tested with simulated data. 

86.45%-99.76% 

Our CNN Model M. Hall A deep CNN network using a single probability output with γ-threshold 

sensitivity selection. Trained with in-vivo data from four areas. Results 
reported from this study. 

79.62%-89.55% 

at best γ 
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Table 2 - Dataset used to create training and testing sets. Training Data was filtered at SNR >2.2, 

found to increase accuracy of NAS, while testing data was unfiltered [12]. As found in Li et al. 

2020, increases in 1D-CNN accuracy were found with increases in the number examples of 

spikes in the dataset [17]. Both training and testing data was selected to contain 70% spikes and 

30% noise. Training data contained an equal number of waveforms from each area. 

Cortical 

Area 

Recording Device No. of 

Subjects 

Time Range of 

Recordings 

Total No. of 

Sessions 

M1 Blackrock; 96 channel 1 3 days 2 

PFC Blackrock; 96 channel 1 8 days, 5 days 23 

V4 Blackrock; 96 channel 2 12 days, 8 days 26 

FEF Plexon; 16 channel 3 30 days, 14 days, 341 

days 

69 
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Supplementary Figures 

 

Supplement Figure 1. Hyperparameter sweep to determine best values for the CNN network 

using Weights & Biases software. Each line denotes a single network trained on a subsection of 

the training set, where each network was given two epochs to converge. As our design used the 

same filter size for the first two convolutional layers, filt1 denotes the 1 x f1 size, filt3 and filt4 

denoting the filter size for the last two convolutional layers. Feature sizes were tuned across 

every convolutional layer, as well as the first fully connected layer. The second fully connected 

layer was kept the same size as NAS for comparison, as well as the type of activation function. 

From the parameter sweep, similar values were chosen for the final network, however the 

number of features and fc_layer size were reduced to prevent overfitting to a large number of 

parameters. Hyperparameters were compared using their correlation with validation accuracy, 

showing the most importance of feature 3, batch_size, and filter size of 3 and 4. Our final CNN 

network reflected the average of most optimal networks (seen as most yellow) with the following 

parameters: feat1 = 150, filt1 = 4, feat2 =200, feat3 = 100, filt3 = 8, feat4 = 25, filt4 = 5, fc_layer 

(h1) = 200 giving a total of 222576 trainable parameters. 
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Supplement Figure 2. Accuracies of each individual area by sweeping γ-thresholds from 0.01 to 

0.99. Both the NAS (plotted by dashed lines) and CNN networks (plotted by solid lines) were 

trained on hand-labeled data from all available areas as denoted in the Hand Labeled Spike 

Sorting section. Accuracy was averaged across all areas by network to obtain Figure 2. (A) In all 

cortical regions but M1, the CNN performed at higher overall accuracy than NAS. Within M1 

accuracy sweeps, the CNN was able to perform at a higher max accuracy than NAS, while also 

having a higher accuracy at the best possible γ-threshold for NAS. (B) Spike-only waveform 

accuracies by area. (C) Noise-only waveform accuracies by area. 

Supplement Figure 3. 

A histogram of 

predicted probabilities 

from each network. 

CNN (blue) was more 

confident in its 

predictions, shown by 

higher bin counts 

closest to 0 and 1. As 

hand labeled data was 

labeled with binary 

values, this bimodal 

separation in CNN 

spike predictions is 

closer to a human 

sorter than NAS.
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