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1 Proofs

1.1 Proof of Proposition 1:

The first Euler equation combined with the second Euler equation reduces to:

h I
7T 7T 1
(M + -

M (Mye,h) — mw (mye, 1) q (my,tflfst) Wy — My (my,tflfst)

where g =
Then, the second Euler equation reduces to:
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my (my,tfllst) +q (My,t,5141) W
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() My (my,tr 5t+1) =
Putting the money market clearing conditions into Eq. (1) and (2) rearranging them, we get:

my (my,t—lr St) +q (my,t/ St—l—l) Wm

(3) Mst+1 — my (my,t/ St+1) = 2
and
@ 7 (M —my (my, 1)) + ! (M" —my (my, 1)) _ 1
(M —my (myp,h)) (M —my (my, 1)) (9 (my,tflf st) wy — my (my/tflf 5t))

We consider the following linear forecast functions for the money holding of the young and
the price of the single good in terms of the fiat money. m, (m,s1,.1) = M1 — 41 (m — mot+1)
and g (m,s;11) = 1+ + p°+1 (m — m*+1) where m = m, ;. Plugging these linear forecast func-
tions into Eq. (3) and (4) and rearranging them, we obtain:!

) 29%m +2 (M — (1+ %) m™) = (14 p*wm) m + (7 — p™m™) wn
and
6 (m—1) | (pwy + %) (7 + 7)o (- )
— (0 wy + 1) (nh (Ml Y (msr _ ml>> 1 (Mh o ot (msf — mh>))
+ (nh'yl + nl'yh> V(7 wy — msf)}
— (' wy — ) (nh (Ml — il + 4 (msf — m’)) + 7 (Mh — " " (msf — mh>>>
= (m— ") =9 ()2 (m — )
(o~ (o 3= ) 7 (30— s (5 -a1)) 71
— (Ml — il + 4 (msf — ml)) (Mh — il 4 N (msf — mh))

where m = m;_1.

! Since this equation should hold for all periods, we use the time subscript # instead of ¢ + 1.
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From Eq. (5) and (6), we can derive the following ten equations:

@ 29" = (1+wn")

® 29 = (1 + wmpl)

©  2(M = (149")mt) = (7" ") @
10)  2(M — (1++9) ') = (7 — o) wn

(1) _ <phwy_'_,yh> (nhﬂyz n 7Tzﬂyh> _ <,Yh>2

(12) B <plwy+yl) (nh,yl n nl,yh> o (71)2

(13) (phCUy—l—’)’h) ( h (Ml — i 4y (mh—ml>> +7 (Mh "+ (mh —mh>>>
m

Y
(14 (p’wy +’Yl) (”h (Ml =l gl (il =) ) (Ml o (ol =) ) )

- (" (o (ml ( i)+t (M = (7" =" (7 =) ) )) o
(15) (q wy — 1 ) (ﬂh (M’ it + o ( )) + 7! (Mh—mh+fyh (mh—mh>>>
= (M =+ of (=il ) (=0 " (" mh))
00 (o) (4 (o~ 31— ) o (0t ()
(Ml il o (s =l ) ) (" =l o (")

There are eight variables, {mh ml qh ql h ’yl ol

", p'}. By solving the first eight equations,
we get values for {m" ese values satisfy the last two equa-
(7) - (14), we get values f qthhp . Th ] fy the 1 q
tions, (15) and (16), for suff1c1ently small shocks.

From Eq. (7) and (8):

295 —1
Wm

(17) p° =

From Eq. (9) and (10) combined with Eq. (17):

2MP — wpd®

(18) m® = 3

So far, there are four variables, {q”, ql YA }, and six equations left, (11) — (16).



From Eq. (11) and (12):

(19)

1Y Y

== =
YAy
24 -1 290 -1
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From this result considering Eq. (17):

(20) o'=p'=p

From Eq. (11) or (12):

(21) — (pw +7) (y +7ly) =4
= +y+pw¥ =0
29 -1
2 _
=rt+trt— w’ =0

where we focus on the positive solution of this quadratic equation because a true monetary
equilibrium in which young agents hold fiat money cannot exist with the negative value of 4.
Hence, the linear forecast functions are parallel over states. So far, there are two variables,
{7",4'}, and four equations left, (13) - (16).
From Eq. (13):

(22) (owy + ) <7rh (Ml — il + (mh — l)) +
I



From Eq. (14):
o =))) = ()

(23) Ww+ﬂ(ﬁ(w—mﬂ+n%M%4#+
h

:—<Ml—ml+Mh—(m —fy(ml—mh)

Combining Eq. (22) and (23) to get qh — ql:

(24) — iy (mh - m’) + (qhwy - mh> — _rhy (ml _ mh> n (qlwy _ m’)
M

Lo 2(1+) (M-
=g g = ( (

3wy + (1 + 7) Wm
After plugging Eq. (24) into Eq. (22) and rearranging it:

A+ C(1+7)wart

(25) J =
3wy

B A Z ’ ] I ! _2(14y) (MM
where A = — (2+ " + 21l y) M" + (=’ +27t'y) M' and C = 3wy+((1+7)wm)'

After plugging Eq. (24) into Eq. (23) and rearranging it:

7 = —A+C(1+7y)wyr"

(26) 3wy

where A = (-7 +27hy) M" — (2 + 7! + 27hy) M.

So far, there are no variables, but two equations left, (15) and (16). The values for the eight
variables given above satisfy Eq. (15) and (16) for sufficiently small shocks which we numer-
ically check by calculating the errors for different sizes of shocks in Table 1. This is consistent
with Proposition 2 that there are ME generated by a LIFS for small enough shocks in any three-
period SOLG models with a single asset.

1.2 Proof of Lemma 1:

The market clearing condition in time ¢ is:

(27) ey (Pt Pr+1, Piv2) +em (Pr—1, Pt Pry1) = 4

where p; is the price of equity in time t and a is the total asset quantity in the deterministic
economy.
The asset demand function of an young agent born in time t — 1 can be denoted by:

(28) ey,t—1 = ey (Pi-1, Pt, Pr+1)
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Table 1: Errors in Eq. (15) and (16)

Size of shock No shock 1% 5% 10%
(Ml, Mh) (1,1) (0.995,1.005) (0.975,1.025) (0.950,1.050)
Error in Eq. (15) 0% 0.0008% 0.0204% 0.0812%
Error in Eq. (16) 0% 0.0008% 0.0206% 0.0830%

- Errors in Table 1 are relative errors calculated by dividing the absolute values
of errors with the values of the left hand side in Eq. (15) and (16).
- The size of shock measures differences in the total money suppply

between high and low states compared to the money supply base, 1.

At the steady state, Eq. (27) and (28) can be reduced into:

(29) ey (P, P, P) +em (P, P, P)=a
and
(30) e=ey (p,p P)

We first show the existence of the steady state price, p. Let’s assume that W (p) = e, (P, p, P) +
em (P, P, P) - ey and ey, are continuous in the given prices to the agents because they are derived
from applying the IFT to the agent’s optimization problem under strict concave preferences.
Then, the function W should be continuous in 7 as well. As the constant price p goes to zero,
the equity holdings e, and e, diverge to infinity because agents can receive extremely high re-
turns by buying the asset. The asset holdings will be close to zero as the constant asset price
goes to infinity because it requires a small number of asset quantities to transfer endowments
to the next period. By the intermediate value theorem, there exists at least one p such that
W (p) =aforVa e Ry,.

We now introduce two linear forecast functions: ¢, = é— v (e,—1 —¢&) = G (e,—1) and
p=p+p(e,—1 —&) = H (ey,_1). Hence, the market clearing condition and the optimal young
agent’s asset holdings can be rewritten as:

(31) GoG(e)+em(H(e),HoG(e),HoGoG(e)) =a
et e—e) +em (prple—2),p—py(e—e),p+prit(e—2)) =a
and
@2) G(e) = ¢y (H(e), Ho G (), Ho GoG ()
ee—q(e—2a) =c,(p+ple—2),p—pr(e—2),p+py*(c—2))

where e = ¢y, .
Under e = ¢, Eq. (31) and (32) always hold because

(33) e+t (e—2) +en (prple—e),p—py(e—2),p+prP(e—2)) =a

ée+ten(p,pp)=a



and

(34) e—y(e—&)=c,(p+ple—e),p—py(e—e),p+pr*(c—2))
«>e=ey(P.p.P)

Therefore, ¢ and p can be the solution to the system at e, > = ¢ in a three-period determin-
istic OLG model with a single long-lived asset.

1.3 Proof of Proposition 2:

With the linear forecast functions in (22), the optimality condition for the household problem
is given by:

H(e,s;—1),H (G (e,s:—
(35) G(es—1) =ey | H(G(G(e,84-1),h),h),H
H(G(G(e,st-1),h),l),H(G(G(e,5¢-1),1),1)

fors;_1 € {h,1} wheree =e¢y; ».
The market-clearing condition becomes:

(36) G (G (e,s¢-1),5t) +em ( H(G(G(e,st_l),h),hg,H G(G(e,si-1),1),h
H(G(G(e,s¢-1),h),1),H(G(G (e,51-1),1),1

for (s;_1,5¢) € {h,1}* where e = ey,t—2-

The market-clearing conditions and the equations from the equity holding for the young,
(35) and (36), are now a system of six equations in the six variables, {e‘h, e, ﬁh, f)l, Y, p} . There
is, however, a functional dependency between <y and p, since
St

(37) ey & yle=) _ v

pi—pt ple—e) p
(e
AV
Thus, we have at most five independent equations in five variables. If we denote the system
of the equilibrium conditions by Z : R, — R3_,, then we want to show that Z rh 0. Since we
know ¢ and p can be the solution to the system at the steady state when w and 4 don’t depend
on s by Lemma 1, the IFT will then guarantee the existence of a LIFS in a neighborhood of the

deterministic steady state.
The assumed linear forecast functions generate the following relationships:

(38)  G(G(e,5i-1),851) = &% — (1 — &%) + 2 (e — &)
(39 H(G(esi1),50) = P +p (&1 — &) — pry (e — 1)
(40)  H(G(G(e,51-1),5t),541) = P11 +p (&% — &41) — py (71 — &) + py* (e — &+ 1)



It will simplify the calculations to show the transversality result if we allow the asset quan-
tities to vary over each state, which we denote by " and @', respectively. We will include these
variables in the rank calculation of the Jacobian matrix, and use the transversal density theorem
to infer that for almost all asset quantities, Z M 0, i.e. the IFT applies. With the relationships
above and the inclusion of the asset quantities as variables, we can rewrite the market-clearing
conditions as:

st =& — (&1 — t)_|_,),2 (e —&%1)
pit- 1+p(e_e_5t71)’

ph ( p5t—1 _eh) pf)/ (e_est 1)
41) P+P(€S”—el) (e —&1),
+em P m(s”—e‘)+mz(e—es”)
pltp (@ —e') —py (@ —&) +p7 (e — ),
ﬁl+p(éh—é’) —py (e =) +py*(e—er ),
=]

Py (@ =) +py* (e — &)

Also, we can transform the definition of the equity holding for the young into:

0=¢1—q(e—et1)
pritp(e—eit),

ﬁh +p (e‘sf 1— éh) py (e —e’t-1)
@) pltp(e—2)—py(e—er)
—ey p'—py (@1 =2 +py? (e — &)
p'+p (@ =) —py (e =) +py* (e — &)
pl+p @ —2)—py (e —2") +py? (e—e),

pl—py (1 —é) + py? (e — &%)

For the rank calculation of the Jacobian matrix, let:

(43) A =1 = 7% = e + enon0y + emai (0 + 07) — emznnoy’
— em3lh (P +pr+ P?z> + emani (P - P’YZ> — em3li (P? + P72>
Ap = =7 =7 = em1p + Cwznfy + emai (0 + 07) — Cnmn0 Y’
— Em3Ih (P + o7+ 07 ) + em3nl (.0 - P’Yz> — Em3ll ( T+ P72)

Al =1+ 7 = enonp + ensnnPY — emsin® + emsn (0 + 07)
Al = — eponpP + emznnPY — emsinf + emsn (0 + p7y)

Bun = — €210 + emzin (0 + 07Y) — emznip + emznupey

Bu =1+ — emup + emzin (0 + 07) — emsnip + €msupy

Bl =—7— 7% —em1p + eman (0 + 07) + €m0y — Cmshn (m + mz)
+ enain (p — p'rz> — C3nl (p + oy + p’rz) — e3P
By =1 — 9% — eu1p + eman (0 + 07) + €m0 — emsnn <PV + P’Yz>

+ewain (0= P72) = ewa (0 + 7 +077) = ennp?’?
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Fp, =em1 + emon + emann + emsin
Fp =euman + emann + emain

G =emar + em3n + emzi

Gi =em1 + epa + epzn + emsu

Ly, =em (e - éh> — eponY (e - éh> + ey (e‘h —d—y (e - e‘h>>
+ iy (6 - éh) + emsin <él ' (éh — e‘l> + 72 (e — e‘h>>
e DO )
Ly =em (e - él) + e (e‘l ey <e - e‘l)) . (e . e'l>
+ emsnn (-7 ¢ — éh) + 72 (e - él)) + esin (él L (e — él>>
+ emsnl (e_h —d—v (él éh) + 92 (e - e‘l>> + esn Y’ (e — e‘l>
My =27 <€ - €h> Cm2nP (e €h> — em21P (e - éh) + 2em3n0Y <€ - éh)
+ em3in ( Y (eh — el) + 207y (e e )) + 2e,31107 (e — éh)
e (-o(e=) o)
My =é' — " + 2y (6 €h> emnP (6 eh) €2l (e—éh)
+ 2e3nm07Y (6 €h> + em3in ( 1Y (e‘h = ) + 207y <e — e‘h>>
SR )
— ey (e el) enlf (e éz)
4 ) +2p7 (e e )) + 2eu3180Y (e e’)
+ emani (‘P (e_l - éh) + 207 (e e )) + 2ep31107Y <€ 61)
My =27 <€ - él) — emonp (€ — €Z> — €1 (6 - €l>
+ em3nn ( P (el - eh) + 207 (e 4 )) + 2ey3m07Y (e - e‘l)
+ en3niPY (‘P ( ol — > + 207 (e —2 )) + 2€,31107 (e — El)
Hy =1+ +epp — eyonpy — eyar (0 + 07) + €m0y
ey (0 + 07+ 072) —eyan (0= 072) +ean (7 +07?)
Hj =e,onp + eyamn0y + eyampP — eyan (0 + 07)
Iy =eya1p — eyain (0 + 07) + eyanip — eyauPy
I =1+ +epnp —eyon (0 +p7) — €upY + eyann (m + p“rz)
— ey (p = P7) + ey (0 + 07 +07%) + eyuor®
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Jn = — ey1 — eyon — eysnn — eyain

Ji = — eyan — eyann — eyain
Ky = — ey — eyan — eyai
Ki = —ey — ey — eyan — ey

o )
—eunr® (e=2) —eg (&~ =7 (& =2) 497 (e 2'))
— €y3hl (éh —e 492 (6 & ) ey311 ( ( €l> 2 (e e ))
=0 (=) e (¢~ =1 (e~2) e (e=2)
o (1 (¢ =#) 47 (=) e (P27 (e=2)
(¢ (4= 47 (=) e (-2)
00—~ (e2) v () 2 (e~2)
a2 e (-0 (4-2) + 207+~ #)
— 2e,3010Y <€ — éh) — ey3il <—p <e‘h — él> + 207 (e — e‘h>>
O =- (e — él) + eyonp (e - él> +eyp (e - él>
- (o () 421 () 2 (e~
ey (—p (¢ =) +207 (e~ ') ) — 26,307 (e~ )

where Ay, — Ay = A — Ay =By — By =By — By =1+, Ay— Ay =By —By, b, —F =
G —Gp=em, H,—H =1 —Iyand J; — ], = Ky, — K; = ¢y1.

Evaluating these variables at the steady state, ¢ = &" = &' = ¢,and " = §' = p, yields:

(44) L,=0
L;=0
My, =0
My =0
M, =0
M; =0
N, =0
N, =0
0, =0
O, =0

Then, the Jacobian matrix with respect to the parameters in the price and equity linear fore-
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cast functions and the asset quantity parameters takes the form:

oc" o op" op' op oy oa" aa
[ App B B Gy Ly My, —1 0 7
Aw Buw B Gy L, My 0 -1

Ap Bnw FH G L My -1 0

45 DZ =
45) Ay By F G L My 0 -1

" Aw, By Fo G, 00 —1 0 7
Ay By E, G, 00 0 -1
. Alh Blh Pl Gl 00 -1 0
(46) DZ=1 4, By F G 00 0 -1
H, I, J, K, 00 0 0
| H L J; K, 00 0 0

We reduce this matrix via row and column operations. Subtract the second and fourth rows
from the first and third rows, respectively. Then, subtract the first row with the third row and
clear the third row to get:

[0 0O 0 0 00 O 0 7

Ay By F, G, 00 0 —1

0 O 0 0 00 -1 0

(47) bz = Ay By F G 00 0 -1
H, I, J, K, 00 0 0
L H L 1 KK 00 0 0 |

Subtract the fourth row from the second row and the sixth row from the fifth row and then,
clear the fourth row to obtain:

0 0 0 0 00 O 0
Ay —Ay By—By e —em 00 0 0
0 0 0 0 00 -1 0
(48) bz = 0 0 0 0 00 0 -1
Hh — Hl Ih - Il —ey1 eyl 00 O 0
H, I L5 K 00 0 0

Add the second and fourth columns to the first and third columns, respectively. Then, clear
the last row to derive:

0 0 o 0 00 0 O
0 Bhl - Bll 0 —e,;1 00 O 0
0 0 0O 0 00 -1 O
“9) bz = 0 0 0o 0 00 0 -1
0 Ih — Il 0 €y1 00 O 0
1 0 0o 0 00 0 O
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From this reduction, the following submatrix has rank 2:

By — By —em

50
(50) =1 ep

Therefore, the reduced Jacobian matrix is given by:

00 0000 O 07
01 00O0O0 O O
0O000O0OO0OO0ONS-10
(51) bz = 0O000O0OO0OO0 O -1
000100 O O
|1 00000 O O |
which has rank 5.

From the rank calculation, the IFT applies. Hence, we can infer that there will be ME gener-
ated by a LIFS around the deterministic steady states for sufficiently small shocks.

1.4 Proof of Proposition 3:

The first-order forecast function should be consistent with the full price dynamics system:

(52) fofof(p)=z(fof(p).f(p).p)

After taking the derivative of the first-order vector system for Eq. (52) and evaluating it at
the steady state, p;_» = p, we have:

f/2 f/2
mEn
1 1

Eq. (53) implies that f’ takes one of the eigenvalues of Z and the vector in Eq. (53) is its
corresponding eigenvector. One can construct a forward-stable first-order forecast function by
associating it with the eigenvalue of Z inside the unit circle (see Kim and Spear 2017).

We show there exists a functional relationship between the equity holdings of the young in
period t and the young in period t — 1 from Proposition 2 on a neighborhood of the determin-
istic steady-state. Hence, we can write:

(54) &y (per1) = G (&y (p1))

For the function G to be consistent with the underlying full price dynamics of the model, it
requires that:

(55) &y (f (p)) = G (& ()
which imposes the condition on the derivatives at the steady state that:
(56) Dpéyf' = G’ (2y) Dpéy
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de de de
s _ 9%y Yy g y g2 _
where Dyé, = &, = a T apmf + aszf |Pt:P

It follows, then, that —y = G’ (¢;) = f’(p). Thus, the slope parameter of the LIFS can
coincide with the stable eigenvalue of Z.
To associate the parameter ¢ with -, we write the relationship between p; ;1 and &, (p;) as

(57) prr1 = H (& (pr))
Model consistency then requires that:
(58) f(pe) = H (& (pr))
Eq. (58) indicates that the derivative of this equation will be:
(59) f'=H é’y
Since H' = o, we have:
f_ =
(60) Q=75 = >
& &

1.5 Proof of Lemma 2:

The market clearing condition in time ¢ is:

(61) Z 261] Pt+1—is-- -/pt—i—L—i) =4a

i=1j=1

The ((L —1) M — 1) dimensional vector of the asset demands functions in time ¢ can be
denoted by:

{ e-1)j (Pr-Lt2,- ’pt+1)}':1...M—1

(62) & = {e(L—Z),j (Pt—L+3/ -+, Pt+2) i1, M

{el,j (Pt/ ey Pt—i—L—l) }jzl,-~~,M
where the demand functions for all but the type-M of the second oldest generation are included.

At the steady state, Eq. (61) and (62) can be reduced into:

(63) Z Zel] =a

and

Nt
I
——
P
T
N
~
:Gl
i
N—
—
~ I
I =
—_
<
=
—_

(64)




As in the deterministic three-period model, the asset demand functions are also continuous
in the prices. As the constant price goes to zero, the equity holdings diverge to infinity. The
asset holdings will be close to zero as the constant asset price goes to infinity. By appealing to
the intermediate value theorem, there also exists at least one steady-state price satisfying the
market clearing conditions.

We now introduce two linear forecast functions:&; = ¢ +T (Ct_l — 5) = G (Ct—1) and p =
p+ AT (&1 —¢) = H(&—1). Hence, the market clearing condition and the individual opti-
mality conditions can be rewritten as:

(65) a=0"GN (@) Feym (H (&),HoG(¢),...,HoG! (g))

et (g

pHAT(E=8),p+AT(I-T)E+TC-2),...,
+er 1)M< 5+ AT ((Z?;ffi‘l) (I—T)E—I—FL‘lé—(f) >
and
(66) GH1() =
e (H@ HoG@ oG @)
{e(H)J (HoG (¢),HoG2(§),...,Ho Gl (g))},

{e1; (Ho G2 (&), Ho G (.C),...,Ho GH3(0)}
<2L 11-'1 1) (I—F)§+1"L_1§=

j=1,.,M |

p+AT(E-0),...,
1) p+AT ((2%;11 Fi_l) (I-T)§+T1¢ — 5) j=1,...M~1

ﬁ_i_AT((ZL 2 i 1>( _.r)g+1"L2§_§>,...,
L p+AT <<22L T 1) (1_1“)5+F2L_3§—5> j=1,...,M

where & = &_1,1, G is the composition of N number of G functions and we let T? = I.
Under ¢ = ¢, Eq. (65) and (66) always hold because they degenerate to:

(67) dE+e M (P, p)=a

and

Nat]
I
——
Py
0
>
~
S
~
i
N—
—
-
Il
—_
=

(68)




Therefore, ¢ and P can be the solution to the system at ¢; | ;1 = ¢ in a more realistic version
of the deterministic OLG model with a single long-lived asset.

1.6 Proof of Proposition 4:

We calculate the number of variables in the linear forecast functions. p° has S values de-
pending on s;. A®isa ((L —1) M — 1) dimensional vector for s; € {zj,...,zs} and thus there
are ((L —1) M — 1) S variables for A%. & is also a ((L — 1) M — 1) dimensional vector varing
over states. Hence, ithas ((L —1) M — 1) S variables. I**isa (L—-1)M —1) x ((L—1) M —1)
matrix. The affine matrix has ((L — 1) M — 1) variables for every state s; € {z,...,zg}. The
total number of variables is ((L —1) M) S if we let A®* and T* vary over states while it is
(L=1)M((L—1)M+ S —1) if we restrict such coefficient matrices to be uniform over states
ie. A = Aand T =T for Vs; € {z1,...,25}.

With the linear forecast functions in (38) and (39), the market clearing conditions can be
rewritten as:

(69) = 1'GM (&S 1)
e (@ s, (G @SEED o {1 (6 (6500)) st s )

L—-1 L—1

7% = (2 (H st k+1> ]_"St—iJrl) (’;_’Stfiﬂ + (H I‘St—k+1> é‘)
i=1 k=1

por-Lez + (A L+2) (é’ C’Sf L+2

-~ I _ l—vs, L+2 (';'St L+2
{P L3 4 (As"HS) < ( 4TSl & — FSi-Las >}
g

+e_
(L 1)/M (Hl 1 I“St k+l) (I _ rst 1+1) —i+1
port + (A5f+1)T ;Si—L-Q—S

(HL L se- k+1> & — o

where ¢ = & 141
We denote the set of the equity prices in time T that an agent born in time ¢ and node S
should expect as: (p (S',57,1)) = {H(G" (& Sf))}, where { = ;1. Instead of insert-

ing the shocks into every forecast function, we write the history of shocks only in the out-

ermost forecast function via an obvious abuse of notation. For example, H (G <§; Si“)) =

H (G (¢, st),5t4+1) or G2 (C st+1> = G (G (¢, st),5t+1)- Note that the vector of the asset demand

functions in time t, GE71 (g; S| o), is evaluated at a realized history of shocks from time
t — L 4 2 to time t. This is in contrast to the set of the equity prices in the sense that they are
evaluated over all possible paths of shocks because agents need to expect the asset prices in the
future. We let Hk I't-k+1 = ], Since I'5+-k+1 is a matrix, one needs to be careful about the order
of multiplication in the product. For example, Hk LTSkt = TS0 TS,
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We can rewrite the optimality condition for the household problem as:

(70)  GM(&SiLy2) =
[ {e@,l),]- (H(C,st,Hz) {H (GL ! (§ 5§+£+2>>}r5t L+3> }]:1,””]\471 ]
{ea (H (0 (@sitn3)) oo {H(Ch (&811E) ) iSinas) f iy
| {ai (HE 2 @S0 {H (2 (@si2)) ) ),
=y (Hl 1 s k+1) (I —Tse-iv1) ESt-in1 (HL L e k“) §=
[ e + (Asr)T (g = got) .,

1 T\ B
e(L-1),j . s\ T Y (T, o m) (I — Ts-it1) Et-i1 »
p + (A1) _ .St
(ngfll ]—'St—k+1> g _ §5f+1 t—L+3
- j

()]

cey

() - re
+(HL 2o g g :
() -

61,]'

{F‘JSHLI + (ASHLq)

j
The market clearing condition has S*~! equations depending on the history of shocks from
time + — L + 2 to t. The expression for the asset demand functions has ((L —1) M — 1) St~1
equations if there are at least two agents in each period. This is because the vector of asset
demand functions is a ((L — 1) M — 1) dimensional vector and there are S~! types of the his-
tory of shocks from time t — L + 2 to t. Hence, the total number of equations in the system is
(L —1) MSL—1,

If there is a representative agent in each period, the number of equations for the asset de-
mand functions will be (L — 2) SL~2 since the asset holdings of the second oldest generation is
removed in the vector of the endogenous state variables, and thus there are S'~2 types of the
history of shocks from time ¢t — L + 3 to t. In this case, the total number of equations of the
system is (L —2 + S) St=2,

With an indicator function, we can denote the total number of equations in the system by
(L=1)M+(S—1)1(M = 1)) SL=1-1M=1) where 1 (M = 1) is one if there is a representative
agent in each period and zero otherwise.

For the rank calculation of the Jacobian matrix, let
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(71) Azs = [T <L21 1 (St,iJrl = ZS) (Zl—]l: I‘Srk+l> (I _ I'StiJrl))

i=1 k=1

T
-1 (St—L+2 = Zs) €(L—1),M,pi_142 (ASHH)

2 5 T 1(s-p12 = z5) (I —T*-142)
+ €(L—1),M,p,_ ASt-L+3 < ) +
4T (L=1),M,pt-113 ( ) -1 (St—L+3 = Zs) 1

5101 15441 =24) 1

Si—-L+3

E, =1(st- 142 =2s) ey Mpy 1.+ 3, 1 (5t-143 = Zs) €(_1)Mp yos T -+
g—L+3

t—L+43
+ ) 16 = zs) e, Mp
§f+1
t—L+3

z T
L, =1 (SthJrZ - ZS) €(L-1),M,pi—1+2 ((j - CSFHZ)

+ ) (143 = 2s) eony M,y ([ =T H2) Ei2 T ERE — Fin)

gt-L+3
t—L+3

L-1 <Hi—l T5t—k+1 (I _ I‘S_tfi+1) ggt—iJrl
) =1 (U=
+ Y 1G5 = 2s) er-1)Mprr l )

S s + (H,%:—ll r§f7k+1) & — S
) L2 (ol (H{{_l Fsr—k+1> (Esf—j — 5Sr—j+1) ol (Hle:ll I—'St—k+]> (6 _ 5st_L+2)
M. = Z - n —
= or; or
) (A§t—L+3)T [St-1+2 (é’ _ Es,_Hz)
+erL-1)Mpi_14s BF?S + ...
ZL_Z <8(As_f+l )T(H{f:l th—k+1) <§§f*]’_§§t7j+l) )
j=1 ar?s
+ 2 E(L—l),M,le i 1 i
§£t1L+3 n a(Ath ) (Hk;l ISt—k+1 ) (@—gst—LJrz)
ors

L-1 i—1
HZS = Z 1 (St7i+] = ZS) <H stk“) (I — Fst*i“)
i=1 k=1

T
-1 (St,LJrz = ZS) €(L-1),j,pr_142 (ASFLJ&) 4+ ...
F T e g (AT 1 1S = 2) (Hlk;ll e
5111 4s D (L= 1) 5 3. —
+3 .(I_th+1)_1(st+1_zs)l

L-2 _ i—1 18k s

—1 (st =2z5) 1

o . ASt+L-1 T i=1
T Zsfif 1ELjiprei ( ) ( . (I — ]—'5_t+L7i—1) -1 <§t+L—1 = Zs) I
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S L_l S ; = i—1 St—k+1 _ TSi—it1
+ Y e nmp, (A)T ( Yt 1(5-is = 24) (Hk:lrt : ) (I —T%=1)

T

T

)

+...

))].

2L-31 (= e
1 (Spep—i1 = 2s) (szl st+L—k—1>




1 (St7L+2 = Zs) e(Lil)rj/pt*L+2 + e
+ 2511'1% 1 (St+1 - ZS) e(L_l)rf/Pt+1 1,..M—1

(72) Jz = — :
1 (st = z5) ejp -
i + Z§f¢%71 1(8t4L-1=2s) €L prir oM
- ~ T ) -
1(st-r42 = 2s) E(L~1)jpr-1+2 (6 - ‘:SFHZ) T Zs_itlLJrCi ! (SH]l" =
Zz’L:Hl (H;{;ll r§z7k+1) (I — [t=is1) @t-int
.e _ N
(L=1),j,pt11 + (Hle;ll 1"§t7k+1) é’ _ §§t+1 .
N, = —

S

ZiL:]z (H;;ll I“Ssz) (I —Tot=i) @S- ) ! L

1(st = zs) €1, _ z
(t ) Ljp ( +(H]€:121"5t—k)(:_§st

) T

):fi;?’ (H;{;ll r§t+L—k—1) (I — Tot+L-i-1)
.§§t+L—i—l + (Hii}3 FS_HL—k—l) é’ _ §§t+L—1

L - ]

o LZ_Z (a (]‘[{(:1 Fst—k+1) (g’st—f — g‘stm)) . d (Hﬁ;ll r5t7k+1) (& — @ot-1+2)
j=1

+ Zgiﬁfl 15411 =2s) €1 pir s (

2 or ors

a(Agt—L+3 ) Trse—112 (g_gstfuz )

e(Lfl)r]'/Pthw arlzs e
gt (2 (M Tk (o gom)
+X e =1 oy
ot+1 1)
SttL+3 (L 1)/]rpt+1 a(A§t+1 )T (H]I(‘:ll r§t7k+1 ) (gigst7L+2)
+ IR
1

_ L-3 a(Ast)T<Hf(:1 rsf*k>(§s"j*1,gst—j)

L e
L T . +...
9(A%t) (ng;f rsf*k)(g—gbt—uz)
+ or=s
l i 5 5
y2L—4 a(Aft+L-1)" (H{CZI ISt4+L—k—-1 ) (gsf+L—j—z _@r+L-j1 )
+Y =1 arss
L1 €1jp i . o )
t+1 i (B(AstJrLl) (Hfifarrs::kkA ) (g—gt—uz) )
_ i j

where s denotes the history of shocks through which the economy evolves but 5 represents the
possible histories of shocks in the future that agents need to expect. The state at time t — L 4- 2
is given and thus, 5;_11p = s;_14+2. 1(s¢ = z5) is one if s; is zs and zero otherwise. eijp. 18 the
derivative of the asset holding of age-i and type-j agent with respect to p;. The derivatives of
the system with respect to I'* — the i-th row of the matrix I*, M. and O._will be zero at the
deterministic steady state. This is because the terms in the small parentheses cancel out since
the transition vectors in the LIFS are the same at the steady state: { = = = forVs € {1,...,S}.
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Let these variables at the steady state, [** =T, A* = A,and p* = pforVs € {1,...,S}:
y P p

L-1
1(sp—ip1 =z) T (I — F)) —1(st-r42 = Zs) €1y Mp_ o A
=1

1(St—L ZZZS) (I—F)
[ —1(;H+3=Zs)1 ]+

1

(73) A, =" (

T
+ Z e(L_l)erpt—L+3A

at—L+3

Si-L43
Y1 (51 = 2) T(I-T)
+ e(r— M, AT |: 1= _
sti%g A —1 (5411 =2z) 1

= AL p 1 (5142 = 25) AP+ A°

F, =1 (St—L+2 = ) E(L-1)Mpiri2 T Z 1 (S_t_L+3 = ZS) e(L-1),Mpi_rs T+

5143
+ ) 1(51 = 2s) et Mpy s
<1
Si-L43

=1 (s;_140 = z5) F' + F?
L, =0
M. =0

L-1 ,
Hs, =Y 1(s;-ip1 =2z) "1 (I-T)

i=1

—1(st-14+2 = 2s) e(Lfl),j,pt,HzAT +.. |
L-1q (= i—1
1 1(5ip1 =z) " (I-T)
) T i=1 t—i+1 s
+Z§§j+3 C(L-1)jprald [ —1 (51 =25) 1 ]
N L-2 . i—1
i 1(sp_j=2z) T (I-T)
AT | Bist (5 = .
CLip [ —1(sp=z4) 1 +
2L-3 4 (& i—1
"1 (Spyp—i1 =2z) T (I -T)
. T i=1 t+L—i—1 s
o i [ ~1 (84111 =125)1 j
= Hzls,n + Hi,n + H3
(1 (SthwLZ = ZS) €(L-1),j,pr-L+2 to Tt Zs?ffhs 1 (gt“’l = ZS) €(L-1),j,prs1 >j
Joo = — :
( L(st = 25)erjp o+ Lgrin L@ErL-1 = 25) €1jpy ) ,
L j
=Jin+ I

st = 0
O. =0

where A, denotes the first bracket in A;,. With an abuse of notation, we let 1 be either an
index for the n-th branch in a date-event tree from time t — L + 2 to time ¢ or the sequence
of shocks itself. For example, n = 1 designates the first branch in which all realized states
are z;. n = 2 is an index for a history of shocks having z; for all periods but time ¢t when
st = zp. Terms in A;s/n are evaluated at the n-th history of shocks. A? points out all elements
multiplied by 1 (s;_142 = z5), and it remains the same no matter what a history of shocks is

19



at the deterministic steady state. Thus, there are no history specific indices. A? indicates the
rest part of A, and this term stays the same no matter what z; and a history of shock are
since it is only affected by the projected histories of shocks forward after the date of birth and
such projected histories of shocks are symmetric in the sense that each state of nature has the
same cases of shock histories. We can define F! and F? similar to A? and A%. H] , and H°
are defined as A%S/n and A3. H%s,n extracts terms in the big bracket of H,, corresponding to
the n-th realized history of shocks. J!  and J* are terms characterized similar to H2 , and
H3. Note that 25521 ;s,n = 25521 ;s,n” Zle Hzls,n = Zsszl H;S,n// Zsszl szs,n = Zg:l Hi,n’ and
Yot =0 L, forall (n,n') € {zy,..., 25} x {z,...,zs} .

Then, the Jacobian matrix with respect to the unknowns in a LIFS including the asset quan-

tity parameters, { %, P%, A%, ', % }5521, takes the form:

72\ T D T s s =Zs
(74) 0 (CZS) oP% 9 (A*%) ari e arf(L_l)M_l) 0a*
1 (L-1)M-1) _
D7 = ASLL“ FSE—HZ LSLHZ Msi—uz o M(S(fL_Lﬁij " (st = ZS)SLLH
1 — —
HSLHZ JSLL+2 NSLLH OSf,LH T OSLLH 0

where the partial derivatives should be taken for Vs € {1,...,S}, but we write them only
for an unspecified state z; for every variable for notational simplicity. This Jacobian matrix is
a ((L=1)M+(S=1)1(M = 1)) $=171=0) o (L —1) M)* +1) S ) matrix. The sub-
matrices with the subscript, S}_; . ,, in the Jacobian matrix are matrices created by stacking up
rowwise the derivative matrices with respect to the price and equity parameters evaluated over
all the histories of shocks from time t — L + 2 to time ¢.

The Jacobian matrix evaluated at the deterministic steady state yields the following matrix.
Note that the submatrices in the Jacobian matrix corresponding to A* and I'* become a zero
matrix if evaluated at the steady state, so we remove them in the Jacobian matrix since zero
matrices do not affect the rank calculation.

The upper submatrix above the horizontal line denotes the partial derivatives for the market
clearing condition. This submatrix has S~! rows. We order the rows by the history of shocks
from time t — L + 2 to t. In the first row, all states across time t — L + 2 to t are z7. In the second
row, states are z; for all times but time ¢ when the state is z,. States are zg for all periods from
time t — L + 2 to time ¢ in the last row.

The lower submatrix denotes the partial derivatives for the asset demand functions. It has
((L —1) M — 1) St~ rows under heterogeneity. We also order the rows in the lower submatrix
by the history of shocks, but we note that variables regarding the asset demand functions in
each history of shocks have (L — 1) M — 1 rows. Thus, in the lower submatrix, we use identity
and zero matrices of which row dimension is (L —1) M — 1 as well.
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(75) DZ =

3
S(s-1st-24s T H

Hz2/(S—l)SL*2+S

+H?

3
zo(s—1st24s TH

21

+J?

+J

+J?

AL+ A+ AP Al [ +43 Al + A F'+F? F? F? -1 0 0
Al1 s+ AT+ A AL, + 43 Agsl + A3 F'+F? F? r? 0 -1 0
1 2 3 1 ' 3 1 ' 3 1 . 2 '2 '2 '
Al 5+A +A Al g+ A Al g+ A F'+F F F 0 0 -1
1 1 24 43 1 3 2 1 2 2 :
A?,SHH +4 A?Z,SHH + Az + A3 Ai:S,SHH + A3 F2 Fl + Fz F2 -1 0
Az1,sL*2+2 +4 Azz st-242 T AT+ 4 A25 st-2p T A F F+F F 0 -1
1 3 1 2 3 1 3 2 1. 2 2 : '
Az1,SL*2+S +4 Azz,SL*Z-*—S TAT+A Azs st2,5t A F F' +F F 0 0 -1
1 + A3 Al + A3 Ais,(S—l)sL*2+1+ F2 2 42 1 0 0
21(S—-1)SL-2+1 2,(§-1)SL-2+41 A2 1 A8
Al +
1 3 1 3 (S—1)SL-242 2 2 1, 2 _
Azl,(5—1)5H+2 +A AZz,(S—l)SL*2+2 +4 s (Az J)r A3 F F F +F 0 1 0
) :
Al Lo, e+ A Al Lo o+ A Azsis-pst-zst F? F? F' 4+ F? 0 0 -1
21,(S-1)SL-24 2,(S—1)SL-245 A2 4 A3
H |, +HZ , +H® HL | +H,+H Hl | +HZ,+H® Ra+T? L+ T2 ]ZS,] +J? 0 o0 0
H112+H22+H3 H.,+HZ ,+H® H152+H22+H3 L2t Tat P rp TP 0 0 0
H15+H25+H3 H15+H§25+H3 H155+H55+H3 28 +]2 225+]2 b TP 0 0 0
1 ) 1 ' 1 ' 1 1 1
?121/(5*1)5“”1Jr 5 £{Zz/(571)SH+l+ s 5123/(571)5“2+1Jr 5 I; 1.(5— 1)5L 241 I 2,(5— 1)5L 241 I 5.(S— 1)§L 241 0 0 0
Hzl,gS—l)SL’ZJrl +H sz,£S—1)SL*2+1 +H st,l(S—l)SL*ZJrl +H +? +/? +]
1 1 1
le,(S—l)SL*2+2+ 5 i_lzz,(sfl)SL*2+2+ N fzs,(S—I)SL’2+2+ 5 ] 1,(8— 1)5L 242 ] 2,(S— 1)5L 242 ] 5.(S— 1)55L 242 0 0 0
H (s—1yst2, T H H, (s—1yst2, T H o s—nst-242 TH +? +J2 +J
1 1 1 1 1 1
ZPIzl,(S—l)SL’Z+S+ flzz,(S—l)SL’Z-#SJ'_ flzs,(s—l)SL*2+s+ I s- 15t245 IZZ,<5,1)52L72+5 Lo (s— 1St24s o o 0




We reduce this Jacobian matrix via row and column operations. We remove all A% and F? with identity matrices in the
rightmost columns and obtain the following matrix.

(76) DZ =

Hzl,(Sfl)SL’ZJrS

1 2 -
A+ 4 A%ZJ A%SJ Fi 0 0 -1 0 0
Azl, +A 23,2 25,2 F 0 0 0 -1 0

R : ; ; : : : : :
Azl,S +A 2,5 zg,S F 0 0 0 0 -1

1 1 2 1 1 ' i
Azl,SL*2+l A?,SL*2+1 + A2 Azs,SL*Z-H F -1 0

1 1 1
A si212 Asiap A Al 5240 F 0 -1

1 : , 1 : g : X : :
Az1,SL*2+S Azz,SL*2+S +4 AZS,5L72+5 0 F 0 0 0 -1
1 1 1 2 .1 ’ )

Azl(S—l)SHH Azz,<sf1)sH+1 Ais,(S—l)SL*ZJrl + Az F -1 0
1 1 1
A21,(S—1)SL*2+2 Azz,(S—l)SL*ZJFZ Azs,(S—l)SL*ZJrZ +A F 0 -1
) ) ) : , : : 3 : : :
21, (S=1)SL-245 25,(S—1)S1-245 A s-nst-24s T4 0 0 F 0o 0 -1
Hi szl 1+ Hz HZ} 1 szz 1+ Hz Hi Hz |+ H? Zl/ 1+ TP ZZ’ P lell +72 0 o0 0
2 2 1 2
H, ,+H; ,+H H,,+H;,+H H; ,+H 2+H3 hat] 2t 22 T 0 0 0
H115+H§15+H3 H15+H§ZS+H3 H155+HSS+H3 le+]2 zzS+]2 L5t 0 o0 0
1 1 1 1 1 1
B, (s-nst-2at , B (s-nyst-2at , B szt , Leis- NSt Lns- 1St241 Losnstzn o o 0
21,55—1)SL*2+1 +H ZZ,ES—I)SL*2+1 +H ZS,I(Sfl)SL*ZH +H +J? +J? +J?
1 1 1
th(Sfl)SHJrZJr N HZz,(Sfl)SHH+ N HZS/(S*1)5L72+2+ s I, 1(5— 1)51 242 I 2,(5— 1)51 242 I, 5.(5— 1)51 242 0 0 0
o (s—1)st-242 TH a(s—1)st-210 T H o (s-1)st2p T H +/? +J2 +J2
1 1 ’ 1 ’
Hzl,(Sfl)SL*ZJrSjL HZz/(Sfl)SHH+ HZS/(SfUSHH+ ]1 1(5— 1)sL 245 ]1 2,(S— 1)5L 245 ]1 s.(S— 1)5L 245 0 0 0
2 + H3 2 + H3 2 + H3 +] +] +]

sz,(S—l)SL*ZJrS

H (s—1)st-24s

22




Subtract the first SL=2 rows corresponding to the histories of shocks where s;_;» = z; from the next every S L=2 yows within

the upper submatrix. Likewise, subtract the first ((L — 1) M — 1) St=2 rows in the lower submatrix corresponding to the histories
of shocks in which s; | 15 = z; from the next every ((L — 1) M — 1) S=2 rows. Then, we derive the following matrix.

I Al +A? AL, Al rt 0 0 -1 0 - 0 ]
A11,2—~-A2 Agzz A%sz Fl 0 0 o -1 --- 0
1 a2 1 1 1 ; ) :
Al s +A AZ2 s AZS s F 0 0 0 -1
1 2 2 1 1 1
A sty A A1 st-2411 T Az Ay 52411 —F F
1 2 1 1 1
Az1,SL*2+2,2 -4 AZZ,SL*2+2,2 +4 Azs,sL*2+2,2 —F F
1 2 1 2 1 1 1 : .
Azl,SL’2+S,S -A Azz,SL*2+S,S +4 AZS,sL—2+S,S —F F 0 0o - 0
1 2 1 1 2 1 1
21,(S—1)SL=241,1 — A Azz,(S—l)SL*2+1/] Ais (S-1)st-2+411 + Az —F F
1 2 1 1 1
A (s-1)st-2100 A A, (s-1)sL-2122 A (s-nsi-2122 T A —F 0 F
1 2 1 1 2 . 1 : .1 .
7,(S-1)SL-245,5 A Azz,(sq)skus,s Azs,(S—l)SL*2+S,S +A4 —F 0 F 0o .- 0
H11+H21+H3 H11+H2221+H3 H11+H§51+H3 Joa+T? 221+]2 Log1 + 7 0 0
Hl1 ) + H2 2 + H3 Hl 2 + HZ 2 + H3 HlS ) + H2 2 + H3 le’2 + IZ 22 ) + ]2 215,2 + ]2 0 0
1 2 3 1 2 3 1 2 3 1 . p L 1 :
H, ¢ +H; ¢+ H H,¢+H, ¢+H H, ¢+ H; ¢+H JstT ]zzs"‘] Jigs T 7 0 0
1 ' 1 ' 1 '
Hz ,(571)5L72+1,1+ Hz ,(S—l)SL*2+1,1+ st,(571)5L72+1,1+ ]1 ! I 0 0
H i H (S—1)SL-2411 2,(S—1)SL-241,1 26,(5—1)SL-241,1
121,(571)5L*2+1,1 122,(571)5L*2+1,1 lzs,(S—l)SL’2+1,1
Hz ,(571)5L*2+2,z+ Hz ,(S—l)SL*2+2,2+ st,(S—l)SL*2+2,2+ ]1 J! ]1 0 0
i i H (S—1)SL-2422 2,(S—1)5L-2422 (5—1)SL-242,2
21,(S-1)8-242,2 2,(5-1)SL=242,2 25,(5—1)SL-242,2
1 1 1
Hzl,(S—l)SL*2+S,S+ sz/(sfl>sL*2+s,sJr H, /(571>5L*2+s,s+ 1 i I 0 0
Y 0 H? J(S—=1)SL-245,5 2,(5-1)SL-245,5 26,(5—1)SL-2+5,5
21,(S—1)SL-245,8 2,(§5-1)SL-2+5,S 25,(S—1)SL-245,5




In the matrix above, AZ o = = Al , AZ o forVs € {1,...,5} and (n,n') {z1,...,zs}" 7 x {z1,...,25}* 1. We define
1 2 1 — al _ — 2l !
H; , . HZ ,and ], - similarly. Note that AZS,S,‘SL,QH,1 = AZS,S,‘SL,QH,2 =...= Azs,s/-SL*2+SL*2,SL*2 forV(s,s") € {1,...,5} x

{1,...,S — 1}. In other words, rows corresponding to the same state in time t — L + 2, s;_ 1, are identical in the upper submatrix
of (77). This result also applies to H 1 H? and J L Therefore, we can clear every block of S L=2 rows using the first row within each
block. Similarly, clear every block of ((L — 1) M — 1) S*~2 rows using the first (L — 1) M — 1 rows within each block in the lower
submatrix. Via this procedure, we obtain the following matrix.

I Al +A? AL, Al rt 0 0 -1 0 -+ 0 ]
Al1 ,+ A? Al Al , Fl 0 e 0 0o -1 - 0
1 2 1 1 1 .

Al g +A A22 s Al s F 0 0 0 0 -1

1 . X , : ) : 3 : : : X : :
Azl,SL*2+1,1 -4 Azz,SL*ZJrl,l +4 T AZS,5L—2+1,1 —F F s 0 0 0o - 0

0 0 oy 0 0 0 oy 0 0 0 - 0

0 0 0 0 0 0 0 0 0

1 2 1 ' . 1 2 1 : ' 1 : : - :
Azl,(s—1)sL*2+1,1 -4 Azz,(5—1)shfz+1,1 e Azs (S-1)SL-2+41,1 +4 —F 0 s F 0 0o .- 0
0 0 iy 0 0 0 e 0 0 0 - 0

78) DZ = .

@) 0 0 0 0 0 0 0 0 0
H111+H2 +H® H121+H2 +H® H151+H2 +H® i+ Zzl+]2 L+ T 0 0 - 0
1_112—"_1_12212—"_1_13 H12+H2222+H3 1_1152—~_I_122—"—I_I3 ]12+]2 222+]2 le,2+]2 0 0 0
Hy sz1 sHH®  Hig H§25+H3 o Higt H2 s+ H e+ TP Z2S+]2 s+l 0 0 - 0
H; ,(571)5L72+1,1+ H;Z,(571)5L72+1,1+ Hzls,(S—l)SL*2+1,1+ ]1 J! J!

H i H (S—1)SL=241,1 5n(5-1)sL-2411 " 26,(S—1)SL=241,1 0 0 0
21,(S—-1)SE=241,1 2,(S-1)SL-241,1 25,(S—1)SL-2+1,1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
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SL—Z
SL73

To simplify the first S*~2 rows in the upper submatrix and the first ((L —1) M — 1)
rows in the lower submatrix, we repeat the same procedures as above. Subtract the first
rows corresponding to the histories of shocks where (s;_142,5;—1+3) = (z1,21) from the next
every SL=3 rows within the upper submatrix. Likewise, subtract the first ((L —1) M — 1) SL=3
rows in the lower submatrix corresponding to the histories of shocks in which (s;_142,5;-1+3) =
(z1,2z1) from the next every ((L — 1) M — 1) S¥=3 rows. Then, rows corresponding to the same
states in time t — L +2 and t — L + 3, are identical in both submatrices. Clear every block of S 3
rows using the first row within each block. Similarly, clear every block of ((L —1) M — 1) §t3
rows using the first (L —1) M — 1 rows within each block. Repeat this process with the first
SL=% rows, the first SL=° rows and up to the first S rows for the upper submatrix. Likewise,
iterate the same methods of reducing rows with the first ((L —1) M — 1) SE=* rows, the first
((L—1)M —1)SL> rows and up to the first (L —1) M — 1 rows for the lower submatrix.
Lastly, we can clear the first S rows using an identity matrix in the rightmost columns. Then,
we derive the following upper and lower submatrices respectively.

For the upper submatrix,

(79)

0 0 0 0 0 0 -1 0 0

0 0 0 0 0 0 0 —1 0
0 0 0 0 0 0 0 0 -1

Ail,s+1,1 Aiz,SJrl,l Aig,s“,l 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 1 1 ;

A21 ,SL=341,1 Azz,sL*3+m o Azs,sL*3+1,1 0 0 0 0

0 0 e 0 0 0 - 0 0 0 - 0

DzU — 0 0 0 0 0 0 0 0 0

1 . 2 1 2 1 1 1 .

Az1,5L72+1,1 -4 AZZ,SL*ZHJ +4 T Azs,sL*2+1,1 -F B 0 0

0 0 0 o .- 0 0 0 0

0 0 0 0 0 0 0 0 0

1 : . 1 : : . : , L : 3 : : : :
Azl,(S—l)SL*2+l,1 -4 Azz,(S—l)SL*2+l,1 e Azs,(Sfl)SL*ZJrl,l +A —F o - F 0 U 0

0 0 0 o - 0 0 0 cee 0

0 0 0 0 0 0 0 0 0
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(80)

For the lower submatrix,

Dzt =

H2111+H11+H3

H112+H22+H3

Hlls+ S+H3

1
H si11 + Hzl,S-H,l
0

1
Hz SE=341,1 +

Hz1,SL*3+1,l

1
Hz ,SL*2+1,1Jr

Hzl,S’f2+1,1

1
HZ]Q,(S—l)SL*2+1,1+

21,(S—1)SL-241,1
0

+ H?
+ B

Hl 1+H2221
Hl 2+H2

23,2

H2 +H

zzS

H22,5+1,1 + sz S+1,1
0

z5,8L-341,1

sz,sL*3+1,1

1
Hz SE241,1

sz,sL*2+1,1

1
sz,(S—l)SL*2+1,1+
2

sz,(5—1)sL*2+1,1
0

H;51+H51+H3

Hl ,+H ,+H®

S5+H2 s+ H?

st,s+1,1 + st/s+m
0

1
Hz SL=341,1

st,sL*3+1,1

Hz SL=2411 +

z5,SL72+41,1

. :
stz,(sfl)slf2+1,1+

25,(S—1)SL-241,1
0

26

Lt P
2T

s+
i
21,5+1,1
0

1
]zl,SL*3+1/l

0
0
1
]zl,S’f2+1/l
0
0

1
]zl, 5-1)SL-2+1,1

0

11+]2

22,

12+]2

22,

]Zz s+
]Zz,S+1,1

1
]ZZ,SL’3+1,1

0

1
]zz/SL*ZJrl,l

0

1
]zz, 5-1)sL-2411

0

1+
)+ J?

ZS/

Zs,

]zlf,s +?
]ZS,S+],1

1
25,5L-3+1,1

0

1
z5,5L-241,1

0

1
I ,(S-1)SL-2+1,1

0




Adds the second to the (S — 1)-th block of columns corresponding to the derivatives with
- 5-1
respect to {(CZS) T} ) to the first block of columns denoting the derivatives with respect to
s=

(¢7) ’. Similarly, adds columns corresponding to the derivatives with respect to {P=}°_) toa
column with regards to the derivative with respect to P*'. Then, we obtain the following subma-
trices due to the property that Y5, %s/” =yS Al L YS Hzls,n =y5 H;S i Yo  HZ, =

zg,n'’ Zs,N

S S S L-1 L-1
Yo, i/n, and Y5 T, =12, ]le,n, forall (n,n') € {z1,...,2s}~ x{z1,...,zs} .
For the upper submatrix,

0 0 0 0 0 0 -1 0 0
0 0 0 0 0 0 0 -1 0

0 0 0 0 0 0 0 0 -
0 Aiz,s+1,1 Als,s+1,1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 ’ 1 - : : . : : :
Azz,SL*3+1/1 e AZSlSL—aJrLl 0 0 e 0 0 0 ca 0

0 - 0 O 0 -~ 0 0 0 - 0

®1) pzi— |0 0 0 0 0 0 0 0 0

1 2 ’ .

Azz,SL*2+1,1 +A e A;S,SL’Z-HJ Fl 0 0

0 0 0 0 0 0 0 0 0
1 : . 1 . ) . . . _1 . : : :
Azz,(S—l)SL*ZH,l T Azs,(Sfl)SL*ZJrl,l +4 o o0 - F 0 0 .- 0

0 00 - 0 0 0 - 0

0 0 0 0 0 0 0 0 0
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For the lower submatrix,

1 2 3 1 2 3 1 2 1
H sz,l + sz/l +H T st,l + st,l +H J 21 + 7] s ]zs,l + ]2 o 0 --- 0
H  Hl,+H,,+H HL ,+H: ,+H ] Lot - 1o+ 00 - 0
H H! ¢+ HZ2 ¢+ H® H! ¢+ HZ ¢+ H° ] s+ e s+ 00 --- 0

1 2 1 2 1
0 H, st H s 0 Hoospn T H i 0 Iz, 8411 e Jzg 5411 00 --- 0
0 0 s 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 Hz1 ,SL*3+1,1+ H; ,SL*3+1,1+ 0 ]1 1 0 0 0
H? SL=341,1 H% SL-341,1 2t 255741 -
2 N ’ S ’
0 0 s 0 0 0 s 0 o 0o --- 0

(82) DZF=| o 0 0 0 0 0 00 - 0

0 Hz1 ,SL*2+1,1+ H; ,5L72+1,1+ 0 ]1 ]1
H? SL-2+41,1 H% SL2+41,1 2 w1 0o 0
2/ 7 S ’
0 0 0 0
0 0 0 0
1 1 '
sz,(S—l)SL*2+1,l+ st,(sfl)sL*2+1,1+ Il ]1
sz (5-1)SL-241,1 22 (S—1)SL-241,1 2SS (S-St
290 ’ LA ’
0 0 s 0 0 0 s 0 o 0 --- 0
0 0 0 0 0 0 0 0 0

In this lower submatrix, H = 25:1 H;s,n + Z_f:l H,%S,n +3H3and | = 255:1 ];s,n + 3J? are placed in rows corresponding to the
tirst n histories of shocks.
Subtract the first block of (L —1) M — 1 rows from the second to S-th block of (L —1) M — 1 rows. Next, transform the first
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block intoa ((L—1)M —1) x ((L—1) M —1) identity matrix via column operations and clear the first block of (L —1) M — 1

rows using the identity matrix. Then, we can draw a lower submatrix as below.

(83)

0
1 2
H; 1+ HZ 01

Hl

2
51 T HZ 51
Hl

1
Hz L3411
sz/sL*3+1,1

2,8L241,1
sz/sL*ZH,l

1
sz,(S—l)SL*2+1,1+
2

23,(S—1)SL-241,1
0

H! ,,+H?

Hl

2
s+t HL s
0

0

zg, zg,2,1

2
o501 T Hz 51

2
ss+11 T HE 5411

1
Hz ,SL=3411
st,sL*3+1/1

1
Hz ,SE=241,1

st,sL*ZH/l

H! +

zsz,(S—l)SL*ZJrl,l
z5,(S—1)SL-241,1
0

29

1
J 23,2,1

1
]zz,S,l
]1
22,5+1,1

1
]zz/SL’3+1,1

0
0
1
]zz,SL’ZJrl,]
0
0

Il
25,(S—1)SE—241,1

0

0

1
]zs,z/l

1
]zs,S,l
]1
2g,5+1,1

1
25,8L-3+1,1

0

1
zg,5L7241,1

0

]1
z5,(S—1)SL-241,1

0




For both submatrices, Al = Al H% = H! , H? = HZ,, and ]zls/,n,l = ]zls/,n

Zs/,n,l Zgr ! S/,n,l zZg s zs/,n,l Zg1 N
for s’ # 1 because the first history of shocks consists of full z; from time t — L + 2 to ¢ so that

1 1 _ 32 _ T ] ]
Azs/,l =0, HzS/,l = st,,1 = 0and ]Zs/'l = 0if s’ # 1. Thus, both submatrices are given as next.
[0 0 0 ) 0 -1 0 0
0 0 0 0 o0 0o 0 -1 0
0 0 0 0 0 0 0 0 1
0 AL s Al s 0 0 0o 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 o0 0o 0 o0 0
1 1 .
0 A22:51‘73+1 AZS,SL’3+1 0 0 0 0 0 0
0 0 0 0 0 0 o0 0
0 0 0
(84) DZY = 0 0 0 o0 0 0
Aiz,sL’ZJrl + A? o AlS/SszJrl 0 F! cee 0 0 0 . 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
) 1 ’ : 1 N ) . . . -1 . . . .
0 Azz,(S—l)SL*ZJrl e Azs,(s_1)sL—z+1 +A o o --- F 0 0o .- 0
0 0 0 0 0 0 0 0 0
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(85)

Dzl =

Z

1 2
H, ,+H,

1 . 2
H! s +H

2, 23,5
1 7
Hy s +H g4
0

27,803 41
sz,SL*3+1

1
Hz SL=241

sz,SL*ZJrl

1
szz,(S—l)SL*2+1+

sz,(5—1)5L72+1

0
1 2
HZs,Z + st/z

H! s+ H:

1° Zzs's
st,5+l + H25/5+]

1
Hz ,SL=341

HZS/S’-*3+1

1
Hz SL—241

HZS,S’-*ZJrl

1
Hz%,(S—l)SL*ZJrl—i_

st,(5—1)5L72+1

31

1
22,2

1
]zz,S

1
]Zz,S+1

1
]zz,SL*3+l

]1
23,(§—1)SL=2+41

0

1
25,2

1
]zs,S

1
]Zs,5+1

1
ZS,SL’3+1

1
]zs,SL’ZJrl

]1
25,(S—1)SL-2+41

0




For the upper submatrix, A;SIS,.SLQH =0ifs #s'+1forV (s,s') € {2,...,5} x{1,...,5 -1}
because s;_147 = zg,1 and sy = z1 for VT € {t—L+3,...,t} in the (s’ .SL=2 4 1)-th his-
tory of shocks. For the lower submatrix, H;S,S, = Hi,s, = 0 and ]215,5, = 0ifs # ¢ for
V(s,s') € {2,...,5}2 because s; = z; for VT € {t—L+2,...,t —1} and s; = zy in the s'-
th history of shocks. Therfore, we can derive the following submatrices.

[ o 0 0 0 0 0 -1 0 0 7
0 0 0 0 0 0 0 -1 0
0 0 0 0 0 0 0 0 -1
0 Al oy Al g 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1 1 X
Azz,sL*3+1 Y Azs,slf3+1 0 0 0 0 0
0 0 0 0 0 0 0 0

(86) pzu_ | 0 0 0 0 0 0 0 0 0
0 Algoa,tA 0 0o F 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
: ; : ) : I T
0 0 T Azs,(S—l)SL*ZJrl +t4 0 0 - F 0 o - 0
0 0 - 0 00 -~ 0 0 0 - 0
0 0 0 0 0 0 0 0 0
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(87)

Dzt =

0
Hl,+H:,

Z

0
1 2
sz,S+1 + sz,5+1

1
Hz ,SL=341 +
0
25,8341
0
0
1
Hz ,SL’2+1+
H
2,81-241
0
0

1
sz,(sf1)5L*2+1Jr
2

25,(8—1)SL-241
0

0
0
1 . 2
st,S + HZs,S

1 2
H s +HZ s

1
Hz ,SL-341

ZS,SL’3+1

1
Hz ,SL-241

25,5241

1
st,(sf1)sL*2+1Jr
2

2,(S—1)SL-241
0

33

1
22,2

1
zp,5+1

1
25,8L-341

0

1
ZZ,SL*2+1

0

]1
23,(§—1)SL=2+1

0

1
zg,S
1
j25,5+1

1
JZS/SL*3+1

0

1
JZS/SL*ZJrl

0

]]
z5,(S—1)SE=2+41

0




Now, we clear {J} }522 elements in the lower submatrix by using rows having F! elements

in the upper submatrix appropriately. This subtraction will affect { H.  + HZ | };5:2 subma-
trices. However, rows having these submatrices do not have any other non-zero elements so
that we can apply row operations to transform such matrices to be identity matrices. Hence,
the lower submatrix is given as follows.

(88)
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 s I 0 0 s 0 o 0 --- 0
1 2 1 2 1 1
0 sz,S+1 + HZZIS+1 T H25,5+1 + HZS,S+1 0 ]22,5+1 T ]ZS,S+1 o 0 --- 0
0 0 cee 0 0 0 cee 0 o 0 --- 0
0 0 0 0 0 0 0 0 0
1 1
Popsian® Hgsian® 0 I, 513 )y gi344
,SL=341 ,SL=34+
sz,sﬁf3+1 st,sL*3+1 2 s
0 0 0 0 0
Dzl = 0 0 0 0 0
1 1
HZQZ'SLZH—*_ HZ ’SL?ZHJF 0 ] SL-241 J SL-211
,SL=24 ,SL=24
sz,sL*2+1 st,sL*2+1 2 s
0 0 0 0 0
0 0 0 0 0
1 1
H, s—1yst2t zg(s-1)st-241 0 J: J!
H2 2 23,(§—1)SL=2+41 25,(S—1)Sk=2+1
2p,(§—1)SE-2+1 25,(S—1)SL-2+1
0 0 0 0 0
0 0 0 0 0

Lastly, we can clear all terms in columns corresponding to the derivatives with respect to
_ 5—-1
{ (%) T} ) using a big diagonal matrix consisting of identity matrices in the upper-left part
o

of the lower submatrix. Then, clear all elements in columns corresponding to the derivatives

with respect to { P% }55;21 using rows having F! in the upper submatrix properly. In the end, we
can derive the following reduced Jacobian matrix.
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00 00 0 0 -1 0 0
0 0 - 00 0 0 0 -1 0

00 00 0 0 0 0 -1

00 0 0O F! 0 0 0 0

00 00 0 0 0 0 0

00 0 00 O 0 0 0 0

00 0 00O ---FL 0 0o --- 0

(89) pDZ=|100 --- 000 --- 0 0 0 --- 0
0 0 00 O 0 0 0 0

I 00 0 0 0 O 0

I 00 0 0 0 O 0

00 I 0 0 0 0 O 0

00 0 00 O 0 0 O 0

00 00 0 0 0 O 0

|00 0 00 O 0 0 O 0 |

The rank of the reduced Jacobian matrix is ((L —1) M+ 1) S — 1 no matter what M is be-
cause the lower submatrix has ((L —1) M — 1) S independent rows after the row and column
operations even in the no cohort heterogeneity case. The number of variables is ((L — 1) M)* S
for the heterogeneous LIFS where A% # A% and I'* # I'* if z5 # zg.

Since we deal with the multi-period SOLG models where agents live more than two pe-
riods, the number of variables is always greater than the rank of the Jacobian matrix, i.e.
((L=1)M)*S > (L—=1)M+1)S—1 for VL > 3 and YM > 1. Therefore, the IFT applies
from the rank calculation for the heterogeneous LIFS. Hence, we can infer that there will be ME
generated by a LIFS in a neighborhood of the deterministic steady state for sufficiently small
shocks in these general SOLG models.

1.7 Proof of Corollary 2:

For the homogeneous LIFS where A* = A and I'* = T, the number of variablesis (L — 1) MS +
(L=1)M((L—1)M —1). Thus, the IFT applies for the homogeneous LIFS as long as S is
smaller or equal to (L —1) M ((L —1) M — 1) + 1 from the proof of Proposition 4.
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1.8 Proof of Proposition 5:

Kim and Spear (2017) shows that one can construct a forward-stable general forecast func-
tion so that F can take a subset of the stable eigenvalues of Z as its own from the fact that
ZK = KF. Therefore, it is enough to show here that I' can take the eigenvalues of F as its own.

Let the asset holding dynamics in time ¢ 4 1 be:

(90) é (pt+L/ ey pt—|—1/ pi’/ ey pt—L+4) =G (é (pt—FL—lz ey pf—|—1/ pf/ ey pt7L+3))

If taking a derivative of Eq. (90) with respect to the predetermined price vector g/, we obtain
the following equation when evaluated at the steady state:

(91) BEF =TZ
because
92) 9 (thH) _ a?(thH) a%;l _ar

o My 9
and

9G (G (4:)) _ 9G (£ (qr) 3¢ (qr) _

(93) 5aT = = I =

Tt a¢ (q1) qt

By the Jordan decomposition of F, F = MQOM ™!, we can re-write Eq. (91) as:

(94) EMQ =T=EM

where () is a Jordan matrix with the eigenvalues of F on its main diagonal.

Eq. (94) implies that I' takes the eigenvalues of F as its own and column vectors in EM are
the associated eigenvectors in models both with and without heterogeneity.

To find the relationship between I and A, let the law of motion for the price be given by:

(95) pe1 = f (Ptr- - Pe-1+3) = H(E (Pr+1-1,-- -, Pes+1, Pt -, Pt—143))
Taking the derivative of Eq. (95) with respect to g/ yields the following equation:
(96) Df = AT&

We first consider the no heterogeneity case. Assuming the (L — 2) dimensional square ma-
trix 2 is invertible, we can re-written Eq. (96) as:

(97) AT =Dfa"!

From Eq. (91), we can derive an expression for ! as follows:
(98) a-l=fp 181

By plugging Eq. (98) into Eq. (97), we can obtain the relationship between I' and A:
(99) AT =DfF1E-r

For the heterogeneity case, & is not a square matrix and thus not invertible. Thus, one can
relate AT and T implicitly as follows. Multiply F to both sides of Eq. (96) and then replace ZF
with T'Z from Eq. (91) to obtain;

(100) DfF = ATEF = ATTE

36



1.9 Proof of Proposition 6:

The dimension of an invariant set generated by a LIFS with S number of individual func-
tions can be at most (S — 1) because a (S — 1)-dimensional object has at least S number of
vertexes. The invariant set of a LIFS without gaps is similar to the figure formed by connecting
the transition vectors, {¢°} . Therefore, a LIFS consisting of S individual mappings can yield
a (S —1)-dimensional invariant set without gaps. Any k-dimensional objects have Lebesgue
measure zero relative to R" if k < n. Therefore, the invariant measure of a LIFS will be singular
if S is smaller than or equal to ((L — 1) M — 1) for both homogeneous and heterogeneous LIFSs.

When S is greater than ((L — 1) M — 1), whether the invariant set has Lebesgue measure
zero is determined by the eigenvalues of the affine matrices as seen in the one-dimensional case
with two states. The system in (52) transformed from the iterated mappings, {Gs},, is a col-
lection of ((L — 1) M — 1)-number of one-dimensional LIFS. There are two-well known results
in the theory of IFS which are helpful to find the weak sufficient condition for the singular-
ity in this case. One is that the no-overlap property is satisfied if the maximum of the affine
coefficients is less than ¢ for a one-dimensional LIFS with S states assuming that S-number
of transition coefficients are distinct. The condition that vy < 1/2 for a one-dimensional LIFS
with two states is a special case. The other one is that a cartesian product of n number of one-
dimensional invariant sets has Lebesgue measure zero relative to IR” if there exists at least one
invariant set with Lebesgue measure zero relative to R.

Combining these two facts, we can conclude that the invariant set of a LIFS with S states has
Lebesgue measure zero, i.e. a singular invariant measure if there exists i such that max, {A$} <
3 L where S; is the number of distinct i-th elements in {6 } - For the homogeneous LIFS, A§ = A,
for Vs. Therefore, the weak sufficient condition for this system to have a singular invariant
measure requires to replace max; {A{} with A; in the one for the heterogeneous LIFS above.
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2 Background on Iterated Function System

We begin this section by defining the iterated function system. The IFS is a finite set of
contraction mappings and their corresponding probabilities, denoted by (f;, p;) where i €
{1,2,...,N}. Each function f; has the same domain and range called X, which is a closed subset
of R" and endowed with a metric d, such that (X, d) is a complete metric space. The sum of the
probabilities assigned to the functions should be 1. Thus, the dynamic system represented by
the IFS operates through selecting a function in { fl}f\i 1 corresponding to an exogenous shock
st € {1,2,...,N}. For example, if the shock s; is at state i, the dynamic system is evaluated at
fi. The probability of selecting f; is p;.

We can summarize the definition of the IFS as follows:

N
(101) {(fl-,pl-) | fi + X = X withp;,i=1,2,..., Nand Zpizl}
i=1

In the context of the three-period SOLG model, {f;} can be thought as the policy functions
of the young’s equity holdings and {p;} is the set of the probability weights for an aggregate
shock. Since there are two states — high and low — in the model, i can be either 1 and 2. (X, d)
are the set of the lagged endogenous state variables and the Euclidean norm defined on X,
respectively.

We define two well-known concepts from dynamic system theory in the context of the IFS.
One is the invariant set and the other is the invariant measure. An invariant set of the IFS is a
subset, JC X which is non-empty, compact and satisfies:

N
(102) H())=UfU) =]
i=1

where the operator H on X is called Hutchinson or Barnsley operator and this operator simply
means the union of the images of each function, f;, in the IFS.

Let B (X) be the o-algebra of X. P (X) is the space of probability measures on B (X). An
invariant measure of the IFS, ji, is a probability measure on the B (X), which satisfies:

where the operator M on P (X) is called Markov operator, which determines the evolution of
probabilities and is given by:

N
(104) M () (B) = Lpin (£ (B))

forall y € P(X) and B € B (X).

Hence, an invariant set is the fixed point of the Hutchinson operator and an invariant mea-
sure is the fixed point of the Markov operator.

An attractor of the IFS is the support of the unique invariant measure jiy which is an invari-
ant set. One well-known result in the theory of the IFS is that there exists the unique invariant
measure iy and the unique invariant set J by the contraction mapping principle as shown by
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Hutchinson (1981). Hence, the support of the unique invariant measure should be the unique
invariant set, and the unique invariant measure must be ergodic. As with all contraction map-
pings, the Hutchinson operator is globally contracting: starting from any point x € X, iterations
of H will converge to J.

We give the definitions of a singular and absolutely continuous measure as follows. Two
positive measures y and v defined on a measurable space (X, B (X)) are called singular to each
other if there exist two disjoint sets B and C in B (X) whose union is X such that yu is zero on
all measurable subsets of B while v is zero on all measurable subsets of C. For two positive
measures y and v defined on a measurable space (X, B (X)), p is called absolutely continuous
with respect to v if for every measurable set B in B (X), v(B) = 0 implies y(B) = 0.

Y. is the space of the history of the exogenous shocks from minus infinite in time to present,
ie. St =1{...,5,...,5} € Z. We can define 7t : ¥ — | as a coding map that associates with
each infinite sequence of shock realizations a limit point in the attractor of the IFS:

(105) 7 (SLoo) = limy oo fs, © f5, 0+~ 0 f5, (X)

where the fs, is the function in the IFS corresponding to the state of nature S;. S; is the i-th shock
of St , from today to backwards. For example, S; = s; and Sy = s;_1.
The fiber of a point x in the attractor of the IFS is the set {S € X|7 (S) = x}, i.e. the histories
of shocks that lead to x. The coding map is point fibered if its fiber is a singleton for any x € J.
Finally, the no-overlap property of the IFS means the images of any two different individual
functions in the IFS have an empty intersection set, i.e.

(106) fi(X)Nf;j(X) =Oforalli #j

With these definitions and notations, we now review conditions for the invariant measure
of an one-dimensional homogeneous LIFS to be singular with respect to the Lebesgue measure.
An one-dimensional LIFS consists of one-dimensional affine transformationsi.e. f; (x) = A;x +
a; where A; € R and 4; € R for Vi. A homogeneous LIFS requires A; = A for Vi.

A one-dimensional homogeneous LIFS with two-states satisfies the no-overlap property if
the absolute value of its affine coefficient, |A|, is strictly less than 1/2 so that there is a gap
between the images of the two individual maps of the system on the smallest open interval
containing its attractor. This non-overlapped LIFS has a Cantor-like Lebesgue measure zero
attractor. Its invariant measure will be singular with respect to the Lebesgue measure since the
probability measure concentrates on the Lebesgue measure zero set.

The intuition behind the appearance of a Cantor-like attractor from a non-overlapped LIFS
with two-states can be seen in the following figure. Figure 1a shows a one-dimensional non-
overlapped LIFS which has two parallel affine transformations corresponding to one of two
states of a shock. The affine coefficient of the system is 1/3. Since the LIFS has a unique in-
variant set in IR, we restrict both domain and range to the smallest open interval containing its
invariant set. In Figure 1a, the middle one-third gap in the images of the two parallel maps
on the interval eliminates the middle one-third of an interval for the next iteration of the LIFS.
Through iterations of the LIFS, the middle one-third of the all intervals left disappears. There-
fore, the limiting set becomes a Cantor set whose Lebesgue measure is zero as seen in Figure
1b. By the Ergodic theorem, the limiting set should be the attractor of the LIFS.
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Figure 1: LIFS and Cantor set

(a) LIFS (b) Middle-third Cantor set
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As a generalization, when there are S number of states, a one-dimensional homogeneous
LIFS will satisfy the no-overlap property if the Lipschitz constant of the LIFS is strictly less
than 1/S. A non-overlapped LIFS with more than two states will also have a singular invariant
measure following the same logic in the two states case.

However, satisfying the no-overlap property is a sufficient condition to have a singular in-
variant measure since a LIFS with overlap can also generate such measure. This issue was first
examined by Erdos (1939) for a one-dimensional homogeneous LIFS under a symmetric shock
with two states. Erd6s showed that if the Lipschitz constant of a LIFS is the reciprocal of a Pisot
number, then its unique invariant measure is singular because the probability measure concen-
trates on a Lebesgue measure zero set even though it has full support.? This singular measure is
called as an essentially singular measure. However, it is yet to be known whether the reciprocal
of a Pisot number constitutes the entire set of the Lipschitz constant in the interval (1/2,1) with
which a LIFS generates a singular invariant measure. However, it is known that the set for an
essentially singular measure in the interval (1/2,1) has Lebesgue measure zero due to the work
of Solomyak (1995).

See Mitra et al. (2003) to review important results from the IFS literature in the context of
economic problems.

2 A Pisot number is a positive algebraic integer greater than one all of whose conjugate elements (Galois con-
jugates) have an absolute value less than one. Here, an algebraic integer is any complex number that is a root of
a non-zero polynomial in one variable whose leading coefficient is one and the other coefficients are all integers.

For example, the golden ratio (/5 + 1) /2 is a Pisot number which is a root of x2 — x — 1 = 0.
p g
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3 Numerical Algorithm

In this appendix, we explain how to compute the equilibria in the general SOLG models
with a single long-lived asset. One can also apply the procedure here to solve the three-period
SOLG models as a special case. Our numerical strategy is to approximate the policy functions
for the asset holdings and prices with high-degree Chebyshev polynomials under the projection
method. To find the coefficients of the functions, we use the fixed point iteration algorithm with
dampening.

Stepl. Approximation

N: N; .
i NL-1)M-1 p8(L-1)M-1/5 t M- t
Yizo- L aa=0 iy, T (efy) ... Te-0M (e(thJrZ),(Mfl))
(107) gj*;ll = :
Nil N'(L 1)M—-1 961 ,S Tll t Ti(Lfl)Mfl t
Liy=0- iy 0=0 (i}, (et) - €(t-L+2),(M-1)
— Ny (L-)M-1 P .
S .5 j t 11— _ t
(108) Pl =Y o L 0 T () T (e )

1=0  ir-1ym—1=0
1. Define the type of polynomials to approximate the recursive ME, { T (-)} -
e In this paper, we use the Chebyshev polynomials of which domain is [—1, 1].

2. Set the degree of polynomials for each state variable in the policy functions, {Nj, },.

) 9?15 b and 9? i,lf}k are the coefficients of polynomials in the policy functions of the eq-
uity holdings and the equity price respectively. Hence, the number of unknowns is
(# of policy functions) x (# of shocks) x (Nj, +1) x ... x (N(L pmet T 1)

3. To use the collocation method in finding the unknowns, generate grid points as much as
the degree of polynomials plus one.

LA -HM-1

e Create (N;, +1) x...x <N R +1) Chebyshev gridsin | {{ i } » :

Transform these Chebyshev nodes into appropriately chosen intervals for the en-

L-1)M-1
dogenous state variables, [ex yin, €k max] ,((:1 M-1

Step2. Iteration

(109) Pt (‘”f ci + (P4 0%) el — Pel )
= BE [(P + ) ! (wpcans + ( fff + 5St+1) el — Priielth)]
wherej e [1,..., M|, ei_].l and e?}l are zero for the first and lasst generations, respectively.
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1. Construct the Euler equations combined with the budget constraints and the market clear-
ing conditions as above.

0
2. Set an initial value for the coefficients of the Chebyshev polynomials, {9? - GIE o 1 }

e Use the deterministic steady-state values to decide the initial value of the coefficients
of the zero-order terms in the approximated policy functions.

3. Compute the equity holdings and the price in the Euler equations over the grid points
by plugging the initial values for the coefficients of the Chebyshev polynomials into the

policy functions: Pft,{ T]}T].Ptsjﬁl and { tTng}rj'

e The number of the Euler equations is as much as the number of the policy functions,
(L—1) M — 1. Such Euler equations exist over each shock. Hence, the number of

total equations is the same as the number of unknowns.
e Replace P}' with P} on the left-hand side of the Euler equations all but one. In the
ot

Euler equation for the oldest and M-type agent, use {e } ~and the asset market
]

T,] T

. o . . t
clearing condition instead of e (1—L+2),M"

4. Find a new set of P;* and {e‘; ]-} by solving a system of linear equations derived from
7 T,]

the computed Euler equations.

n
5. Find a new set of coefficients, { L0078 } , by inverting the new set of P;* and { T } .
Tj

{inyy i,

Update the coefficients with dampenmg as follows.

P, n+1 P, 0 p, n
110 985 6 S } {985 9 S } {965 9 S }
aw {0 O OB A WO )
where A is a dampening parameter which decides the speed of convergence.

6. Iterate the sub-steps from 1 to 5 until being converged.

{Pft’{;} ,f} {p?’{ ”} J}‘ =€

where € is a predetermined convergence measure.

(111) sup
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