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Abstract

We have studied how ReaxFF and Behler-Parrinello neural network atomistic po-
tentials should be trained to be accurate and tractable across multiple structural
regimes of Au as a representative example of a single component material. We trained
these potentials using subsets of 9,972 Kohn-Sham density functional theory calcula-
tions and then validated their predictions against the untrained data. Our best ReaxFF
potential was trained from 848 data points and could reliably predict surface and bulk
data, but it was substantially less accurate for molecular clusters of 126 atoms or fewer.
Training the ReaxFF potential to more data also resulted in overfitting and lower accu-
racy. In contrast, Behler-Parrinello neural networks could be fit to 9,734 calculations,
and this potential performed comparably or better than ReaxFF across all regimes.
However, the Behler-Parrinello neural network potential in this implementation brings
significantly higher computational cost.

Keywords: Kohn-Sham density functional theory, neural networks, reactive force fields,
potential energy surfaces, machine learning

1 Introduction

Growing interest in nanoscale phenomena has driven the need for accurate computational

models to study chemical properties at an atomistic level. Advances in high performance
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computing now enable powerful simulation tools such as Born-Oppenheimer molecular dy-

namics (BO-MD) and extended Monte Carlo techniques that employ first principles quantum

chemistry (QC) methods (e.g. Kohn-Sham density functional theory (KS-DFT)) on increas-

ingly complex reactions. However, many genuine nanoscale systems of interest are currently

too large to be studied with first principles QC and thus require the use of computationally

efficient atomistic potentials.

Atomistic potentials approximate the potential energy surfaces (PES) for atomic systems

by mapping potential energies and forces as functions of atomic positions. Physical potentials

are parameterized to fit analytical expressions for the known physics of pairwise and many

body interactions, e.g.: Lennard-Jones potentials,1 classical force fields,2–6 the modified and

standard embedded atom methods (MEAM and EAM),7,8 reactive force fields (ReaxFF),9

and charge-optimized many-body (COMB) potentials.10 Another intriguing category are

mathematical potentials that “learn” the PES directly through a minimization of residuals

with no a priori knowledge of the underlying physics, e.g. Gaussian regression functions11

and artificial neural networks (NN).12 We refer to these as mathematical potentials.

Physical potentials have been used for decades to capture the underlying physics of

complex systems. It is substantially more challenging to develop so-called reactive potentials

that can accurately model the underlying physics of systems where bonds are broken and

formed. One approach is to develop potentials that use chemical bond-order dependent

functional terms that are fit exclusively (or primarily) to QC datasets.13 A challenge with

these approaches is knowing what data should be used for training and how to parameterize

potentials that best fit the data.

In contrast, mathematical potentials are becoming more popular in chemical applica-

tions, and recent work has shown reasons for excitement.14,15 Specifically, recent descriptive

models from Behler and Parrinello16 have expanded the applications of neural networks to

“high-dimensional” systems that can account for variable numbers of atoms, multiple com-

positions, and reactions involving thousands of atoms. Such networks have already been

implemented on a large range of systems, including: Si bulk structures,17 water clusters,18

Cu surfaces,19 ZnO,20 and even a quaternary system of Cu/Au/H/O.21 This opens the door

for mathematical potentials to be developed that are accurate and transferable across diverse
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bulk, surface, and cluster regimes.

In this work, we compare the performance of a widely used physical potential, ReaxFF,

with the recently developed Behler-Parrinello neural network (BPNN) potential. We have

trained both to subsets of a full dataset comprised of ≈ 10,000 KS-DFT calculations. We

chose Au for this study due to its diversity of known nanoscale structures. The fact that

long-range electronic interactions are screened in Au makes it an appropriate system to

model with atomistic physical and mathematical potentials that are less suited for long-

range interactions such as ReaxFF and BPNN. (We note that long range effects can be

incorporated into BPNN potentials, e.g. as has been done for ZnO20).

We have benchmarked both potentials to our QC dataset that contains information from

KS-DFT bulk equation of state (EOS) data, vacancy formation energies, surface energies,

adatom diffusion profiles, slipping barriers, and cluster binding energies. Parameterization of

ReaxFF potentials were automated using the Monte Carlo Force Field optimization (MCF-

Fopt) tool in ADF.22,23 Our BPNN was parameterized using the Atomistic Machine-learning

Potentials (AMP) code from the Peterson group at Brown University.24 This allows feed-

forward neural networks to be developed inside the atomic simulation environment (ASE).25

All details of the trained BPNNs are stored in a JSON file which can be found in the sup-

porting information (SI) file.

2 Methods

2.1 Density Functional Theory

KS-DFT calculations for training set data were performed using the Vienna ab initio simu-

lation package (VASP)26–29 with the Perdew-Burke-Ernzerhof generalized gradient approx-

imation (GGA-PBE)30,31 exchange-correlation functional. Core electrons were described

using the projector augmented wave function (PAW).32,33 k -points were represented using

Monkhorst-Pack grids34 with a density of at least 14 × 14 × 14 for a single atom of Au in

the primitive ground state configuration. Kohn-Sham orbitals were expanded up to energy

cutoffs of at least 300 eV to attain an energy convergence of at least 5 meV/atom. All
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calculations involving relaxations were completed with relaxation criteria of < 0.05 eV/Å.

Unless otherwise noted, transition states were determined using the climbing image nudged

elastic band (NEB) method.35 The details for all the KS-DFT calculations are included in

an ASE database that is embedded in the SI file. Instructions on how to access this database

and reproduce these calculations can also be found in the SI along with more details on the

methods used in this work.

The full KS-DFT training set contained 9,972 calculations that included 905 bulk, 1,022

surface, and 8,045 cluster configurations. The majority of these calculations (9,076 calcula-

tions) were taken from coordinate relaxation steps performed by VASP. These structures are

the incremental steps taken from its initially guessed positions to the ground state configu-

rations predicted by GGA-PBE. Each of the structures in a particular relaxation are very

similar from one relaxation step to the next. The remaining 896 calculations are either the

local ground state configurations or images from optimized NEB calculations. Our bulk Au

data were obtained by plotting EOS data for a variety of bulk structures. Vacancy forma-

tion and diffusion calculations were also included in the bulk dataset. Our surface dataset

includes calculations on fcc(111) surfaces as well as a variety of fcc(100) surface diffusion

pathways that were originally generated in previous work by Pötting et. al.36 The training

set used single-point energies on the latter coordinates (without geometry relaxations) cal-

culated using the methods listed above. Our cluster data include various 3D ordered, planar,

and disordered structures that contain up to 126 atoms. The SI file has further details about

the data.

2.2 Reactive Force Field

Bond order based reactive force fields, such as Tersoff,37 Brenner,38 and ReaxFF9,39 poten-

tials, differ from classical force fields, such as UFF,3,4 CHARMM,2 or AMBER,5,6 which

require that defined bonds remain fixed over the course of a simulation. ReaxFF potentials

developed for Au and other metals normally employ three separate energy terms as seen in

Equation 1.40–42
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Etotal = Ebond + Eover + Evdw (1)

Ebond is for bond energies of atom pairs, Eover is an energy penalty to prevent overco-

ordination, and Evdw accounts for van der Waals interactions and interatomic repulsions

when interatomic distances are too small. ReaxFF potentials can also be parameterized to

include 3-body terms which provide energy contributions from valence angles between sets

of three Au atoms. Backman et. al. developed a Tersoff potential for Au that involves

3-body terms,43 but these terms are not always added to ReaxFF potentials for metals due

to increased computational cost. Our 3-body terms have the same form as valence angle

interactions in hydrocarbon ReaxFF potentials.39 We report comparisons in equations of

state and timings for ReaxFF using 3-body and 2-body terms in the SI file. Future work

will discuss these topics in greater detail.

We parameterized our Au ReaxFF using the MCFFopt tool implemented in ADF.22,23

MCFFopt seeks to minimize an objective function by randomly changing force field parame-

ters within a predefined range. The Monte Carlo nature of this process allows some parameter

changes that increase the objective function. This “annealing” allows the optimizer to sam-

ple a larger parameter space and potentially produce multiple distinct parameter sets. This

approach can also find parameter sets with less total error than the traditional parabolic

search parameter optimization.23 Further information on running the MCFFopt procedure

and optimized force field parameters are available in the SI file.

Au ReaxFF potentials appear to have an optimal training set size. Fitting to larger

training sets does not always improve the quality of the ReaxFF potential, and this over-

fitting is found to bias predictions toward certain geometry types. As a result, the ReaxFF

training set was constructed using the 848 ground state geometries from within the training

set. Out of these geometries, the number of calculations classified as bulk, surface, and

cluster structures are roughly equal. During ReaxFF parameterizations, each geometry in

the training set is also assigned a weight depending on its relative importance in the overall

fitting procedure. Our goal was to produce a ReaxFF potential with reasonable accuracy

across these three different structure regimes, so most of the geometries were given a weight

5



of one (specific details are given in the SI file). In principle, one could increase weights to

parts of the PES so that properties, such as desired lattice constants, bulk moduli, or barrier

heights would be accurately reproduced. However, weighting a potential in this way will

affect its ability to make accurate predictions in less-weighted regions of the PES.

Figure 1 shows the error distribution of residual error between the trained ReaxFF and

KS-DFT training set data labeled by geometry type. Errors in bulk data greater than 0.2

eV stem from an unphysical convex region in the ReaxFF functional form which causes bulk

EOS data to significantly deviate from the KS-DFT data at atomic volumes ranging from

60-200 Å3/atom. Since these atomic volumes fall outside those found in most simulations

involving bulk and surface structures of Au, these inaccuracies are not a cause for significant

concern. However, large errors in bond energies for pairs of atoms at intermediate distances

may be problematic for molecular clusters. Images of the entire EOS for each bulk structure

can be found in the SI.

Figure 1: Energy residual error to the training set data broken down by bulk, surface, and

cluster geometries for the ReaxFF potential.
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A predefined validation set consisting of 238 calculations (out of the total 9,972 KS-

DFT calculations) was set aside to test the transferability of predictions from our ReaxFF

and BPNN potentials. This validation set was chosen to represent a variety of different

Au structure types which are represented in the results section of this work. By reporting

probability distributions for both the training and validation sets, we can determine the

degree that our potentials show selection bias. For an ideal fitting procedure, the probability

distributions for both the training and validation set would match, and any differences

between the two would signify an over- or under-sampling. Figure 2 shows the residual error

for the validation calculations labeled by geometry type. Significant deviations were found

in bulk and cluster calculations from the validation and training set data.

Figure 2: Energy residual error to validation set data broken down by bulk, surface, and

clusters for the ReaxFF potential.
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2.3 Neural Network

The NN is a machine learning algorithm. Unlike ReaxFF, potentials constructed from the NN

have no physical basis, making them highly flexible, but also unsuitable for extrapolation.

Nevertheless, NN potentials are growing in popularity due to their abilities to accurately

characterize a PES from QC calculations. BPNN potentials were selected for this study

because they can be trained to relatively large training sets.16 BPNN potential fitting is

facilitated through symmetry functions and utilization of multiple feed-forward NNs, one for

each chemical species in the system. These modifications eliminate many of the shortcoming

of traditional Cartesian NN potentials that are only applicable to systems with a fixed

number of atoms.

Unlike other mathematical potentials, BPNN potentials16,44 utilize a cutoff radius, R,

that is applied to each atom in each image in the training set to keep the cost of the

symmetry function small. Thus, the goal is to find a value of R that is large enough to capture

meaningful atomic interactions but one that is not too large to result in high computational

costs. These standard BPNN potentials are not suited for systems of atoms that have long-

range interactions that extend outside the cutoff radii. For Au, we used R = 6.5 Å as

long-range interactions are assumed to be negligible. (We find ≈ 2 meV/nearest-neighbor

energy differences between gas phase Au and a primitive fcc unit cell with 6.5 Å nearest-

neighbor distance). In the absence of this cutoff radius, it has been proven that NNs are

capable of arbitrary levels of accuracy.45

The general structure of a feed-forward NN consists of nodes in an input layer, one or

more hidden layers, and an output layer. In our BPNN potential, the nodes of the input

layer are the Cartesian-coordinates of each atom in the unit cell. Each hidden layer is a

linear combination of the values of the nodes from the previous layer. Each layer is also

multiplied by an activation function (which often has a bounded non-linear form) to allow

the NN potential to fit to arbitrary functions. The most accurate BPNN potential that we

produced, and report in this work, utilizes four hidden layers with 40 nodes per layer and

a hyperbolic tangent activation function. These specifications make our BPNN potential

large compared to other BPNN potentials and more at risk for overfitting. However, the
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root-mean square error (RMSE) of the validation set is similar to that of the training set,

showing that overfitting has not occurred.46 For further details on the theory behind BPNNs,

we refer to previous work.16,44

We trained BPNN potentials using AMP, a code produced by the Peterson group at

Brown University.24 This software conveniently interfaces with the Atomic Simulation En-

vironment (ASE) software package25 for ease of reusability and reproducibility. The trained

calculator parameters used by AMP are included in the SI file.

Of the 9,972 total calculations, 9,734 were used for training the BPNN potential. Figure

3 shows the error distribution from the training set. The mean, µ, and standard deviation,

σ are given assuming a normal distribution fit. The RMSE is 0.017, similar to the standard

deviation, indicating that the data is well approximated by a normal distribution overall.

Figure 3: Energy residual error to the training dataset of the BPNN calculations. A RMSE

of 0.017 eV/atom is calculated for the 9,734 structures included in the training set. The

training set is also well described by a normal distribution.

Figure 4 shows the error distribution for the validation dataset. Overfitting can be
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identified by a divergence between the RMSE of the training set and validation set data. In

this case, the distribution is clearly not normal and arises from some underrepresented data

in the training set, notably the fcc(100) terrace and dimer diffusion pathways (discussed

below).

Figure 4: Energy residual error to the validation dataset of BPNN calculations. σ = 0.21,

similar to the training set RMSE indicating little to no overfitting has occurred. The cluster

of overpredicted surface calculations are from fcc(100) surface diffusion pathways, which are

poorly represented in the training set.

3 Results and Discussion

We now benchmark the performance of the BPNN and ReaxFF potentials against KS-

DFT energies across three different material regimes: bulk, surface, and molecular cluster

structures. Both of our generated potentials can provide reasonably accurate descriptions

of Au in the different material regimes. In general we find that ReaxFF potentials are more

readily overfit, less transferrable to applications involving clusters of 126 atoms or fewer, and
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overall less accurate than the BPNN. However, ReaxFF potentials demonstrate a notable

strength by predicting barrier heights that resemble those found in their training sets. BPNN

potentials in general are significantly more accurate than ReaxFF potentials, but they require

significantly larger training sets to ensure well-balanced fitting. As explained below, they

also currently bring substantially higher computational cost than ReaxFF potentials.

3.1 Bulk properties

3.1.1 Equations of state

EOS data for face centered cubic, simple cubic, and diamond structures are shown in Figure

5. All training and validation calculations are fit to a 3rd order inverse polynomial.47 The

metrics for each fit are included in Table 1. Results for the body centered cubic and hexagonal

close packed EOS data are similar to the face centered cubic curve. Fits to all curves can be

found in the SI file.

11



Figure 5: Comparison of EOS fits to KS-DFT, ReaxFF, and BPNN training and validation

set data. Fits only include data within atomic volumes of ± 15 Å/atom as this is the region

of interest for most applications.

Figure 5 shows that the EOSs are very well represented by our BPNN potential. Vali-

dation set data are also well behaved, indicating that overfitting has not occurred. Metric

data shown in Table 1 shows excellent agreement in the minimum volume, minimum energy,

and bulk modulus found using KS-DFT results. Data for the hcp and bcc structures shown

in the SI file are reproduced similarly well.

We find that ReaxFF potentials with 3-body terms have substantially better fits com-

pared to force fields which do not include 3-body interactions (see41). However, in both

cases ReaxFF exhibits an unphysical convexity of the bond energy curve that creates prob-

lems manifested by large residual errors that can reach as high as ± 1 eV/atom at volumes
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away from the minimum energy volume. Many simulations sample regions in the vicinity

surrounding the minimum volume, so these deviations are not shown in Figure 5. Data from

Table 1 shows reasonably good agreement for the equilibrium volume and minimum energy

of the three structures. Bulk moduli are underpredicted by ≈ 20 GPa for each structure

due to differences in the curvature of the EOS at the minimum. Again, one would likely

improve the quality of predictions for individual properties by reweighting the parameteri-

zation to favor specific properties (e.g. bulk moduli), but this preferential fitting would also

be expected to lower the quality of other predicted properties.

Table 1: Comparison of EOS metrics for KS-DFT, ReaxFF, and BPNN fits as shown in

Figure 5.

Structure Minimum volume (Å3) Minimum energy (eV) Bulk Mod. (GPa)

KS-DFT-fcc 17.97 -3.23 147

BPNN-fcc 17.99 -3.23 145

ReaxFF-fcc 17.60 -3.22 122

KS-DFT-sc 20.73 -3.02 110

BPNN-sc 20.66 -3.02 110

ReaxFF-sc 21.29 -2.96 84

KS-DFT-diam 29.04 -2.51 56

BPNN-diam 28.98 -2.51 57

ReaxFF-diam 31.92 -2.54 37

3.1.2 Bulk vacancy formation and diffusion barrier

Vacancy formation energies (Ev) are calculated using Equation 2. Ef , n0, and Ei are the

energies of the structure with vacancy, number of atoms in the structure before forming the

vacancy, and energy of the structure before forming the vacancy, respectively. Our KS-DFT

vacancy formation energies, shown in Figure 6, are in good agreement with other GGA-PBE

calculations (0.42 eV), but both sets of data significantly underpredict experimental results

(0.93 eV).48 This is likely due to the well-known shortcoming of GGA-PBE in underpredicting

atomization energies of Au.? In this work, vacancy formation is referenced to the energy
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of a single atom in a primitive fcc unit cell. This may explain why the formation energies

calculated here are slightly lower than those in the literature. The vacancies seem to reach

the dilute concentration limit at ≈ 0.037 vacancies/atom. The anomalous increase in energy

for the structure at ≈ 0.015 vacancies/atom is due to a minor structural perturbation into

a different local minimum. More information about the nature of the reconfiguration can be

found in the SI file.

Ev = Ef −
n0 − 1

n0

Ei (2)

Our BPNN vacancy formation predictions are systematically overestimated by ≈ 0.4 eV

while ReaxFF vacancy formation predictions are systematically underestimated by ≈ 0.3

eV. The preservation in trends indicates some error cancellation from the reference state for

both fits. We find that neither method is sensitive enough to predict the subtle increase in

energy for the reconfigured structure. Although the BPNN potential results are closer to

experiment than the ReaxFF potential, this is simply a fortuitous error. BPNN potentials

have no physical basis and therefore would reproduce the KS-DFT exactly with complete

training.

The residual errors for structures with concentrations below 0.04 vacancies/atom are very

low (less than 0.006 eV/atom, even for the point in the validation set having ≈ 0.037 vacan-

cies/atom). Error cancellation between the vacancy structures and reference structure make

it difficult to determine the level of precision needed to obtain accurate vacancy formation

energies. A BPNN potential for Cu has been constructed with a higher level of accuracy (er-

ror < 0.11 eV), at the increased cost of a basis of calculations which is ≈ 3.5 times larger.19

BPNN calculations were also performed using unit cells of the same size as the correspond-

ing vacancy structure. The same trend was observed with slightly higher formation energies

using the expanded reference super cell.
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Figure 6: Bulk vacancy formation energies for fcc Au at various concentrations. BPNN fits

to vacancy structures are systematically overpredicted by ≈ 0.4 eV, while ReaxFF fits are

systematically underpredicted by ≈ 0.3 eV. Literature values are from Ref. 48.

Figure 7 shows the calculated bulk vacancy diffusion barrier using a vacancy concentration

of ≈ 0.037 vacancies/atom (obtained from Figure 6). NEB calculations determined points

along the minimum energy pathway that were then fit to a cubic spline. For diffusion

calculations, the residual errors of both the BPNN and ReaxFF potentials are lower by

about an order of magnitude as compared to the vacancy formation energy. This is due

to error cancellation from the reference states that are similar to states along each reaction

pathway. The BPNN potential overestimates this barrier by 0.04 eV while the ReaxFF

potential underestimates the barrier by 0.05 eV.
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Figure 7: NEB predicted barrier for bulk vacancy diffusion through fcc Au. Transitions state

energy (black, 0.56 eV) is overpredicted by the BPNN (red, 0.60 eV) and underpredicted by

the ReaxFF (blue, 0.50).

3.2 Surface calculations

3.2.1 fcc(100) diffusion barriers

The training set for the ReaxFF potential in Reference 41 contains 166 surface diffusion

barrier calculations from GGA-PBE using the SEQQUEST code.49 NEB calculations with

VASP were not used to recalculate the minimum energy pathways, but we recalculated single

point energies on these structures using GGA-PBE in VASP to be consistent with the rest of

our training set. Since NEB calculations were not done, there are significantly fewer points

sampling the PES for these pathways compared to other pathways (8-10× fewer in most

cases). Consequently, our BPNN fits to these pathways are expected to be less accurate

compared to other pathways obtained from NEB calculations.

Figure 8 contains recreations from Figure 2 (a & b) in Ref. 41 using the BPNN potential
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and ReaxFF potential. Note that the terrace and dimer diffusion pathways are not included

in the training set for either potential, and they represent predictions by both potentials.

For the terrace diffusion pathway, the ReaxFF potential performs quite well and shows that

the ReaxFF potential can provide very accurate predictions of barrier heights when the

training set contains similar pathways. The BPNN potential, which contains more than

10× the training set data as the ReaxFF potential, can reasonably produce this adatom

diffusion barrier but residuals fall between 0.2-0.3 eV. On the other hand, for a different

adatom diffusion barrier, the BPNN potential predicts the dimer diffusion pathway quite well

while the ReaxFF potential has higher residual errors between 0.1-0.2 eV. Larger training

sets can be expected to reduce errors in both potentials, but reparameterization of these

potentials with a larger training set will undoubtedly impact the accuracy when predicting

other pathways.
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Figure 8: Residuals to diffusion pathways in the validation set. Structures are reproduced

from those used in Ref. 41.

To assess the performance of these potentials under a wide range of adatom diffusions,

Figure 9 shows the residuals for all 144 fcc(100) surface diffusion calculations. Solid shapes

represent training set data and hollow shapes represent validation set data. Residuals are

the same as those shown in Figure 8. Our ReaxFF potential (which has roughly 1/3 of its

training set devoted to surface calculations) has 86.1% of these structures falling within a

± 0.1 eV tolerance of error. For the BPNN potential (with roughly 1/10 of its training

set devoted to surface calculations), has 52.1% of these structures fall within a ± 0.1 eV

tolerance of error.

Many of the calculations from the BPNN potential are underestimated compared to the

reference KS-DFT data, signifying (as stated above) that these structures come from a poorly
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sampled region of the PES and improvements could be attained with more training. For the

ReaxFF potential, errors appear to be less systematic, showing improved accuracy would

require more training to specific pathways. In practice, both ReaxFF and BPNN potentials

are normally trained with a specific application in mind, and so training sets, particularly

those for ReaxFF potentials, can be smaller.

Figure 9: Residuals of 144 fcc(100) surface diffusion pathway calculations included from Ref.

41. Hollow markers represent residuals from the validation set which are shown in Figure 8.

3.2.2 fcc(111) surface slipping barrier

A slipping barrier is the minimum energy pathway required for a certain number of mono-

layers of atoms to move from their ground state site to the next most adjacent site of the

same kind. Slipping barriers were performed on fcc(100) and fcc(111) surfaces for one and

two layers in a five layer slab. Figure 10 shows the single-layer slipping barrier for the

fcc(111) surface. Both models find almost identical energies as KS-DFT (within 0.05 eV).

We can see that the ReaxFF potential finds a metastable intermediate instead of a single
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barrier as found by KS-DFT and the BPNN potential. This ReaxFF potential also finds

metastable intermediates when slipping in a different direction primarily over bridge sites

(see the SI file), but residual errors are even lower. The very small difference in energies

makes it difficult to assess if these are due to fitting errors or an unphysical component

within the ReaxFF potential. Either way, both potentials can reproduce low energy slipping

barriers within 0.05 eV with sufficient training.

Figure 10: NEB predicted slipping barrier for a single layer of fcc(111). Initial, bridge, and

top positions are shown for visual reference. The second local minima is representative of

the hcp site. The darkest gray represents the deepest layer, while the lightest shade is the

top layer.

3.3 Cluster predictions

3.3.1 6 atom clusters

Calculations on clusters up to 126 atoms make up ≈ 81% of the entire database. To deter-

mine the robustness of the BPNN potential for determining the energetics of structures not
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incorporated into the training set, several BO-MD simulations were performed on various

clusters. For a six atom cluster, calculations were performed with NVT BO-MD without

planar boundary conditions, where the temperature of the system was changed from 800 K

to 300 K over the course of the simulation. The simulation using the BPNN potential started

from a local minimum structure to determine if it would locate the known global minimum

energy configuration. GGA-PBE found the global minimum to be planar and triangular (see

Figure 11), which is also observed in the literature.50 This structure was not included in the

training set.

Figure 11 depicts the path taken by the BPNN BO-MD simulation (red) over the course

of 2,000 time steps. Once every 100 steps we validated the energy using KS-DFT. The

residuals are less than 0.05 eV/atoms for the BPNN potential, including the structure of

the global minimum. We re-ran this simulation several times throughout development of

the database. The first attempt at performing the described BO-MD simulation was with a

dataset of ≈ 2,000 cluster calculations with 20 atoms or fewer. In comparison with the full

dataset, the residual error has been reduced dramatically, and the success rate of discovering

the global minimum improved significantly. Further details of these initial attempts with

the smaller database can be found in the SI file.

The 2,000 structures generated from the BO-MD run with our BPNN potential were then

calculated using the ReaxFF potential. In this case, the ReaxFF potential did not identify

the same minimum energy configuration of the six atom system. However, the cohesive

energies of structures resembling the planar cluster are fairly consistent with KS-DFT data.

Although the presented data shows situations where ReaxFF is not accurate, we note that

this may signify an area where ReaxFF could be extended with additional functionality. For

example, metal-metal bonds in small clusters could be treated with functional forms different

than those used for bulk metal-metal bonds. This would likely correct systematic deviations,

but such re-parameterizations may also adversely affect other structure types and/or increase

computational cost. We note that Narayanan et. al. have reported a hybrid bond order

potential that uses a screened Lennard-Jones term for bulk structures in combination with

a highly trained Tersoff potential for smaller regimes.51 This is a possible work-around to

make other physical potentials accurate across different size regimes.
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Figure 11: NVT BO-MD simulation of 6 atom cluster starting from local energy minimum

and finding the global minimum. The temperature was reduced from 800 K to 300 K over

the course of the simulation. Solid lines show BO-MD trajectories while dashed lines show

energy predictions for the global minima from KS-DFT (black) and BPNN (red) and ReaxFF

(blue).

3.3.2 38 atom clusters

A similar exploration for multiple local minima was implemented on a 38 atom cluster using

minima hopping techniques.52 This exploration of minimum energy structures works through

a series of fixed temperature NVT BO-MD simulations followed by geometric optimization

requiring a significant number of calculations between each iteration. After each iteration,

the minimum geometry is stored and perturbed before restarting its search. The resulting

minima predicted from 125 such iterations are shown in Figure 12.

Again, this approach located a lower energy minimum than the starting point geometry.

The largest energy difference between minima occurred during the first iteration of the

process. After this initial step, the energies do not change as dramatically. This can be
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interpreted as a shift into a local minimum energy basin (a group of configurations with

similar atomic positions and energies) which the BPNN potential proceeds to explore in

the next 124 minima. A more complete analysis of the 38 atom Au cluster space would be

time consuming and is beyond the scope of this work. Despite demonstrating low residual

errors, the BPNN potential does not correctly predict the lowest energy structure determined

by KS-DFT in this set of minima. Regardless, it is still capable of distinguishing between

configurations in different basins, and thus could be a valuable tool for exploring minimum

energy structures in conjunction with KS-DFT calculations.

Residual errors for the ReaxFF potential are consistently lower by -0.11 eV/atom com-

pared to KS-DFT. If energetics are shifted by this amount (as show in the top of Figure

12) one finds that the trend in relative energies is in reasonable agreement with KS-DFT,

although our ReaxFF potential does not correctly predict the lowest energy configuration

either. The performance of the ReaxFF potential for clusters could always be improved by

adding more cluster data to its training set, but we found that doing so rapidly deteriorates

its ability to calculate bulk and surface properties. As a result, we do not recommend using

ReaxFF in its standard formalism for applications involving clusters with fewer than 126

atoms.
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Figure 12: Local minima for 38 atom Au cluster predicted from the BPNN (red) and com-

pared with KS-DFT (black) and ReaxFF (blue). The ReaxFF potential energies are offset

by +0.11 eV/atom in the top figure to better depict the trend in energies.

3.4 Computational cost

An important aspect of these modeling approaches is their computational cost. This includes

the time needed to produce the necessary QC training sets, train the potentials, and the

time needed to run the calculations. Implementation and training of parameters for both

the ReaxFF and BPNN potentials can be automated using instructions in our SI file, thus

reducing the time needed to learn how to train potentials. The generation of meaningful

QC data is also a significant bottleneck in time, particularly for BPNN potentials that

require large training sets to be accurate. This is simplified in part by generating NEB data

and geometry optimizations which contain many valuable calculations on which physical

and mathematical potentials can be trained. One of the best ways to speed the progress of

developing accurate and transferrable potentials is to make data and methods freely available
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and easily accessible.

A fair comparison between calculation times between ReaxFF and BPNN potentials is

not currently possible. The BPNN potential we developed used a Python code that is still

in early stages of development.24 In comparison, ReaxFFs and other force field codes have

been implemented in the LAMMPS program which is already a high performance computing

code.53 Using available open source tools, BO-MD simulations on the 6 atom cluster using

the C-compiled ReaxFF code performs ≈ 6,700 timesteps/second, while the Python BPNN

in ASE performs ≈ 15 timesteps/second. Nevertheless, we consider BPNN potentials to

be extremely promising for simulations requiring high accuracy, especially if they can be

implemented into high performance codes that can dramatically accelerate their calculation

times.

4 Conclusions

We have trained ReaxFF and BPNN potentials using subsets of ≈ 10,000 KS-DFT calcula-

tions. Our training sets consider Au in a variety of atomic configurations in bulk, surface, and

cluster regimes that would be useful for practical atomistic modeling across all regimes. By

virtue of being a mathematical potential, the BPNN potential can be trained to an arbitrary

level of accuracy. Our most accurate BPNN potential was fitted to 9,734 calculations and

yields an RMSE of 0.017 eV. Our ReaxFF potential (which contains 3-bond terms for higher

accuracy) was fitted best to a significantly smaller training set consisting of 848 calculations

(a value that is considerably larger than parameter sets in many other ReaxFF potentials).

This potential provides an overall RMSE of 0.136 eV compared to the full KS-DFT dataset.

In applications on bulk structures, our BPNN almost exactly reproduces reference QC

data of equations of state, while the ReaxFF potential is less accurate, particularly at atomic

volumes that extend far beyond the equilibrium structures. When modeling surface struc-

tures and adatom diffusions, both the ReaxFF and BPNN potentials perform quite well with

sufficient training, but obtaining a BPNN potential having comparable or higher accuracy

than ReaxFF for adatom diffusions requires substantially larger training sets. For clusters,

the BPNN potential exhibits essentially negligible residual errors compared to the KS-DFT
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calculations it was trained to, while the ReaxFF potential exhibits sizable systematic errors

of 0.11 eV. This highlights the challenge of developing a physical potential that is accu-

rate across bulk, surface, and cluster data. Increasing the size of the training set for the

ReaxFF potential to include more cluster data was found to be detrimental to the accuracy

of bulk and surface data, thus showing an area needing improvement in terms of ReaxFF

functionality.

Although BPNNs can be trained to the desired level of accuracy, the computational

cost, both upfront in the form of training set data and during calculation time, are cur-

rently substantially higher than ReaxFF potentials. Nevertheless, BPNN potentials are very

promising if trained for specific applications (hence requiring smaller training sets) and they

will be highly intriguing as computational developments enable faster runtimes. Since accu-

rate BPNN potentials contain substantially larger numbers of parameters than most physical

potentials, it is unlikely that BPNN potentials will ever be as fast as ReaxFF potentials,

but we have demonstrated that BPNN potentials can be trained to be substantially more

accurate.
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