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A convolutional neural network for generalized and efficient spike classification

Abstract

In neuronal recordings, analysis can classify
electrode waveforms into spikes and noise.
However, many automated sorting
algorithms are highly variable in
classification across different recordings and
different implant areas. Here we trained a
Convolutional Neural Network (CNN) on
prelabeled waveforms collected from in vivo
cortical recordings. The network, once
trained, outputs a likelihood value that an
input waveform should be a spike. To
compare our network, we used a previous
design from our lab using only fully
connected layers, making a case for the
benefit of convolutional layers for spike
classification. We also compared
classification across multiple cortical areas,
showing improvement in classification
accuracy and sensitivity to threshold
parameters. Our classifier serves as a robust
preprocessing step that can be applied to a
diverse array of waveforms with predictions
similar to that of a human sorter.

Introduction

Within the field of neuroscience, there is a
need to understand the patterns of neural
activity we observe in the brain in response
to sensory stimuli, and how they encode
information about the external world.
However, before this analysis can be done, a
researcher must identify and isolate neuronal
activity itself, evident in changes in the
neuron’s membrane potential, known as an
action potential or a spike. Spikes can be
recorded from implanted electrodes, where
the electrical potential or voltage signal can
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be attributed to the responses of neurons
located in proximity to the electrode tip. The
first step in processing the continuous
voltage signal from an electrode is to
identify which waveforms are neuronal
spikes from random voltage fluctuations due
to noise.

Traditionally, a researcher would have to
hand-sort an entire neural recording to
identify the spike waveforms of individual
neurons and separate them from the inherent
noise of electrophysiology. This process
unfortunately relies on the spike classifier's
proficiency in identifying complex features
of data under different transforms.
Additionally, waveform labels are biased to
the particular sorter as different individuals
may be more conservative in their sorting,
leaving out some waveforms that may have
been spikes, or may have been overly
generous, including noise in the spike
category. Numerous research groups have
sought to facilitate and automate this process
[8-9,11-13,17,20-21,23,27].

The use of machine learning algorithms
involving artificial neural networks
simplifies the process of spike/noise
classification. A neural network can be
adapted to take waveforms as inputs and
classify them as either spikes or noise. To
achieve this, a researcher can train the
network with their own hand-labeled data or
use a pre-trained version optimized with
millions of examples. Our laboratory’s
previous effort created such an algorithm
(named “Not A Sorter”, or NAS), a single
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layer network able to separate spikes from
noise within two different brain areas [12].
However, this simple network was not
flexible in dealing with heterogeneous data
types, performing inconsistently on
waveforms from different brain areas and
recording platforms.

To improve upon our classifier and make it
more general, we implement an extension
based on a convolutional neural network
(CNN). Unlike the original NAS, the
structure of a convolutional neural network
includes trained filters that can find the
temporal structure of the data. This allows
the CNN to generalize across different spike
shapes, with high classification accuracy on
untrained spike data types, a known pitfall
of our previous algorithm. Our classifier
works as an important tool for preprocessing
waveform data; our ultimate goal is to
generalize our network to any neural
recording.

Background

To understand how information is
represented in the brain, analysis of the
electrophysiological signals from neurons
can give valuable information. These
electrical signals, measured by implanted
electrodes recording a local voltage
potential, can be used to find the action
potential of nearby neurons. By
understanding the times at which a neuron
fires an action potential, also known as a
“spike,” preceding stimuli can then be
related to these spikes. After identifying the
spikes within the electrical recordings, one
has crucial information to understand how a
specific event is encoded within the cortex.
This identification of spikes from neural
recordings is known as spike-sorting. The
correlation of events to neuronal data has
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allowed for many practical applications of
neuroscience such as the understanding of
specific cortical areas’ function, how
information is passed between multiple
areas, and the use of neural signals to
control brain computer interfaces (BCIs)
[4,19,22].

In classical applications, spike-sorting is
done by human supervision of the data
acquired from each electrode. Triggered by
a release of neurotransmitters at the synaptic
cleft, the action potential results in a
measurable fluctuation in the membrane
potential, where changes in voltage are
recorded by nearby electrodes. Depending
on the recording configuration, such as the
density of the electrode array or sampling
frequency, different methods are preferred to
identify spike waveforms [15,18]. Some
common traits analyzed for spike sorting
are: spatial data of the electrodes where a
change in potential is seen across many
different electrodes, the temporal spacing of
spike data which accounts for the inhibition
of further spikes after a neuron has recently
fired, the voltage of neurons crossing a
threshold of spike activation, and
dimensionality reduction of the waveform
into specific components allowing for
clustering of waveform types[8,13,20,27].
Through a researcher’s previous experience
and the application of a spike sorting
method, one can determine either the single-
unit data, identifying different spikes of
specific neurons and noise within the
recording, or multi-unit data, identifying
spikes from noise, with spikes originating
from multiple neurons.

However, by the nature of in vivo
recordings, action potentials can vary
greatly. The spatial placement of electrodes,
or variation between subjects can cause vast
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differences in the shape of the spike
waveform, making spikes difficult to
identify from noise [10,26]. Issues such as
differences in recording software,
degradation of the implant signal with time,
and electrode density contribute to the
addition of noise and the distortion of
spikes. This causes difficulty for even the
most trained researchers in correctly
identifying spikes. Although classic sorting
methods, seen in Table 1 of the Appendix,
have addressed many of these issues, their
approaches vary in accuracy between sorters
on the same datasets [15,18,26]. This causes
the quality of the spikes identified to be
dependent on both the skill of the researcher
and the application of the spike-sorting
algorithm.

To simplify the problem, recent advances in
automated spike-sorting have used
previously sorted data to improve decoding
accuracy. By providing the algorithm with
prelabeled data, one can tune the classifier
toward their specific dataset. This prelabeled
data, collected through previous spike
sorting methods using human input, is seen
as the ground truth for training the sorting
algorithm. However, these methods are still
inconsistent in their classification, often due
to drifting of the electrode signal from
movement, or spikes overlapping at the
same time interval being misclassified [8-
9,27]. As automated sorting algorithms use a
ground truth which can vary from human
input, these algorithms must be improved by
using more complex classifiers and learning
with better generalization to the dataset.

Most recently, neural networks have been
trained on this ground truth data, allowing
for supervised learning of waveform
classification. Machine learning algorithms
have been able to classify at or above the
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accuracy of classical sorters, without the
need for manual intervention once trained
[9,11-12,17,21,23]. These networks train
weights and biases of specific nodes for a
waveform input. Through gradient descent,
the network’s loss function is then optimized
through training on hand-labeled spikes and
comparing against a validation set. Outputs
are placed through an activation function,
giving classification of the waveform into a
specified number of classes, with a binary
classification for single-unit classification,
or as many classes desired for multi-unit
classification.

The most successful neural networks for
spike classification have used convolutional
layers to recognize features throughout the
waveform [17,21,23]. Instead of only
training specific node weights, these
convolutional networks train filters to
recognize the presence of shapes within the
waveform, then use activations of each
feature as the input into the fully connected
layers for classification. CNNs have had
success in other areas of signal processing
such as arrhythmia recognition and
environmental sound detection, proving
their worth in noisy signal classification [2-
3,14,17,28].

By applying a convolutional network design,
we were able to achieve an automated
method for spike-sorting with higher
decoding accuracy on heterogeneous
waveform data. This network design was
able to classify spikes from various cortical
areas and has been shown to generalize past
common differences in spike waveform
shape and threshold crossing. Our system is
shown to classify a variety of waveforms,
with better overall accuracy than our
previous network and efficient classification
speed.
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Methods independently based on the root-mean-
squared voltage (VRMS) of the waveforms
recorded on that channel at the beginning of
the session. Each time the signal crossed that
threshold, a 52-sample waveform was
captured. M1 data from the Batista lab data
was also captured with the same 96-channel

In our study, we used recordings from
multiple brain areas to train our network.
With this diverse data set, we used hand-
labeled spike waveforms to train a deep
CNN network design, outlined in Figure 1.

Neural Recordings. The datasets used in this arrays (Blackrock Microsystems) recorded
study were collected across two lab groups by 30-sample waveforms at 24414 Hz
at Carnegie Mellon University and the (Tucker Davis Technologies, Alachua, FL).

University of Pittsburgh:

namely the Smith and

Batista laboratories. Data I e L L SO
was collected from I xS waveform input
electrodes implanted in the I omolutonsl 1D

cortex of non-human U: Illlxﬁf'll)ers of

primates (NHP). We

analyzed data from five ) Somolutional 1D

male rhesus macaques

(Macaca mulatta) that had LYy et L

previously been spike-sorted V. 3 Convolutionsl 1D
for ongoing experiments in biyes
each laboratory. Smith lab VL i:;:;on\'olutional 1D
recordings from two96- by
« v VII. Global Average
electrode “Utah” arrays Pooling Layer |
(Blackrock Microsystems, VIIL Hidden layer
Salt Lake City, UT) and (1 X o L9000 RITESED
16-channel linear e x Q. OO0 OO0 000
microelectrode arrays (U- @P
NAS
PI‘Obe, Plexon, Da”aS’ TX) X. Activation function Network
. (‘sigmoid”) _//-
were band-pass filtered N ,
X]. Probability of being |
from 0.3 to 7,500 Hz, a Spike Pepikc
digitized at 30 kHz, and
amplified by a Grapevine Figure 1. A simplified graphic of our deep-CNN network design. Our network takes a
system (Ripple, Salt Lake specified waveform input of size 1 x S and returns the probability that the waveform
City, UT). The is a spike. Trained filters (convolutional layers) or trained weights and biases (hidden
interelectrode distance on layers) are represented with yellow lines, while untrained pooling functions are

the Utah arrays was 400 um [represented by grey lines. The features are processed in two stages, with one max
whereas the linear array was |pooling layer (1V) and one global average pooling layer (VII). The average-pooled

150 or 200 um. For each matrix serves as the input to a fully connected classifier network (VIII-XI). The last
recording session, a voltage  [three stages (IX-X1) are equivalent to the previous NAS network classifier, where a
threshold (VT) was defined waveform was classified using a fully connected network to return spike probabilities.
for each channel Hence, our CNN can be seen as an extension of our previous NAS network.
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Hand Labeled Spike Sorting. All data in this
work was offline spike-sorted to identify
well-defined single units for training. For
Smith lab data, waveform segments were
initially sorted into spike units and noise
with a custom, off-line MATLAB spike-
sorting algorithm that used an automated
competitive mixture decomposition method
[24]. These automated classifications for
each recording session were subsequently
refined manually by a researcher using
custom MATLAB software (available at
https://github.com/smithlabvision/spikesort).
M1 data from the Batista lab was sorted by a
researcher using the Plexon suite (Plexon,
Dallas, TX). The researchers selected the
classifications on each channel based on
visualization of the overlaid waveform
clusters, projections of the waveforms in
principal component analysis (PCA) space,
the interspike interval distribution of any
potential single unit, and whether each
potential single unit was present throughout
the recording session. Although only a
single researcher spike-sorted the
waveforms from any particular session, the
data in the training set, outlined in Table 2
of the appendix with 120 sessions total,
collectively consisted of data spike-sorted
by four different researchers. If multiple
unique spike waveform shapes were present
on a channel, the sorter would label those as
different units. As some files were initially
sorted into multi-unit spikes, all spikes were
given the same label (1) and all noise
waveforms were labeled (0) to train with
single-unit classification.

Four distinct cortical areas were analyzed,
motor area 1 (M1), visual area 4 (V4),
prefrontal cortex (PFC), and the frontal eye
fields (FEF). As M1 was recorded at a
separate frequency and time period from
other areas, waveforms were additionally
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processed by upsampling the signal from
24414 Hz to 30 kHz and removing a section
at the end of the waveform to match the
captured time segment to the rest of the data.

Network Implementation. For consistency
across training sets, each area was given the
same number of waveforms (500,000
waveforms with 52 samples) in pV units.
Cortical area data was randomly selected
from available recordings, ensuring a
distribution of 70% spikes and 30% noise
across all areas. This proportion was
selected due to higher diversity within spike
waveforms over noise. CNN classifiers of
similar approach have also used higher
percentages for non-noise examples, shown
to increase the overall accuracy of the
network and reduce the training time needed
for convergence [2-3,17]. Training data was
used to optimize the network
hyperparameters through Keras [7], while
validation data was used to confirm the
validity of the hyperparameters selected
during training. Testing data consisted of
waveforms unused in training and validation
sets, used to calculate the post-training
accuracy of each network. Waveforms were
split into each set at 60% training, 20%
validation, and 20% testing with equal
contributions of waveforms from each
cortical area.

The network structure was initially
compared across a variety of depths, finding
the best trade off by comparing overfitting
(seen by lower accuracy on the testing
dataset) and loss function optimization (seen
by the training accuracy on the validation
dataset). Two networks were trained using
TensorFlow and Keras within Python 3.8.10
[1,7]. Each network accepted a waveform
segment of s samples long (s = 52) at 30
kHz (1.73 ms). Network training was cut off
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when the increase in validation accuracy
was less than 0.001% between epochs.
When excluding waveforms from a given
area to train the network, such as in Figure
2B, the training and validation sets from that
area were removed from training. The
general network design of the NAS network
was unchanged from Issar et al. 2020, which
had a single hidden layer of 50 nodes. The
CNN network design, outlined in Figure 1,
consisted of four interconnected 1D CNN
layers separated by a Max pooling layer
(taking the max of each 1x3 matrix within
each feature 1 x n2). A stride, the spacing
between successive convolutions, of 1 was
used on all layers, sliding filters and the
pooling matrix across the entire array
without skipping values. The output of the
final CNN was then globally averaged
(taking the average across each 1 x n4
feature), then placed through a two-layer
hidden node classifier. Due to the
complexity of the globally averaged CNN
output, two hidden layers were needed for
classification. However, it was found that a
version of NAS with two hidden layers did
not significantly improve generalized
accuracy. The second hidden layer and
activation function were the same size as the
original NAS network, with 50 nodes fully
summated into a sigmoid activation
function. Hence, our CNN design can be
seen as an extension of our previous NAS
network. The final output of both networks,
the probability of an initial waveform input
being a spike (p-spike), was then used for
network analysis. An initial gamma
threshold, seen as the minimum probability
needed for spike classification, was chosen
as y=0.2 for consistency with Issar et al.
2020. In cases where an optimal gamma
value was chosen, possible gamma values
were swept from y = 0.01 to 0.99, shown in
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Figure 3, selecting the best value for average
test set accuracy of the NAS network.
Therefore, the CNN can be shown to
improve upon NAS despite optimal tuning
to the NAS network.

It is known that the most successful versions
of neural networks have used CNNs in
combination with human intervention,
where the network serves as a selection set
of the best channels for human sorting by
PCA and K-means clustering [17,21,23].
However, as the goal of this paper was to
fully automate spike classification and
remove noise without the need for human
intervention, our method placed an emphasis
on the initial neural network classifier and
implementation. We aimed to show the
benefits of CNN classifiers over simple
classifier networks like NAS, information
which can be used to improve more complex
CNN classifiers.

Hyperparameter selection for CNN. To
decide on the hyperparameters for optimal
training, different CNN sizes were compared
by validation accuracy. Hyperparameter
sweeps were compared using
“Weights&Biases” for experiment tracking
and dataset visualization [5]. Parameters
tested included the number of features of
each 1D CNN, trained filter size, max pool
size, and training batch size. A visualized
sweep of accuracy by network can be found
in Supplementary Figure 1. The average for
each hyperparameter from the best networks
during the sweep was used for the final
network trained, with consideration toward
a network which converges in a reasonable
timeframe (less than 24 hours on the given
hardware) and an optimal parameter count to
reduce overfitting.
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Results convolutional layers in comparison to
simple, hidden-layer classifier designs for
waveform decoding. Both networks were
trained for a sufficient number of epochs,
denoted by a parameter search through the
randomized training data, such that the
validation accuracy was able to converge
within a 0.001% change from the previous

We trained a multi-layer Convolutional
Neural Network (CNN) to evaluate in vivo
neural recordings, outputting the likelihood
each individual waveform was a spike. We
used a diverse set of waveforms collected
from four different cortical areas across six
different implanted arrays with subjects

performing a variety of tasks related to the epoch.

recording region’s function. Additionally, Our network was considered a deep CNN
differences in recording equipment and due its complex network structure. Despite
human sorters provided a variety of the increase in computational requirements
classification for ground truth labels. All of our CNN network from the simple NAS
waveforms were assigned a binary label of design by the addition of multiple layers
spike (1) or noise (0) and split into requiring convolutions, multiplications, and
designated training, validation, and testing summations, our CNN network was able to
sets. Our CNN was compared to our lab’s classify waveforms within real-time
previous NAS network trained with the computing constraints on a modern CPU
same multi-area dataset. These networks processor running at 4.2 GHz. Both

were then compared using a variety of networks were timed by classification speed
metrics to determine the benefit of over batches of 400 waveforms, then

A Average Test Set Accuracy by y-threshold B Average Spike Accuracy by y-threshold ~ —

NAS

80
70
60

Average Accuracy (%)

Figure 2. Gamma (y) threshold values from 0.01 to 0.99 were swept and applied to each cortical area for
classification. Accuracy was determined by the percentage of correct labels (at the given y) when compared
to the hand-labeled waveforms. (A) The accuracy on the entire test set of each area at each tested y was
averaged and plotted. We found no y-threshold where the CNN had a lower accuracy than NAS. (B) The
multi-area average accuracy of each network was also tested across only hand-labeled spikes, showing no y-
threshold where CNN dropped below the spike accuracy of NAS. Unaveraged accuracies across each area
can be found in Supplement Figure 2. An optimal y was selected by taking the y-threshold where accuracy
was the highest for each area, then averaging across all four areas. The y-threshold for CNN lies in a range
from 0.44-0.53 with an average of y = 0.47. The y-threshold for NAS lies on a wider range from 0.41-0.56
with an average of y = 0.48, used as the best possible y-threshold of NAS in figures 3 and 5.
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averaged over 100 trials. Our CNN
classified at an average speed of 3918
waveforms/second. Although this metric
was nearly four times slower than the NAS
classifier, it remained well under our
simulation target with an expected recording
rate of 100 waveforms/s [12].

Network Sensitivity to y-
threshold Selection. To test
classification accuracy of
either network, an
appropriate gamma (y)
value must be selected. The
y-threshold was defined as
the minimum spike
probability (Pspike) required
for a waveform to be
considered a spike
waveform. As shown in the
previous NAS paper, low
y-thresholds such as y = 0.2
assign most waveforms to
classes a human sorter
would deem appropriate.
However, when training on
a more diverse dataset, we
noticed this y-threshold
could improve accuracy by
choosing y values closer to

the midpoint of spike probability at 0.5. In
Figure 2, we swept both classifier networks
over y-threshold values from 0.01 to 0.99.
Accuracy was measured on the testing set
from each cortical area by comparing the
predicted labels of our CNN and NAS to
hand-labeled classification, and averaging
across all areas for each network. For
accuracies separated by cortical area, see
Supplemental Figure 2. Test set accuracy is
summated in Figure 2B. As all waveforms
are labeled as spikes aty =0.01, all spike
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waveforms are properly reported as spikes,
with all noise waveforms being incorrectly
labeled as spikes. The y-threshold where
each classifier achieved maximum accuracy
was then averaged across all cortical areas,
with NAS having a broader range of
optimal y over each area (y range of 0.15

Accuracy of Each Network

B Accuracy of Each Network aty=0.2 c
NAS CNN at Best y for NAS (y = 0.48)

100 100
95 95
90 90

I
\

—— ® 85

»

A Mean Waveforms from Each Area 9 L /
Wi f—r o ——e—— Z7s / 75
g
< 70 70
65 65
60 60
——V4 PFC M|  —e—FEF
By Area Accuracy When Area E By Area Accuracy When Area

is Removed from Training at y = 0.2 - is Removed from Training at y = 0.48

90 90 .

80 Y 80

70 —m— 70

60

Accuracy (%)

50 A 50
40 A~ 40

30 30
NAS CNN NAS CNN

Figure 3. Changes in accuracy for each network across each cortical area tested. (A)
Mean waveforms from identified spikes and noise from each area. (B-C) Accuracy of
fully-trained networks at an appropriate y-threshold, y = 0.2 (B), and the best y-
threshold for NAS, y = 0.48 (C). (D-E) Accuracy on the area removed from each
networks’ training set an appropriate y-threshold, y = 0.2 (D), and the best y-threshold
for NAS, y = 0.48 (E). In all cases (every area B-E) except M1 aty = 0.2, our CNN
classified at higher accuracy than NAS. This effect is best demonstrated in D and E,

where the classified area was completely removed from the training set.

with an average y of 0.48) than the CNN (y
range of 0.09 with an average y of 0.47).
This shows that the optimal v is less
sensitive to cortical area in our CNN over
NAS. Values of y =0.2 and y = 0.48 were
chosen for further testing to compare
networks with a previously published value
[12] and the best possible value for NAS
with this dataset.

By a 10-fold cross validation on each area,
CNN was shown to be less variant across a
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handful of trials in either gamma. Variance
for both networks was smallest at y = 0.2,
however the overall increases in accuracy
caused selection of y = 0.48 as the optimal
gamma value for this dataset.

Comparison of Classification on Single
Cortical Areas. Once our two y-threshold
values were chosen, we applied both
thresholds to the Pspike Output from each
network. By comparing hand-labeled
waveforms as a ground truth, we compared
accuracy between each network. Our testing
set consisted of waveforms from four
different cortical areas (V4, PFC, M1, and
FEF). Each cortical area had distinct,
representative waveform shapes, as given by
the mean waveform shape across all hand-
labeled spike or noise waveforms from each
area (see Fig 3A). All regions except M1
were threshold aligned at sample 16, set by
the recording software on initial data
collection. M1 could not be threshold
aligned due to the recording software saving
less data before the threshold crossing than
the other areas.

V4 data had the closest mean waveform to
all other areas, with a sharp depolarization
(samples 13 to 16), repolarization (samples
16 to 27), and short recovery period
(samples 27 to 40). In contrast, PFC spikes
displayed a longer waveform past the
threshold, with slower repolarization and
recovery periods in comparison to V4. M1
data was collected with a different recording
software, resulting in a different threshold
alignment. Due to the large amplitude of M1
recordings and large oscillations distinct
from noise, its waveform shape was
considered as the most distinct for binary
classification. In contrast, FEF data
displayed the lowest signal (seen as the
spike waveforms) to noise ratio, where
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labeled spikes are most difficult to classify
from noise waveforms.

At best, our CNN had an average accuracy
of 86.23%, ranging from 79.62% to 89.55%
across all areas. By comparing the accuracy
of each network (Fig 3B-C), our CNN
improved upon accuracy in every cortical
area with all y-thresholds except M1 data at
low spike selectivity (y = 0.2). On average,
our CNN had a 2.46% increase in accuracy
for the previously established y (y =0.2, Fig
3B) and a 1.99% increase in accuracy at the
best y for NAS (y =0.48, Fig 3C). Increases
in accuracy were smallest on distinct
waveforms, notably M1 and V4, while
greater increases were seen in noisy FEF
data.

To test our CNN’s ability to generalize, we
deliberately removed the waveforms for an
entire area from the training and validation
sets for each network. By hiding cortical
areas, we sought to prove if our network was
able to classify waveforms it had not
previously seen by learning from other
waveforms. We report this ability by
showing the test accuracy on the area that
was removed from the training set. Seen
Figure 3D-E, differences in accuracy on the
specific area removed were more drastic
between networks. In all areas across both y-
thresholds, accuracy was higher for the
CNN network. Although maximum
accuracy was slightly below the fully trained
networks in M1 and FEF, this was expected
since these networks had not seen any data
from the tested area. When compared to
networks trained on all areas (henceforth
“fully trained”), the drop in accuracy to this
test was smaller for the CNN, highlighting
its ability to generalize across data types.
Between NAS and the CNN, the accuracy
more than doubled for M1 data, showing the
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ability of the CNN to generalize past
threshold alignment of waveforms.
Additionally, maximum accuracy of our
CNN at the best y reached within 0.2% of
fully trained networks for V4 and PFC,
showing high accuracy in classification
across similar areas in the training set (as
mean waveforms are similar in shape and
amplitude between V4 and PFC).

differences in spike probability (Pspike)
outputs. In Figure 4A and 4D, hand-labels
for the waveforms are displayed with spikes
in green and noise in red. Network spike
prediction for NAS and CNN were then
displayed as a bifurcating colormap between
green (denoting 100% spike probability) and
red (denoting 0% spike probability).

To demonstrate the ability of our CNN to

Hand-Labeled Data for V4 B

NAS Predictions for V4

CNN Predictions for V4 CI&SSlfy

—Spike 62%

waveforms

e with greater

- confidence

£ | than NAS, V4

waveforms

@ were classified
using networks

trained on the

entire training
i set. By
qualitative

£ | inspection of
«* | Figure 4B and
- C, our CNN
showed a
greater

Figure 4. Comparison of hand-labeled waveforms to network classification by NAS and CNN.

confidence in
spike

Predictions of spike probability from NAS and CNN were placed on a color map, where a value of 1
(seen as most green) is 100% likely to be a spike and a value of 0 (seen as most red) is 100% likely
to be noise. (A-C) Each sorter classified V4 data from a single channel. (D-F) M1 data was classified

waveforms by
a darker green

from a random subset of the testing data by each sorter. Both networks, NAS and CNN, had M1 in the han(_j'
data removed during training and were trained using the other three areas (see Figure 3C-D). Iab(_aled spike
region than

Intensity of Classification in Comparison to
Ground Truth Labels. As each network’s
output is the probability of a waveform
being a spike, comparisons can be made to
the degree of confidence in each prediction
between each network. In Figure 4,
waveforms from a selected channel in V4
(A-C) and a random subsection of M1 (D-F)
were compared to best demonstrate
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NAS. Additionally, a more bimodal gradient
is seen between spike and noise waveforms,
noted by a reduction of yellow (Pspike = 0.5)
waveforms, showing the CNN’s ability to
classify at similar sensitivities to a human
sorter. This effect is shown further in
Supplemental Figure 3, where the
distribution of Pspike is plotted for all
waveforms. In this figure, the number of
waveforms closest to 0 and 1 is much higher
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for CNN than NAS. Therefore,
our CNN predicts waveforms with
a better bimodal separation than
NAS.

To demonstrate the ability of our
CNN to generalize to unseen
waveforms, M1 data was
classified with networks trained
without M1 data. By qualitative
inspection of Figure 4E and F, our
CNN showed high confidence in
spikes within the hand-labeled
spike region. In contrast, the
predictions of NAS showed high
confidence on all spike
waveforms, but erroneously
assigned them a high noise
probability. This further illustrates
the CNN’s ability to classify
waveforms regardless of their
presence in the training dataset.

Changes in Classification by
Waveform Peak Location.
Waveforms can vary in many
ways, with one metric of
comparison being their peak
location. The peak of each
waveform, defined as the index of
the max amplitude, was calculated
across all waveforms in the testing

dataset. Waveform peaks were binned into
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Figure 5. Differences in accuracy between CNN and NAS binned by the
index of the max amplitude for all waveforms (A and B) or hand-labeled
spike waveforms (C and D). (A) A histogram with each bin showing the
count of all test waveforms with a peak max at one of the 52 samples. (B)
Marker points showing the difference in accuracy for a given bin between
CNN and NAS where a positive value shows a higher accuracy for the CNN
in that bin (marked in blue) and a negative value shows a higher accuracy
for NAS in that bin (marked in yellow). The best possible y-threshold for
NAS (y = 0.48) was used for classification. Out of 52 possible max
locations, the CNN performed better at 51, with greater differences seen
at edge values. (C) A histogram showing the count of spike waveforms
with a peak amplitude in each max location. (D) The CNN performed at a
higher accuracy at 47 of 52 possible peak locations for spike only
waveforms. Maximum differences in accuracy were more than twice that

of B, with a similar effect seen of greater differences toward edge values.

bin, while negative values, plotted in yellow,
denoted a higher accuracy for NAS.

each of 52 possible peak positions, then

counted based on the number of waveforms
in each bin (Fig 5A), or the number of
spikes in each bin (Fig 5C). Binned accuracy
for each network was then calculated using
the best y for NAS (y = 0.48). The difference
in accuracy between CNN and NAS was
then calculated for each bin and plotted for
all waveforms (Fig 5B) or spike waveforms
(Fig 5D). Positive values, plotted in blue,
denoted a higher accuracy for CNN for each
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For all waveforms (Fig 5B), all but one bin
denoted a higher accuracy for the CNN.
Similarly, for spike waveforms (Fig 5D), all
but five bins denoted a higher accuracy for
the CNN. Differences in accuracy increased
with waveform peaks at the edges of the
array, seen at peak maxes 0 to 10 and 33 to
51. The highest differences in accuracy were
seen on spike only bins, showing this effect
at greater degrees on spike waveforms.
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Overall, this shows our CNN's ability to
generalize across waveforms of varying
peak maxes, when compared to NAS.

Discussion

By training a neural network classifier on a
variety of waveform data, we assessed the
benefits of a multi-layer convolutional
neural network (CNN) in comparison to a
previous one-layer network (NAS). To
demonstrate differences in classification, our
CNN and NAS predicted testing data from
four distinct cortical areas, outputting the
probability of each waveform being a
neuronal spike. This spike probability output
was then divided by reasonably justified y-
thresholds to assign binary labels of spike
(1) and noise (0) to each waveform. By
comparing the accuracy of each network’s
predictions to hand-labels of human sorters,
we showed that our CNN was able to better
generalize across our dataset and classify
waveforms with higher accuracy than our
NAS network.

Changes in Network Accuracy with Network
Design. To test changes in accuracy across
different networks, we chose a y-threshold
giving the best accuracy for the NAS
network design, as well as a y-threshold
which predicts waveforms to classes a
human sorter would deem appropriate. For
both y values selected, our CNN performed,
on average, at higher classification accuracy
than the NAS network. This effect was only
counteracted by the high amplitude M1 data
at a low y-threshold, possibly explained by
NAS’s proved sensitivity to high SNR data,
where spike waveforms are more
distinguished from noise [12]. However,
even when fitting v to the best accuracy for
NAS, our CNN performed at higher
accuracy on every area, withan average
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increase in accuracy of 1.99%. Our CNN
had an average accuracy of 86.23%, ranging
from 79.62% to 89.55% across all areas. By
showing the improvements our CNN has for
binary classification, we concluded that
convolutional network designs improve
accuracy on diverse datasets of neuronal
waveforms.

Furthermore, increases in accuracy were
most significant when the area tested was
not used to train each network. Data
recorded on different hardware, seen as a
shift in wave position for M1 data,
experienced an over 200% increase in
accuracy from NAS to our CNN. This effect
could be explained by the convolutional
filters in CNN layers moving across the
entire waveform, extracting features for
hidden layer classification. However,
improvements on low-SNR FEF data, where
spike waveforms overlap with noise from
other areas, were minimal, likely due to a
lack of training examples to differentiate
FEF spikes from the noise of other areas.
Additionally, accuracy of the CNN trained
without an area were similar to fully trained
networks for areas PFC and V4, where mean
waveforms displayed similar shapes, and
hereby similar training examples, between
each region.

Confidence of Network Classification. To
further investigate the improvements our
CNN had over the previous NAS design, we
compared the prediction of spike
probabilities for each network to hand-
labeled waveforms. When predicting subsets
of our testing dataset, our CNN showed a
more bimodal separation between spike and
noise waveforms, where the spike
probability output was closer to hand-
labeled data than NAS. Separation was
highest on waveforms with more distinctive
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peaks, where the most defined spike
waveforms were given a near 100% spike
prediction. As researchers must select an
appropriate y-threshold to assign binary
labels, our CNN would be less sensitive to
this value selection than NAS.

Generalization capability of networks.
Testing data was also classified using
networks trained without waveforms from
the specified area. When M1 data was
removed from training, our CNN was still
able to classify with reasonable accuracy as
opposed to NAS. This can be further seen in
spike probability, where our CNN was still
confident in the high amplitude M1
waveforms, showing similar separation to
hand-labeled data. In contrast, NAS
misclassified these waveforms as highly
likely to be noise. This shows our CNN can
generalize to waveforms despite differences
in threshold alignment, whereas NAS would
not recognize these spikes without trained
examples. Additionally, distinctive
waveforms were classified with high
confidence, showing consistency in
prediction of our CNN to hand-labels, even
on untrained waveform shapes. Therefore,
our CNN can differentiate waveforms with
selectivity closer to that of human sorters.

Classification Stability Across Variable
Waveform Peaks. As each network had a
higher accuracy on spikes with greater peak
amplitudes, we considered the changes in
classification at different waveform peak
locations. By comparing the accuracy of
each network on the group of waveforms at
each possible max amplitude, we found that
accuracy changed with peak location.
Across our entire testing set, the highest
increases classification accuracy of our
CNN over NAS was seen when waveform
peaks fell within the first and last 20% of
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possible max locations. Additionally, our
CNN had a higher accuracy than NAS at
98% of peak locations across all waveforms.
Neuronal action potentials have been shown
to vary in time, with most variability
happening at the waveform peak [10]. As
waveforms are prone to vary in peak
location, the NAS network would
misclassify more waveforms than our CNN
in the presence of this variability. As our
CNN uses features extracted from filters
applied across the entire waveform, shifts in
the location of these features are not as
prone to affect the network’s classification
accuracy. In contrast, hidden-layer networks
like NAS are trained to give the most
characteristic amplitude values a higher
weight. If those values vary, such as the shift
of the waveform by recording setup or
longer depolarization periods shifting the
peak, the network would be unable to
recognize waveforms. We showed that our
CNN is more resistant to variations in
waveforms, proving the value of CNN
networks for classifying diverse neuronal
data.

Limitations of our CNN Classifier. Although
our CNN design was shown to be an
improvement over the NAS network,
limitations of this study may reduce its
worth when compared to other classification
methods. Due to findings from the previous
NAS paper, training data was limited to
channels with well-isolated units (SNR
>2.2), and the effect of reduced noise in the
training data was not further investigated.
As this was shown to improve the
classification accuracy of NAS [12], this
may have also affected the accuracy of our
CNN. Although the number of waveforms
was balanced between each region, data
variability in the number of subjects,
recordings, and implant time differed greatly
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between regions, limited by the amount of
data available.

Due to the deeper network structure and
additional convolutional layers, the number
of parameters for our CNN to train was
much higher than NAS. Additionally,
through hyperparameter sweeps seen in
supplemental Figure 1, layers with a greater
number of features were shown to improve
accuracy. The addition of extra parameters
may have improved accuracy; however,
hidden layer networks with higher node
counts did not substantially change decoding
accuracy [12]. Our CNN was also limited in
size due to computational hardware, as
larger networks classified at slower speeds
and were exponentially longer to train. Our
network was kept at a size similar to other
classifiers [14,17,23], with our final CNN
implementation training at much slower
rates than the NAS (from 10 minutes to 4
hours on the given hardware). However, as
networks can be pre-trained for application,
this was not considered as a significant
limitation. Given our goal to show the
benefits of CNN designs over simple,
hidden-layer classifiers like NAS, we
considered our network implementation
sufficient.

Comparison to other CNN classifiers. In
other studies, using CNNs for neural spike
classification, training data often consisted
of more selective examples across a larger
pool of recordings [21,23], or simulated
waveforms of varying complexity and
background activity [11,17]. Given
limitations in data availability across all
cortical areas, we chose to limit the size of
our data set to balance the amount of data
from each region. Although other
approaches allow for maximum possible
accuracy of their final network by
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combining their network with other sorting
methods, our study only aimed to identify
the benefits of CNNs over simple network
designs, despite the decoding accuracy of
simple networks being comparable to human
sorters. Given the high variability of
classification accuracy across in vivo
cortical recordings in both our results and
other studies [21,23], understanding how to
generalize classification to any spike
waveform is key to creating a fully
comprehensive spike sorter with reliable
accuracy. Additionally, most neural network
classifiers are used in conjunction with other
offline spike-sorting methods, such as PCA,
K-means, and other clustering methods, with
network predictions serving as a pre-
processing step for analysis [9,14,21,23]. As
CNNs can be pre-trained and applied at
speeds faster than real-time recording,
automated classification has already been
used in low latency decoding, required for
real-time applications such as BClIs [22]. By
investigating the benefits of more complex
network classifiers, we hope to influence
future network designs toward the best
possible classification systems.

Extensions and Future Directions. Our CNN
may provide better classification on more
diverse datasets, however variation between
regions could be improved. Each cortical
area tested showed a different optimal y-
threshold which, although our CNN was less
sensitive to y than NAS, would still vary the
accuracy of classification between areas.
Additionally, regions with less-isolated
spikes and noise were consistently classified
at lower accuracies. This decrease is likely
the result of the SNR threshold chosen for
the training data, where training examples
did not include spikes and noise of similar
shape. However, including examples with
poor isolation in the training data has been
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shown to reduce accuracy of the converged
network [2-3,17].

Another possible direction yet unexplored is
the use of preprocessing on the input
waveforms. As it has been shown that the
introduction of Gaussian noise greatly
reduces accuracy [2-3,17], filtering inputs
could provide better separation for
frequencies present at both classes. For this
study, we upsampled M1 data to match the
frequency and recording time of the other
areas. Although our CNN had inputs of the
same frequency and time window, creating a
network that accepts any input size or
frequency could reduce computational time
and support more recording setups. Features
may also be found at frequencies lost due to
the Nyquist limit when recording a discrete,
1D input. One classifier has addressed this
by classifying estimated continuous
waveforms with a 2D (waveform as an
image) and 3D (images across channels)
CNN network [21].

Overall, our CNN design classified a diverse
selection of waveforms at appropriate levels
when compared to a human sorter. We
showed the value of a CNN over a simple,
hidden-layer network at reducing output
variability across changes in waveform
shape and location. Furthermore, our CNN
was shown to be less variable to threshold
selection and can generalize classification to
untrained waveforms. Given the ease of pre-

Appendix

training a CNN for classification, their use
in automated and offline spike-sorting
allows for generalized and efficient
waveform classification.
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Table 1 - A comparison of Popular Sorting algorithms.

*Classical Sorters: Compared across SpikeForest’s SYNTH JANELIA dataset, used for

accuracy figures in their paper

**ML Classifiers: Machine Learning Algorithms, using some form of supervised learning in all
cases but J. Eom’s autoencoder; Accuracies reported on either Wave_Clust or in vivo data
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Sorting Algorithm Main Unique Appeal Accuracy
Contributor Reported

Classical Sorters*

JRClust [13] J.J. Jun Using covariance of extracted features from density-based detection, best | 87%
for high-density probes.

KiloSort [20] M. Pachitariu Use of template matching at both spike detection and during spike | 84%
clustering. Use of raw data allows fast processing.

MountainSort4 [8] J.E. Chung Density-based clustering across a variety of electrode geometries with | 68%
comparison through PCA space.

SpyKingCircus [27] | P. Yger A combination of template matching and density-based clustering, 87%
scalable across thousands of electrodes.

ML Classifiers**

1D-CNN [17] Z. Li A multi-unit classifier using 1D-CNNs to predict simulated data of | 95.16%-99.82%
varying noise levels.

Auto-Encoder J. Eom Use of three different auto-encoders to extract features of multi-unit data, | 90.49%-100%

Ensemble [9] then clustered. Tested with in-vivo and simulated data.

CNN-RNN [21] M. Récz Use of a recurrent neural network (RNN) to extract spatiotemporal | 81.8%-97.7%
features from 2D and 3D CNN classifier outputs.

NAS (Not A Sorter) | D. Issar A simple, one-layer network to efficiently predict spike probability with | 74.82%-87.9%

[12] y-threshold selection. Initially designed for in-vivo data from two areas. | at best y
Results reported from this study.

SpikeDeep [23] M. Saif-ur- | A combination of supervised learning for Channel selection, a deep-CNN | 86.95%-88.03%

Rehman for background activity rejection, and unsupervised clustering for
analysis.

WNMsorting [11] L. Huang A semi-supervised solution using wavelet decomposition into frequency | 86.45%-99.76%
resolution, then classified using a muli-layer network. Minimal
disturbance from noise, tested with simulated data.

Our CNN Model M. Hall A deep CNN network using a single probability output with y-threshold | 79.62%-89.55%
sensitivity selection. Trained with in-vivo data from four areas. Results | at best y
reported from this study.
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Table 2 - Dataset used to create training and testing sets. Training Data was filtered at SNR >2.2,
found to increase accuracy of NAS, while testing data was unfiltered [12]. As found in Li et al.
2020, increases in 1D-CNN accuracy were found with increases in the number examples of
spikes in the dataset [17]. Both training and testing data was selected to contain 70% spikes and
30% noise. Training data contained an equal number of waveforms from each area.

Cortical Recording Device No. of Time Range of Total No. of
Area Subjects Recordings Sessions

M1 Blackrock; 96 channel 1 3 days 2

PFC Blackrock; 96 channel 1 8 days, 5 days 23
V4 Blackrock; 96 channel 2 12 days, 8 days 26
FEF Plexon; 16 channel 3 30 days, 14 days, 341 | 69

days
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Supplementary Figures
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Supplement Figure 1. Hyperparameter sweep to determine best values for the CNN network
using Weights & Biases software. Each line denotes a single network trained on a subsection of
the training set, where each network was given two epochs to converge. As our design used the
same filter size for the first two convolutional layers, filtl denotes the 1 x f1 size, filt3 and filt4
denoting the filter size for the last two convolutional layers. Feature sizes were tuned across
every convolutional layer, as well as the first fully connected layer. The second fully connected
layer was kept the same size as NAS for comparison, as well as the type of activation function.
From the parameter sweep, similar values were chosen for the final network, however the
number of features and fc_layer size were reduced to prevent overfitting to a large number of
parameters. Hyperparameters were compared using their correlation with validation accuracy,
showing the most importance of feature 3, batch_size, and filter size of 3 and 4. Our final CNN
network reflected the average of most optimal networks (seen as most yellow) with the following
parameters: featl = 150, filtl = 4, feat2 =200, feat3 = 100, filt3 = 8, feat4 = 25, filt4 = 5, fc_layer
(h1) = 200 giving a total of 222576 trainable parameters.

Page |18 MJ Hall




A CONVOLUTIONAL NEURAL NETWORK FOR GENERALIZED AND EFFICIENT SPIKE
CLASSIFICATION

A Accuracy of Each Area by y-threshold B
100
90
80 |£Zzee=
70
60
50
40
30
20
10

Spike Accuracy of Each Area by y-threshold

Accuracy (%)

o 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 09 1

v
----- NAS FEF

CNN PFC NASPFC =——=CNNV4 ===== NAS V4

CNN FEF

c Noise Accuracy of Each Area by y-threshold

Overall Accuracy

Supplement Figure 2. Accuracies of each individual area by sweeping y-thresholds from 0.01 to
0.99. Both the NAS (plotted by dashed lines) and CNN networks (plotted by solid lines) were
trained on hand-labeled data from all available areas as denoted in the Hand Labeled Spike
Sorting section. Accuracy was averaged across all areas by network to obtain Figure 2. (A) In all
cortical regions but M1, the CNN performed at higher overall accuracy than NAS. Within M1
accuracy sweeps, the CNN was able to perform at a higher max accuracy than NAS, while also
having a higher accuracy at the best possible y-threshold for NAS. (B) Spike-only waveform
accuracies by area. (C) Noise-only waveform accuracies by area.

Distribution of Spike Probability for Each Network Supplement Figure 3.
A histogram of
2000000 1 == Erg predicted probabilities
1750000 - from each network.
CNN (blue) was more
1500000 1 confident in its
£ 1250000 - predictions, shown by
§ higher bin counts
£ 1000000 closest to 0 and 1. As
750000 hand labeled data was
. labeled with binary
so0000 values, this bimodal
250000 A separation in CNN
0 - : spike predictions is
0.0 02 04 06 08 10 | closertoahuman
Spike Probability sorter than NAS.
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