
Culture and Breaking Change: A Survey of Values and
Practices in 18 Open Source Software Ecosystems

Christopher Bogart,
Anna Filippova,

Christian Kästner,
James Herbsleb

Carnegie Mellon University, USA

Abstract
Software ecosystems have become one of the most important
ways to organize software development, and to maintain and
reuse code packages. But coordination can be a major chal-
lenge in software ecosystems when packages change, since
packages tend to be highly interdependent yet independently
maintained. The culture of an ecosystem includes those val-
ues and practices associated with managing change. We con-
ducted a survey of thousands of developers in more than a
dozen ecosystems, asking them about the values and prac-
tices that make up their communities’ distinctive cultures; as
well as the perceived power of different stakeholders and per-
ceived health of the community. This dataset release shares
anonymized data from the survey.

1. INTRODUCTION
Software ecosystems—communities built around a shared

programming language, platforms, and dependency manage-
ment tools—have become one of the most important ways to
organize software development, and to maintain and reuse
code packages. Ecosystem style development is efficient, since
common functionalities need only be developed, maintained,
and tested by a single author or team, instead of many au-
thors reimplementing the same functionality.

Coordination is a major challenge in software ecosystems,
since packages tend to be highly interdependent yet inde-
pendently maintained [2, 10, 4, 1]. In particular, sharing the
same resources requires coordination when those resources
change. Changes one developer makes to a shared package
may affect many other people, for example creating new bugs
or fixing old ones, introducing new features, or reorganizing
or renaming components. Any of these actions may require
rework from developers of software that uses that package.

A recent case study by Bogart et al. [2] investigated
the role of ecosystem values, change practices, tools, and
policies of three such ecosystems (Eclipse, R/CRAN, and
Node.js/NPM). The study revealed stark differences among
the three ecosystems: They had markedly different priorities
(stability, rapid access to current research, and frictionless
progress for developers, respectively), and their practices and
policies reflected those priorities, for example in how they vet
new changes and archive old revisions, how version numbers
are specified and referred to, and what responsibilities the au-
thors of packages have when making changes. These results
are consistent with studies of open source and corporate cul-

CC-BY: This document and associated data is licensed
under a Creative Commons Attribution 3.0 Unported License.
DOI: 10.1184/R1/5108716

ture [13, 8, 14, 5, 3, 9]: Culture arises from both values and
practices which mutually reinforce each other, and culture
has been shown to strongly influence performance [5]. To
study culture in software ecosystems in depth (e.g., whether
the formation and propagation of culture can be achieved
without collocation and frequent informal contact assumed
necessary in corporate settings [3]), we need to understand
the current values and practices that developers hold within
and across ecosystems.

To further this research, we conducted a survey, asking
questions of developers in a sample of ecosystems about per-
ceived ecosystem values, personal values, ecosystem health,
relative stakeholder power, motivations, and practices, focus-
ing especially on perceptions and practices that would be
more difficult to study by mining software artifacts in repos-
itories.

1.1 Survey design
The survey consisted of 108 questions; seven free text ques-

tions, three short blanks (ecosystem, package name and gen-
der), and the rest multiple-choice scales. After an informed
consent screen, participants first chose from a list of ecosys-
tems, (or could write in another; we simply grouped these as
“other” for analysis), then we presented blocks of questions
in the following order: values, ecosystem health, stakeholder
power, upstream practices, downstream practices, motives,
and demographics.

Ecosystems. We considered ecosystems with a network
structure, in which packages can depend on other packages
and some infrastructure helps with sharing and compatibility.
We started with a list of software repositories from Wikipedia1

and added additional ecosystems with an active community
that we could find.

We excluded ecosystems with a flat structure where pack-
ages depend only on a single shared platform (e.g., we ex-
cluded Android, where apps can interact through generic
mechanisms rather than absolutely requiring another spe-
cific app) and ecosystems obviously too small to hope to
get at least a few dozen responses. We also excluded ecosys-
tems if they were different enough from the ones in the orig-
inal Wikipedia list, that it was not possible to write clear
questions that would apply across ecosystems. This excluded
operating-system-level package managers like apt, rpm, and
brew, and scientific workflow engines.

We conducted the survey with a list of 31 ecosys-
tems. We recruited with a goal of at least 40 participants

1https://en.wikipedia.org/wiki/Software repository

from each ecosystem. Afterward, we excluded 13 ecosys-
tems from the analysis for which we did not receive at
least 15 complete surveys: C++/Boost, Bower, Perl 6,
Smalltalk, Tex/CTAN, Julia, Clojure/clojars, Meteor, Word-
press, SwiftPM, PHP’s PEAR, Racket, and Dart/pub, leav-
ing us with 18 ecosystems for our analysis: Atom (plugins),
CocoaPods, Eclipse (plugins), Erlang/Elixir/Hex, Go, Haskell
(Cabal/Hackage), Haskell (Stack/Stackage), Lua/Luarocks,
Maven, Node.js/NPM, NuGet, Perl/CPAN, PHP/Packagist,
Python/PyPi, R/Bioconductor, R/CRAN, Ruby/Rubygems,
and Rust/Cargo.

Values. We took the values mentioned in the Bogart et al.
study [2] as a starting point then systematically searched
the web pages of all ecosystems for clues of other potential
values. For example ‘fun’ is mentioned as an explicit value
in the Ruby community. 2 We assembled a list of 11 values
with the following descriptions:

• Stability: Backward compatibility, allowing seamless
updates (“do not break existing clients”)

• Innovation: Innovation through fast and potentially
disruptive changes

• Replicability: Long term archival of current and historic
versions with guaranteed integrity, such that exact be-
havior of code can be replicated.

• Compatibility: Protecting users from struggling to find
a compatible set of versions of different packages

• Rapid Access: Getting package changes through to end
users quickly after their release (“no delays”)

• Quality: Providing packages of very high quality (e.g.
good security or correctness)

• Commerce: Helping professionals build commercial soft-
ware

• Community: Collaboration and communication among
developers

• Openness and Fairness: ensuring that everyone in the
community has a say in decision-making and the com-
munity’s direction

• Curation: Providing a set of consistent, compatible
packages that cover users’ needs

• Fun and personal growth: Providing a good experience
for package developers and users

In the survey, we asked participants separately about the
perceived values of the community—“How important do you
think the following values are to the <ecosystem> commu-
nity?” We used a seven point rating scale, adapted from
Schwartz’s value study [12]: “extremely important”, “very im-
portant”, “important”, “somewhat important”, “not impor-
tant”, “community opposes this value”, and “I don’t know”.
The first five options were separated visually from the last two
to make clear that only the former were designed to approxi-
mate regular intervals (as recommended by Dillman et al. [6]).

In addition, we also asked participants a similar value
question on the same scale about their own values with
respect to a single package they worked on in the ecosystem.
To encourage participants to think about concrete work that
they are doing we asked for the name of a specific package
that they worked on and used that package in the question:

“How important are each of these values in development of
<package> to you personally?”

2For example, in an interview Matsumoto said, That was
my primary goal in designing Ruby. I want to have fun in
programming myself” [15].

Health. We asked about perceived health of the ecosystem,
to investigate whether people think the ecosystem’s values
are being achieved. The questions were designed to represent
failure to satisfy each of the values asked about, when we
could frame such a question that made sense (there were no
questions tied to fun or replicability). We also asked if they
perceived problems with recruiting or retaining developers
to the ecosystem, inspired by the observation in Bogart
et al. [2] that Eclipse might be having trouble retaining
developers. The question asked about health in the last
6 months on a 5 point agreement scale and was phrased
negatively (e.g. “Package interfaces are generally too unstable
in <ecosystem>”).

Power. We asked about powerful stakeholders of the ecosys-
tem, to investigate whether community norms placed less
burden on the most powerful stakeholders. We asked about
end users, developers, leaders, gatekeepers, and sponsors, and
whether each had more influence than others over the direc-
tion of the ecosystem. We also asked if they believed the dis-
tribution of influence was “fair”, and asked two open-ended
questions to pick up groups or situations we might not have
anticipated.

Practices. In the practices part of the survey asked about
many software engineering practices. The full list and exact
phrasing of our questions can be found in Appendix A. Sur-
veyed practices encompassed the participant’s personal prac-
tices and experiences with respect to documentation, sup-
port, timing, and version numbering for releases, selecting
packages on which to depend, and monitoring dependencies
for changes. These were asked either on an agreement Likert
scale as above or on a frequency scale from “never” to “several
times a day”. A subset of 15 questions relating to communi-
cation with developers of downstream packages were skipped
for participants who indicated that they did not maintain a
package used by others. To limit the length of the survey, we
focused primarily on questions that cannot be answered or
are difficult to answer by mining software repositories.

Demographics, motivation. We also asked demograph-
ics questions asking the participants’ age, gender, role in the
ecosystem, experience in open source and in software devel-
opment generally, and computer-science education level. We
also adapted almost verbatim a battery of questions taken
from Roberts et al. [11] designed to distinguish three kinds
of motivations for participation in open source: intrinsic, in-
strumental, and status-based.

1.2 Recruitment
We invested in significant outreach activities to recruit par-

ticipants for the survey. First, we created a web page and twit-
ter account to describe the state of current research in this
area, in a form easily accessible to practitioners. We encour-
aged readers of the web page to take the survey to contribute
additional knowledge about values in ecosystems. Second,
we attended community events, including npm.camp 2016,
to talk to developers and community leaders from multiple
ecosystems about our research; several prominent community
members tweeted about our web page and survey, resulting in
surges of responses (CRAN and NPM particularly). Third, we
promoted our web page and the survey in ecosystem-specific
forums and mailing lists to “developers who write <ecosys-
tem> packages,” hoping that our web page would spark inter-
est in the topic. We also posted on twitter with hashtags ap-

propriate for different ecosystems. Finally, for 21 ecosystems
in which our outreach activity did not yield sufficient an-
swers, we solicited individuals directly by email. After check-
ing with Github to make sure our practices conformed with
their terms of service, we sent 8,137 emails to package au-
thors. We sampled these from packages in various ecosystems
as culled from libraries.io, sending them a survey invitation if
their package was shared on Github, they had chosen to make
their emails public on that site, and they had not blocked
their email address from ghtorrent.org’s[7] Github archive.3.

Participants and their demographics. We succeeded
in recruiting 2321 participants to take the survey between
August and November of 2016. 932 of them completed the
survey; however, we put value and health questions near the
beginning, so there are more than 1200 answers to those
questions. Statistical analysis of answers to early questions
did not reveal any systematic differences between people who
completed the survey and those who did not.

Respondees averaged 8.8 years of development experience,
7.2 years in open source, and 4.6 in the ecosystem they
answered about. Slightly more than half (59%) had college
degrees in CS. The most claimed role in the ecosystem was
package lead developers (59%); Others ranged from the 8.5%
who claimed a role in the founding or core team of the
ecosystem, to 11% who only drew on ecosystem packages for
their own projects. The average age was 33, with 152 18-24
year olds, and 6 over 65. Of those who gave their gender,
95.9% identified themselves as male, 3.2% as female, and
0.8% gave another gender.

1.3 Display statistics
Figures 1, 2, 3 and 4 show the distributions of answers

for selected survey questions. The figures were drawn by
eliminating skipped or “don’t know” values, merging “Not
important”with“opposed to this value”answers, and drawing
a violin plot, with a diamond symbol at the mean position.
The violin bodies are smoothed, so the image portrays the
mean and only a rough distribution.

1.4 Anonymization
Because the survey included several demographic questions

and asked about smallish software ecosystems, it could be
possible to individually identify some people who took the
survey. To protect their anonymity, we have made the follow-
ing modifications to the data, merging options and omitting
questions so that unique and identifiable combinations of an-
swers do not occur.

• Ecosystem changed to ”other” if fewer than 15 people
completed the survey

• Ecosystem role We have merged the ”founder” and
”lead+” roles into a single category, ”central”

• Years of experience in ecosystem, OSS, and software
development For all these questions we have merged
answers into two categories: ”<5 yrs”, ”5+ years”

• Package name We omit the name of the package the
user chose to answer questions about

• Age and gender We have omitted these; most respon-
dents were young and male, so other responses become
an identification risk

We also exclude the free text fields, many answers gave

3We did not use githubtorrent.org’s dataset except to extract
this information

identifying information or wrote in a distinctive style.
If you need the omitted data for research, please contact

us and we can discuss mutual interests and the process for
applying for IRB4 approval.

2. THREATS TO VALIDITY
As is typical of a survey, our sample could not be truly

random; there may be selection bias relating to who we
were able to reach via the venues we chose. We tried to
mitigate this by sampling from forums, twitter, and direct
mail. The survey was also quite long (and was advertised as
such up front); people with less patience for long surveys,
or less interest in questions of breaking changes, values, and
practices, may have self-selected out. This could be significant
if people with impatience for long surveys also have different
software engineering practices and beliefs.

Another possible concern is that respondents may not
have a broad perspective on what practices and values exist
among ecosystems; they may rate practices as common or
uncommon in their ecosystem, but this may be an ecosystem-
specific notion about what standard they are comparing it
against. For example an ecosystem that highly values stability
may be more stable than others, but rate their ecosystem as
unstable because their standards are so high. Future studies
could calibrate such expectations against change data mined
from repositories in the ecosystems.

We had difficulty recruiting sufficient participants from
smaller ecosystems, like Perl 6 or Clojure; small ecosystems
may have different characteristics than large ones. We do
have some small ecosystems, Stackage and Lua, and they are
outliers in some ways. So further exploration of small ecosys-
tems, for example with interviews or analysis of artifacts,
should be a priority for future work.

3. ACKNOWLEDGMENTS
This work was supported by NSF awards 1546393, 1302522,

1322278, 1111750, 0943168, 1318808 and 1552944, the Science
of Security Lablet (H9823014C0140), the U.S. Department of
Defense through the Systems Engineering Research Center,
LARC (Living Analytics Research Centre), a grant from
the Alfred P. Sloan Foundation, the Google Open Source
Program Office. We also want to thank the many volunteers
who responded to our survey.

References
[1] Cyrille Artho, Kuniyasu Suzaki, Roberto Di Cosmo, Ralf

Treinen, and Stefano Zacchiroli. 2012. Why Do Software
Packages Conflict? 141–150.

[2] Christopher Bogart, Christian Kästner, James Herbsleb,
and Ferdian Thung. 2016. How to Break an API: Cost
Negotiation and Community Values in Three Software
Ecosystems. In Proc. Int’l Symposium Foundations of
Software Engineering (FSE). ACM Press, New York.

[3] John Coleman. 2013. Six components of a great corpo-
rate culture. Harvard Business Review 5, 6 (2013), 2013.

[4] Alexandre Decan, Tom Mens, Maëlick Claes, and
Philippe Grosjean. 2016. When GitHub meets CRAN:

4IRB = Institutional Review Board, the ethics committee
that oversees research to protect the privacy and safety of
participants.

An Analysis of Inter-Repository Package Dependency
Problems. International Conference on Software Analy-
sis, Evolution, and Reengineering (2016), 493–504. DOI:

http://dx.doi.org/10.1109/SANER.2016.12

[5] Daniel R Denison. 1990. Corporate culture and organi-
zational effectiveness. John Wiley & Sons.

[6] Don A Dillman, Jolene D Smyth, and Leah Melani
Christian. 2014. Internet, phone, mail, and mixed-mode
surveys: the tailored design method. John Wiley & Sons.

[7] Georgios Gousios. 2013. The GHTorrent dataset and tool
suite. In Mining Software Repositories. IEEE Press, Pis-
cataway, NJ, USA, 233–236. http://dl.acm.org/citation.
cfm?id=2487085.2487132

[8] Eric von Hippel and Georg von Krogh. 2003. Open
source software and the “private-collective” innovation
model: Issues for organization science. Organization
science 14, 2 (2003), 209–223.

[9] John P Kotter. 1992. Corporate culture and performance.
Simon and Schuster.

[10] Romain Robbes, Mircea Lungu, and David Röthlis-
berger. 2012. How do Developers React to API Dep-
recation? The Case of a Smalltalk Ecosystem. In Proc.
Int’l Symposium Foundations of Software Engineering

(FSE). ACM Press, New York, Article 56, 11 pages.
DOI:http://dx.doi.org/10.1145/2393596.2393662

[11] Jeffrey a. Roberts, Il-Horn Hann, and Sandra a. Slaugh-
ter. 2006. Understanding the Motivations, Participation,
and Performance of Open Source Software Developers:
A Longitudinal Study of the Apache Projects. Manage-
ment Science 52, 7 (2006), 984–999. DOI:http://dx.doi.
org/10.1287/mnsc.1060.0554 arXiv:arXiv:1011.1669v3

[12] Shalom H Schwartz. 1992. Universals in the content and
structure of values: Theoretical advances and empirical
tests in 20 countries. Advances in Experimental Social
Psychology 25 (1992), 1–65.

[13] Srinarayan Sharma, Vijayan Sugumaran, and Balaji
Rajagopalan. 2002. A framework for creating hybrid-
open source software communities. Information Systems
Journal 12, 1 (2002), 7–25.

[14] Katherine J. Stewart and Sanjay Gosain. 2006. The
Impact of Ideology on Effectiveness in Open Source
Software Development Teams. MIS Q. 30, 2 (June 2006),
291–314. http://dl.acm.org/citation.cfm?id=2017307.
2017313

[15] Bill Venners. 2003. The Philosophy of Ruby: A Conver-
sation with Yukihiro Matsumoto, Part I. http://www.
artima.com/intv/rubyP.html. (2003).

APPENDIX
A. LIST OF QUESTIONS

For transparency and replicability, we list all evaluated
questions of the survey including their exact phrasing. We
exclude a small number of questions about power structures,
community health, and motivation that we have not used in
this paper.

Part I: Ecosystem.
• Please choose ONE software ecosystem* in which you

publish a package**. If you don’t publish any packages,
then pick an ecosystem whose packages you use.
* “Software ecosystem” = a community of people us-
ing and developing packages that can depend on each
other, using some shared language or platform
** “Package”: A distributable, separately maintained
unit of software. Some ecosystems have other names
for them, such as “libraries”, “modules”, “crates”, “co-
coapods”, “rocks” or “goodies”, but we’ll use “package”
for consistency.
[selection or textfield, substituted for <ecosystem> in
remainder of survey]

Ecosystem Role.
• Check the statement that best describes your role in

this ecosystem.
– I’m a founder or core contributor to <ecosystem>

(i.e. its language, platform, or repository).
– I’m a lead maintainer of a commonly-used package

in <ecosystem>.
– I’m a lead maintainer of at least one package in
<ecosystem>.

– I have commit access to at least one package in
<ecosystem>.

– I have submitted a patch or pull request to a
package in <ecosystem>.

– I have used packages from <ecosystem> for code
or scripts I’ve written.

• About how many years have you been using <ecosys-
tem> in any way?

– < 1 year
– 1 - 2 years
– 2 - 5 years
– 5 - 10 years
– 10 - 20 years
– > 20 years

Ecosystem values.
• “How important do you think the following values are to

the <ecosystem> community? (Not to you personally;
we’ll ask that separately.)” — see Section 1.1 for the 11
value questions; results shown in Figure 1.

• How confident are you in your ratings of the values of
<ecosystem> above?

– Not confident
– Slightly confident
– Confident
– Very confident

• “Is there some other value the <ecosystem> community
emphasizes that was not asked above? If so, describe it
here:”

Important groups of participants.
• “In some ecosystems, some participants have more in-

fluence than others over the direction of the ecosystem.
In the <ecosystem> ecosystem, rate which groups are
more or less likely to get what they need or want.” The
following choices were presented

– Highest influence
– High influence
– Medium influence
– Low influence
– Lowest influence
– I Don’t Know/Not Applicable

for each of these five stakeholder groups.
– End users People who rely on the ecosystem’s

packages, but do not necessarily contribute pack-
ages themselves

– Developers People who write or maintain packages
– Leaders A small group of people who organize the

community and set policies
– Gatekeepers People who decide if submitted pack-

ages will be made available
– Sponsors Organizations that supply developers,

code, tools, money, etc. to the community
• “Thinking about who has influence and gets what they

want and need: do you agree that the situation is fair?”
– Strongly agree
– Somewhat agree
– Neither agree nor disagree
– Somewhat disagree
– Strongly disagree

• (OPTIONAL) Why or why not? – [text field]
• (OPTIONAL) If there are other people or groups in
<ecosystem> who are highly influential, please name
them. – [text field]

Community Health.
• “Next, we would like to know your perceptions about

the health of the <ecosystem> ecosystem. Please focus
on the last 6 months and use the radio buttons below
to indicate your level of agreement to the following”
The following choices were presented

– Strongly agree
– Somewhat agree
– Neither agree nor disagree
– Somewhat disagree
– Strongly disagree
– I don’t know

for each of the following questions:
DEVELOPERS

• <ecosystem> has problems attracting and retaining
new developers lately.

• There is a pattern of long- standing developers leav-
ing<ecosystem>.

• Developers who want to innovate and make larger
changes are often too constrained from doing so.

• Developers are rather isolated and do not communicate
with each other much.

• Diversity among developers is low.
PACKAGES

• Package interfaces are generally too unstable in <ecosys-
tem>.

• It can be difficult to find appropriate packages within
the ecosystem, because many packages offer confusingly
similar functionality.

• <ecosystem> is perceived as having low quality pack-
ages.

• Package changes do not get made available to end users
quickly enough after their release.

• Users often struggle to find a consistent set of compati-
ble versions of dependencies.
PEOPLE

• People in the community do not have enough say in
decisionmaking. (e.g. about policies, leadership, criteria
for inclusion, etc.)

• <ecosystem> is not very attractive to people building
commercial software.

Part II: Package.
• In the following we are going to ask about your experi-

ence working on one particular package. Please think
of one package in <ecosystem> you have contributed
to recently and are most familiar with. If you haven’t
contributed to a package in <ecosystem>, then name
some software you’ve written that relies on packages in
<ecosystem> packages. You may use a pseudonym for
it if you are concerned about keeping your responses
anonymous. — [text fields, substituted for <package>
in remainder of survey]

• Do you submit the package you chose to a/the reposi-
tory associated with <ecosystem>? (Choose ”no” if the
ecosystem does not have its own central repository.) —
[yes/no]

• Is there any software maintained by other people that
depends on the package you chose? — [yes/no]

• Is the package you chose installed by default as part of
a standard basic set of packages or platform tools? —
[yes/no]

• “How important are each of these values in development
of <package> to you personally?” — see Section 1.1 for
the 11 value questions; results shown in Figure 2.

• (OPTIONAL) Is there some other value important
to you personally for <package> which was not men-
tioned? — [text fields]

• How often do you face breaking changes from any up-
stream dependencies (that require rework in <pack-
age>)? — results shown in Figure 4a

– Never
– Less than once a year
– Several times a year
– Several times a month
– Several times a week
– Several times a day

• How often do you make breaking changes to <pack-
age>? (i.e. changes that might require end-users or
downstream packages to change their code) — [fre-
quency scale as above] results shown in Figure 3a

Making changes to <package>.
• I feel constrained not to make too many changes to
<package> because of

• potential impact on users. — results shown in Fig-
ure 3b

– Strongly agree
– Somewhat agree
– Neither agree nor disagree
– Somewhat disagree
– Strongly disagree
– I don’t know

• I know what changes users of <package> want. —
[agreement+don’t know scale as above]

• If I have multiple breaking changes to make to <pack-

age>, I try to batch them up into a single release. —
[agreement+don’t know scale as above] results shown
in Figure 3d

• I release <package> on a fixed schedule, which <pack-
age> users are aware of. — [agreement+don’t know
scale as above] results shown in Figure 3j

• Releases of <package> are coordinated or synchronized
with releases of packages by other authors. — [agree-
ment+don’t know scale as above] results shown in
Figure 3i

• When working on <package>, I make technical compro-
mises to maintain backward compatibility for users. —
[agreement+don’t know scale as above] results shown
in Figure 3c

• When working on <package>, I often spend extra time
working on extra code aimed at backward compatibility.
(e.g. maintaining deprecated or outdated methods) —
[agreement+don’t know scale as above]

• When working on <package>, I spend extra time back-
porting changes, i.e. making similar fixes to prior re-
leases of the code, for backward compatibility. — [agree-
ment+don’t know scale as above]

Releasing Packages.
• A large part of the community releases updates/revi-

sions to packages together at the same time. — [agree-
ment+don’t know scale as above]

• A package has to a meet strict standards to be accepted
into the repository. — [agreement+don’t know scale as
above] results shown in Figure 3k

• Most packages in <ecosystem> will sometimes have
small updates without changing the version number at
all. — [agreement+don’t know scale as above]

• Most packages in <ecosystem> with version greater
than 1.0.0 increment the leftmost digit of the version
number if the change might break downstream code. —
[agreement+don’t know scale as above]

• I sometimes release small updates of <package> to
users without changing the version number at all. —
[agreement scale, without ‘don’t know’] results shown
in Figure 3g

• For my packages whose version is greater than 1.0.0, I
always increment the leftmost digit if a change might
break downstream code (semantic versioning). — [agree-
ment as above] results shown in Figure 3f

• When making a change to <package>, I usually write
up an explanation of what changed and why (a change
log). — [agreement as above] results shown in Fig-
ure 3e

• When working on <package>, I usually communicate
with users before performing a change, to get feedback
or alert them to the upcoming change. — [agreement
as above] results shown in Figure 3h

• When making a breaking change on <package>, I usu-
ally create a migration guide to explain how to upgrade.

— [agreement as above]
• After making a breaking change to <package>, I usu-

ally assist one or more users individually to upgrade.
(e.g. reaching out to affected users, submitting patch-
es/pull requests, offering help) — [agreement as above]

Part IV: Dependencies.
• In the last 6 months I have participated in discussions,

or made bug/feature requests, or worked on develop-

ment of another package in <ecosystem> that one of
my packages depends on. — [yes/no]

• Have you contributed code to an upstream dependency
of one of your packages in the last 6 months (one where
you’re not the primary developer)? — [yes/no]

• About how often do you communicate with developers
of packages you depend on (e.g. participating in mail-
ing lists, conferences, twitter conversations, filing bug
reports or feature requests, etc.)? — [frequency scale,
as above] results shown in Figure 4f

For most dependencies that my packages rely on, the way
I typically become aware of a change to the dependency that
might break my package is:

• I read about it in the dependency project’s internal me-
dia (e.g. dev mailing lists, not general public announce-
ments) — [agreement scale, as above]

• I read about it in the dependency project’s external
media (e.g. a general announcement list, blog, twitter,
etc) — [agreement scale, as above]

• A developer typically contacts me personally to bring
the change to my attention — [agreement scale, as
above] results shown in Figure 4e

• Typically I get a notification from a tool when a new
version of the dependency is likely to break my pack-
age — [agreement scale, as above] results shown in
Figure 4f

• Typically, I find out that a dependency changed be-
cause something breaks when I try to build my pack-
age. — [agreement scale, as above] results shown in
Figure 4g

• How do you typically declare the version numbers of
packages that <package> depends — results shown
in Figure 4i

– I specify an exact version number
– I specify a range of version numbers, e.g. 3.x.x, or

[2.1 through 2.4]
– I specify just a package name and always get the

newest version
– I specify a range or just the name, but I take a

snapshot of dependencies (e.g. shrinkwrap, pack-
rat)

• What is the common practice in <ecosystem> for
declaring version numbers of dependencies? — [same
scale as previous + “don’t know”]

Using or avoiding dependencies.
• When adding a dependency to <package>, I usually do

significant research to assess the quality of the package
or its maintainers, before relying on a package that
seems to provide the functionality I need. — [agreement
scale, as above] results shown in Figure 4d

• It’s only worth adding a dependency if it adds a sub-
stantial amount of value. — [agreement scale, as above]
results shown in Figure 4c

• I often choose NOT to update <package> to use the
latest version of its dependencies. — [agreement scale,
as above] results shown in Figure 4h

• When adding a dependency, I usually create an abstrac-
tion layer (i.e., facade, wrapper, shim) to protect inter-
nals of my code from changes. — [agreement scale, as
above]

• When working on <package>, I often copy or rewrite

segments of code from other packages into my package,
to avoid creating a new dependency. — [agreement
scale, as above]

• When working on <package>, I must expend substan-
tial effort to find versions of all my dependencies that
will work together. — [agreement scale, as above]

• (OPTIONAL) Compare <ecosystem> with other
ecosystems you’ve used or heard about – does one have
some features that the other should adopt? If so, name
the other ecosystem(s) and describe the feature(s). —
[text field]

• (OPTIONAL) Why do you think people chose to design
these other ecosystem(s) differently from <ecosystem>?

— [text field]

Part V: Demographics and motivations.
• Age

– 18-24
– 25-34
– 35-44
– 45-54
– 55-64
– 65+

• Gender — [male/female/other]
• Formal computer science education/training

– None
– Coursework
– Degree

• How many years have you been contributing to open
source? (in any way, including writing code, documen-
tation, engaging in discussions, etc) — [same time scale
as “years used ecosystem” above]

• How many years have you been developing or maintain-
ing software? — [same as previous]

• “People work on software for many different reasons.
They also derive different kinds of satisfaction from such
work. Following are some reasons other developers have
given us regarding their participation in open source
projects. Thinking of your own work on <package>,
please indicate how important each of these motivations
is to you:” Each of these questions was presented
with a five point scale from Great Importance
to Little Importance, with intermediate choices
unmarked.

– i really enjoy it. It is fun.
– It gives me the chance to attain a recognized qual-

ification or skill.
– It gives me status at work.
– It increases my opportunities for a better job.
– It is the satisfaction of seeing the results of the

work I do.
– It gives me a sense of personal achievement.
– I can add features I want or need to use.
– It gives me status in the community.
– It’s part of my job.
– It gives me the chance to do things I am good at.
– I can fix bugs or problems that cause me trouble.

• (OPTIONAL) Is there anything else we should have
asked, that would help us better understand your ex-
perience with community values and breaking changes
in <ecosystem> If so, tell us about it: — [text field]

B. SUMMARY PLOTS OF SELECTED RESULTS

Stability Innovation Replicab. Compatib. Rapid Acc. Quality Commerce Community Openness Curation Fun

H/Ca.
Lua
Node
R/CR
Ruby
Atom
H/St.
R/Bio
Mav.
Pyton
NuG.
Coco.
Go
Erla.
PHP
Rust
Perl
Eclip.

1 2 3 4 5

Mav.
Lua
Perl
NuG.
PHP
Go
Eclip.
Erla.
Pyton
Rust
Ruby
R/Bio
H/St.
R/CR
Coco.
H/Ca.
Atom
Node

1 2 3 4 5

Atom
Lua
Go
Node
H/Ca.
Coco.
Eclip.
Ruby
Pyton
Erla.
PHP
R/CR
Perl
Rust
NuG.
R/Bio
Mav.
H/St.

1 2 3 4 5

Lua
Go
H/Ca.
Atom
Mav.
Pyton
Node
R/CR
Rust
Erla.
Coco.
PHP
Perl
Ruby
Eclip.
NuG.
R/Bio
H/St.

1 2 3 4 5

H/St.
Eclip.
Lua
H/Ca.
R/CR
R/Bio
Rust
Mav.
Erla.
Go
Pyton
Perl
NuG.
Coco.
PHP
Ruby
Atom
Node

1 2 3 4 5

Lua
Node
Mav.
Ruby
Atom
NuG.
Pyton
H/Ca.
R/CR
PHP
Rust
H/St.
R/Bio
Eclip.
Erla.
Perl
Coco.
Go

1 2 3 4 5

R/CR
R/Bio
Atom
Lua
Pyton
H/Ca.
Rust
PHP
Perl
Node
NuG.
Coco.
Mav.
Ruby
Go
Erla.
Eclip.
H/St.

1 2 3 4 5

Mav.
NuG.
Lua
H/St.
H/Ca.
R/CR
PHP
Coco.
Pyton
Eclip.
Go
Perl
R/Bio
Rust
Atom
Node
Ruby
Erla.

1 2 3 4 5

Mav.
NuG.
Lua
R/CR
PHP
Go
R/Bio
H/St.
H/Ca.
Ruby
Pyton
Perl
Coco.
Eclip.
Erla.
Node
Atom
Rust

1 2 3 4 5

Lua
H/Ca.
Mav.
Rust
Node
NuG.
Pyton
Ruby
PHP
Perl
R/CR
Coco.
Go
Erla.
Atom
Eclip.
R/Bio
H/St.

1 2 3 4 5

Mav.
R/CR
R/Bio
Eclip.
NuG.
PHP
H/St.
H/Ca.
Pyton
Go
Rust
Coco.
Perl
Atom
Lua
Node
Erla.
Ruby

1 2 3 4 5

1: not important or opposed, 2: somewhat important, 3: important, 4: very important, 5: extremely important; plots show
smoothed distribution; diamond indicates mean

Figure 1: Perceived community values; showing distribution of raw ratings, sorted by average to emphasize range of answers.

Stability Innovation Replicab. Compatib. Rapid Acc. Quality Commerce Community Openness Curation Fun

Rust
Lua
H/Ca.
H/St.
R/Bio
Go
Mav.
NuG.
Erla.
R/CR
Pyton
Node
Coco.
Atom
Eclip.
Ruby
PHP
Perl

1 2 3 4 5

Perl
PHP
Lua
Erla.
Ruby
H/Ca.
NuG.
Rust
Go
H/St.
Eclip.
Pyton
R/CR
Coco.
Atom
Node
Mav.
R/Bio

1 2 3 4 5

Atom
Lua
Coco.
Eclip.
H/Ca.
Rust
Go
Node
Perl
Pyton
NuG.
PHP
R/Bio
Ruby
Erla.
H/St.
R/CR
Mav.

1 2 3 4 5

Lua
Rust
H/Ca.
Coco.
Node
Pyton
Atom
Go
Perl
R/CR
NuG.
Ruby
Mav.
R/Bio
H/St.
Eclip.
PHP
Erla.

1 2 3 4 5

Lua
H/St.
Perl
Eclip.
R/Bio
Rust
H/Ca.
R/CR
PHP
Coco.
NuG.
Mav.
Ruby
Pyton
Go
Erla.
Node
Atom

1 2 3 4 5

Eclip.
Rust
Atom
H/Ca.
Lua
NuG.
R/Bio
Node
Pyton
Mav.
Coco.
H/St.
Perl
Ruby
R/CR
PHP
Erla.
Go

1 2 3 4 5

Atom
R/CR
R/Bio
Lua
Rust
Perl
H/Ca.
Pyton
Ruby
H/St.
PHP
Coco.
Eclip.
Node
NuG.
Erla.
Go
Mav.

1 2 3 4 5

R/CR
PHP
Lua
NuG.
H/Ca.
R/Bio
Rust
Ruby
Mav.
Perl
Coco.
Pyton
H/St.
Node
Eclip.
Erla.
Go
Atom

1 2 3 4 5

H/Ca.
PHP
Lua
Go
NuG.
Mav.
Rust
R/Bio
R/CR
Perl
H/St.
Ruby
Node
Pyton
Eclip.
Erla.
Coco.
Atom

1 2 3 4 5

Rust
H/Ca.
Lua
Mav.
Coco.
Erla.
H/St.
PHP
Atom
Pyton
Node
NuG.
Go
Perl
Ruby
Eclip.
R/CR
R/Bio

1 2 3 4 5

Mav.
Perl
Eclip.
R/Bio
H/St.
Coco.
NuG.
R/CR
Go
H/Ca.
Ruby
Rust
Node
PHP
Pyton
Atom
Lua
Erla.

1 2 3 4 5

1: not important or opposed, 2: somewhat important, 3: important, 4: very important, 5: extremely important; plots show
smoothed distribution; diamond indicates mean

Figure 2: Personal values.

a. Frequency b. Feeling c. Design d. Batching e. Explaining f. Versioning: g. Versioning: h. Communic. i. Coordinate j. Releases on k. Strict
of making constrained compromises changes changes semantic small updates with users releases a fixed, known standards
breaking ch. not to change for compat. in release in change log versioning same version before release with others schedule (gatekeeping)

Perl
R/CR
Eclip.
Erla.
Go
Ruby
R/Bio
Pyton
Atom
H/St.
Lua
NuG.
H/Ca.
PHP
Mav.
Coco.
Node
Rust

 N O Y M W

Lua
Rust
Pyton
Atom
H/Ca.
NuG.
PHP
R/Bio
Ruby
Node
H/St.
Erla.
Coco.
Eclip.
Mav.
Go
R/CR
Perl

1 2 3 4 5

Rust
Coco.
H/St.
Erla.
Node
NuG.
H/Ca.
R/CR
Lua
Ruby
PHP
Pyton
Perl
Atom
Go
R/Bio
Mav.
Eclip.

1 2 3 4 5

Perl
R/CR
Lua
Go
Eclip.
Erla.
Pyton
Coco.
R/Bio
Atom
H/Ca.
H/St.
Node
Rust
Ruby
Mav.
PHP
NuG.

1 2 3 4 5

Go
Rust
Node
Erla.
Eclip.
H/Ca.
Pyton
NuG.
H/St.
PHP
Lua
Ruby
Mav.
Coco.
R/Bio
Atom
R/CR
Perl

1 2 3 4 5

R/Bio
Lua
H/Ca.
Go
Perl
H/St.
R/CR
Mav.
Eclip.
Atom
Pyton
Ruby
Coco.
NuG.
Rust
Node
Erla.
PHP

1 2 3 4 5

H/Ca.
R/CR
NuG.
Perl
Rust
Mav.
Node
Pyton
Erla.
Ruby
Lua
H/St.
R/Bio
Atom
PHP
Eclip.
Coco.
Go

1 2 3 4 5

Lua
H/Ca.
R/Bio
Erla.
R/CR
NuG.
Coco.
Eclip.
Pyton
Go
Node
PHP
Rust
Mav.
Ruby
Perl
Atom
H/St.

1 2 3 4 5

NuG.
Lua
Rust
Erla.
Atom
Pyton
Perl
Ruby
Node
PHP
Go
R/CR
Coco.
H/St.
H/Ca.
Mav.
Eclip.
R/Bio

1 2 3 4 5

Lua
H/Ca.
Rust
Atom
Node
Erla.
Pyton
NuG.
Perl
PHP
H/St.
Ruby
R/CR
Go
Coco.
Mav.
Eclip.
R/Bio

1 2 3 4 5

H/Ca.
Rust
Lua
Atom
Erla.
Pyton
Ruby
NuG.
Perl
Node
PHP
H/St.
Go
Coco.
Mav.
Eclip.
R/CR
R/Bio

1 2 3 4 5

N: never, O: less than once a year, Y/M/W: several times a year/month/week; 1: strongly disagree; 3: neither agree nor
disagree; 5: strongly agree

Figure 3: Practices of package maintainers and frequency of performing breaking changes.

a. Frequency b. Package c. Only add d. Only add e. Update: f. Update: g. Update: h. Often choose i. Declaration j. Frequency
of facing interfaces dep. with sub- dep. after sub- Devs. contact Tool provides When build not to update of versions in of collab. w/
breaking ch. are unstable stantial value stantial research me personally notification breaks some depend. dependencies dependencies

Lua
NuG.
Erla.
Go
Perl
Atom
Eclip.
PHP
Pyton
Coco.
Rust
Mav.
R/CR
H/St.
Ruby
R/Bio
H/Ca.
Node

 N O Y M W

Perl
Mav.
NuG.
Ruby
H/St.
Eclip.
Atom
Erla.
Go
Pyton
PHP
R/CR
R/Bio
Rust
H/Ca.
Lua
Coco.
Node

1 2 3 4 5

Rust
H/St.
H/Ca.
Node
Perl
Eclip.
R/Bio
R/CR
NuG.
Ruby
PHP
Pyton
Mav.
Coco.
Lua
Erla.
Go
Atom

1 2 3 4 5

H/Ca.
H/St.
Atom
Pyton
Eclip.
R/CR
R/Bio
Rust
Erla.
Node
Coco.
Perl
Go
NuG.
Ruby
Mav.
Lua
PHP

1 2 3 4 5

H/St.
Erla.
Rust
Pyton
Lua
PHP
Eclip.
Ruby
Node
Atom
H/Ca.
Go
Mav.
Coco.
NuG.
R/Bio
Perl
R/CR

1 2 3 4 5

Lua
Pyton
Go
NuG.
Rust
Coco.
Erla.
Mav.
R/Bio
Eclip.
R/CR
PHP
H/Ca.
Atom
Ruby
H/St.
Perl
Node

1 2 3 4 5

Erla.
Lua
NuG.
Rust
Mav.
PHP
Node
R/CR
Coco.
H/Ca.
Go
Perl
H/St.
Atom
Eclip.
Pyton
Ruby
R/Bio

1 2 3 4 5

H/St.
R/Bio
R/CR
Ruby
H/Ca.
Perl
PHP
Erla.
Rust
Go
Coco.
Pyton
Node
Atom
Eclip.
Lua
Mav.
NuG.

1 2 3 4 5

Mav.
NuG.
PHP
Ruby
Node
Rust
Atom
Coco.
Erla.
Pyton
Lua
R/CR
Eclip.
Perl
H/Ca.
R/Bio
Go
H/St.

E R N S

Atom
Eclip.
NuG.
Coco.
R/Bio
Mav.
Go
R/CR
Pyton
PHP
Perl
Lua
H/Ca.
Ruby
H/St.
Erla.
Rust
Node

 N O Y M W

N: never, O: less than once a year, Y/M/W: several times a year/month/week; 1: strongly disagree; 3: neither agree nor
disagree; 5: strongly agree;

E: exact version number; R: version range; N: just by name; S: snapshot
Figure 4: Practices of package users and frequency of facing breaking changes.

