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Abstract

We consider optimal design problems of systems governed by suitable discretizations of non-
linear partial differential equations. We present and examine a coordinate basis infeasible
path method tailored to such design problems. We employ a particular null space represen-
tation which exploits the structure of the constraint Jacobian. The resulting method avoids
resolution of the nonlinear behavior for each design iterate. Three variants of the method
are developed which require the solution of either two or three linear systems involving
the stiffness matrix of the discrete boundary value problem. The method is used to solve
an aerodynamic design problem governed by nonlinear potential flow. Numerical results
demonstrate a substantial performance improvement.



Chapter 1

Introduction

In recent years there has been growing interest in developing the capability for computing
optimal designs of engineering systems governed by nonlinear partial differential equations.
For example, aircraft shape design can involve coupling compressible flow about a complex
body with large elastic deformation of the body. Another example is viscous drag reduc-
tion by either shape or velocity control, which requires the solution of the Navier-Stokes
equations as a subproblem within optimization.

The optimization problems we have in mind consist of an objective function reflect-
ing design goals, and constraints which include both a nonlinear boundary value problem
governing system behavior, and additional design constraints. We classify variables accord-
ing to two types: design variables which describe geometry (e.g. shape, thickness), and
state variables which describe system behavior for a fixed geometry (e.g. pressure, velocity,
stress).

A standard approach to such problems is to view the state variables as implicitly de-
pending on the design variables (see, e.g. [5]). Solution of the governing equations at
each optimization iteration reduces both the number of constraints and variables, as the
state variables are no longer considered optimization variables. We call this approach path-
following, since the iterates follow a trajectory characterized by solution of (a discretized
form of) the governing equations at each design iteration. In addition to this reduction in
problem size, another advantage of path following methods is that they generate dense con-
straint Jacobian and Lagrangian Hessian matrices, so that standard projected Lagrangian
methods can be used without consideration of sparsity. The disadvantage of such meth-
ods, however, is that they require full solution of the nonlinear equations governing system
behavior at each design iteration. This can result in intractability for systems displaying
complex or coupled behavior.

In contradistinction to these methods, infeasible path methods regard the discrete form
of the governing PDE's as equality constraints in the optimization problem, and include
the state variables as optimization variables. Projected Lagrangian optimization techniques
(such as Sequential Quadratic Programming) then require zero and first order information
about the governing equations at only a single point to define the optimization subproblem.



Full solution of the PDE's is thereby avoided. The difficulty with such an approach is that
the constraint Jacobian and Lagrangian Hessian matrices are larger and sparse [8]. Use
of a general-purpose sparse optimizer, such as MINOS [6], is problematic: the favorable
structure of the constraint Jacobian with respect to the state variables (i.e. the "tangent
stiffness matrix") cannot be exploited. In this paper we give a new SQP method based
on infeasible path ideas for a class of optimal design problems constrained by a discrete
nonlinear boundary value problem (BVP). The method is based on a particular null space
representation which exploits sparsity of the constraint Jacobian. Several variants of our
method result. The first requires solution of two linear systems involving the same coefficient
matrix, the tangent stiffness matrix. The second requires the solution of two systems as
well, but with stiffness matrices evaluated at different points. The third requires solution
of three linear systems, two of which have the same stiffness matrix. In any case, resolution
of nonlinear behavior is avoided at each iteration: the method simultaneously finds an
optimum design while converging the nonlinear behavior. Furthermore, we update and
store only the projected Hessian matrix, resulting in storage requirements equal to those of
a path-following method. We refer to our method as the Coordinate Basis Infeasible Path
method (CBIP). Its three variants are described in chapter 2.

To demonstrate our proposed method and examine its performance, we apply it to
the solution of a shape optimization problem in aerodynamic design, which is defined in
chapter 3. The performance of the three variants are compared to a standard path-following
approach for a series of design problems in chapter 4, and conclusions are drawn in chapter
5.



Chapter 2

The Coordinate Basis Infeasible
Path method

In this chapter we present an optimization strategy tailored to physical systems governed
by nonlinear boundary value problems. We assume that numerical approximation of the
governing equations gives rise to large, sparse coefficient matrices, such as those produced
by finite difference, finite element, or finite volume methods. We limit our discussion to
problems that are constrained only by these equations. Extensions to problems that include
additional constraints on the parameters can be generalized. The optimal design problem
is to find values of parameters of a system that minimize a desired objective.

While in some cases quadraticaHy convergent Gauss Newton methods can be devised
for nonlinear least squares problems, we target both large residual problems and more
general objective functions. Given the success of Sequential Quadratic Programming (SQP)
methods for general problems (e.g. [9]), it is natural to seek an SQP strategy tailored to
design problems with discrete BVP constraints. Typically the number of design variables is
much smaller than the number of state variables, and the full Hessian is sparse, indefinite,
and of order of the total number of variables. It is therefore advantageous to seek a strategy
which updates the projected Hessian matrix, which is positive definite at the optimum, and
of the order of the design variables. Because of the special structure of the constraint
Jacobian, we seek a corresponding basis for its null space that exploits this structure. We
begin with a canonical form of the optimization problem:

minimize /(x)

subject to h(x) = 0 (2.1)

/ : 3 T - > » , h : f t n - » m , x € » n

Here, / represents the design objective, and h is a system of nonlinear algebraic equations
arising from discretization of the governing BVP. The n variables x consist of the m state
variables u and n — m design variables b. Typically m^> n — m, since a large number of
state variables arise from discretization of the domain, but the design is described by a small



number of parameters (especially in shape optimization). The path-following approach to
2.1 eliminates the constraints, thereby resulting in an unconstrained optimization problem.
The penalty, of course, is the need to solve the nonlinear system h(x) = 0 at each design
iteration.

The infeasible path approach regards as 2.1 as a nonlinearly-constrained optimization
problem. SQP can be thought of as a Newton solution of the first order optimality condi-
tions. A Newton step defines the following quadratic program (QP):

minimize p£gfc + -plGLpk (2.2)

subject to AkPk = -hfc (2.3)

where g is the gradient of the objective function, GL is the Hessian matrix of the Lagrangian
function, Ak is the Jacobian of the discrete PDE's, p*, is the search direction, and the
subscript k indicates evaluation at x^.

For clarity we drop the subscript fc; it is understood that all quantities depending on x
are evaluted at x^. Let us decompose pk into two components:

p = Zp* + Ypy (2.4)

in which Z £ sftnX(n~m) is a matrix whose columns form a basis for the null space of A, and
Y 6 3ftnXm is chosen so that the partitioned matrix Q = [ Z Y ] is nonsingular. Often, Y
is chosen so that its columns span the range space of AT . The y-space step is completely
determined by substituting (2.4) into (2.3), resulting in the m x m system:

AYpy = -h (2.5)

The null space move is found by substituting (2.4) into (2.2) and minimizing with respect
top^:

ZTGLZP z = -Z T (g + GLYP y) (2.6)

The (n - m) x (n — m) projected Hessian matrix ZTGx,Z is dense but of the order of the
design variables, and is naturally approximated by a Quasi-Newton update. A feasible-
path method would require this storage as well, since the optimization variables in that case
are just the design variables. On the other hand, the "long and thin" matrix Z T G L Y would
increase storage requirments considerably over a path-following approach. Our approach is
to ignore this term; Nocedal and Overton have shown that the resulting algorithm exhibits
two-step Q-superlinear convergence (when orthonormal bases are used for Y and Z) [7], in
the sense that

''^"f'Uoas^oc (2.7)
II x* - x* ||

The critical step is the definition of appropriate y- and null space bases. Since A is large
and sparse, a standard QR factorization is unacceptable. To examine the structure of the
constraint Jacobian, let us consider a partitioning of state and design variables:

xr = [uT,bT] (2.8)



in which u 6 3ftm and b £ &n m. The partitioned constraint Jacobian becomes

A = [K, » ] (»)
in which we have identified the Jacobian of the discrete PDE's with respect to the state
variables as the tangent stiffness matrix K (in deference to finite element terminology).
It is desirable to exploit the inverse of K, since the solution of linear systems with K as
a coefficient matrix is a well-studied problem and there exist many direct and iterative
methods that exploit its structure. We can define a matrix Z whose columns are orthogonal
to the rows of A as:

f 2£ I

Here, we write K x formally; we shall however see that its inverse is not required, and
the computations can be arranged in such a way that solution of only two or three linear
systems involving K is required, using any direct or iterative technique. The y-space basis
is defined simply as

v-[;] (2.H)
We refer to this choice as a coordinate basis. Clearly, the matrix

Q = [ Z Y ] (2.12)

is nonsingular provided K is nonsingular, and hence Z and Y form a basis for 9ftn. The
invertibility of K is established by the well-posedness of the boundary value problem. The
resulting t/-space step for py from (2.5) becomes:

Kpy = -h (2.13)

We observe that this is simply a Newton step for the nonlinear system h = 0. Using the
null space definition (2.10), the null space move pz can be found from

B*p* = - g , (2.14)

where

gz = ZTg = - | £ T K - T g u + g6 (2.15)

Here B2 represents a Quasi-Newton approximation to the projected Hessian, and gu and
g& represent objective gradients with respect to the state and design variables, respectively.
Note the close connection between the expression for the projected gradient (2.15), and
the gradient of the objective using a path-following method (in conjunction with implicit
sensitivity expressions; see e.g. [5]). The difference, of course, is that in (2.15) K need
not be evaluated at the u for which h = 0, in contrast to path following methods, which



converge the behavioral equations at each optimization iteration. Using (2.4), the moves in
the state and design variables take the form

p ^ - K T 1 — pM + py (2.16)

P6 = P* (2.17)

The recipe for the update of the state variables (2.16) can be interpreted as being comprised
of two components. The first term gives a first-order approximation of the change in state
variables due to a change in system parameters p&; the second term is the change that would
occur if the design were held constant, and the state variables were updated according to a
Newton step.



Chapter 3

Algorithms

Depending on the specific way in which the updates of the state and design variables are
carried out, it is possible to identify several variants of the methods described in the previous
chapter. What follows is a definition of algorithms corresponding to each of these variants.
Symmetry of K is assumed in all cases.

PFF : This is the path-following approach. A full Newton solution of the nonlinear BVP
is performed at each optimization iteration. The initial guess for the state variables
at the beginning of each analysis is taken as zero.

PFP : This is a variant of the path-following approach. The Newton solve of the BVP is
initiated with the solution of the previous design.

CBIPS : This is the infeasible path method that results from the direct realization of the
SQP method of the previous chapter in conjunction with a coordinate basis for the
y—space move. It requires one stiffness matrix factorization and two sets of triangular
solves per optimization iteration.

CBIPM : This is a variant of algorithm CBIPS in which information about the design
variables is used to evaluate the stiffness matrix which in turn is used to update the
state variables. It requires two stiffness matrix factorizations and two sets of triangular
solves per optimization iteration.

CBIPC : This algorithm results from applying the Coleman-Conn method [3] (closely
related to SQP) to the CBIP method. It requires one factorization and three triangular
solves per optimization iteration.

3.1 Algorithm PFF

• Set * = 0, H° = I, b = b°,

• Solve h(u, b°) = 0 for u°, using u = 0 as the initial guess.



• Solve K°A° = g°u

• Find g° = -(f6T)°A° + g?

• Set K = 0.0 and a0 = 1.0.

• While ||g£|| > € and k < maxiter do:

1. Find pk = -1

2. Set ak = ~k

3. Update design variables: b* + 1 = bk + akpk

4. Solve h(u,bA;+1) = 0 for ufc+1, using u = 0 as the initial guess.

5. Check strong Wolfe conditions: if conditions are satisfied goto 6 else increment
K and go back to step 2.

6. Solve K*+ 1 A* + 1 =gJ+ 1

7. Find g ^ 1 = - ( f T ) / :+ iA*+i + g * + i

8. Find yk
2 = g*+x - gk

z

9. Update H£ using yk and pk

10. Set gk = g ^ 1

11. Set fc = fc + l

• Endwhile

3.2 Algorithm PFP

• Set k = 0, H° = I, b = b°,

• Solve h(u,b°) = 0 for u°, using u = 0 as the initial guess.

• Solve K°A° = si

• Set K = 0.0 and a0 = 1.0.

• While \\gk\\ > e and k < maxiter do:

1. Find pk = -Hkgk

3. Update design variables: b f c + 1 = hk + akpk

4. Solve h(u,b f c + 1) = 0 for ufc+1, using u = ufc as the initial guess.



5. Check strong Wolfe conditions: if conditions are satisfied goto 6 else increment
K and go back to step 2.

6. Solve K*+1A*+1 = g*+1

7. Find g ^ i ^ -

8. Find y* = g*+1 - g*

9. Update H* using y£ and p*

10. Set g* = g*+x

11. Set k = fc + 1

• Endwhile

Notice that algorithm PFP differs from Algorithm PFF only in Step 4, in which the initial
guess for the nonlinear system solve is taken as u* rather than 0.

3.3 Algorithm CBIPS

• Set k = 0, H° = I, u = u°, b = b°,

• Solve K°A° = g2

. F i n d gO = _ ( |h T
} o A o + go

• Set K = 0.0 and a0 = 1.0.

• While ||g*|| > e and k < maxiter do:

* = -H*g*
_ ak

i

1. Find p* = -H*g*
k

3. Find dh = §£ V p * + hfc

4. Solve K*p£ = -dk

5. Update variables: ufe+1 = u* + p£, b*+1 = b* + akpk
z

6. Check strong Wolfe conditions: if conditions are satisfied goto 7 else increment
K and go back to step 2.

7. Solve Kk+lXk+1 = g£+1

8. Find g**1 = - ( f f c V 1 A**1 +g6
fc+1

9. Find y£ = g*+* - gk

10. Update H* using y^ and p^

11. Set g* = g ^ 1

12. Set k = k + 1

• Endwhile



3.4 Algorithm CBIPM

• Set k = 0, H° = I, u = u°, b = b°,

• Solve K°A° = g°

. Find g° = -(tT)°A° + g°

• Set K = 0.0 and a* = 1.0.

• While ||g£|| > € and k < maxiter do:

1. Find p£ = -H*g£

2. Set ak =

3. Update the design variables: b*+1 = b^ + &kPz

4. Write d* = h(b*+1,u*)

5. Solve K(bfc+1,u*)p* = -d*

6. Update state variables: ufc+1 = uk + p^

7. Check strong Wolfe conditions: if conditions are satisfied goto 8 else increment
K and go back to step 2.

8. Solve Kfc+

9. Find g*+1

10. Find y* = g£+1 - g^

11. Update H£ using yk
2 and p^

12. Set g* = g^+1

13. Set k = k + 1

• Endwhile

The only difference between CBIPS and CBIPM is in Step 3, in which the latest information
about the design variables is used to evaluate the stiffness matrix. The development of
this method is motivated by the desire to make CBIPM and PF* equivalent for linear
BVP's. The numerical results will demonstrate that this reduces the number of optimization
iterations at the expense of one additional stiffness matrix factorization per optimization
iteration.

3.5 Algorithm CBIPC

• Set k = 0, H» = I, u = u°, b = b°,

• Solve K°A° = zl

10



• Set AC = 0.0 and a0 = 1.0.

• While ||g*|| > € and k < maxiter do:

1. Find p* = -H*g:

3. Update design variables: bk+1 = b* + a^p*

4. Find d2
fc = ftVp*

5. Solve Kfcp^2 = - d *

6. Solve K f cp^ = -h(u* + p ^ . b ^ 1 )

7. Update states variables: uk+1 = uk + (p*2 + p*y)

8. Check strong Wolfe conditions: if conditions are satisfied goto 9 else increment
K and go back to step 2.

9. Solve K*+1Afc+1 = g£+1

10. Find g ^ 1 = -(§bT)*+ 1A f c + 1 + g £ + 1

11. Find y* = g ^ 1 - g*

12. Update H2 using y* and p*

13. Set g£ = gk
2

+1

14. Set k = fc + 1

• Endwhile

The Coleman-Conn method (CBIPC) differs from the other two infeasible path algo-
rithms in its requirement of an extra constraint evaluation (Step 4). This results in an extra
triangular solve, because it does not permit combination of righthand sides.

11



Chapter 4

An aerodynamic design problem

u,

a

Figure 4.1: Two dimensional domain for airfoil analysis problem

We define in this chapter a design problem of a system governed by a nonlinear partial
differential equation. The problem we consider is to find the shape of the airfoil that ex-
hibits a prescribed pressure distribution. Such problems are of importance to the aerospace
industry, and there is growing interest in developing an optimal design capability for a
complete aircraft [4], The flow around the airfoil is modeled by the nonlinear full-potential
equations. Though parameterized by a small number of variables and only two-dimensional,
the problem captures the salient features of more general problems, which increase in dif-
ficulty as dimensionality, number of system parameters, nonlinearity, and coupling among
the physical processes increase.

Let ft represent the domain of definition, Ts the surface of the airfoil, Tw a split boundary
intended to model the wake, Too the farfield boundary, Uoo the freestream velocity, and a
the angle of attack of the airfoil.

The analysis problem is to find the pressure distribution over T$ for subsonic flows with
Mach numbers above 0.4, so that compressibility effects cannot be neglected. The equation

12



of continuity V • (/>u) = 0 and boundary conditions take the form:

V . {[1 - lZ_(v^)2] :FT V<£} = 0 in fi (4.1)

V<f> • n = 0 on Ts (4.2)

V<f> • n = UQO • n on Too (4.3)

in which <f> is the velocity potential, 7 is a constant and p^ is the freestream density.
The shape optimization problem of finding parameters describing a shape that induces

a desired pressure distribution can be stated as:
minimize:

(4.4)

subject to:

JQI

-L N^ooUoo)-!! dT (4.5)

where p(&) is the predicted pressure on the airfoil and p* is the prescribed pressure. The
constraint (4) reflects the Galerkin form of the BVP, in which the finite element interpolation
(f)h = Nr4> has been introduced. Here, N represents a vector of global basis functions and
4> are nodal potentials, and Q = VN (VN)T. The boundary conditions and additional
constraints on the state variables are implied in this nonlinear algebraic system. This
problem is of the form (2.1).

The Jacobian (with respect to state variables) of the conservation equations (4 is the
stiffness matrix, and is obtained by differentiating the left hand side with respect to 4>:

K($) = / [1 - ^ - ^ - ( $ T Q $)]T=T Q
Jnh 2

y =* Q $ * T Q dtt (4.6)

This is an n x n symmetric matrix that can be constructed using standard finite element
ideas. It is positive definite for subsonic flow, and indefinite for transonic flow [2].

13



Chapter 5

Numerical results

In this chapter we compare the performance of the five algorithms for the aerodynamic
design problem defined in the previous chapter. We do this first for NACA airfoils. The
design variables are then the basic parameters of the NACA family of airfoils, namely, the
maximum thickness r, the position of the maximum camber p, and the maximum camber
e [1]. These parameters are illustrated in Figure 5.2. To allow for more than three design
variables a second parameterization based on cubic splines is used to describe the shape
of the airfoil in the second set of examples. This parameterization is shown in Figure 5.5.
The leading edge of the airfoil is modeled with a circular arc of radius r0. This arc extends
011 and 821 above and below a line that is inclined OQ with respect to the horizontal axis.
All these quantities can have any positive value and are therfore taken as design variables.
For the purpose of the FE discretization the arc portions corresponding to 9\\ and #21 are
divided into n\\ and TI21 subintervals. The upper portion of the airfoil is divided into rt\2
intervals. For purposes of the FE discretization each of these intervals is divided into no
subintervals. 7112 — ly coordinates are then used to fit a cubic spline between the end of the
arc and the trailing edge. These y coordinates are also taken as design variables. The lower
portion of the airfoil is modeled in an analogous way. Angles O12 and 622 at the trailing
edge complete the list of design variables. The total number of design variables with this
modeled is thus 7112 + TI22 + 4.

The algorithms were implemented on an IBM RS6000-320H workstation. The linear
systems involving K were solved using MA-28, the general direct sparse solver available
from the Harwell library.

14



Table 5.1: Summary of Numerical Results - NACA family

PFP

Moo

II g z II
CPU time

Iter.
time/iter.

0.40
0.5440D-12
0.5043D-05

964
10

96.4

0.45
0.1302D-11
0.8289D-05

975
10

97.5

0.50
0.9653D-14
0.1065D-05

1051
11

95.5

0.55
0.2739D-12
0.5042D-05

1258
11

114.4

0.60
0.3576D-13
0.2227D-05

1252
11

113.8

0.65
0.2133D-12
0.6399D-05

1385
12

115.4

0.68
0.9593D-14
0.8375D-06

2865
13

220.4
P F P

Moo

II g z II
CPU time

Iter.
time/iter.

0.40
0.4767D-09
0.8482D-04

724
9

80.4

0.45
0.1771D-09
0.4235D-04

790
10

79.0

0.50
0.3997D-08
0.4678D-04

775
10

77.5

0.55
0.3091D-09
0.9004D-04

801
10

80.1

0.60
0.2129D-09
0.5074D-04

822
10

82.2

0.65
0.3074-07

0.1064D-04
961
11

87.4

0.68
0.8996D-11
0.1483D-04

1742
11

158.4
CBIPS

Moo

II g z II
CPU time

Iter.
time/iter.

0.40
0.6672D-11
0.9446D-05

644
15

42.9

0.45
0.1642D-09
0.1216D-05

685
16

42.8

0.50
0.4018D-08
0.1170D-05

691
16

43.2

0.55
0.4230D-12
0.3890D-05

667
15

44.5

0.60
0.1234D-10
0.3781D-05

668
15

44.5

0.65
0.3074D-07
0.7041D-06

735
17

43.2

0.68
0.1778D-09
.6362D-04

1224
24

51.0
CBIPM

Moo

II g z II
CPU time

Iter.
time/iter.

0.40
0.5063D-11
0.1016D-05

637
10

63.7

0.45
0.1641D-09
0.2225D-06

639
10

63.9

0.50
0.4018D-08
0.1343D-05

639
10

63.9

0.55
0.2323D-11
0.3731D-05

699
11

63.5

0.60
0.1223D-10
0.1106D-05

703
11

63.9

0.65
0.3074D-07
0.9497D-05

997
16

62.3

0.68
0.8677D-10
0.5191D-04

1153
18

64.1
CBIPC

Moo

II g z II
CPU time

Iter.
time/iter.

0.40
0.5067D-11
0.1292D-05

527
10

47.9

0.45
0.1642D-09
0.1708D-05

526
10

47.8

0.50
0.4019D-08
0.4766D-05

528
11

48.0

0.55
0.4291D-12
0.5013D-05

538
11

48.9

0.60
0.1331D-10
0.8745D-05

543
11

49.4

0.65 0.68
0.3073D-07
0.2116D-05

571
12

47.6

0.4326D-10
0.2515D-04

907
15

60.5

5.1 NACA family

In these examples, the target pressure distribution was taken as that of a NACA 2412 airfoil
at an angle of attack of one degree and at the corresponding Mach number. The parameters
of the NACA 2412 are r = 0.12, p = 0.40, e = 0.02. In Figure 5.3 we show the Mach number
distribution for the target airfoil at Moo = 0.68 and angle of attack = 1 . 0 degrees. The
corresponding pressure distribution is shown in Figure 5.4 (actually, the figure shows the
pressure coefficient defined as Cv = ip""P°% ).

Figure 5.1 shows the mesh topology used in our numerical simulations.
The fixed data used for these examples are as follows:

• Target pressure distribution: NACA 2412 at a = 1.0 (Variable Mach number).

• Initial values of parameters: r = 0.07, p = 0.30, e = 0.00

• Number of finite elements: 3,280

• Number of nodes: 1,743

Numerical results are summarized in Table 5.1. CPU times for the different algorithms
are plotted against Mach numbers in Figure 5.7. It is clearly seen from this graph that

15



Table 5.2: Summary of Numerical Results - Splines Model

p p p

Opt. Vars.
/

II g z II
CPU time

Iter.
time/iter.

10
0.2549D-02
0.1179D-03

5317
33

161.1

12
0.1319D-02
0.3655D-03

5734
37

155.0

16
0.3859D-03
0.4002D-03

6927
39

177.6

22
0.1660D-03
0.9426D-03

7979
33

241.78

28
0.1052-03

0.4934D-03
10328

42
245.9

40
0.5141D-04
0.6625D-03

19482
63

309.2

90
0.2377D-07
0.8192D-03

124,889
99

1261.5
CBIPM

Opt. Vars.
/

II g z II
CPU time

Iter.
time/iter.

10
0.2549D-02
0.2449D-03

2791
38

73.4

12
0.1363D-02
0.9867D-03

1903
24

79.3

16
0.3866D-03
0.7529D-03

3281
38

86.3

22
0.1567D-03
0.5502D-03

4411
42

105.02

28
0.1052D-03
0.3153D-03

5020
42

119.5

40
0.7100D-04
0.5408D-03

8242
49

168.2

90
0.9260D-08
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path-following methods are the most sensitive to the increase in nonlinearity induced by
high Mach numbers. Cost per iteration, in CPU seconds, is shown in Figure 5.8. Again, as
expected, the path-following methods are the most sensitive to the increase in the freestream
Mach number. The cost per iteration for the infeasible path algorithms remains essentially
constant with increasing nonlinearity, up to Mach number of about 0.65. For larger Mach
numbers the physical solution to the flow problem becomes more and more difficult to get
when a Newton solver is used. This means that the values of the potential <f> is not very
accurate, specially for very distorted shapes that arise in intermediate optimization steps.
This results in poor values of the gradients and the search directions, thereby producing an
increase in the number of iterations.

From the results presented in Table 5.1 and displayed in Figures 5.7 and 5.8 the following
additional remarks can be made:

• With the exception of the CBIPS algorithm, all algorithms take essentially the same
number of optimization iterations.

• The accuracy of the objective function value at optimality is best for the PFF. All
other algorithms with the exception of the PFP exhibit essentially the same accuracy.
This can clearly be observed in Figure 5.9.

• The worst accuracy is that of the PFP algorithm. In fact, if the tolerance in the
norm of the projected gradient is lowered from 10~4 in Table 5.1 to 10~5, the algo-
rithm oscillates about the solution, reaching it only by chance after a large number of
iterations.

• The most efficient algorithm in terms of CPU time is the CBIPC algorithm. This
algorithm also exhibits the least sensitivity to increases in the freestream Mach number
(See Figure 5.7).

• The lowest cost per iteration is exhibited by algorithm CBIPS, as can be seen in Figure
5.8. However, this algorithm takes the largest number of iterations, and therefore its
efficiency is diminished.
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It is important to note that no formal line search was implemented for the cases presented
here. From a limited number of tests made it was found that a line search was expensive
and did not improve the convergence characteristics of the algorithms. However, it was
sometimes necessary to limit the step length of the algorithms due to the fact that some
iterates generated correspond to undefined values of K and h (specially for high Mach
numbers). In addition, for the case with M^ = 0.68, it was necessary to limit the step
length to ensure a decrease in the objective function. In general, the step lengths were
equal to one, except for the first few iterations.

The progress in the objective function when M^ = 0.65 is presented in figure 5.9. The
corresponding sequence of norms of the projected gradients is shown in Figure 5.10. The
sequence of airfoil shapes generated by algorithm CBIPS for M^ = 0.65 is displayed in
Figure 5.11. The final shape is indistinguishable from the target.

5.2 Parameterization using the spline model

Figure 5.13 illustrates the initial conditions for a case using the splines model and n\2 =
7122 = 9 (22 design variables). The objective is again the NACA 2412 at M^ = 0.6 and
a = 1.0. The target pressure distribution and airfoil together with the optima found are
shown in Figure 5.14. It can be seen that the two shapes are virtually indistinguishible
from each other. The target conditions and optima for a case with n\2 = r&22 = 3 (10
design variables) is shown in Figure 5.12. Not surprisingly, the agreement of the pressure
distributions for the 22-variable case is much better than for the 10-variable case.

The number of optimization iterations against the number of design variables is depicted
in Figure 5.15. The number of iterations increases with the number of design variables as
can be expected. Again, it can be observed that the number of iterations is basically the
same for the CBIPM and PFF algorithms. The cost per iteration, however, is much larger
for the path-following method as can be seen in Figure 5.16.

The results of Figures 5.15 and 5.16 are summarized in Table 5.2.
The norm of the residual of the behavioral equations against the number of iterations has

been plotted in Figure 5.17 for all algorithms. The convergence tolerance for the Newton
solver was set to 10""7. Although not necessary for the infeasible path algorithms, the
starting point used here corresponds to a fully converged solution of the flow equations. This
can be observed in the Figure by noting that the residual for all algorithms at iteration zero
is 10"7. After that initial point, all infeasible path methods (that is, the CBIPS, CBIPM
and CBIPC) depart considerably from strict feasibility, with a fully converged solution for
the flow equations ocurring only at the last iteration. It can also be observed from Figure
5.17 that the path following algorithms (PFF and PFP) produce a residual that is lower than
the tolerance for some intermediate iterations. This is due to the fact that even though the
10"7 value of the tolerance is acceptable for engineering purposes, the machine can provide
a much higher accuracy for this particular problem. A problem with 28 design variables
was used to produce the results shown in Figure 5.17.
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All results presented in this section, with the exception of the 90-variable case corre-
spond to an airfoil problem with M^ = 0.6, a = 1.0, and the following discretization
characteristics:

• Number of finite elements: 3,952

• Number of nodes : 2079

• Target pressure distribution: NACA 2412 at 1.0 degree angle of attack. M^ = 0.6.

The results for the 90-variable case do not correspond to an airfoil problem but to a
unit cilynder under the following conditions:

• Moo = 0.35.

• Target Pressure Distribution: Unit Cilynder (r = 0.50).

• Design variables: Radial distances to the surface of the Cilynder.

• Initial values of all design variables: 0.456

• Number of finite elements: 4,416

• Number of nodes: 2,325

In lieu of a line search, the step length was limited to avoid undefined values of K and
h and to ensure a decrease in the objective function, in all cases presented here.
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Figure 5.1: Discretized two dimensional domain with airfoil

t(x)

Figure 5.2: Four-digit NACA airfoil
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Figure 5.3: Mach Number Distribution : NACA 2412 at a = 1.0 and M^ = 0.68
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Figure 5.4: Pressure coefficient: NACA 2412 at a = 1.0 and M^ = 0.68
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Figure 5.5: Parameterization of airfoil using splines.
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Figure 5.6: Number of Iterations vs. Mach number.
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Figure 5.7: CPU time vs. Mach number.
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Figure 5.8: Cost per Iteration vs. Mach number.
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Figure 5.9: Progress of Objective Function. M^ = 0.65.
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Figure 5.10: Sequence of norms of projected gradient. M^ = 0.65.

Figure 5.11: Sequence of airfoil shapes. CBIPS algorithm, M^ = 0.65.
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Figure 5.12: Comparison between Optimum and target conditions. NACA 2412 modeled
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Figure 5.13: Initial conditions. NACA 2412 modeled using splines (n\2 = ^22 = 9).
0.6, a = 1.0 degrees.
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Figure 5.14: Comparison between Optimum and target conditions. NACA 2412 modeled
using 9 splines. M^ = 0.6, a = 1.0 degrees.
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Figure 5.16: Cost per Iteration vs. Number of Design Variables.
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Figure 5.17: Residual of Equilibrium Equations vs. Iteration Number.
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Chapter 6

Conclusions

We have presented an infeasible path method for the optimal design of systems governed by
nonlinear boundary value problems. In particular, we have considered shape optimization
of airfoils in compressible potential flow. The infeasible path method avoids full resolution
of the flow at each iteration by including the governing equations as equality constraints. A
null space basis for the constraint Jacobian is defined, resulting in a method which requires
solution of just two or three linear systems at each optimization iteration. The coefficient
matrix of these systems is just the finite element stiffness matrix, thereby enabling the
method to leverage efficient finite element solvers. Examples demonstrates that the overall
number of iterations is about the same as a path-following method, while significantly
reducing the work per iteration.
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