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ABSTRACT

Present use of computers in civil engineering is largely devoted to numeric, algorithmic calculations.

This mode is not appropriate for the empirical, heuristic, ill-structured problems of civil engineering

practice. The paper reviews recent work in Artificial Intelligence and Expert systems addressing these

latter issues, identifies the distinctive features of engineering knowledge based systems, the roles of such

systems, and attempts to predict their evolution.

1. Introduction

The first published reference on the use of a digital computer in civil engineering that I have found

dates to 1952 ([Bennett 52] quoted in [Livesley 66]). In the succeeding 35 years, computer use has

undergone at least three "revolutions":

• High-level procedural languages such as FORTRAN, ALGOL, etc., vastly increased the
number of engineers who could communicate their problem directly to the computer (i.e., the
compiler), without having to rely on a coder to translate the problem into machine
instructions;

• Time-shared systems provided a rate of man-machine interaction commensurate with the
engineer's needs; when coupled with higher-level problem-oriented languages, they also
vastly increased the level of the man-machine dialogue; and

• Personal computers and workstations have placed the control of the man-machine problem-
solving process in the hands of the engineer.

As a result of these revolutions, the computer has become an integral and indispensable ingredient of

civil engineering practice, research and education. The computer has also vastly accelerated the
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technology transferbetween research and practice and between industries, as well as entire economies,

at different levels of development. A methodology embodied in a computer program enjoys orders of

magnitude faster and wider dissemination than its description in an engineering journal. Similarly, the

finite element method is a salient example of rapid transference from the Mhigh-techM aerospace industry

to Nlow-techN industries such as civil engineering or shipbuilding.

Notwithstanding the enormous volume of computer use in civil engineering, this use today is largely

concentrated in one category, namely calculating: the mapping of one set of numbers, representing the

problem at hand, to another set of numbers, representing the results or outcome, according to a

predefined procedure, called the algorithm. Thus, the computer is primarily involved in the derivation of

predicted consequences of actual or proposed engineering decisions.

Computer use is also being rapidly extended into two other categories: presenting information in

graphic, textual and other forms; and sharing information among individuals and organizations

participating in a common project or enterprise. The lively interest in interactive computer graphics, the

rapidly growing use of CADD, and the increasing integration of text processing into all phases of

engineering are manifestations of the first category, while the growing emphasis on engineering database

management systems (DBMS) as a critical ingredient of computer-integrated manufacturing (CIM) and

computer-integrated construction (CIC) is a salient example of the latter.

By contrast to the above explosive developments, computer use has been seriously lagging in a fourth

category, that of reasoning. Reasoning differs from computing in two key aspects. First, the objects dealt

with, or more precisely, the representations of these objects, are symbolic rather than numeric, whether

these objects are symbolic relations, geometric entities or conceptual entities. Second, the processes

operating on these objects are ill-structured, involving assumptions, approximations, "rules of thumb" and

other heuristics [Simon 81]. The processes that are most characteristic of engineering, notably design

and planning, fall into this category. Computer aids for this category have lagged considerably behind

computational aids.

The above does not imply that civil engineers have not attempted to develop programs for design and

planning, but rather that the present programs are not based on an intellectual framework that explicitly

deals with symbolic operands and heuristic operations. Design programs do exist, but they have been

developed in an algorithmic framework, with assumptions and heuristics deeply buried in masses of



procedural code. Such programs tend to be highly restrictive in their scope and highly opaque, in that

they function as "black boxes" with no mechanisms to explain the heuristic bases underlying their

processes. These programs are also notoriously difficult to understand, update or modify. As a typical

example, one may find a program for the design of reinforced concrete columns that computes stirrup

spacing as the minimum of the spacing needed for shear reinforcement or 12 inches. If one digs deep

enough, one finds that the 12-inch limit was introduced thirty years ago when prefabrication of reinforcing

cages was not common, and ironworkers needed that spacing so as to use previously tied stirrups as a

ladder for climbing. The explanation or justification of this heuristic is not part of the program, and the

heuristic is buried so deeply among code-mandated requirements that it has remained in the program

ever since.3

There is a pent-up frustration, among program users and developers alike, with the limitations and

shortcomings of present-day algorithmic, numeric programs. Users are frustrated because the programs

implement someone else's heuristics without explanations or ways of substituting their own, while

programmers are frustrated because they don't have tools for implementing what the users want. Hence

the growing interest in a new program development methodology which has grown out of research in

Artificial Intelligence.

2. Artificial Intelligence and Knowledge-Based Expert Systems

The discipline of Computer Science has grown up in parallel with the growth and proliferation of

computers. Computer users in general, and civil engineers in particular, have benefited from research

results from such branches of Computer Science as numerical methods, language theory and

programming systems. Particularly significant impacts on the manner in which civil engineering programs

are designed, developed, used and maintained have come from the discipline of software engineering, a

significant "spinofT from Computer Science.

As early as the 1950's, a branch of Computer Science began to explore symbolic, as opposed to

numeric, processing. This branch evolved into Artificial Intelligence (Al), concerned with the dual issues

of constructing computer programs that appear to be intelligent and of understanding human intelligence,

or human problem solving, by means of programs that emulate humans. Al today is a mature science,

dealing with intelligent systems, search methodologies, knowledge representation, vision, natural

^e author is aware of this heuristic only because he programmed it in 1957.



language processing and robotics. Al research on the representation and processing of knowledge over

the past thirty years has recently produced a "spinoff, comparable in its potential impact to software

engineering, called knowledge engineering, concerned with the development of programs variously

referred to as knowledge-based systems, expert systems, or knowledge-based expert systems (KBES).

KBES have a particularly high potential for practical use in ill-structured domains where knowledge is

highly heuristic and explicit algorithms either don't exist or provide only limited and restricted problem-

solving capabilities. Thus, KBES appear to provide exactly the type of conceptual framework that is

needed for the design and planning applications in civil engineering which have been unsuccessfully

attempted by algorithmic means. The purpose of this paper is to explore how this appearance can be

converted into reality.

Definition of KBES. A good standard definition of KBES is the following:

"Knowledge-based expert systems are interactive computer programs incorporating judgment,
experience, rules of thumb, intuition, and other expertise to provide knowledgeable advice about a variety
of tasks [GaschingBI]."

The first reaction of many professionals active in computer-aided engineering to the above definition is

one of boredom and impatience. After all, conventional computer programs for engineering applications

have become increasingly interactive; they have always incorporated expertise in the form of limitations,

assumptions and approximations^ discussed above; and their output has long ago been accepted as

advice, not as "the answer" to the problem.

There is a need, therefore, to add an operational definition to distinguish the new wave of KBES from

conventional algorithmic programs which incorporate substantial amounts of heuristics about a particular

application area, or domain. The distinction should not be based on implementation languages, e.g.,

FORTRAN vs. LISP (after all, KBES frameworks are now available in Pascal or C implementations), or

any absolute separation between domain-dependent knowlege base and generic inference engine (for

example, in frame-based knowledge representations there is no generic inference engine.)

The principal distinction between KBES and algorithmic programs lies in the use of knowledge. A

traditional algorithmic application is organized into two parts: data and program. An expert system

separates the program into an explicit knowledge base describing the problem solving knowledge and a

control program or inference engine which manipulates the knowledge base. The data portion or context

describes the problem being solved and the current state of the solution process. Such an approach is



denoted as knowledge-based [Nau 83].

Architecture of KBES. A variety of KBES architectures are available. Various KBES frameworks

have different inference procedures and different knowledge representation schemes, including:

production systems [Forgy 81], semantic inference networks [Reboh 81], and frame representations

[Wright 83]. More complex blackboard systems, based on multiple experts operating at different levels of

abstraction, have also been built [Balzer 80, Erman 80, Nii 82]. In the production system formalism for

domain knowledge representation, the knowledge is represented directly in terms of IF-THEN rules.

Some of the problem solving strategies incorporated in KBES are discussed in [Maher 86].

The basic components of the KBES using the production system (IF-THEN rules) formalism are:

• Knowledge Base. The knowledge base is the repository for the domain knowledge used by
the system in the form of rules. The knowledge base may also contain long term historical
information and facts.

• Context The context contains all of the information which describes the problem currently
being solved, including both problem data and solution status. The problem data may be
divided into facts provided by the user and those derived or inferred by the program. A
session with an KBES begins with the user entering some known facts about the problem
into the context.

• Inference Engine. The inference engine operates on the context, utilizing the rules in the
knowledge base to deduce new facts which then can be used for subsequent inferences.
The basic operation of a forward chaining inference engine is an infinite loop performing
three steps:

1. Examine the premises of rules in the knowledge base and determine which of these
currently evaluate to true, based on the current problem data maintained in the
context. This step, performed by the change monitor or pattern matcher, yields a set
of candidate rules.

2. Select one of the applicable rules. The rule is chosen by the scheduler or conflict
resolver.

3. Invoke or fire the corresponding action, which will change some data items in the
context. The context is updated by the knowledge modifier. As a result of step 3.,
other rules may become candidates to fire on the next cycle.

The objective of the inference engine is to arrive at a global conclusion (goat), and the process

continues until the context is transformed into the desired goal state, or when there are no more rules

remaining to be fired. It is to be emphasized that only the knowledge base of a KBES is domain specific.

All the other components are parts of a general purpose KBES framework applicable to a range of

application domains.

Many KBES inference engines can also deal with imprecise, inexact or incomplete knowledge.



Associated with the data are certainty measures indicating the level of confidence in the data. Rules can

conditionally fire based on the certainty of their premise, and can have certainty factors associated with

their conclusion. The inference mechanism can then propagate certainty about the inferences along with

results of the inferences.

In addition to the three basic components, it is highly desirable that the KBES contain three additional

components:

• Explanation Module. The explanation module provides the KBES with the capability to
explain its reasoning and problem solving strategy to the user. At any point the user may
interrupt the system and inquire why it is pursuing the current line of reasoning. In addition,
the program can explain how any conclusion was deduced and how knowledge was applied.

• Knowledge Acquisition Module. The information in the knowledge base is in a rigid format,
and the translation of knowledge obtained from experts to the required internal format may
be tedious. The knowledge acquisition module aids in this task. Although it is desired that
eventually the domain expert be able to enter directly knowledge into the system, this goal is
currently not achieved.

• User Interface. The user accesses the system through a friendly interface, often using a
domain oriented subset of a natural language, menus or computer graphics. The interface
provides capabilities for the user to monitor the performance of the system, volunteer
information, request explanations, and redirect the problem solving approach.

The basic concepts of a knowledge base, knowledge acquisition, explanation, context and inference

mechanisms are common to the different types of KBES architectures. Details of system organization,

knowledge and data representation, and inference method vary among the different approaches.

KBES Application Areas. KBES applications are appearing in many disciplines. However, not all

problem-solving tasks are amenable to KBES formulation. The following is a partial list of criteria for the

evaluation of promising potential applications [Hayes-Roth 83]:

• There are recognized experts in the field whose performance is better than that of novices.

• The factual component of domain knowledge is routinely taught to neophytes who become
experts by developing their own rules and empirical associations.

• Typical tasks are performed by an expert in a few minutes to several hours.

• Tasks are primarily cognitive, requiring reasoning at multiple levels of abstraction.

• Algorithmic solutions are either impractical or result in overly constrained or specialized
programs.

• There are substantial benefits in applying the expert knowledge to each occurrence of the
task.

A practical KBES should have the following characteristics:

• Usefulness. The KBES must be capable of performing useful functions. Usefulness
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depends on the domain and task for which the KBES is developed.

• Performance. The KBES must have a high level of performance, reliability and accuracy
over a range of application cases. This requires that the expert system have the specialized
knowledge that separates human experts from novices.

• Transparency. An KBES is transparent if it can be understood by people using it. To have
this characteristic, the KBES must be able to explain its actions and reasoning to the user.

The range of potential KBES applications covers a spectrum from derivation or interpretative problems

to formation or generative problems [Amarel 78]. In derivation problems, the problem conditions and

description are given as part of a solution description (goal). The KBES completes the solution

description by applying the available knowledge and rules such that the initial data and conditions are well

integrated in the solution. As an example, in a derivation problem such as theorem proving, a solution

hypothesis is formulated which the expert system attempts to prove by applying rules to the known data.

Repeated application of rules transforms the problem statement (the initial state) to the solution state. By

contrast, in formation problems conditions are given in the form of (constraints) that the solution as a

whole must satisfy. Candidate solutions are generated and tested against the specified constraints. Two

subclasses are: constraint satisfaction in which the solution need only satisfy the governing constraints,

and optimization where an attempt is made to find the optimal solution. The design of a plan, object, or

system fits this paradigm. Most actual problems are neither pure formation nor derivation problems, but

lie somewhere in-between and require that techniques from both categories be used in problem solving.

The following list of problem types covers the spectrum of KBES applications.

• Interpretation. An interpretation system takes observed data and explains its meaning by
inferring the problem state which corresponds to the observed data. Examples are Dipmeter
Advisor, a system for interpreting geophysical oil well log data [Davis 81, Smith 83], and
Prospector, a system for identifying geological ore-bearing formations [Duda 79].

• Diagnosis. Diagnosis systems infer malfunctions or system state from observed irregularities
and interpretation of data. MYCIN, an infections disease diagnostician [Shortliffe 76], and
several other medical diagnosis programs fall into this category.

• Monitoring. A monitor observes system behavior and compares the observations to the
planned behavior to determine flaws in the plan or potential malfunctions of the system. An
example is Ventilation Manager, a program for monitoring a patient's ventilation therapy
[Fagan 79].

• Design. Design is the process of developing a configuration for an object which satisfies all
applicable constraints. R1 (or XCON) is an example of a design system which is used to
configure VAX4 computers [McDermott 80].

• Planning. Planning is a design process that yields a set a actions intended to produce a

4VAX is a registered trademark of Digital Electronics Corp.



desired outcome. An example is MOLGEN, an KBES for planning experiments in molecular
genetics [Stefik 81].

• Control. A control system encompasses many of the characteristics of the other types of
applications described above. It must interpret data, predict outcomes, formulate plans,
execute the plans, and monitor their execution.

Interpretation, diagnosis and monitoring lie at the derivation end of the spectrum while design, planning,

and control lie at the formation end.

The Knowledge Engineering Process. Knowledge engineering is an incremental cooperative

process currently performed by two sets of people. The first is the domain expert who possesses the

problem solving knowledge for the problem area being addressed. The second is the knowledge

engineer who gathers expertise from the domain expert and translates this knowledge into the format

required by the expert system framework. A knowledge engineer who is also literate in the application

domain is desired, as he can understand the issues involved and the nomenclature used by the domain

expert [Dym 84]. As will be discussed later, it is expected that in the near future the knowledge engineers

will increasingly be application programmers in the domain.

The knowledge engineering process of building an KBES application is outlined below [Reboh

81, Hayes-Roth 83]. This process is similar in nature to building an algorithmic program or producing the

design of an object.

• Problem Identification. The first step is to identify the problem to be solved and the
characteristics of the solution. Identification of resources, domain experts, and computer
facilities are made and overall goals for the project are set.

• System Design. The overall structure of the system is selected. Based on processes used
by the expert, available data, strategies, information flow, etc., a preliminary model of
problem solving to be used by the system is developed. From this, a problem solving
strategy and a candidate domain independent KBES development framework or shell is
selected and key concepts are formalized. If the selected system appears to have the
correct formalisms for problem solving and knowledge representation, a more detailed
analysis is undertaken to produce a detailed design of the system.

• Knowledge Acquisition. Knowledge acquisition is the process of gathering the expert
knowledge from the domain expert. This process may be difficult. In some instances the
cognitive portions of the problem solving process used by the expert have never been
verbalized and are difficult to extract (the expert is not conscious of how he solves problems).
In other cases the expert may feel threatened by a computerized replacement and will be
reluctant to cooperate.

• Implementation. The knowledge engineer's tasks is then implementation; the expert's
knowledge is encoded in the format required by the KBES framework. This yields a
prototype operational program.

• Testing. Once a prototype or partial system is developed, it is tested. The domain expert
and the program are given the same problem and their problem solving behavior is
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compared. Flaws in the system are detected and corrected by adding or modifying the
knowledge used by the program.

The knowledge engineering process is not sequential, and a number of iterations on the last three

steps are always necessary to expand, correct and tune the system's behavior. Adding depth of

knowledge, breadth of capabilities, and improved interfaces and explanations to the prototype yields the

final version of the system.

3. Distinction of Engineering KBES

KBES are being developed for a wide range of civil engineering applications. A recent survey

discusses KBES applications grouped under the categories of construction, structural, geotechnical,

environmental and transportation engineering [Kim 86]. The majority of the KBES surveyed fall into the

category of interpretation and diagnosis, but there are some planning and design KBES surveyed.

The trends in civil engineering, as well as related work in other engineering disciplines, are beginning to

highlight the distinctive characteristics of engineering KBES, which may not be present in KBES

addressing other domains. The following is an attempt to identify these characteristics.

Use of Causal Knowledge. In some of the KBES literature, distinction is made between "shallow" vs.

"deep" knowledge. These terms are misleading and imprecise. A more useful distinction is between

empirical associations versus causal knowledge. The first term includes heuristics observed to be useful

or practical, but without any underlying knowledge of the causality between the premise and the

conclusion or inference: "IF the load is too large THEN the structure will fail" is an empirical association

known since the Stone Age, but today's engineers have extensive causal knowledge relating loads to

failure modes. Furthermore, an experienced structural engineer possesses a great deal of compiled

knowledge, and can confidently make associations between loads and potential failure modes without

having to resort to textbook knowledge or basic principles about stresses, strains, distortions, etc. Thus,

while it is conceivable that successful KBES can be built in some domains based exclusively on empirical

associations, it is almost a foregone conclusion that every engineering KBES must be based, at least in

part, on compiled, causal knowledge. Appropriate general mechanisms for explicitly representing such

knowledge are still lacking, and today a KBES developer may be forced to disguise such knowledge as

purely empirical: a rule of the form "IF compression element is slender THEN instability is a highly likely

failure mode" does not explicitly convey its causal source.



Interaction With Algorithmic Components. As indicated above, engineering problem-solving relies

extensively on causal knowledge. Furthermore, much of this causal knowledge is either already

embodied in existing algorithmic programs, or can be effectively incorporated into procedural attachments

to rules in a KBES. For example, to establish the premise of the rule "IF every bar in the truss is

incorporated in a triangle THEN truss is geometricaly stable", many further IF-THEN rules must be tested,

and even then the rule will lack generality (i.e., it will not handle compound trusses). A much more

elegant and general rule would be "IF determinant of equilibrium equations is greater than zero THEN

truss is geometricaly stable", with the premise established by a procedural attachment which uses a

standard matrix procedure. Thus, in any engineering KBES, interaction with algorithmic components is

an absolute necessity.

Two levels of interaction are possible. At one level, the KBES may be interfacedwith an algorithmic

program, acting essentially as an intelligent front-end, assisting the user to prepare input data to and

interpret results from the algorithmic program, the latter still serving as a monolithic "black box". A typical

interaction of this kind is described in [Zumsteg 85]. Alternately, the knowledge-based and computational

components may be tightly integrated, with knowledge-based modules paired with the functional modules

of the algorithm, with each knowledge-based module providing advice, checks, shortcuts, selections, etc.

for its corresponding functional module.

The early KBES environments, geared to derivation or diagnostic applications based on "shallow",

empirical knowledge, did not provide convenient facilities for interaction with algorithmic components. If

interaction was possible at all, it had to be performed by means of ad-hoc arrangements, usually at the

operating system level. The more recent KBES environments provide much more convenient interfacing

capabilities, either at the level of the knowledge representation languages, as in OPS83 [Forgy 84], or at

the level of the control structure of the inference engine.

Interaction With Databases. A common characteristic of engineering problem-solving activities is

their intense use of data, in the form of reference information, information on past projects relevant to the

current project, shared common information among participants in the project, and information generated

by the individual project participants. Increasingly, all such information is stored in, retrieved from and

managed by engineering design database management systems (DBMS). A major engineering KBES

cannot restrict itself to using only the local context provided by the KBES environment, and has to interact

with the information residing in databases external to the KBES.
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The two levels of interaction between KBES and databases needed roughly parallel the levels of

interaction with algorithmic components discussed previously. At one level, the KBES acts as an

intelligent interface between the user and the database, assisting in formulating queries to the DBMS.

For example, the KBES may contain a high-level "rule" of the form "IF there is a previous project similar to

the present one THEN use its parameters as the initial values for the current project1*. Such a KBES

would need many further heuristic rules on what constitutes a "similar project, what the relevant

parameters are, etc. so as to formulate a DBMS query to a database of past projects and to retrieve from

the query results the parameter needed. In the opposite scenario, the DBMS managing an integrated

project database may have a database semantic consistency rule of the form "IF structural component

dimensions compatible with architectural requirements AND capacity adequate for imposed mechanical

loads THEN accept ELSE reject the database update". In this case, the DBMS would have to execute an

appropriate KBES in order to evaluate the consistency rule (as well as to notify the participants involved

of the reasons for rejecting any transaction).

Some KBES in the first category have been described in the literature. An experimental prototype

interface between multiple KBES and DBMS, KADBASE, has been developed by Howard and Rehak

[Howard 86]. KADBASE provides a flexible interface in which multiple KBES and multiple design

databases communicate as independent, self-descriptive components within an integrated CAD system

operating in a distributed computing environment. KADBASE provides local syntactic and semantic

translations of transactions to and from a global data definition. Thus, a KBES issues a query in its own

language. KADBASE translates the query to the global model; ascertains which database(s) contain the

data sought; translates the global description to the local language of the DBMS; and then causes the

DBMS execute the query. The query results are similarly translated back to the language of the querying

KBES. An example of a KBES to DMBS interface using KADBASE is presented in [Garrett 86].

Geometric Reasoning. A final distinguishing characteristic of most engineering KBES, particularly

those in civil engineering, is their extensive use of spatial attributes of objects (e.g., their dimensions and

locations) and of spatial relations among the objects (e.g., connected, adjacent, above, accessible, etc).

It may be argued that spatial attributes and relations constitute the syntax of any language for reasoning

about engineering objects, and that the functional attributes and relations among these objects constitute

the semantics of that language [Baker 87]. Furthermore, in most engineering problems, objects have

multiple functions, and thus multiple semantics. For example, in building design, a single object such as a
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wall has distinct structural, architectural, acoustic, etc. functional attributes. Design decisions based on

one functional domain of an object affect its functional performance in all other domains.

A newly emerging field dealing with the representation and processing of spatial attributes is

designated as geometric reasoning. The objective of geometrical reasoning is to develop appropriate

representations, and operations on those representations, that can support a variety of functional

domains. Geometric reasoning can relieve the knowledge engineer concerned with a particular functional

domain from having to provide detailed implementations of relations such as "above" or "connected",

thereby being able to concentrate on the functional domain. There are at present no general-purpose

geometric reasoning systems that can be directly incorporated into engineering KBES. However, due to

the prevalence of geometric reasoning needs in many disciplines, notably robotics, it can be expected

that such systems will rapidly emerge.

4. Role of Engineering KBES

The present and expected future KBES applications can be roughly grouped into three categories,

depending on the role they play in the engineering decision-making process. The three categories are

discussed in the following sections.

Diagnosticians. As stated earlier, most existing civil engineering KBES fall into the category of

diagnosticians, that this, they tend to cluster around the derivation end of the problem-solving spectrum

introduced in Section 2.

These KBES can provide advice in the form "What is wrong with the patient, or structure" (diagnosis)

and can be naturally extended to provide "how to fix" recommendations (prognosis). The key

characteristics of these systems are:

• the knowledge base contains all hypotheses or goals that the system "knows about" as well
as the chain of inference or reasoning leading to each hypothesis, including all the symptoms
or data needed to evaluate the hypotheses;

• for each of the possible diagnosis hypotheses, the knowledge base contains all relevant
prescriptions and remedial measures appropriate for that hypothesis; and

• the inference strategies appropriate to the task are well known (e.g., use forward chaining if
there are a few symptoms and many possible hypotheses; use backward chaining if the
reverse holds; use mixed initiative if there are few key symptoms, chain forward to partial
hypotheses, then chain backward to gather and evaluate confirming evidence).

The two emphasized "all" above refer to the current contents of the knowledge base; obviously,
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knowledge acquisition facilities are needed to expand or modify the knowledge base over the life of the

expert system to reflect new or changed conditions or additional hypotheses.

There are three reasons for this predominance. First, many of the available expert system

development shells are a direct or indirect outgrowth of diagnostic expert systems such as MYCIN or

Prospector, and are therefore geared to supporting diagnostic problem-solving strategies. Second, this

problem-solving strategy does correspond to a well-established mode of thinking or paradigm identified

with the terms "engineering method" or "scientific method", namely, that a thorough analysis or diagnosis

of the problem at hand facilitates the subsequent synthesis or prescription of a solution. Third, the

paradigm provides for a natural growth of the knowledge base through experimentation and calibration:

the knowledge base can grow in depth as the chains of inferences leading to particular hypotheses are

elaborated, or in breadth as additional hypotheses and remedial measures are incorporated.

Diagnosticians can be either stand-alone KBES, or they can be interfaced with algorithmic programs or

databases, as discussed previously. In particular, they can serve as intelligent pre- and post-processors

for complex algorithmic programs. It is notable that two of the earliest KBES using general shells were

civil engineering applications for modeling or pre-processing assistance.

HYDRO [Gasching81] was a KBES developed using the Prospector framework to aid hydrologists in

generating numerical parameter values required as input to an algorithmic watershed hydrology

simulation program. The knowledge base of HYDRO consists of a large number of small inference

networks that represent the expert's knowledge for generating the individual input parameter values.

An early expert system addressing some aspects of an automated consultant which advises nonexpert

engineers in the use of an algorithmic finite element program program was SACON [Bennett 78]. The

structural mechanics knowledge base of SACON consists of: (1) rules for inferring analysis strategies,

consisting of the identification of the most appropriate analysis class to be performed and associated

analysis recommendations; (2) rules for inferring the controlling stress, deflection, and nonlinear behavior

of substructures; and (3) mathematical models, in the form of procedural attachments, for estimating

non-dimensional stress and deflection bounds for each substructure, based on its boundary conditions

and loading. SACON was never intended for production use. Its sole purpose was to evaluate the

EMYCIN environment for diagnostic applications other than the original domain of the medical diagnostic

system MYCIN
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Generators. The second category of KBES of great interest is that of generators, corresponding to the

formation end of the spectrum. In contrast to diagnostic KBES, generative KBES can provide advice in

the form "What is a feasible (or good or best) arrangement of entities subject to a set of constraints'*. The

entities may be actions, as in planning, or physical objects, as in design. The constraints may be problem

dependent, and typically propagate dynamically (e.g., choosing a particular action at one point will

constrain the choice of actions at some other point). The key characteristics of such systems are:

• the constraints are represented in the knowledge base;

• the set of known entities, or rules for generating them, are in the knowledge base; therefore,
these systems will not "invent" new plans or designs, but,may still generate novel candidate
solutions by arranging or combining the known entities in unexpected ways.

• while the choice of inference strategy is not as clear as for diagnostic KBES, a number of
inference strategies have been proposed or evaluated (e.g., hierarchical decomposition,
least-commitment principle, means-ends analysis, etc) and can serve as a prototypes.

The "best" candidate solution is understood to mean best among candidates that can be generated

from the known entities, measured according to some evaluation function. Again, the knowledge base

can grow by the addition of new candidate entities, new constraints or new rules for combining entities.

There are understandable reasons why generative KBES have been slow to emerge: the early KBES

development shells did not support this paradigm, and it takes considerable effort to decompose a design

problem into a form amenable to this approach. The decomposition involves both decomposing the

domain knowledge into a hierarchy of representations at various levels of abstraction, and decomposing

the process or control knowledge into operations on these representations.

A prototype precursor of KBES in this category is HIRISE [Maher 84]. HIRISE synthesizes feasible

structural systems from a known hierarchy of systems, subsystems, and components in a depth-first

manner. Infeasible combinations are eliminated either by heuristic constraints (e.g., IF numbers of stories

> 20 THEN eliminate rigid frame) or by the failure of feasibility constraints (e.g., IF uplift on windward

column > reaction due to dead load THEN eliminate braced frame). Alternatives that are not eliminated

are evaluated on a number of heuristic features (e.g., cost, speed of erection), and the alternative with the

lowest evaluation function value is judged the "best". The output of HIRISE is a selected structural

configuration complete with preliminary component parameters, suitable for further evaluation and

detailed analysis and design.

A similar KBES, which includes the generation and solution of a finite element model, is CARTER,
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which designs engine transmission housings [Reynier 86]. It generates the shape based on technological

constraints (e.g., clearances and rigidities needed by the gear train to be enclosed and supported),

performs a preliminary sizing of the components, generates and solves a finite element model, and

performs a limited amount of redesign on the basis of the computed response.

Critics. There is a great potential for a special class of diagnostic KBES, which may be called critics.

The role of these KBES can be explained as follows. Generative KBES such as HIRISE and CARTER

use preformulated constraints to guide the search for feasible solutions. However, there are many "soft"

constraints that may affect the feasibility or optimality of a candidate design or plan which are not known

with sufficient precision to be formulated as prior constraints. These soft constraints are not in the

knowledge base of the designers, but are typically part of the expertise of the constructors, manufacturers

or users of the system or product being designed. These experts, in turn, cannot be expected to tell the

designer how to design something so that their constraints are satisfied; all they can be expected to do is

to evaluate or critique a proposed candidate design and assert whether their constraints are satisfied or

not (and, if not, then provide a reason or justification). Presumably the designer, when presented with

such a critique, can modify his design so as to eliminate any cause of negative criticism.

One can conceive of many useful KBES that could perform the role of such critics. There is a lively

interest in "design for manufacturability, constructability or operability" where downstream concerns of

manufacturability, etc. are dealt with in the initial design. At the present state of knowledge about such

concerns, an attractive implementation would be to pass candidate designs to KBES critics, and feed

back the resulting criticism to the designers. For example, a constructability critic KBES could diagnose a

proposed design and return statements such as "girder is too long to be lifted in place". It would then be

the task of the designer (or design KBES) to modify the design so as to satisfy the implied constraint.

Critic KBES would be particularly attractive in civil engineering, where design and construction are often

performed by separate organizations, so that designers don't receive direct feedback concerning the

constructability of their designs.

5. Evolution of KBES

The present generation of KBES has been justly criticized on two grounds: that they are idiosyncratic

and that they are static. These terms require some explanation.

A KBES developed using the present methodology, described in Section 2, is idiosyncratic in the sense
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that its knowledge base represents the expertise of a single human domain expert or, at best, that of a

small group of domain experts. The KBES thus reproduces only the heuristics, assumptions, and even

style of problem solving of the expert or experts consulted. It is the nature of expertise and heuristics that

another, equally competent expert in the domain may have different, or even conflicting, expertise.

However, it is worth pointing out that a KBES is useful to an organization only if it reliably reproduces the

expertise of that organization.

Present KBES are static in two senses:

• the KBES reasons on the basis of the current contents of its knowledge base, i.e., it does not
"learn1* in the sense of automatically updating the knowledge base; a separate component,
the knowledge acquision facility is used to add to or modify the knowledge base; and

• at the end of the consultation session with a KBES, the context is cleared, so that there is no
provision for retaining the "memory" of the session (e.g., the assumptions and
recommendations made).

These two characteristics of KBES result from the fact that the present KBES methodology is

essentially based on Al research results of a decade ago. Al research has been steadily progressing

during this time. The purpose of this, highly speculative, section is to attempt to predict the evolution of

KBES as further research results of Al, as well as the experience in the development and use of KBES is

incorporated into the next generation of KBES methodology.

At present, there appear to be no usable, formal methods for resolving the idiosyncratic nature of

KBES. There are some techniques for checking the consistency of knowledge bases, but these

techniques are largely syntactic (e.g., identifying rules with common premises but different actions). The

growth of the KBES methodology from the present, highly "special purpose" expert systems to higher

levels of generalization has to come from the profession or domain itself through research. Two possible

avenues present themselves.

In the simpler, more passive approach, a researcher may make arrangements with the authors of

several KBES in the same domain to obtain access to their respective knowledge bases and attempt to

extract generalizations from them. This approach may be very frustrating because of the great variety of

KBES development languages and their lack of representation of causal linkages between premises and

actions.

A more active approach would start with the development of a domain-specific meta-shell which would
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contain: (1) the common knowledge base of the domain; (2) excellent knowledge acquisition facilities for

expansion and "customization" of that knowledge base by a wide range of practitioners. Such an

approach would have two advantages:

• individual organizations could develop their KBES more rapidly, by having as a starting point
an initial common knowledge base; and

• evaluation of individual expertise and search for generalizations would be greatly facilitated
by having a common representation for the domain knowledge.

A cooperative effort based on this approach has been proposed for expert finite element modeling and

interpretation assistance ([Fenves 85], [Fenves 86]). A preliminary pilot system is currently being

planned.

In contrast to the specialization vs. generalization issue, the issue of static vs. dynamic KBES appears

riper for further improvement. There has been a great deal of research in Al on the topic machine

learning, and some of the Al approaches are on the verge of being incorporated into engineering KBES.

One of the most promising approaches is that of leaning by analogy. In this approach, the general

objects or concepts in the knowledge base are described by heuristics features, and the KBES contains

additional knowledge for classifying specific objects by their features. If there is a close match, i.e., if a

specific object is analogous in some defined sense to a general object, then the rules pertaining to the

general object are applicable. A contrasting Al technique, which may be termed learning by

generalization deals more with the operations on the object. Initially, any major operation or goal of the

KBES is typically decomposed into its constituent parts or sub-goals. Every KBES tries the various

subgoals until it satisfies the original goal. A KBES incorporating learning by generalization does one

more thing: it extracts from its context the set of conditions or premises that led to the successful solution

of the original goal by the particular combination of subgoals. This new, learned combination of operators

is stored as a "meta-rule"; if the set of premises presents itself again, the new meta-rule is directly

invoked.

It is to be expected that these and other Al machine learning techniques will begin to be explored in the

context of civil engineering KBES in the near future. The impact of this new generation of KBES will be

most pronounced in two areas. One area is in recognizing precedents, where previous successful

designs can be used as precedents for initializing new design activities by exploiting analogies between

them and thus focusing design largely to that of "debugging", i.e., reconciling differences between the
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current design problem and analogous previous ones. A second area is that of elevating the critics

described in the previous section to serve as components of generators, that is, to extract from their

passive criticisms constructive constraints that can be incorporated directly in the formative, synthesis

stage.

6. Summary and Conclusions

The methodologies and concepts of Al, as embodied today in the methodology of KBES, provide an

intellectual framework for addressing heuristic problems in civil engineering that could not be successfully

approached with conventional programming techniques based on well-structured, algorithmic

formulations.

The scope and capabilities of the current generation of KBES may prompt the observation that Al in

general and KBES in particular have been "oversold1*. Many of the present civil engineering KBES

address trivially small problems, and very few KBES are in production use. This situation is to be

expected in the early, formative stages of a new methodology. Current KBES development frameworks

or shells were not motivated by engineering needs, and the current state of engineering expertise is not

compiled in a form immediately suitable for incorporation into the knowledge base of a KBES. The stage

of KBES today parallels that of algorithmic computing 30 years ago, that is, before the emergence of

languages such as FORTRAN and ALGOL, in terms of both primitive development languages and

primitive available knowledge. The reader is reminded that even the most straightforward algorithms,

such as those for sorting or equation solving, have improved by many orders of magnitude from the

original ones.

The present generation of engineering KBES have already had a major impact. First, they have

clarified the distinctive needs of engineering KBES in four areas:

• reasoning with causal knowledge;

• interaction with algorithmic components;

• interaction with databases; and

• reasoning with spatial attributes and relations.

Second, the role of engineering KBES is becoming clearer. While the majority of present KBES are

stand-alone systems addressing diagnosis or interpretation, KBES applications will broaden into:
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• intelligent pre- and post-processors;

• critics providing feedback on proposed designs; and

• generators of designs or plans.

There is the further opportunity of progressively incorporating additional research results from Al

research, particularly in the area of machine learning.

The third and most important lesson learned from experimentation with the present generation of KBES

is the revision of the "classical" concept of knowledge engineering. Today's KBES development

methodology is predicated on the presence of a knowledge engineer serving as an interface between the

domain expert and the KBES development environment. This is again analogous to programming before

FORTRAN, when an experienced machine language programmer was needed as an intermediary. It is

not difficult to predict that history will repeat itself, and that the need for such an intermediary will largely

disappear. It is a foregone conclusion that with a new generation of KBES development environments,

application programmers in a domain will not only become the "knowledge engineers", but will be able to

incorporate significant components of the domain knowledge base by themselves, relying on true experts

only for key ideas and high-level heuristics. In this fashion, KBES will become another integral

component of computer-aided engineering significantly extending computer-aided engineering, from pure

calculating to true reasoning.
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