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Abstract
Background: MicroRNAs (miRNAs) are small non-coding single-stranded RNAs (20–23 nts)
that are known to act as post-transcriptional and translational regulators of gene expression.
Although, they were initially overlooked, their role in many important biological processes,
such as development, cell differentiation, and cancer has been established in recent times. In
spite of their biological significance, the identification of miRNA genes in newly sequenced
organisms is still based, to a large degree, on extensive use of evolutionary conservation, which
is not always available.

Results: We have developed HHMMiR, a novel approach for de novo miRNA hairpin
prediction in the absence of evolutionary conservation. Our method implements a Hierarchical
Hidden Markov Model (HHMM) that utilizes region-based structural as well as sequence
information of miRNA precursors. We first established a template for the structure of a typical
miRNA hairpin by summarizing data from publicly available databases. We then used this
template to develop the HHMM topology.

Conclusion: Our algorithm achieved average sensitivity of 84% and specificity of 88%, on 10-
fold cross-validation of human miRNA precursor data. We also show that this model, trained
on human sequences, works well on hairpins from other vertebrate as well as invertebrate
species. Furthermore, the human trained model was able to correctly classify ~97% of plant
miRNA precursors. The success of this approach in such a diverse set of species indicates that
sequence conservation is not necessary for miRNA prediction. This may lead to efficient
prediction of miRNA genes in virtually any organism.
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Background
MicroRNAs
MicroRNAs (miRNAs) are small (~22 nucleotide long)
non-coding RNAs that are part of a eukaryote-specific sys-
tem of gene regulation at the RNA level. MiRNAs act as
post-transcriptional regulators of gene expression by base
pairing with their target mRNAs. MiRNAs are primarily
transcribed by RNA Pol II [1] as regions of longer RNA
molecules (pri-miRNA) [2]. Individual pre-miRNA loops
(~70 nts) are cleaved from the pri-miRNA by RNAse III
enzyme, Drosha and transported into the cytoplasm by
RAN-GTP and Exportin 5 [3] to be processed further to a
~22 nt long duplex, with 3' overhangs, by Dicer [4,5]. This
duplex is commonly referred to as the miRNA:miRNA*
duplex, where miRNA* is complementary to the miRNA.
The miRNA:miRNA* duplex is subsequently unwound
and the mature miRNA is loaded into multi-protein RISC
(RNA-induced silencing complex) [6] while miRNA* usu-
ally degrades. In some cases, both miRNA and miRNA*
are functional [7]. The miRNA biogenesis is illustrated in
Figure 1. Mature miRNAs can cause translation inhibition
or mRNA cleavage, depending on the degree of comple-
mentarity between the miRNA and its target sequence.
Each miRNA can have multiple targets and each gene can
be targeted by multiple miRNAs. It has been predicted
that more than one third of human genes is regulated by
miRNAs [8].

Plant and animal miRNAs differ not only in their biogen-
esis, but also in target-miRNA interactions. Plant miRNAs
base pair with their targets with perfect or near-perfect
complementarity and they regulate their targets mostly
through mRNA cleavage at single sites in coding regions.
Animal miRNAs usually base pair with 3' UTRs of the
mRNAs at multiple target sites through imperfect comple-
mentarity. Due to these and other differences, it has been
suggested that this regulation mechanism may have
evolved independently in plants and animals [9]. Some
viruses have also been shown to encode miRNAs that play
a role in expression regulation of host genes [10].

MiRNA identification
The first animal miRNA genes, let-7 and lin-4, were discov-
ered in Caenorhabditis elegans by forward genetics [11-13].
Currently, miRNA genes are biochemically identified by
cloning and sequencing size-fractionated cDNA libraries.
The main limitation of this method is that lowly expressed
miRNAs may be missed [14]. Although deep sequencing
can help overcome this problem, this is currently a costly
solution. Still, some miRNAs may be difficult to clone due
to their sequence composition and possible post-tran-
scriptional modifications [14-16]. Deep sequencing is
being used on a large scale to identify small non-coding
RNAs, but this is an expensive method and can only iden-

tify miRNAs expressed in a single cell type or in a given
condition.

Computational predictive methods are fast and inexpen-
sive and a number of approaches have been developed to
predict miRNA genes, genome-wide. However, most of
these approaches depend heavily on conservation of hair-
pins in closely related species [17-20]. Some methods
have used clustering or profiling to identify miRNAs,
[17,21,22]. The approach of Bentwich et al. [23] is inter-
esting in that the whole genome is folded and scores are
assigned to hairpins based on various features, including
hairpin structural features and folding stability.

Machine learning approaches in the past have used sup-
port vector machines with high dimensional basis func-
tions for classification of genomics hairpins [22,24,25].
Some of these methods depend on cross-species conserva-
tion for classification, while others do motif finding using
multiple alignments. More recently, HMMs have been
used in modelling miRNAs using both, evolutionary
information and features related to the secondary struc-
ture [26].

Hierarchical Hidden Markov Models
Hierarchical Hidden Markov Models (HHMMs) constitute a
generalization of Hidden Markov Models (HMMs). They
have been successfully used for modelling stochastic lev-
els and length scales [27]. In biology, HHMMs have been
used in the past to model vertebrate splice sites [28] and
more recently in modelling cis-regulatory modules [29].
An HHMM has two types of states: internal states and pro-
duction states. Each internal state has its own HHMM but
cannot emit symbols by itself. It can activate a sub-state by
a vertical transition. Sub-states can also make vertical tran-
sitions, until the lowest level in the hierarchy (production
state) is reached. Production states are the only states that
can emit symbols from the alphabet via their own proba-
bility distributions. Sub-states at the same level of hierar-
chy will be activated through horizontal transitions till an
"end state" is reached. Every level has only one "end state"
for each parent state that shifts control back to the parent.
Thus, each internal state can emit sequences instead of
single symbols. The node at the highest level of the hierar-
chy is called the "root" node while the leaf nodes are the
productions states. Please refer to Methods for information
about HHMM parameters and their estimation.

In this article, we report the results on the performance of
an HHMM we developed for modelling miRNA hairpins.
Although the model was trained on human sequences
only, it was able to classify accurately hairpins from spe-
cies as distant as worm, flies and plants, indicating that
the degree of sequence and structural conservation for
these genes may be high.
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Biogenesis of microRNAsFigure 1
Biogenesis of microRNAs. miRNA genes are transcribed in the nucleus, where they undergo processing by DGCR8/Pasha 
and the RNAse III family enzyme, Drosha. The pre-miRNA is then transported into the cytoplasm where it is processed by 
Dicer, and the cofactor TRBP to generate a ~22 nt miRNA:miRNA* duplex. After unwinding, the miRNA forms part of the 
RISC assembly and causes mRNA degradation or translational repression.
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Results
Data summarization
We consider the hairpin stem-loop for predictions since it
is structurally, the most prominent feature during biogen-
esis (Figure 1). MiRNA genes can be divided into four
regions depicted in Figure 2a. After transcription, the RNA
strand folds to form the hairpin precursor (Figure 1 and
Figure 2a). The "loop" is the bulged end of the hairpin.
The "miRNA" region defines the miRNA-miRNA* duplex
(sans the 3' overhangs) that is processed by Dicer and fur-
ther unwound. The region of the precursor extending
from the end of the loop to the "miRNA" region is called
the "extension". This region can be of variable length. The
part of the hairpin sequence beyond the "miRNA" region
may be part of the pri-miRNA in the nucleus and proc-
essed by Drosha. Thus, it has been named as "pri-exten-
sion", as suggested in Saetrom et al. [30].

The results presented in Table 1 show that the differences
that exist between vertebrate and invertebrate miRNA
genes are rather small. So, a probabilistic method trained
in data from one organism is likely to perform well in

another organism. As evident from the results in Table 1,
the differences between length distributions of plant and
animal precursors are relatively drastic, with the former
having longer extension regions. The lengths of miRNAs
and loops, however, are conserved across the two king-
doms. More information about species-specific differ-
ences is provided in Additional File 1. These genomes
constitute an excellent test set for our algorithm in that
they span various taxonomic groups, with different
miRNA characteristics. Thus, it will be very useful to see
how well an HHMM trained on (say) human sequences
will be able to predict miRNA stem-loops in another ver-
tebrate or invertebrate species and plants.

HHMM model
HHMMiR is built around the miRNA precursor template
illustrated in Figure 2a. The figure presents the four char-
acteristic regions of stem-loop of a typical miRNA gene as
described above. The length distributions of each of these
regions are derived from Table 1. Each region, except the
loop itself has three states: match, mismatch, and insertion/
deletion (indel). Match means a base pairing at that posi-
tion in the stem-loop, while mismatch means bulges on
both arms at that position in the folded hairpin.Indel
means that a base in one strand has no counterpart in the
opposite strand. The loop will only have the indel state.
Examples of these states are presented in Figure 2a.

The HHMM resulting from this scheme has three levels
(Figure 3). Hairpin is the root node and can vertically tran-
sition to its Loop substate only. In our model, every hair-
pin begins with a loop. The four internal states at the

Table 1: Characteristics of miRNA hairpins in various taxonomic 
groups.

HP LP MIR EXT PRI

Mean
Vertebrates 86.7 7.3 22.0 5.0 12.6
Invertebrates 91.8 7.9 22.2 5.8 13.8
Plants 119.5 6.8 21.3 22.8 12.5
Std. Dev.
Vertebrates 13.8 3.5 0.9 3.4 7.0
Invertebrates 13.1 3.9 1.3 4.5 5.9
Plants 43.2 3.7 1.0 18.5 9.9
Minimum
Vertebrates 55 3 16 0 0
Invertebrates 54 3 18 0 0
Plants 57 3 16 0 0
Maximum
Vertebrates 153 22 26 34 50
Invertebrates 215 30 28 55 32
Plants 337 35 24 102 78

HP: Hairpin length; LP: Loop length; MIR: MiRNA length; EXT: 
Distance of miRNA duplex from end of loop; PRI: Length of extension 
from end of miRNA to end of precursor. The list of organisms used 
for this Table is provided as Supplementary Data.

The miRNA hairpinFigure 2
The miRNA hairpin. (a) Template: In our model, the 
miRNA precursor has four regions- "Loop" is the bulge and 
the loop state outputs indels only; "Extension" is a variable 
length region between the miRNA duplex and the loop; 
"microRNA" represents the duplex, without 3' overhangs; 
"Pri-extension" is the rest of the hairpin. The latter three 
states can output matches, mismatches and indels. (The nucle-
otides distribution and lengths are not to scale) (b) Labelled 
precursor: The precursor shown in (a) is labelled according to 
the regions it represents. This is the input format of training 
data for HHMMiR. L: Loop; E: Extension; R: MiRNA; P: Pri-
miRNA.
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second level correspond to the four main regions of the
hairpin from Figure 2a. This level also has an End (Lend)
state to transfer control back to the Hairpin. Each internal
state has a probabilistic model at the next lower level. A
Loop cannot have base pairs and thus, has only one sub-
state: I (Indel). The Extension state can only emit an M
(match) state, when entered, since a mismatch or indel
would become part of the loop. The miRNA and pri-Ext
states can begin with a match, mismatch or indel. Each of
these states has an End state (Lend, Rend, Pend respec-
tively)(see Figure 3).

Datasets and alphabet selection
The training dataset contained a total 527 human miRNA
precursors (positive dataset) and ~500 random hairpins
(negative dataset), based on criteria derived from summa-
rization (see Methods). The RNAfold program from Vienna
Package [31] was used to obtain the secondary structure of
these hairpins with the minimum fold energy (mfe). The
parameters of the model were estimated using a modified
Baum-Welch algorithm (see Methods for details on data

sets and algorithms). All tests were conducted with 10-
fold cross validation with random sampling.

We tested our model on two alphabets: Σ1 with matches M
= {AU, GC, GU}, indels I = {A-, G-, C-, U-} and mismatches
N1 = {AA, GG, CC, UU, AC, AG, CU}; and Σ2, which is
similar to Σ1 except that the mismatch set is more concise:
N2 = {XX, XY}, where XX stands for one of {AA, GG, CC,
UU} and XY stands for one of {AC, AG, CU}. In our
alphabet, a match, say, AU has the same probability as UA,
that is, an 'A' on either stem base paired with 'U' on the
other stem. Cross-validation tests using Maximum Likeli-
hood Estimate (MLE) showed that the model with alphabet
Σ1 performed substantially better, both in terms of sensi-
tivity and specificity (Table 2) (see Methods for more
details on these calculations).

It is surprising that Σ1 performs better than Σ2, because
one would expect that mismatches in the stem-loop
would not be characteristic of the miRNA sequence, since
they do not contribute to the base pairing of the stem and

The HHMM state model (based on the microRNA hairpin template)Figure 3
The HHMM state model (based on the microRNA hairpin template). The oval shaped nodes represent the internal 
states. The colours correspond to the biological region presented in Figure 2a. The circular solid lined nodes correspond to the 
production states. The dotted lined states correspond to the silent end states. M: Match states, N: Mismatch states, I: Indel 
states, Lend: Loop end state, Rend: miRNA end state, Pend: pri-extension end state.
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thus the overall folding energy, on which other algorithms
are based [23]. Furthermore, Σ1 alphabet has more param-
eters. In order to rule out that the better performance is
due to parameter overfitting, we repeated training with
multiple datasets of different sizes and the results
remained the same (data not shown). In the remaining of
this paper we use the Σ1 alphabet.

Training algorithms: performance evaluation
We implemented and compared variations of two existing
algorithms for parameter estimation: Baum-Welch and
MLE. The positive model was trained using MLE since by
nature the positive training data (stem-loop hairpins) can
be labelled as loop, extension, miRNA and pri-extension (Fig-
ure 2b) using existing annotations. Negative data on the
other hand, are obviously unlabelled, so both algorithms
were compared for training with this dataset. We will call
the MLE trained negative model, MLE-HHMMiR, whereas
the Baum Welch trained model will be called BW-HHM-
MiR for this evaluation. For MLE-HHMMiR, we used
length distributions from database summarization (Table

1) to perform random labelling of the four regions on the
negative datasets. Overall, we found both methods to per-
form practically the same. The area under the ROC curve
(Figure 4) for the MLE-HHMMiR is 0.912 whereas for BW-
HHMMiR is 0.920. The ratio of the log-likelihoods output
by the two models decides the fate of the test hairpin. In
order to decide a threshold for this ratio, the trade-off
between sensitivity and specificity was considered by cal-
culating the Mathews correlation coefficient (Table 3). The
highest Mathews correlation coefficient value was 0.73 for
BW-HHMMiR and 0.71 for MLE-HHMMiR, correspond-
ing to likelihood ratio thresholds of 0.71 and 0.99, respec-
tively. BW-HHMMiR achieved an average 84% sensitivity
and 88% specificity using the 0.71 ratio as thresholds.
Even though, the difference between the performances of
the two algorithms is not great, we choose BW-HHMMiR
for further tests. This is because MLE-HHMMiR depends
on random labelling of hairpins and thus, performance will
vary according to the labelling. The drawback of the
Baum-Welch method is that it might be trapped on local
optima, depending on the initialization. This problem is
sometimes addressed by running the algorithm multiple
times with different starting points. We use a uniform dis-
tribution for this initialization but can also use back-
ground frequencies for the same by folding the entire
genome in question and then performing hairpin extrac-
tion for the same. In order to account for the absence of
certain base pairs or indels in a certain sequence while
using Baum-Welch, we introduce pseudo-counts to cor-
rect for the same.

Testing prediction efficiency in other organisms
Next, we examined how well our model trained on
human sequences could predict known miRNAs in other
species. In particular, HHMMiR was tested on the follow-
ing species: M. musculus (mammals), G. gallus (birds), D.
rerio (fish), C. elegans (worms), D. melanogaster (flies), A.
thaliana and O. sativa(plants). These species were chosen
as representatives of their respective taxonomic groups,
and because they are well studied and annotated. The
results are shown in Table 4. HHMMiR is able to predict
85% of most animal precursors. Its overall sensitivity was
also about 85%. What is more surprising, however, is the
higher performance we observe in prediction of plant pre-
cursors, given the differences in length distributions of the
miRNA stem-loops between plants and animals (Table 1).

ROC curves for Baum-Welch and MLE training on the nega-tive modelFigure 4
ROC curves for Baum-Welch and MLE training on 
the negative model. 10-fold cross-validation used with 
Baum-Welch (black curve) and MLE (red curve) for training the 
negative model. Positive model was trained using MLE in 
both cases.

Table 2: Results for different alphabet sizes: Σ1 (larger alphabet) 
shows better accuracy than Σ2 (smaller alphabet)

Alphabet Sn Sp FDR

Σ1 74.5 94.1 15.8
Σ2 55.0 48.5 51.0

Sn: Sensitivity; Sp: Specificity; FPR: False Positive rate; FDR: False 
Discovery rate. All numbers are in percentages.

Table 3: Results for cross-validation using different algorithms.

Method Sn (SD) Sp (SD) MCC FDR (SD)

Baum-Welch 84.0 (18.6) 88.0 (6.6) 0.73 11.8 (5.6)
MLE 74.5 (13.7) 94.1 (2.7) 0.71 15.9 (8.0)

Sn: sensitivity; Sp: specificity; MCC: Mathew's correlation coefficient; 
FDR: False Discovery Rate. Sn, Sp and FDR report the average 
percent values; standard deviations are reported in parentheses.
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The fact that mouse miRNAs are predicted at lower rate
probably reflects the larger number of hairpins registered
for this species, many of which are not biochemically ver-
ified. Such discrepancies have been observed in other
studies as well, although at a lesser extent (e.g., [25]). The
specificity over the mouse data is very high (84%) and
remains surprisingly high in the two invertebrate species
(~75%) (data not shown).

Comparison with other approaches
As described earlier, there are very few machine learning
methods that do not require evolutionary information to
predict miRNAs. To our knowledge, the only other proba-
bilistic model is a motif finding method for mature
miRNA region prediction [32]. An SVM-based approach
has been proposed [25] that parses the mfe structure in
"triplets": structural information about the pairing states
of every three nucleotides, represented using dot-bracket
notation. This method showed an accuracy of ~90% using

the data available in the registry at the time. We used the
same training and test sets used by the "triplet SVM" to
train and test our model, HHMMiR, and we found it to
perform better in almost all datasets (Table 5). The only
exceptions are the mouse (but not rat) and A. thaliana (but
not rice). Also, their model was able to predict all of the
then five known miRNAs from Epstein-Barr virus, whereas
HHMMiR predicted four. Overall, HHMMiR exhibits sen-
sitivity of 93.2% and specificity of 89% in these datasets.
If we limit the comparison of the two methods in one rep-
resentative species from each taxon (M. musculus, G. gallus,
D. rerio, C. elegans, D. melanogaster, A. thaliana, Epstein Barr
virus) in order to minimize the statistical dependence of
the data, the difference in the performance becomes statis-
tically significant at the 5% level (p-value = 0.03, Wil-
coxon paired test on the predicted number of genes).

Discussion
MiRNA genes constitute one of the most conserved mech-
anisms for gene regulation across all animal and plant
species. The characteristics of the precursor miRNA stem-
loops are well conserved in both vertebrate and inverte-
brate animals and fairly conserved between animals and
plants. As seen in Table 1, plant hairpins tend to be gener-
ally longer than those in animals, while vertebrates have
shorter precursors than invertebrates. Although, the
"extension" and "pri-extension" regions may vary in
length between animals and plants (much longer in
plants), the lengths of the "miRNA" and "loop" regions
are more similar. Thus, even across evolutionary time, the
basic characteristics of miRNAs have not changed dramat-
ically.

Table 5: Results for comparison between two precursor prediction methods.

Test Set Total hairpins Triplet SVM (%) HHMMiR (%)

Positive Sets
New human hairpins in registry at the time. 39 92.3 97.4
M. musculus 36 94.4 88.9
R. norvegicus 25 80.0 84.0
G. gallus 13 84.6 100
D. rerio 6 66.7 100
C. elegans 110 86.4 90.9
C. briggsae 73 95.9 95.9
D. melanogaster 71 91.6 95.8
D. pseudoobscura 71 90.1 98.6
A. thaliana 75 92.0 97.3
O. sativa 96 94.8 86.5
Epstein Barr virus 5 100 80.0
TOTAL 620 91 93.2

Negative Sets
Folded genome hairpins from Chromosome 19 2444 89 88.6
Negative hairpin Set 1000 88.1 89.4
TOTAL 3444 88.7 88.8

The percentages represent the ratio of hairpins correctly predicted.

Table 4: Results of tests on other species.

Organism Total hairpins % correctly predicted

M. musculus 422 74.7
G. gallus 147 89.1
D. rerio 334 88.3
C. elegans 131 85.5
D. melanogaster 143 93.0
A. thaliana 114 97.4
O. sativa 188 85.7

Total 1479 85.1
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We designed a template for a typical precursor miRNA
stem-loop and we built an HHMM based on it. HHMMiR
was able to attain an average sensitivity of 84% and spe-
cificity of 88% on 10-fold cross validation of human data.
We trained HHMMiR on human sequences and the result-
ing model was able to successfully identify a large percent-
age of not only mouse, but also invertebrate, plant and
virus miRNAs (Table 4). This is an encouraging result
showing that HHMMiR may be very useful in predicting
miRNA genes across long evolutionary distances without
the requirement for evolutionary conservation of
sequences. This would be very beneficial for identification
of miRNA hairpins in organisms that do not have closely
related species sequenced, such as Strongylocentrotus purpu-
ratus (sea urchin) and Ornithorhynchus anatinus (platypus)
[33].

This is the first time a hierarchical probabilistic model has
been used for classification and identification of miRNA
hairpins. Probabilistic learning was previously applied by
Nam et al. [32] for identifying the miRNA pattern/motif in
hairpins. The advantage of the hierarchy used by our
HHMMiR is that it parses each hairpin into four distinct
regions and processes each of them separately. This repre-
sents better the biological role of each region, which is
reflected in the distinct length distributions and neigh-
bourhood base-pairing characteristic of that region. Fur-
thermore, the underlying HHMM provides an intuitive
modelling of these regions. We compared two modifica-
tions of the MLE and Baum-Welch algorithms for model-
ling the negative datasets, and we found them to perform
similarly. Baum-Welch was selected for this study, since it
does not require (random) labelling of the negative set.

The drawback of HHMMiR is that it depends on the mfe
structure the RNAfold program returns [31]. In the future,
we will test more folding algorithms or use the probability
distribution of a number of top scoring folding energy
structures returned by this package.

Conclusion
The success of our approach shows that the conservation
of the miRNA mechanism may be at a much deeper level
than expected. Further developments of the HHMMiR
algorithm include the extension of the precursor template
model (Figure 3) to be able to predict pri-miRNA genes
with multiple stem-loops. Another extension would be to
train a model to decode all HHMMiR predicted hairpins
to identify the miRNA genes in them. Finally, it will be
interesting to extend our method to include evolutionary
information, which will allow us to assess the significance
of conservation in predicting miRNA genes.

Methods
Data collection and processing
MiRNA dataset
MiRNA genes were obtained from the microRNA registry,
version 10.1 (December 2007) [34], which contains 3265
miRNAs from animals and 870 from plants. For training
HHMMiR, we used the residual 525 human hairpins, after
filtering out precursor genes with multiple loops. Each
gene was folded with the RNAfold program, which is part
of the Vienna package [31], using the default parameters
to obtain the secondary structure with minimum fold
energy. The negative set consists of coding regions and
random genomic segments from the human genome that
were obtained using the UCSC genome browser [35].
These regions were folded and processed as described
below.

Hairpin processing
Genomic sequences were folded in windows of 1 Kb, 500
nts and 300 nts with an overlap of 150 nts between con-
secutive windows. Nodes from the TeraGrid project [36]
were used for this purpose. We tested the various window
sizes on the relatively small C. elegans genome and discov-
ered that 500 nts windows cover most known miRNA
hairpins. Windows of 300 nts exhibited high degree of
redundancy without adding more hairpins to those of the
500 nts windows, while 1 kb windows missed a higher
percentage of known miRNAs (data not shown). For this
study, we used hairpins extracted from windows of 500
nts. We were able to recover ~92% of the known miRNAs
from C. elegans in this way. The remaining 8% may have
been accounted for by existence of multiple loops or spe-
cificity of the parameters used. The hairpins were extracted
from these folded windows using the following parame-
ters: each hairpin has at least 10 base pairs, has a maxi-
mum length of 20 bases for the loop, and a minimum
length of 50 nucleotides. The data flow of this process is
presented in Figure 5.

After the hairpins are extracted, we process them to an
input format representing the hairpin's secondary struc-
ture (Figure 5 and Figure 2) to be compatible with the
HHMM shown in Figure 3. The labelling is done only for
training data. For the purpose of labelling, the miRNA is
first mapped to the folded hairpin (on either or both
arms), and then the region representing the miRNA is
labelled as the duplex miRNA (R) region. Our method
does not consider the 3' overhangs generated during Dicer
processing. The main bulge is labelled as the loop (L),
whereas the remaining region between loop and miRNA
is represented as the extension (E). The rest of the hairpin
beyond the miRNA is labelled as pri-extension (P). A
detailed description of these regions is given in the Results
section.
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Data flow for hairpin extraction from the genomeFigure 5
Data flow for hairpin extraction from the genome. The genome is first folded using windows of 500 nts with 150 nts 
overlap between consecutive windows. Hairpins are then extracted from the folded windows using the parameters described 
in the text. Hairpins are pre-processed into a suitable format for training/testing using the states shown in Figure 3 (L: Loop; E: 
Extension; R: miRNA; P: pri-miRNA extension). For the purpose of testing, the folded sequence is pre-processed into 2 lines of 
input representing the 2 stems of the hairpin. An example is given in Figure 2b.
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Parameter estimation and testing
Parameter estimation
Two separate HHMM models are trained, one on positive
data set (miRNAs and their corresponding hairpins) and
the other on negative data set (hairpins, randomly chosen
from the coding parts of the genome). The hairpins are
pre-processed and labelled (if needed) before parameter
estimation. Baum-Welch requires no labelling, but for
MLE, we applied random labelling, as described above
(Figure 2a).

The alphabet is denoted by Σ = {σi} and the observed finite

string is denoted by O = o1o2 ... oN such that oi ∈ Σ. The ith

state at hierarchical level d is denoted as  (denoted as qd

in absence of ambiguity). The highest level of hierarchy
(that of the root) is 1 while the lowest (that of the produc-
tion states) is D (in our case, D = 3). The number of sub-

states of each  (d ∈ {1, 2, ... D-1} is | |. The parameter

set of an HHMM is denoted by:

 denoted by

 is the state transition matrix of each

internal substate, with  representing

the probability that the jth substate of qd will transition to
the kth substate of qd. Each internal state qd has also an ini-
tial distribution vector

 denoted by

, where  is the probability

that qd will make a vertical transition to its jth substate at
level d+1, thus, activating it. The production states qD will
have emission probability vector or the output distribution vec-
tor

 denoted by {E(qD)} where e(σl|qD, qD-1) is the probability

that production state qD will emit symbol σl ∈ Σ.

Now we will define the various probabilities that are
required to be calculated for parameter estimation.

(i)  finished at

 started at ot) is the forward probability of emitting

the substring ot ... ot+k of the observation sequence by the

parent state qd such that it was entered at ot and the subse-

quence ended at substate  and thus, it was the last

state activated.

(ii)  is the probability of making a vertical

transition from parent qd to  just before the emission

of ot.

(iii)

 is the probability of making a horizontal transition from
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Table 6: Measures for accuracy calculation.

Measure Calculation

Sensitivity (Sn)

Specificity (Sp)

False Discovery Rate (FDR)

Matthew's Correlation Coefficient (MCC)

TP: True Positives; TN: True Negatives; FP: False Positives; FN: False Negatives.

Sn TP
TP FN= +

Sp TN
TN FP= +

FDR FP
TP FP= +

MCC TP TN FP FN TP FP TP FN TN FP TN FN= ⋅ − ⋅( ) + ⋅ + ⋅ + ⋅ +( )/ ( ) ( ) ( ) ( )
Page 10 of 12
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 to  where both are substates of qd after the emis-

sion of ot and before the emission of ot+1.

(iv)  is the

probability of performing a horizontal transition to 

which is substate of qd before ot is emitted. Further details

on the algorithms are given in [27] and in Additional file
2.

The parameters are estimated as follows:

Testing
As described above, classification of test hairpins depends
on the ratio of the log-likelihoods generated by the posi-
tive and negative models. A threshold was decided for this
ratio using the ROC curves shown in Figure 4. For each
hairpin, the probability that a certain model emitted the
hairpin is given by:

Measures of accuracy
The different terms and measures used to calculate the
efficiency of HHMMiR are listed in the Table 6.

List of abbreviations used
HHMM: hierarchical hidden Markov model; mfe: mini-
mum fold energy; miRNA: microRNA; MLE: maximum
likelihood estimate.
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