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Models of reaction chemistry based on the stochastic simulation algorithm �SSA� have become a
crucial tool for simulating complicated biological reaction networks due to their ability to handle
extremely complicated networks and to represent noise in small-scale chemistry. These methods
can, however, become highly inefficient for stiff reaction systems, those in which different reaction
channels operate on widely varying time scales. In this paper, we develop two methods for
accelerating sampling in SSA models: an exact method and a scheme allowing for sampling
accuracy up to any arbitrary error bound. Both methods depend on the analysis of the eigenvalues
of continuous time Markov models that define the behavior of the SSA. We show how each can be
applied to accelerate sampling within known Markov models or to subgraphs discovered
automatically during execution. We demonstrate these methods for two applications of sampling in
stiff SSAs that are important for modeling self-assembly reactions: sampling breakage times for
multiply connected bond networks and sampling assembly times for multisubunit nucleation
reactions. We show theoretically and empirically that our eigenvalue methods provide substantially
reduced sampling times for a large class of models used in simulating self-assembly. These
techniques are also likely to have broader use in accelerating SSA models so as to apply them to
systems and parameter ranges that are currently computationally intractable. © 2008 American
Institute of Physics. �DOI: 10.1063/1.3026595�

I. INTRODUCTION

Stochastic simulation methods have become increasingly
widespread as a means of simulating and analyzing bio-
chemical reaction kinetics.1 The chemical master equation,
which governs the reaction kinetics for well-mixed systems,
forms the basis for the stochastic simulation algorithm
�SSA�, proposed by Gillespie.2,3 SSA models a reaction sys-
tem as a continuous time Markov model �CTMM� in which
states of the system are defined by counts of reactants present
at a given point in time and transitions between states corre-
spond to individual reaction events. This SSA approach is
valuable in part because it provides a model of reaction
noise, which can become significant for reaction networks on
cellular scales.4 Furthermore, SSA models can provide sig-
nificant computational advantages over continuum models
for networks characterized by extremely large sets of pos-
sible reaction intermediates. The computational value of the
SSA approach lies in the fact that for a large class of net-
works, the random walk visits only a small fraction of the
state space before equilibrium is established. As a result, ki-
netics on complicated networks can be simulated “on the
fly,” requiring explicit construction of the CTMM network
only in the immediate vicinity of those states visited on a
given trajectory. This property is an essential requirement for
any feasible simulation algorithm, since the size of the state
space describing the master equation is astronomical even
for modest system sizes. Successful applications of SSA in-

clude gene regulatory networks4 and self-assembly of com-
plicated structures, such as virus capsids.5,6 Furthermore, the
SSA approach has now been adopted by several approaches
for whole-cell modeling7,8 and modeling generic complex
reaction networks.9,10

The relaxation time of the SSA can, however, be ex-
tremely sensitive to the transition rates controlling the reac-
tion kinetics. A pure SSA model has difficulty with stiff re-
action systems, i.e., those where important events occur in
parallel on very different time scales. In such cases, a simu-
lation can become bogged down by sampling fast events to
the exclusion of the slow events. Hybrid discrete/stochastic
models11–13 can resolve this problem in some domains, but
not when the fast reactions make use of too many interme-
diates to allow them to be modeled continuously. One impor-
tant example of such a stiff reaction system is the breaking of
bond networks, where individual bonds may break and repair
repeatedly before a sufficiently large bond group is broken to
fracture the network. Another form of stiff SSA network oc-
curs near the critical concentration of a self-assembly sys-
tem, where high-order nucleation events can be orders of
magnitude slower than individual binding reactions. In these
stiff systems, a SSA model can become “trapped” for many
steps in a small subset of the state space, resulting in negli-
gible simulation progress for long periods of time.

To understand these trapped systems, it is useful to con-
sider the graph theoretic representation of the SSA method.
A SSA model is represented by a graph in which each node
corresponds to one possible state of the full model. Edgesa�Electronic mail: russells@andrew.cmu.edu.
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connect nodes whose states can be reached from one another
by a single reaction event, e.g., two molecules binding to one
another. At each simulation step, SSA considers only the
immediate neighbors of the current state. As a result, the
simulation is prone to traps that can result from irregularities
in the invariant density of the embedded Markov chain
�EMC� implemented by SSA for a given CTMM. For ex-
ample, consider a three-state CTMM represented by a simple
path �Fig. 1�a��, where the backward transition rate a is much
larger than the forward transition rate b. The average number
of SSA steps to reach state 3 from initial state 1 is O�a /b�
because once SSA visits state 2, it will jump to state 3 only a
b /a fraction of the time. Nodes 1 and 2 collectively define a
trapped subgraph from which the model must escape. In gen-
eral, for an N-path, where each forward rate b is smaller than
the backward rate a, SSA takes O�a /b�N−2 steps to traverse
the path �see Theorem III.1 for an analogous problem�. One
way such a trapped subgraph can arise in a physical system
is through models of the breakage of bond networks. Figure
1�c� shows the graph arising from a model of the breakage of
a three-cycle bond network, which behaves similarly to the
three-state CTMM by establishing a trapped inner graph of
four states—the unbroken state and three states with a single
broken bond—from which the model must escape to reach
any broken network state. We can alternatively understand
the trapping problem in terms of a probability landscape
view of a reaction system. The SSA is sluggish whenever its
equilibrium landscape is irregular, consisting of valleys and
hills. The broader and deeper these are, the slower SSA
becomes.

To overcome the presence of traps or landscape irregu-
larity, we propose two nonlocal simulation algorithms that
rely on the spectral decomposition of the Kolmogorov matrix
�for a CTMM� or the transition matrix �for the EMC�. These
eigenvalues and their associated eigenvectors describe global
modes of relaxation of the full graph or any of its subgraphs.
Since eigenvalues are global properties of a graph, spectral
methods are much less sensitive to local landscape traps.
These methods can be applied to quickly sample first-
passage times on small CTMM graphs such as those in

Fig. 1 or to sample escape times from trapped subgraphs
when the full model is prohibitively large.

Previous attempts at simulating rare events include the
forward flux sampling �FFS� technique of Allen et al.14 and
related methods.15,16 The approach breaks a rare event into a
series of relatively more probable stages and uses estimates
of waiting times for the successive stages to develop an ag-
gregate transition rate for the full event. This aggregate rate
can then be used to approximate the first-passage time den-
sity as a single exponential random variable. However, while
the exponential tail dominates the density for stiff systems
and is therefore a highly accurate approximation in many
cases, the true probability density has a peak at short times
followed by a mixed exponential tail. The methods devel-
oped in the present work, in contrast to the FFS-like meth-
ods, sample first-passage times from the entire density to
within an arbitrary error bound. Recently, another method
called the slow-scale SSA was proposed by Cao
et al.,17,18 which relies on a technique called the partial equi-
librium approximation �PEA�. PEA essentially assumes that
the set of fast reactions is always in equilibrium and the
method approximates transition rates between slowly vary-
ing reactant species by their expected value in the partial
equilibrium state. While these methods can provide signifi-
cant benefits for some CTMMs, there are several limitations
in using PEA or similar approximations for arbitrary graphs.
First, a clear distinction between fast and slow species may
not be obvious in a given problem. For example, in rule-
based simulation of bond networks, stiffness is built in
through the association/dissociation rates of individual bonds
rather than being species dependent. Second, these methods
always need to be supplemented with approximations in-
volved in computing the mean values of the reaction propen-
sities. Furthermore, PEA will be inaccurate whenever fluc-
tuations in the reaction propensities within the partial
equilibrium state are comparable to their mean values.

The goal of the present work is to develop efficient
methods for some important classes of stiff SSA model for
which the above techniques are unsuitable, with a particular
emphasis on models important to simulations of self-
assembly reactions. The methods proposed in this paper can
be applied to Markov processes on arbitrary graphs. Further-
more, they can be made accurate to within arbitrary error
bounds. The remainder of this paper is organized as follows.
Section II A sets up some basic notation and a description of
the sampling problem for general CTMM. In Sec. II B we
introduce a spectral method which relies on the eigendecom-
position of the master equation describing the CTMM �Fig.
2�. We use a complete spectral decomposition of the first-
passage time density and rejection sampling to return sample
first-passage times for arbitrary CTMMs. In Sec. II C we
introduce another spectral method which works as a hybrid
between the purely local SSA and the completely nonlocal
master equation method. The latter method proceeds by
adaptively constructing a basis in which to simulate the
Markov chain until the system state has relaxed to its slowest
eigenvector �Figs. 3 and 4�. If first passage out of the trapped
subgraphs does not occur by that time, we use the appropri-
ate eigenvalue to sample the time to first passage as an ex-
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FIG. 1. �Color online� Illustration of trapped subgraphs in SSA models. �a�
A simple CTMM on a three-path with transition rates a and b. �b� The
probability landscape for the model. SSA is slow whenever the invariant
density for the corresponding Markov chain is irregular. Here, the SSA takes
O�a /b� steps to reach vertex 3. �c� CTMM model of a trimer assembly
system with three subunits. Graph of possible configurations joined by re-
action rates. States in which the trimer is broken are surrounded by solid
lines and others by dashed lines.
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ponential random variable. In Sec. II D we introduce a
method for automated discovery �AD� of trapped regions in
stiff Markov models. This technique allows efficient imple-
mentation of spectral methods for large state spaces by iso-
lating regions repeatedly visited by a given random trajec-
tory and using spectral sampling to escape any such
subgraph. In Sec. III we present theoretical results on the
time complexity of SSA for bond networks followed by ex-
periments on some special classes of bond networks to com-
pare the simulation efficiency of each method discussed. In
Sec. IV we evaluate the AD variants of the method by ap-
plying them to models of a nucleation-limited assembly sys-
tem with a state space too large to explicitly construct. Sec-
tion V concludes the paper with a discussion of results and
directions for future research.

II. THEORY

A. The chemical master equation and the SSA

The SSA identifies reaction kinetics for networks of
biochemical subunits as a Markov process governed by

an appropriate Chapman–Kolmogorov equation or, equiva-
lently, its differential version—the master equation. Let
S= �1,2 , . . . ,NS� be the state space for the CTMM, each node
representing a possible state for the simulated system. The
time evolution of probability densities is governed by a
Kolmogorov matrix W, which specifies the transition rates
Wnm from the state m to n,

dpn

dt
= �

m�S

Wnmpm�t� − Wmnpn�t� , �1�

where pn�t� denotes the probability to be in state n at time t.
The matrix elements Wnm satisfy two necessary conditions:

�1� Wnm�0 for n�m;
�2� �mWnm=0.

Under these conditions, it is well known that the matrix
has a steady state solution ��	=�n�n�n	 that is an eigenvec-
tor of W with eigenvalue zero and that all initial distributions
relax to ��	 in the limit of long times.19 In addition, we will
require W to satisfy the detailed balance condition, which
states that at equilibrium, the sum of probability current ex-
changed between any pair of states �n ,m� is zero, i.e.,
Wnm�m=Wmn�n. This in turn allows one to define a scalar
product on the state space such that W is self-adjoint,


n�m	 � �nm
1

�m
. �2�

This condition ensures that we can construct an orthogonal
eigenbasis and compute time-evolved versions of any given
initial probability distribution using spectral decomposition.

B. Spectral sampling 1: Master equation approach

Given a Kolmogorov matrix W on a state space S and an
arbitrary initial state i�V�S, the first-passage time TF�i� is
a random variable which gives the time at which the trajec-
tory first reaches any state in some subset of the state space
F=S−V. The standard method of solving a first-passage
problem is to set up the master equation for V
with an absorbing boundary over F �zero Dirichlet boundary
condition�.19 Let PV be a projection operator onto the sub-
space V and let N be the cardinality of V. Then,
M = PVWPV is the effective Kolmogorov matrix that governs
time evolution over V. From detailed balance, M is self-
adjoint over L�−1

2 . Hence, the eigenvectors of M form a com-
plete basis ����	�. A consequence of the spectral theorem is

Algorithm:Prepare Discrete Mixture

Input: First passage time probability density ρ
Output: Envelope g(t) =

∑
i Sifi(t), rejection ratio R

Sort the list {ci} in increasing order of λi;
Initialize R← 0;
for i ∈ {1, ...N} do

Compute the partial sums pi ←
∑i

n=1 cn;
if pi > 0 then

Si ← pi ∗ (λi+1 − λi)/(λiλi+1);
R← R + Si;

end

end
Return {Si}, R;

Algorithm:Sample first passage time

Input: Probability density ρ(t) =
∑

i cie
λit

Output: Sample time T distributed according to ρ

Set {Si}, R← Prepare Discrete Mixture(ρ);
reject1← 0;
while reject1 < 1 do

Generate a uniform [0, 1] random variate U ;
prob← 0;
mix← 1;
while prob < U do

prob← prob + Smix/R;
mix← mix + 1;

end
reject2← 0;
Compute an envelope fmix ≤ Rmixe

−gmixt:
Set gmix ← (λmix ∗ λmix+1)/(λmix + λmix+1);
Compute Rmix(λmix, λmix+1);

while reject2 < 1 do
Generate an exponential random variate T , with mean 1/gmix;
Generate a uniform random variate [0,1] X;

reject2← fmix(T )
exp (−gmixT )∗Rmix∗X ;

end
Generate a uniform random variate [0,1] Y ;

reject1← ρ(T )
g(T )∗R∗Y ;

end
Return T ;

FIG. 2. Pseudocode for spectral method 1.
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FIG. 3. �Color online� Schematic of the EMC-based spectral method. Filled
vertices are the currently occupied nodes. Simulation advances the system
state as a discrete mixture until such time as the state has relaxed to its
slowest eigenstate ��min	. At each step, direct transitions to the absorbing
vertex �gray� are computed according to the Kolmogorov matrix.
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the completeness relation for the properly normalized eigen-
basis, i.e., 
�� ���	=���. Given any vector �		,

�		 = �
�=1

N

���	
���		 . �3�

1. Spectral decomposition of the first-passage
time distribution

In terms of the vertex set basis, the completeness relation
over L�−1

2 is I=�n�VPn, where Pn=�n�n	
n� is the projector
onto vertex state �n	. Given an initial probability density
pn�t=0�=�ni, the probability for state n�V evolves as

pn�t��n	 = PnetM�i	 = �n�n	
n��
�=0

N


���i	e−��t���	 ⇒ pn�t�

= �
�=1

N

�n��,n��,i exp�− ��t� . �4�

The transition to an element f �F outside of V is governed
by the following equation:

dpf

dt
= � f
f ��W − M� �

n�V

pn�t��n	 = �
�=1

N

c�,f exp�− ��t� .

�5�

The probability for a first passage to the state f between t and
t+dt is hence given by 
�Tf = t�dt=��=1

N c�,fe
−��tdt.

2. Exact sampling for the first-passage
time distribution

In this section we describe a method for returning a
sample time from the computed first-passage density

�t�=�i=1

N cie
−�it to any state f �F. A general method for sam-

pling from complicated distributions is to use the method of
rejection sampling, which first chooses a random variable
from a convenient envelope density and accepts or rejects the
sample based on a second random sample that depends on
the tightness of the envelope fit. The rejection rate is low if
the envelope curve closely approximates the given curve. A
simple envelope curve is provided by a pure exponential of
the most slowly decaying eigenvalue, with a coefficient
equal to the sum of all positive terms �ci�0ci in the computed
density 
�t�. However, there is no guarantee that the rejected
part is small. Since each eigenmode encloses an area ci /�i,
cancellations between near-degenerate eigenvalues can in
principle lead to a high rejection ratio. We therefore present a
method for choosing an envelope curve g�t� which elimi-
nates these cancellations. Furthermore, in Sec. III B we show
that the envelope curve is exact for bond networks generated
by cycle graphs CN. We sample from g�t� using
a decomposition into a discrete mixture of densities
f��t�=d��e−��t−e−��+1t� and an efficient rejection step. Here
d� are constants, one for each component f� of the envelope
curve g�t�. The next theorem proves that the density f��t� can
be sampled efficiently using a rejection method.

Theorem II.1: The expected rejection ratio for f��t� is
bounded from above by 1.5.

Proof: We will use a simple exponential h��t�
=C� exp�−�t� as the envelope function. In order to minimize
C we choose h��t� such that

h��t�� = f��t�� �6�

and

�dh�

dt
�

t=t�

= �df�

dt
�

t=t�

, �7�

where t� is defined implicitly by the condition

�d2f�

dt2 �
t=t�

= 0. �8�

These constraints yield a unique solution t�

=2 ln���+1 /��� /��. Since d2f� /dt2�0 for t� t�, the slope
of ln�f�� monotonically increases to −�� as t→. The cor-
responding envelope rate then satisfies �=����+1 / ���

+��+1����. The rejection ratio is given by

Algorithm:Next State

Input: Current state vector |ψ〉 =
∑

i ψi|i〉
Output: Next state |φ〉 =

∑
i φi|i〉 and rate r

for i ∈ V do
if ψi > 0 AND r < −Mii then

r ← −Mii;
end

end
Compute the next state φi ←

∑
j(δij + 1

r
Mij)ψj ;

Return {|φ〉 ←∑
i φi|i〉, r};

Algorithm:Check Convergence

Input: Next state |φ〉, present state |ψ〉, rate r
Output: The first passage time t

EigenMode← Yes;
P ← 0;
for i ∈ V do

P ← P + φi;
if |φi − ψi| > εψi then

EigenMode← No;
end

end
Generate a uniform [0, 1] random variable U ;
if EigenMode = Yes then

λmin ← r ∗ (1− P ) ;
Return t← t− 1

λmin
ln U ;

end
else

Compute the next time step τ ← −1
r
ln U ;

t← t + τ ;
Generate a uniform [0, 1] random variable X;
if X < P then
{|ψ〉, r} ← Next State( 1

P
|φ〉);

Check Convergence(|ψ〉,|φ〉,r);
end
else

Return t;
end

end

FIG. 4. Pseudocode for spectral method 2.
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C =
1

�

����+1

��+1 − ��

exp��� − ���t��1 −  ��

��+1
�2�

= ��� + ��+1

��+1
�2

exp�−
��

2

�� + ��+1
t��

� 4 exp�2
x2 ln�x�
�1 − x2�� , �9�

where x=�� /��+1� �0,1�. To upper-bound C, note that the
exponent increases monotonically with x and its maximum is
limx→1−�2x2 ln�x�� / �1−x2�=−1. This bound finally gives us
C�4 /e�1.47. �

As a final comment, we note that for general graphs the
average time complexity of this algorithm is dominated by
the computation of the eigenvectors and eigenvalues, which
gives us the following theorem.

Theorem II.2: The average time complexity for spectral
decomposition of the master equation is O�N3� for a graph of
N vertices.20

C. Spectral sampling 2: Modified EMC method

The efficiency of the SSA is dependent on the relaxation
time of the EMC. We use this observation to modify the
basis in which the EMC is simulated. The standard method
of executing a random walk is to consider the transition be-
tween adjacent states, each of which is localized at a vertex
of the CTMM. However, correct simulation only requires
that these states form a basis, not that they are orthogonal. If
we can choose a set of states which are increasingly likely to
appear during the simulation of the Markov chain, we
are unlikely to make repeated visits to the same state. In
order to identify such a basis starting from an initial state
�i	, we first identify the transition matrix for an EMC that
correctly describes the given CTMM. Consider the vertex
set V= �1,2 , . . . ,N� and the basis constructed from V,
B= ��1	 , �2	 , . . . , �N	�. At any given time t, let the state of
the time-evolved Markov chain be ���t�	=�i=1

N �i�i	. Let
Vt= �i�V ��i�0� be the vertex subset populated by the cur-
rent state vector. We construct the EMC for the subgraph
induced by Vt at each step of the algorithm. Given the pro-
jection of the Kolmogorov matrix M over the vertex set V,
choose r=max�−Mii ��i�0� to be the effective rate of tran-
sition to the next state and choose an exponentially distrib-
uted random time step � with mean waiting time 1 /r. Then,
Lt=−�1 /r��M is the Laplacian governing the EMC and
Qt= I−Lt is the effective transition matrix at that time step.
The next state vector is chosen to be ��	=Qt���t�	. The rea-
son for choosing this particular value of r is to ensure that no
term in Qt becomes negative, a necessary condition for a
transition matrix.

Theorem II.3: The choice of next state is consistent with
the master equation governing the CTMM.

Proof: Rewrite the master equation in terms of the
���	 , ��	� basis �where the other N−2 linearly independent
basis vectors can be chosen arbitrarily�,

d��	
dt

= rI +
1

r
M − I���	 = r�Qt − I���	 = r���	 − ��	� .

�10�

Since there is a unique decomposition for any vector in terms
of a linearly independent basis set, Eq. �10� proves that start-
ing from ��	 the next state is uniquely determined to be ��	.

�

In general, the next state ��	 will have a total probability
P=�i�i�1 due to possible transitions out of the subgraph.
We check if that is the case by generating a �0,1� random
variable X to compare with P. If X� P, the next state is still
trapped inside the subgraph and we normalize it as ��t+��
=1 / P��	. ���t+��	 is used to generate the next state in the
simulation. This sequence will continue until the state has
relaxed to its slowest eigenvector ��min	, such that M��min	
=−�min��min	 to within a user-defined relative error �. Once
that state is achieved, we just need one more exponentially
distributed random sample time � with mean 1 /�min to es-
cape the network.

SSA chooses a stochastic trajectory by sampling both the
next neighbor and the time for the next step at random. The
EMC method, on the other hand, evolves deterministically in
our modified basis and only the time between transitions is
stochastic. At each time step, transition to the absorbing
boundary states is governed by the matrix elements connect-
ing each of the transient states to the absorbing boundary.
The advantage of such an approach is that it allows us to
automatically compute the most slowly decaying eigenvector
during the simulation. For completeness, we note the follow-
ing result.

Theorem II.4: For a graph of degree bounded by d
and V of cardinality N , each step of this algorithm takes
O�N�d� time.

D. AD of trapped subgraphs

As previously mentioned, stiffness in Markov model
graphs results from repeated visits by a typical random tra-
jectory to a small subset of vertices of the entire graph. Since
the performance of spectral methods is sensitive to the size
of the vertex set, it would prove useful if we could somehow
identify these trapped subgraphs for stiff Markov models and
apply spectral methods directly to those. In this section we
present one such method, which we call “automated discov-
ery” �AD� and which we show to be formally applicable to
arbitrary bounded-degree graphs.

Let there be a state space S over which a CTMM is
defined and consider a subgraph G�V ,E� with vertex set
V�S and edge set E. Starting from an initial state i�V, we
are interested in the time TF�i� to first passage out of V.
Consider the subgraph Hi induced by the vertex set Ui�V
visited by a random trajectory executing the SSA random
walk before it escapes V and let Ni= �Ui� be the cardinality of
Ui. If TFi is the number of steps a SSA random walk takes to
escape V, then a Markov model will show simulation stiff-
ness whenever the expected values satisfy
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E�Ni� � E�TFi� , �11�

since this would imply that certain vertices in Ui are being
visited repeatedly. AD works by progressively sampling
larger regions of V until it identifies a subgraph Ki induced
by a vertex set Wi�V such that Ui�Wi. Once Ki is identi-
fied either of the spectral methods can be used directly over
Ki. The method will be efficient as long as �Wi���Ui� and the
number of steps taken to identify Ki is comparable to the
computational cost of using spectral sampling over Ki. For-
mally, Hi can be exactly discovered by repeatedly enlarging
the discovered graph to include the last vertex outside Ki

visited by the trajectory. If spectral sampling for a graph of
vertex set size N works in time f�N�, this procedure would
ensure that implementing spectral sampling in conjunction
with AD takes O�Ni� f�Ni�� steps. The stiffness condition
�Eq. �11�� would usually ensure that this procedure is still
efficient. Another method for discovering the trapped sub-
graph would be to implement the SSA random walk for a
specified number of steps S�N� �depending on the size of the
vertex set N�. Since eigenvalue methods are, in general,
O�N3�, we can implement SSA until S�N��C�N3 for some
constant C to discover the trapped subgraph K and then use
spectral sampling to escape the discovered graph. This alter-
native approach could be less efficient in some circum-
stances, but would guarantee that the overhead for spectral
sampling is not more than a constant factor beyond that of
the standard SSA. Figure 5 shows the pseudocode for imple-
menting AD for a given graph by this method. The algorithm
generates a sample trajectory using SSA until such time that
the trajectory spends O�N3� steps within a trapped graph K of
vertex set cardinality N= �K�. Then either of the spectral
methods described in Sec. II B or Sec. II C are used to
sample the first passage outside K to a vertex i. In general,
the state of the system at the time of first passage outside K
will be a discrete probability mixture of more than one ver-
tices. In such cases, the vertex i is randomly selected in
accordance with the appropriate probability weight. The al-

gorithm then resumes SSA execution over the enlarged graph
K� �i�. Further investigation is, however, required to search
for algorithms that may further improve the performance of
AD. In Sec. II B we prove that for at least one important
class of graphs, namely, models of chemically reacting spe-
cies, we can indeed reduce the time complexity to its optimal
value to within a constant factor, i.e., O�f�Ni��.

III. APPLICATION WHEN THE SUBGRAPH IS KNOWN:
FRACTURING BOND NETWORKS

A. Stiffness in SSA for bond networks

In order to validate the methods, we instantiate them for
some specific challenging systems. We begin by demonstrat-
ing the non-AD variants of the methods for the problem of
sampling the time required to break a network of bonds. This
problem is an example of a stiff SSA on a generally small
graph. It is also of independent interest because of its impor-
tance in modeling self-assembly processes on long time
scales. Given such a system, we are interested here in the
first-passage time to the subset of states corresponding to
disconnected graphs Vb�S. Since each bond can occur in
two states, intact or broken, a network of d bonds can be
represented as a vertex on a unit hypercube in d dimensions.
The state space generated by the bond network before it be-
comes disconnected will usually be a truncated unit hyper-
cube. An N-cycle CN generates the simplest nontrivial ex-
ample, where the absorbing boundary is placed at all points
on the hypercube at distance 2 from the fully connected state.
Figure 1�c� illustrates this absorbing boundary for C3. Given
a d-bond network, we will represent the �th bond-breaking
rate by b� and association or binding rate by a�. It is conve-
nient to represent a vertex on this hypercube by a binary
d-tuple i= �id , . . . , i� , . . . , i1�, where i�=0 implies that the �th
bond is intact �see Fig. 1�c� for the graph corresponding to
a trimer�. From here on, we will use the notation
�̂= ��d� , . . . ,�1�� for the vector describing a state of the
model with only the �th bond broken. For such a graph, the
time complexity of each SSA step is O�d�. In the rest of this
paper we will use this model of truncated hypercubes to rep-
resent bond networks. Morris and Sinclair21 proved that in
the case of unweighted graphs, a random walk on a hyper-
cube truncated by a hyperplane relaxes to equilibrium in
polynomial time bounded by O�d�9/2+� for any ��0.
However, as we have argued in Sec. I, the mean hitting time,
i.e., the number of random walk steps between a pair of
vertices, can be extremely sensitive to the parameters gov-
erning the walk. We formalize this observation in Theorem
III.1 below, which bounds the expected number of SSA steps
before the network is disconnected. Let r�min�a� /b� �� ,�
� �1, . . . ,d��.

Theorem III.1: The expected number of SSA steps re-
quired to break a k-connected network with k�1 and r�1
is ��rk−1�.

A detailed proof of the theorem is provided in the Ap-
pendix. Figures 6 and 7 provide an empirical demonstration
of the theorem. Figure 6 analyzes the number of steps re-
quired in 100 trials of the SSA algorithm for simulating the
breakage of a set of cycle graphs CN ranging in size from 3

Algorithm:Automated Discovery

Input: Discovered vertex set K, current state i, time elapsed t
Output: Final state vertex i /∈ V , first passage time t

while i ∈ V do
size← |K|;
steps← 0;
if steps < c ∗ size3 then

Generate SSA next state i;
Update t;
steps← steps + 1;
if i /∈ K then

K ← K
⋃{i};

size← size + 1;
end

end
else

Do Spectral Sampling over K;
i← Next state outside K;
t← updated time;
K ← K

⋃{i};
end

end
Return i, t;

FIG. 5. Pseudocode for AD.
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to 7. Each model was examined using ratios of forward to
backward rate from 1 to 20 in increments of 1. Breakage
times for the cycle graphs increase linearly with rate
ratio, although they also fall monotonically with cycle size
�Fig. 6�a��. Figure 7 analyzes the number of steps required
to break k-connected hypercube graphs of dimensions
k= �2,3 ,4 ,5�. Figure 7�a� also shows that the slope of a log-
log plot approaches the predicted exponent k−1. Figures 6�b�
and 7�b� suggest why a spectral approach might be
effective—as the reaction rate increases, steps to first pas-
sage behave more like a geometric random variable �as
mean→, standard deviation→mean�, as expected for a
slowly decaying eigenmode of the transition matrix. More
detailed explanations of the simulation protocol for these fig-
ures are provided in Sec. III C.

B. Master equation for bond networks

1. Spectral analysis for breaking the CN network

We illustrate the master equation spectral method using
the cycle graph CN as an example. This is a graph of N
vertices and N edges, connected together in a loop such
that exactly two edges need to be removed to disconnect
the graph �called a separation pair�. The state space is
S= �0���=1

N ��̂���=2
N ������̂+ �̂�. In this case, the subspace

Vb=��=2
N ������̂+ �̂� defines the absorbing boundary and

the subspace Vc=S−Vb defines the space of transient states.
We begin with the most general form for M, the projection of
W onto the subspace Vc.

M =�
− �

�

b� a1 a2 . . . aN

b1
− a1 + �

��1
b�� 0 . . . 0

b2 0 − a2 + �
��2

b�� 0 . . .

. . . . . . 0 . . . 0

bN 0 . . . 0 − aN + �
��N

b��
� . �12�

In what follows, we assume that all the eigenvalues of M
are negative �as they must be over the subset of transient
states since �nMnm�0 ensures any positive probability den-
sity decays to zero� and that the set of rates �ai� and �bj� is
positive �ensured by property 1 of W�. For economy of no-
tation, let us define kn=an+�m�nbm. Also, in what follows
we assume that the bond indices have been labeled such that
k1�k2 , . . . ,k��k�+1 , . . . , �kN. In the case of a CN network,
the Tf�i� distribution can be efficiently sampled due to cer-
tain properties of the eigenvalue distribution and the form of
the eigenvectors. Since the sampling technique for a general
CTMM will be an extension of this special case, it will be
helpful to illustrate the method by investigating the spectral
properties of CN. The next few results establish bounds on

the eigenvalues of M as a special case of the interlacing
eigenvalue theorem.22

Theorem III.2: The N+1 eigenvalues �−�0�−�1� ¯

−�N� of the matrix M in Eq. (12) satisfy the following.

�1� If ki=ki+1 then −ki is an eigenvalue of M. If n such
diagonal elements are identical then the eigenvalue is
�n−1�-fold degenerate.

�2� There is at least one eigenvalue of M in the interval
�i��−ki ,−ki+1�.

Proof: The eigenvalue condition Det�M −�I�=0 implies
that the eigenvalues � are the zeros of an �N+1�th order
polynomial,
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FIG. 6. �Color online� Number of SSA steps until first passage for the network generated by an N-cycle CN. �a� Average number of steps 
s	. �b� Relative

deviation
�
�s2	
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f��� = �
�

b� + ���
i=1

N

�ki + �� − �
i=1

N

aibi�
j�i

�kj + �� = 0.

�13�

We establish bounds on the roots by calculating the sign of
f��� over the set of points �−k1 , . . . ,−kN�.

�1� Each term inside the summation sign in f��� contains
n−1 factors of �ki+��. Hence −ki is an �n−1�-fold de-
generate eigenvalue. In what follows we assume that
the remaining kj are all distinct.

�2� The sign of the function f��� at �=−ki is �−1�i. Hence
�i encloses at least one root of f���. �

The eigenvectors of M ����	� are mutually orthogonal
for the set of nondegenerate eigenvalues. In the case of non-
degenerate eigenvalues �−���−km�, these eigenvectors are

��,n = 
n���	 = N�

an

�kn − ���
, �14�

��,0 = 
0���	 = N�, �15�

where N� is a normalization constant. For degenerate eigen-
values, an orthogonal basis can always be chosen using the
Gram–Schmidt procedure. As will become apparent later,
however, these eigenvalues do not contribute to the sampling
in the case of a first-passage problem beginning with the
unbroken loop i=0.

Theorem III.3: The envelope curve g�t� defined by our
method is identical to the first-passage density for a CN net-
work.

Proof: Beginning with an unbroken state at t=0, the
probability the model occupies a given state n at time t is
given by

pn�t� = �n�
�=0

N

��,n��,0 exp�− ��t� = �
�=0

N

c�,n exp�− ��t� ,

�16�

where ��,i is an eigenvector of M with eigenvalue −��.
Note that only those ���ki contribute; otherwise ��,0=0.
Assuming �����+1, the coefficients satisfy c�,n�0 for
��n. Since the partial sum SN,n=��=0

N c�,n=��=0
N �n��,n��,0

=�n
n �0	=0, all other partial sums satisfy S�,n=��=0
� c�,n

�0. These observations provide a means of decomposing the
probability density into the following discrete mixture with
positive coefficients:

pn�t� = �
�=1

N

S�,n�exp�− ��t� − exp�− ��+1t�� . �17�

Since bn�0, the combined rate of decay to any one of the
broken states is given by

dpB

dt
� �

�n,m�

dp�n,m�

dt
= �

�=0

N−1

S�f��t� , �18�

where

S� = ��+1 − ��

����+1
��

m
�

n�m

��n,m��bmS�,n� � 0 �19�

and

f��t� =
����+1

��+1 − ��

�exp�− ��t� − exp�− ��+1t�� . �20�

�

C. Simulation models used for bond networks

Although our methods can in principle sample escape
times from any subnetwork of a CTMM graph, we have
validated them here for the specific case of breaking net-
works of bonds due to the importance of this problem for
self-assembly modeling. In rule-based models of self-
assembly, a simulation is initialized with a set of assembly
subunits, each with a complement of prespecified binding
sites. As the simulation progresses, the system evolves into a
state with an assembly of disjoint networks. The binding
interactions between two disconnected pieces of the network
usually occurs on a slower scale than individual bond-
breaking reactions.6 For biconnected networks, however, the
association rate within a connected network is much larger
than the bond-breaking rate since there is no entropy penalty
in associating bonds between constituent subunits. Such
models allow for a natural partitioning of the state space into
subgraphs corresponding to the biconnected components of
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FIG. 7. �Color online� Number of SSA steps until first passage on an N-dimensional unit hypercube ZN. �a� A log10-log10 plot of the average number of steps

s vs rate ratio r. �b� Relative deviation
�
�s2	
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the entire network. The first set of experiments that we per-
formed was on such biconnected networks. The simplest
nontrivial example of a biconnected bond network is the
graph generated by an N-cycle �CN�. More complicated net-
works of N bonds can be viewed as special cases of a trun-
cated unit hypercube in N dimensions. We therefore carried
out simulations for the network generated by CN as well as
the full hypercube �ZN�. Theorem III.1 guarantees that the
expected number of SSA steps for a k-connected network of
d bonds is P�d ,k���rk−1�, where P�d ,k� is some combinato-
rial function dependent on the topology of the network.

Each model is parametrized by a rate of bond formation,
a, and a rate of bond breaking, b. These values were varied
in different simulations. Each of the bonds had different
binding/breaking rates but the ratio was maintained at the
same order of magnitude for each simulation. Specifically,
for a d bond network b�=b�1.0+0.05� /d� and a�=a. These
slight variations in rates from bond to bond were used to
avoid giving our methods an unfair advantage, as they will
generally be more efficient when the transition matrix has
degenerate eigenvalues.

D. Experiments

We conducted a series of simulations to determine the
performance of the SSA, master equation, and EMC methods
for bond network first-passage times. All simulations were
implemented in MATHEMATICA. Run time simulations were
executed on a Macintosh machine with a 1.8 GHz G5 pro-
cessor and 512 Mbyte random access memory. For the EMC
based spectral method, we allowed each component of the
state vector to converge within a relative error of �=0.01.
Each data point reported was the average over 500 simula-
tions except for run time data, which were averaged over 100
simulations.

We first examined the efficiency of the master equation
method by assessing the number of rejection steps needed to
sample each first-passage time. We carried out simulations
for cycle graphs �CN� varying the cycle length from 3 to 7
and the rate ratio a /b from 1 to 20 in increments of 1. These
experiments were then repeated for unit hypercubes �ZN�
with dimension varied from 2 to 5 and rate ratio a /b from 1
to 10 in increments of 1. For each condition, we recorded the
number of rejection steps required for each of 500 simula-
tions and computed the mean and standard deviation across
the 500 trials.

We next examined the number of steps required by the
EMC method for sampling times to network breakage. We
examined the same models as those used to validate the mas-
ter equation method: cycles of length of 3–7 with rate ratios
from 1 to 20 in increments of 1 and hypercubes of dimen-
sions 2–5 with rate ratios from 1 to 10 in increments of 1. We
similarly recorded the number of EMC steps required for
each of 500 simulations and computed the mean and stan-
dard deviation across the 500 trials. We also computed the
fraction of models that reached the first-passage time before
relaxing to the slowest decay mode.

We next tested the total run time of each of the three
methods on a broader set of parameter ranges. We evaluated
run times for each method for cycle networks of sizes of 3–7.
We performed two sets of evaluations for each. The first set
varied the rate ratio a /b from 500 to 5000 in increments of
500 to provide a broad view of the relative run times of the
three methods. These numbers span ranges of values likely
for protein assemblies. For example, Zlotnick et al.23 esti-
mated a binding free energy of �G=4.2 kcal /mole for ordi-
nary differential equation based simulation of the kinetics of
the Hepatitis B virus, which yields a /b=exp��G /RT�
�1200. We then examined ratios of SSA to master equation
and SSA to EMC run times for each data point based on
averages over 100 simulations per parameter set. In a second
set of experiments, designed to give a finer view of where
each method is dominant in parameter space, we varied the
rate ratio a /b from 30 to 300 in increments of 30. We then
identified the most efficient of the three methods for each
point, again using averaged run times over 100 trials per data
point.

We then performed analogous experiments for hyper-
cube graphs in order to test performance on networks with
higher connectivity. For each graph Z2 to Z5, we carried out
simulations for rate ratio a /b from 3 to 30 in increments of 3.
We were limited to small ratios because the SSA method
becomes prohibitively costly for high-connectivity networks
at higher ratios. Each simulation was repeated 100 times to
yield average run times for each parameter set and for each
of the three methods. For each parameter set, we computed
the ratio of run times for SSA versus master equation and
SSA versus EMC. We further evaluated which of the three
methods produced the shortest average run time for each
parameter set.
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FIG. 8. �Color online� Number of rejection steps for the master equation method until first passage for the network generated by CN. �a� Average number of
steps 
s	. �b� Standard deviation �
�s2	.
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E. Results

We first present results on the efficiency of the rejection
sampling scheme for the master equation method. The ex-
pected run time of the method is proportional to the expected
number of trials needed to produce a successful sample. A
low number of steps is therefore preferable, with a value of 1
being ideal. Figure 8�a� shows the rejection ratio for cycle
graphs C3 to C7. The mean number of rejection steps is con-
sistently below 1.5, as expected from Theorems III.3 and
II.1. The number of rejection steps drops with increasing rate
ratio but increases with increasing cycle length. These results
together establish the efficiency of the method. Figure 8�b�
shows that the method is also robust, with standard deviation
consistently below 0.9 for the experiments shown here. The
standard deviation also decreases with increasing rate ratio
but increases with cycle size.

Figure 9�a� shows mean numbers of rejection steps for
hypercube graphs. Since the envelope curve for hypercubes
is not exact, these experiments provide information about
how well the method performs for more general networks.
The hypercube graphs also yield mean numbers of rejection
steps consistently below 1.5. The number of steps generally
falls with increasing rate ratio. Figure 9�b� shows the method

also to be robust for hypercube graphs, with standard devia-
tions consistently below 1.0 and following similar trends to
the means.

Next, we performed identical experiments to study the
performance of the EMC-based spectral method. Figure
10�a� shows mean numbers of EMC steps for cycle graphs.
The number of steps remains consistently below 6. The val-
ues rise sharply at the lowest rate ratios but quickly level off
to approximately 4–5 depending on the cycle length. Figures
10�b� and 10�c� provide the explanation for this feature. For
small rate ratio, multiple eigenmodes are responsible for the
decay �see part �c��, which corresponds to increasing EMC
steps before first passage, similar to SSA. However, as rate
ratio increases further, relaxation time to the slowest eigen-
mode becomes smaller than the average first-passage time
and the method automatically samples breaking times ac-
cording to the slowest eigenmode �Fig. 10�c��. This feature is
evident in part �b� of the figures, which measure the standard
deviation. At high rate ratio the “trajectory” is almost deter-
ministic, i.e., it always takes the same number of steps to
break the network. This happens because the state almost
always relaxes to the slowest eigenmode before escaping the
subgraph, hence giving a low value for � at high rate ratio.
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FIG. 9. �Color online� Number of rejection steps for the master equation method until first passage for ZN. �a� Average number of steps 
s	. �b� Standard
deviation �
�s2	.
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FIG. 10. �Color online� Number of EMC steps until first passage for the network generated by CN. �a� Average number of steps 
s	. �b� Standard deviation
�
�s2	. �c� Fraction of times the trajectory escapes before relaxing to the slowest decay mode.
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Figure 11 shows comparable results for hypercube
graphs. Figure 11�a� shows that mean numbers of steps drop
substantially between ratios of 1 and 2 but quickly level off
to an apparent constant for each graph. The number of steps
increases with increasing hypercube dimension. Figures
11�b� and 11�c� again show that the method has high vari-
ability for low rate ratios, where multiple eigenmodes con-
tribute significantly to the time distribution and the method
must behave similarly to the standard SSA. At higher ratios,
though, the slowest mode quickly dominates and the number
of steps required becomes highly reproducible.

We next examined total run times of the three methods,
beginning with the cycle graphs C3 to C7. Figure 12 plots
results of the EMC and master equation methods relative to
the basic SSA. Figure 12�a� shows ratios of run times for
standard SSA to the master equation method. The ratio grows
rapidly with increasing rate ratio, although it falls with in-

creasing cycle size. Figure 12�b� shows the comparison of
SSA to the EMC method. The SSA:EMC ratio likewise
peaks for large rate ratios and small cycle sizes. The EMC
method appears generally superior to the master equation
method, beginning to dominate at a lower rate ratio and
reaching a higher peak. Figure 12�c� shows for a narrower
rate range where each of the three methods dominates. The
EMC method is the fastest for most of the range examined,
with the standard SSA superior at the extreme of low ratios
and large cycle sizes.

We then examined run times on the hypercube graphs Z2

to Z5. Figure 13�a� shows run time ratios for SSA versus the
master equation method and Fig. 13�b� for SSA versus the
EMC method. Both spectral methods show sizable improve-
ments over the pure SSA method for larger rate ratios and
higher hypercube dimensions. SSA appears much more sen-
sitive to rate ratio as compared to the spectral methods. Even
for a rate ratio of 30, the spectral methods were more than
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FIG. 11. �Color online� Number of EMC steps until first passage on ZN. �a� Average number of steps 
s	. �b� Standard deviation �
�s2	. �c� Fraction of times
the trajectory escapes before relaxing to the slowest decay mode.
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FIG. 12. �Color online� Comparative run times for the network generated by
CN. �a� Ratio of SSA to master equation run times. �b� Ratio of SSA to EMC
run times. �c� Region in two dimensional �2D� parameter space where each
method is optimal.

� � � � � �

� � �

� � � � � � � 	 


� � �

�

�

�

� � �  � � �� ��  � � � �

�
�
�
��
�

� � � � � � � � �

� � �

�

� �
� 
� 
�


�

�
�

�

� � �

� � � �

� � � �

 � � �

 � � �

� � � �

� � � � � � � � �

�

� �
� 
� 
�


�

�
�

�

 � � �

� � � �

� � � �

� � � �

� � � � �

�  � � �

� � � � � � � � �

� � � � � � � � � � � 	 
 � � 
 � � � � � � � � � � � � � 
 � � � �

� � � � � �
� � � � � �

FIG. 13. �Color online� Comparative run times for first passage on ZN. �a�
Ratio of SSA to master equation run times. �b� Ratio of SSA to EMC run
times. �c� Region in 2D parameter space where each method is optimal.
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three orders of magnitude more efficient than SSA for Z5.
For hypercubes, unlike cycle graphs, the master equation
method appears generally more efficient than the EMC-based
method, even for small rate ratios. Figure 13�c� shows where
each method is dominant. The master equation method is
dominant for most of the parameter range examined, with the
SSA method superior at the limit of lowest degree and small-
est rate ratios and the EMC dominant for low degree and
higher rate ratios. This result is expected from Fig. 7�a�,
since the average number of steps seems to increase mono-
tonically with the connectivity of the graph for the EMC-
based method. The efficiency of the master equation method,
on the other hand, depends primarily on the size of the com-
plete graph, since matrix diagonalization is the eventual ef-
ficiency bottleneck.

IV. APPLICATION WITH AD: NUCLEATION-LIMITED
ASSEMBLY

In this section, we apply the AD variants of the methods
to a different system type also motivated by self-assembly
modeling. The rate of self-assembly processes is often lim-
ited by the time required to build the first stable multisubunit
complex, called a nucleus, which then acts as a seed for
assembly of the rest of a larger structure. Because partially
formed nuclei are unstable, considerable trial and error may
be needed before one reaches completion. The time to com-
plete a single nucleus can thus be orders of magnitude longer
than the intersubunit binding rate. These nucleation-limited
assembly systems are one example of the broader class of
stiff models for chemically reacting species. The state space
of any such system can be represented as a lattice corre-
sponding to the population individual species. These models
are similar to those treated in earlier studies of accelerated
SSA methods.14,18 We apply one such model, representing
the formation of simple trimeric nuclei, to demonstrate and
evaluate the AD variants of the spectral methods.

A. Integer lattice models

The second model we consider is again an assembly of
bond networks where monomers �m� with two identical
binding sites combine to form dimers �d� and trimers �t�. In
order to show stiffness with respect to a single parameter, the
trimers were assumed to be completely stable. If the total
number of monomer subunits is N, the state space is the
intersection of the plane Nm+Nd+Nt=N with the positive
octant of the three dimensional lattice formed by integer
counts of the monomer �Nm�, dimer �Nd�, and trimer �Nt�
populations. Let us represent each vertex of this graph by

the pair �Nt ,Nd�. The reaction propensities �Nt,Nd

Nt�,Nd� to reach
the vertex �Nt� ,Nd�� from �Nt ,Nd� are �to within an overall
constant�

�Nt,Nd

Nt,Nd+1 = Nm�Nm − 1�/v , �21�

�Nt,Nd

Nt,Nd−1 = Nd, �22�

�Nt,Nd

Nt+1,Nd−1 = NmNd/v , �23�

�Nt,Nd

Nt−1,Nd+1 = 0, �24�

where 1 /v is an entropy penalty due to the finite volume of
the system. We initialize the system at the state �0,0� for a
given monomer count N and sample the first-passage time
until the trimer count reaches a given value. This system will
show stiffness if the parameter 
�N /v is small. For small 
,
which corresponds to low concentration and/or small binding
energy, trimer formation will be much slower than dimer
breaking/binding reactions.

B. AD for integer lattice

Efficient simulation over an integer lattice, where one
pair of species reacts on a much faster timescale than
the others, requires a partitioning of the entire lattice into
subgraphs with fixed trimer count �since trimer formation
occurs on a much longer timescale than monomer-dimer
reactions�. These subgraphs are simple paths with vertex
set V�Nt�= ��Nt ,0� , �Nt ,1� , . . . , �Nt , ��N−3Nt� /2���, where Nt

represents the fixed trimer count and square brackets repre-
sent the largest integer smaller than the enclosed expression.
Figure 14 presents a procedure for implementing AD on such
graphs which works in optimal time to within a small con-
stant factor �the vertices are represented by dimer count for
simplicity�. At each step of AD the method enlarges the
graph by a factor proportional to its present length. The scale
factor m can be optimized for any given sampling algorithm
to optimize run time. For example, if a given spectral sam-
pling algorithm works in time f�N�=N�, where N is the car-
dinality of the vertex set; the total number of steps used in
AD of a graph sized Ni can be bounded from above by the
following quantity SNi

:

SNi
= �

n=1

1+logm�Ni�

mn� �
Ni

�m2� − 1

m� − 1
� CNi

�

�25�
for m = 21/��+1�,

where C=22�/�+1 / �2�/�+1−1�. In general, the master equation
based method works in O�N3�, however, for simple paths the

Algorithm:Automated Discovery

Input: Discovered vertex set K, current state i, time elapsed t
Output: Final state vertex i /∈ V , first passage time t

Do Spectral Sampling over K;
i← Next state outside K;
t← updated time;
if i ∈ V then

K ← Enlarge Graph(K, i);
Automated Discovery(K, i, t);

end
else

Return i, t;
end

Algorithm:Enlarge Graph

Input: Discovered vertex set K = {0, 1, . . . N2}, current state i
Output: Enlarged vertex set K

N2 ← 1 + [m ∗N2];
Return K ← {0, 1, . . . N2};

FIG. 14. Pseudocode for AD for a simple path.
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Kolmogorov matrix is sparse and effective power is expected
to be more like �=2. Since SNi

is more sensitive to devia-
tions for smaller values of m, we chose m=1.3�21/3 in the
experiments reported here.

The method reported here can in principle be generalized
for arbitrary lattice graphs in d dimensions. The size of the
discovered graph in such cases would overestimate the actual
trapped graph by a factor of md for a scaling factor m. For
small dimensions, this may still be more efficient than the
method discussed in Sec. II D which exactly samples the
trapped subgraph.

C. Experiments

We performed two sets of experiments to compare the
performance of spectral methods with SSA. The first set of
experiments compared the master equation method imple-
mented in conjunction with AD for the trimer model with
SSA. Each experiment compared the ratio of run times
for sampling first-passage times to reach a trimer count
Nt=100, starting from an initial monomer count N. The state
space was partitioned into subgraphs corresponding to fixed
trimer counts and AD was used to identify the trapped re-
gions for spectral decomposition. We then performed a
total of 50 comparative run time simulations varying N from
1000 to 9000 in steps of 2000 and varying 
 from 10−5 to
1.9�10−4 in steps of 2.0�10−5. All run times were averaged
over 50 samples. The scale factor for AD was set at 1.3. The
second set of experiments compared the run time ratio for
the EMC based method and SSA for first-passage time to
reach a trimer count Nt=100, starting from an initial mono-
mer count N. The state space was again partitioned into
subgraphs of fixed trimer counts. AD was not required for
these simulations since the method automatically selects
the trapped region of the subgraph according to the evolving
probability distribution. We then performed a total of 25
comparative run time simulations varying N from 1000
to 9000 in steps of 2000 and varying 
 from 10−4 to
0.9�10−3 in steps of 2.0�10−4. All run times were averaged
over 50 samples. For the spectral method, each component of
the slowest eigenvector was allowed to relax to within a
relative error of 0.01 and an absolute error of 1.0�10−6.

D. Results

We first present results for the master equation method
run times as we vary the stiffness parameter 
. Figure 15�a�
shows the behavior for five different initial monomer counts
N. Small 
 values correspond to a stiff model, since the
average dimer count varies approximately as Nd�
Nm and
the ratio of the rate of dimer formation to trimer formation
varies as �Nm /Nd. Figure 15�a� demonstrates the efficiency
of the master equation method. The method shows large
gains in the domain of small 
 and small N, with relative
performance dropping rapidly with increasing 
 and more
slowly with increasing N. Next we present results for the
ratio of SSA/EMC method run times as we vary 
 and N.
Figure 15�b� shows the behavior for five different initial
monomer counts N. The EMC method is effective at substan-
tially larger values of 
 than is the master equation method.

As is to be expected, the spectral methods do not scale as
well as the usual SSA method with increasing N. Even for
relatively large networks, though, the performance gain ob-
tained by spectral sampling is appreciable. The reason
for this is that for most cases the slowest eigenmode is rea-
sonably well approximated by a vector populating only a
small fraction of the subgraph vertices. As a result we can
look at the EMC method as a generalization of other accel-
erated sampling schemes which only use one vertex, the
mean value of the slowest decay mode, as in the PEA based
methods.

V. DISCUSSION

We have investigated the problem of efficiently simulat-
ing stochastic reaction models and introduced two methods
for accelerating sampling on problems characterized by mul-
tiple time scales. Both methods are based on spectral analy-
sis of CTMMs equivalent to the SSA model. We have ap-
plied these methods in the present work to two special
cases of these models that are important to simulations of
molecular self-assembly: sampling times to break multiply
connected bond networks and simulating growth in
nucleation-limited assembly systems. Collectively, these two
applications demonstrate the use of the proposed spectral
methods on small CTMM graphs known a priori and on
automatically discovered subgraphs of large CTMMs. We
have shown theoretically and empirically that the new meth-
ods are substantially more robust to variations in the ratios
of reaction rates than is the basic SSA method for these
problems.

While we have applied these methods here to models
used in self-assembly simulations, the basic methods can be
expected to have much broader application. Both methods
can be applied to sample first-passage times for any arbitrary
subset of states of any SSA CTMM graph. Both can also be
applied to sample escape times from any subgraph of such a
graph, using AD to identify trapped regions of the CTMM
graph. The latter distinction is important because CTMM
graphs for complicated biological systems are generally far
too large to represent explicitly. These spectral methods
might be extended to incorporate on the fly graph construc-
tion techniques, like those used by rule-based methods
widely used for SSA simulations.9,10 The EMC method, es-
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FIG. 15. �Color online� �a� Comparative run times for first passage for ten
trimer counts. Ratio of SSA to ME-AD run times. �b� Comparative run times
for first passage for 100 trimer counts. Ratio of SSA to EMC-AD run times.
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pecially, would seem to be a candidate for such an extension.
For example, if at each iteration, instead of adding all the
possible next neighbors to the system state, we add only a
subset of them depending on their transition probabilities,
then we will get a natural, nonlocal generalization of the
SSA. Such an approach could provide a precise and general
method for pruning full SSA graphs to achieve more efficient
pathway sampling in extremely large state spaces.
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APPENDIX: TIME COMPLEXITY OF SSA FOR BOND
NETWORKS

In this appendix, we prove Theorem III.1, which helps
us establish the relative efficiency of the spectral methods to
the standard SSA. Before we prove the theorem, we need to
establish some preliminary results. Let r�min�a� /b� �� ,�
� �1, . . . ,d��. To construct the transition matrix Q, SSA
identifies the negative of the diagonal element of the
Kolmogorov matrix −Wn,n= ���a�n�+ �1−n��b�� as the in-
verse of the mean waiting time at each SSA step and the
matrix Lm,n=−Wm,n /Wn,n as the graph Laplacian. Therefore,
Qm,n=�m,n−Lm,n. Since SSA simulates a periodic Markov
chain Q, the graph is bipartite and the two step chain Q2 is
reducible into Qeven

2
� Qodd

2 . Here, Qeven
2 is the projection of

Q2 over the subspace of states with an even number of bonds
broken Veven and Qodd

2 is the projection over Vodd=S−Veven.
Since both Qeven

2 and Qodd
2 are irreducible and aperiodic, the

ergodic theorem applies to each one separately, and if
��	=�i�S�i�i	 is the eigenvector of Q with eigenvalue of 1,
the vectors ��e	=�i�Veven

�i�i	 and ��o	=�i�Vodd
�i�i	 are the

equilibrium distributions for Qeven
2 and Qodd

2 , respectively,
up to a normalization constant. To bound the mean hitting
time Tb0 from 0 to the set Vb, we first apply the common
technique of constructing another graph with vertex set

V̄=Vc� �b�, where all vertices in Vb are truncated to a single
vertex b and Vc=S−Vb. The edge weights for edges from
i�Vc to b are chosen as Qb,i=�j�Vb

Qj,i, which will leave Tb0

unchanged from that of the original graph. We must further
specify the edge weights from b to any states with k−1 bro-
ken bonds. In order to ensure that the Markov chain still
obeys detailed balance, we require that Qi,b /Qj,b
= �Qb,i�i� / �Qb,j�j� and �i�bQi,b=1. The resulting modified
graph will then have the same hitting time Tb0 as the original
graph.

We next need three auxiliary results about properties of
the resulting graph in order to prove our main theorem.

Lemma A.1: For an ergodic Markov chain, the cover
time Cij�Tij+Tji between any two states i and j satisfies24

E�Cij� = E�Tij� + E�Tji� = 1/��jPr�Tjj � Tij�� . �A1�

Lemma A.2: The transition matrix Q satisfies the fol-
lowing conditions.

�1� If i and j= i+ �̂ are two neighboring states with n and
n+1 bonds broken, respectively, then Qj,i� �nr�−1 for

any n�0.
�2� For any initial state i containing n broken bonds, the

n -step transition probability to 0 is bounded from be-
low by Q0,i

n � �1+d /r�−n.
�3� Let T be any stopping time for the transition matrix

Q with expectation value E�T�=�n=1nPr�T=n�
=�n=0Pr�T�n� . For any integer l�1 consider the
expectation value of T for the l -step transition matrix
Ql defined as E�l��T�=�nnPr��n−1�l�T�nl�
=�n=0Pr�T�nl�. Then, l�E�l��T�−1��E�T�� lE�l��T�.

Proof:

�1� The transition probability corresponding to the matrix
element connecting i to j is

Qj,i =
b�

���
a�i� + �1 − i��b��

� ��nr�−1 ∀i � 0

1 if i = 0 .
�

�2� First consider any state �̂ with one bond broken,

Q0,�̂ =
a�

a� + ����
b�

� �1 + d/r�−1. �A2�

Assume Q0,�i=1
n �̂i

n
� �1+d /r�−n for all n broken bond

states �i=1
n �̂i, then

Q0,�i=1
n+1�̂i

n+1 = �
����1,. . .,�n+1�

Q0,��i���̂i

n Q��i��
�̂i,�i=1

n+1�̂i

� �1 + d/r�−n �
����1,. . .,�n+1�

a�

�i=1

n+1
a�i

+ �	���i�
b	

� �1 + d/r�−n−1. �A3�

Since Q0,�̂� �1+d /r�−1, the assertion holds for all n�1 by
induction.
�3� We can prove the upper bound as follows:

E�T� = �
n=1
�

m=1

l

��n − 1�l + m�Pr�T = ��n − 1�l + m���
� �

n=1
nl�

m=1

l

Pr�T = ��n − 1�l + m���
� l�

n=1
nPr��n − 1�l � T � nl� � lE�l��T� . �A4�

We can similarly prove the lower bound,

E�T� = �
n=1
�

m=1

l

��n − 1�l + m�Pr�T = ��n − 1�l + m���
� �

n=1
�n − 1�l�

m=1

l

Pr�T = ��n − 1�l + m���
� l�

n=1
n Pr��n − 1�l � T � nl� − l � l�E�l��T� − 1� .

�A5�

�

Lemma A.3: The expected hitting time from the vertex b
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to 0 is bounded by

k � E�T0b� � k�1 + d/r�k. �A6�

Proof: The lower bound is trivial since at least k bonds
must be repaired before any disconnected state can reach
0. Consider the nk step probability for transition from b
to 0. Let Q̃ be the transition matrix restricted to the set

Ṽ= V̄− �0�, i.e.,

Q̃i,j = Qi,j�1 − �0j − �i0 + �0j�i0� . �A7�

The probability of a trajectory starting at i� Ṽ reaching 0 in
k steps or less is given by

Pr�T0i � k� = 1 − �
j�Ṽ

Q̃j,i
k

= �
n=1

k

�
l�Ṽ

Q0,lQ̃l,i
n−1� � Q0,b

k � �1 + d/r�−k, �A8�

where we have used Lemma A.2 part �2�. Let us define
p= �1+d /r�−k. In terms of p, the previous inequality and
Lemma A.2 part �3� imply

Pr�T0b � nk� = 1 − Pr�T0b � nk� � �1 − p�n

⇒E�k��T0b� � �
n=1



�1 − p�n = 1/p ,

�A9�
E�k��T0b� � �1 + d/r�k

⇒E�T0b� � k�1 + d/r�k.

�

An immediate consequence of the previous lemma is
that for k even

k/2 � E�2��T0b� � �k/2��1 + d/r�k + 1. �A10�

Similarly, if k is odd, using the fact that Pr�T0b�T�̂b�=0, we
get

k − 1

2
� E�2��T�̂b� � E�T0b�/2 + 1 �

k

2
�1 + d/r�k + 1.

�A11�

Let us define the equilibrium probability for b as �̃b; then

�̃b =
�b

�i�Veven
�i

if k is even

=
�b

�i�Vodd
�i

if k is odd. �A12�

We can finally compute upper �U� and lower �L� bounds
on the hitting time Tb0 which are asymptotically equivalent
in the limit r→. The following theorem implies that
��r��U�r�−L�r� is monotonically decreasing in r and
limr→ ��r� /L�r�=0:25

Theorem A.1: The expected number of SSA steps before
first passage on a k-connected graph is bounded within

2
�1 − d/r�−1 − ��k − 1�/2��̃b

�̃b
� E�Tb0�

� 2
1 − �k/2�1 + d/r�k + 2��̃b

�̃b
.

�A13�

Proof: In order to apply Lemma A.1 to bound the hitting
time, we need to look at graphs with k odd or even sepa-
rately. If k is even we can apply Lemma A.1 directly to
C0b for the two-step chain Qeven

2 . However, if k is odd,
we need to consider the cover time between b and each state
�̂ with exactly one broken bond. Then, using the fact
Q�0	= �1 /��b����b���̂	, we get

E�Tb0� = 1 +
1

��
b�

�
�

b�E�Tb�̂� . �A14�

Since Pr�Tbb�T0b�=�n�mPr�Tbb=n�Pr�T0b=m�, for the
k-step chain discussed in Lemma A.3, we get

Pr�Tbb � T0b� � �
n=1

  d

r�1 + d/r��
n

= d/r

⇒Pr�Tbb � T0b� � 1 − d/r . �A15�

Also, Pr�Tbb�T�̂b�� Pr�Tbb�T0b��1−d /r. Suppose k is
even. Then we can estimate the cover time C0b=Tb0+T0b
using Lemma A.1,

E�Tb0� � 2E�2��Tb0� − 2

= 2 1

�̃bPr�Tbb � T0b�
− E�2��T0b� − 1� � 2E�2�

��Tb0� = 2 1

�̃bPr�Tbb � T0b�
− E�2��T0b�� .

�A16�

An analogous argument for odd k on using Eq. �A14� gives

E�Tb0� � 1 +
1

��
b�

�
�

b� 2

�̃bPr�Tbb � T�̂b�
− 2E�2�

��T�̂b� − 2� � 1

+
1

��
b�

�
�

b� 2

�̃bPr�Tbb � T�̂b�
− 2E�2�

��T�̂b�� . �A17�

Finally, using Lemmas A.1 and A.3 we get for all k

E�Tb0� � 2
1 − �k/2�1 + d/r�k + 2��̃b

�̃b

� 2
�1 − d/r�−1 − ��k − 1�/2��̃b

�̃b
. �A18�

�
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As a corollary to the preceding theorem we get the result
stated in Sec. III.

Theorem III.1: The expected number of SSA steps re-
quired to break a k-connected network with k�1 and r�1 is
��rk−1�.

Proof: Let i and j= i+ �̂+ �̂ be two graphs with c and
c+2 bonds broken, respectively. Since we are interested in
computing the invariant distribution for the irreducible com-
ponents Qeven

2 and Qodd
2 , we first compute each matrix ele-

ment connecting i to j,

Qj,i
2 = �

p=�,�
Qj,i+p̂Qi+p̂,i = �

p=�,�
 b�b�

���
a��i� + �p�� + �1 − i� − �p��b�����

a�i� + �1 − i��b���
=

b�b�

Wi,i
 1

Wi+�̂,i+�̂

+
1

Wi+�̂,i+�̂
� . �A19�

Similarly,

Qi,j
2 = �

p=�,�
Qi,j−p̂Qj−p̂,j = �

p=�,�
 a�a�

���
a��j� − �p�� + �1 − j� + �p��b�����

a�j� + �1 − j��b���
=

a�a�

Wj,j
 1

Wi+�̂,i+�̂

+
1

Wi+�̂,i+�̂
� . �A20�

Detailed balance then implies that

�j

�i
=

Qj,i
2

Qi,j
2 =

b�

a�

b�

a�

Wj,j

Wi,i
=

b�

a�

b�

a�
1 +

�a� + a�� − �b� + b��
− Wi,i

�
�

c + 2

c
r−2 if c � 0. �A21�

Since ��̂=�0b��a�+����b�� / �b�+����b��a���0 we can
deduce that for any state i with c bonds broken, with
k−1�c�1, the invariant probability �i�cr−c+1�0. Let, l be
the state with k−1 bonds broken for which � is maximized.
The choice of matrix elements imposed by detailed balance
implies Ql,b�1 / � d

k−1
�. Also, since Lemma A.2 implies

����̂��0�1+d /r�, we get for all values of k

�b

�l
=

Qb,l

Ql,b
�

�d − k + 1� d

k − 1
�

�k − 1�r

⇒�̃b �
�b

�0
� �d − k + 1� d

k − 1
�r−k+1. �A22�

Finally, using the lower bound on E�Tb0� computed in pre-
ceding theorem, we get

E�Tb0� � 2
1 − �k/2�1 + d/r�k + 2��̃b

�̃b

� P�d,k�rk−1, ∀ r � r0, �A23�

where P�d ,k�=�2 / �d−k+1�� d
k−1 ���1− �1+ �k2k−2�−1�k�d−k

+1�� d
k−1 � / �2 /d�k−1� and r0=d. �
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