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ABSTRACT

We propose a quasi-Newton algorithm for solving large optimization problems with
nonlinear equality constraints. It is designed for problems with few degrees of free-
dom, and is motivated by the need to use sparse matrix factorizations. The algorithm
incorporates a correction vector that approximates the cross term Z^WYpy in or-
der to estimate the curvature in both the range and null spaces of the constraints.
The algorithm can be considered to be, in some sense, a practical implementation
of an algorithm of Coleman and Conn. We give conditions under which local and
superlinear convergence is obtained.
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1. Introduct ion.

We consider the nonlinear optimization problem

mjn/(*) (1.1)

subject to c{x) = 0, (1.2)

where / : Rn -• R and c : Rn -+ Rm are smooth functions. We are particularly
interested in the case when the number of variables n is large, and the algorithm we
propose, which is a variation of the successive quadratic programming method, is designed
to be efficient in this case. We assume that the first derivatives of / and c are available,
but our algorithm does not require second derivatives.



The successive quadratic programming (SQP) method for solving (1.1)-(1.2) gener-
ates, at an iterate xk, a search direction dk by solving

)Td+\dTmin g{xk)
Td+\dTW{xk)d (1.3)

subject to c(xk) + A(xk)
Td = 0, (1.4)

where g denotes the gradient of /, W denotes the Hessian of the Lagrangian function
X(x, A) = f(x) + XTc(x)j and A denotes the n x m matrix of constraint gradients

]. (1.5)

A new iterate is then computed as

akdk, (1.6)

where ak is a steplength parameter chosen so as to reduce the value of the merit function.
In this study we will use the t\ merit function

*„(*) = / ( * ) + /i|K*)lli. (1-7)

where /i is a penalty parameter; see for example Conn (1973), Han (1977) or Fletcher
(1987). We could have used other merit functions, but the essential points we want to
convey in this article are not dependent upon the particular choice of the merit function.

The solution of the quadratic program (1.3)-(1.4) can be written in a simple form if
we choose a suitable basis of Rn to represent the search direction dk. For this purpose,
we introduce a nonsingular matrix of dimension n, which we write as

[Yk Zk\ (1.8)

where Yk G R n x m and Zk € Rn x(n~m), and assume that

AT
kZk = 0. (1.9)

(FVom now on we abbreviate A(xk) as Ak, g(xk) as gkj etc.) Thus Zk is a basis for the
tangent space of the constraints. We can now express d*, the solution to (1.3)-(1.4), as

dk = YkpY + ZkPz, (1.10)

for some vectors pY € Rm and pz € Rn"*m. Due to (1.9) the linear constraints (1.4)
become

l = 0 . (1.11)

If we assume that Ak has full column rank then the nonsingularity of [Yk Zk] and equation
(1.9) imply that the matrix AjYk is nonsingular, so that pY is determined by "(1.11):

pY = -[i tf r*]- lc*. ' (1.12)



Substituting this in (1.10) we have

dk = -Yk[AlYk\'
lck + ZkPz. (1.13)

Note that
1 (1.14)

is a right inverse of A%, and that the first term in (1.13) represents a particular solution
of the linear equations (1.4).

We have thus reduced the size of the SQP sub-problem which can now be expressed
exclusively in terms of the variables p z . Indeed, substituting (1.10) into (1.3), considering
YkPY as constant, and ignoring constant terms, we obtain the unconstrained quadratic
problem

min (Zhk + ZZwkYkpY)Tpi + \pz
J\zJWkZk)pt. (1.15)

Assuming that Z^WkZk is positive definite, the solution of (1.15) is

Pz = -(ZlWkZk)-
l[Zlgk + ZlWkYkpv). (1.16)

This determines the search direction of the SQP method.
We are particularly interested in the class of problems in which the number of variables

n is large, but n — m is small. In this case it is practical to approximate Z%WkZk using
a variable metric formula such as BFGS. On the other hand, the matrix Z%WkYk, of
dimension (n — m) x m may be too expensive to compute directly when m is large.
For this reason several authors simply ignore the ucross term" ZfWkYkpy in (1.16) and
compute only an approximation to the reduced Hessian ZjWkZk\ see Coleman and Conn
(1984), Nocedal and Overton (1985), and Xie (1991). This approach is quite adequate
when the basis matrices Yk and Zk in (1-8) are chosen to be orthonormal (Gurwitz and
Overton (1989)).

However, for large problems computing orthogonal bases can be expensive, and it
is more efficient to obtain Yk and Zk by simple elimination of variables (cf. Fletcher
(1987)). Unfortunately, in this case ignoring the cross term Z%WkYkpy can make the
algorithm inefficient, as is illustrated by an example given in a companion paper (Biegler,
Nocedal and Schmid (1993)). The central point is that if the basis matrices Yk and Zk

are not orthogonal, the range space component Ykpy may be very large and ignoring the
contribution from the cross term in (1.16) can result in a poor step.

Therefore in this paper we suggest ways of approximating the cross term [Zj\VkYk]pY

by a vector w*,
[ZjWkYk]pr « wk, (1.17)

without computing the matrix Z$WkYk. We will see that this can be done without sub-
stantially increasing the cost of the iteration, and we will show that the rate of conver-
gence of the new algorithm is 1-step Q-superlinear, as opposed to the 2-step superlinear



rate for methods that ignore the cross term (Byrd (1985) and Yuan (1985)). The null
space step (1.16) of our algorithm will be given by

pz = -(ZlWkZk)-
l[Zlgk + Ob**], (1.18)

where 0 < (k < 1 is a damping factor to be discussed later on.
To describe our first strategy for computing the vector wk we consider a quasi-Newton

method in which the rectangular matrix Z%Wk is approximated by a matrix <?&, using
Broyden's method. We then obtain wk by multiplying this matrix by %py, i.e,

How should Sk be updated? Since W*+i = Vjxi(xfc+i, A*+i), we have that

l - xk) « Zj*[VxL(*k+u*k+i) - VxZ(x*, A*+1)], (1.19)

when £fc+i is close to £&• We use this relation to establish the following secant equation:
we demand that Sk+i satisfy

S*+i(**+i - **) = Zf iV.^Xib+i, AA.+1) - VxL(xk, Aib+i)]. (1.20)

One point in this derivation requires clarification. In the left hand side of (1.19) we
have Z%Wk+ij and not £*+iW*+i. We could have used Zk+\ in (1.19), avoiding an
inconsistency of indices, but this is not necessary since we will show that using Z* instead
of Zjk+i in (L20) results in algorithms with all the desirable properties. This fact will
not be surprising to readers familiar with the analysis of SQP methods - see for example
Coleman and Conn (1984) or Nocedal and Overton (1985).

Let us now consider how to approximate the reduced Hessian matrix Z%WkZk. Using
(1.6) and (1.10) in (1.20) we obtain

Since 5*+i approximates ZjW*, this suggests the following secant equation for 2?*+i,
the quasi-Newton approximation to the reduced Hessian f

(1.21)

where sk and yk are defined by
Sk = <*kpz,

and
yk = Zl[VxL(xk+u Ajt+i) - VxL(x*, Aib+l)] - wk, (1.22)

with
. ' (1.23)



We will update Bk by the BFGS formula (cf. Fletcher (1987))

(1.24)
yk sk

provided s£yk is sufficiently positive.
We would like to highlight a subtle, but important point. We have defined two

correction terms, wk and wk. Both are approximations to the cross term (ZTWY)pY.
The first term, wk, which is needed to define the null space step (1.18) - and thus the
new iterate xk+i - makes use of the matrix 5*. The second term, wkj which is used
in (1.22) to define the BFGS update of Bk, is computed using the new Broyden matrix
Sjt+i, and takes into account the steplength ak. We will see below that it is useful to
incorporate the most recent information in wk.

The Lagrange multiplier estimates A* needed in the definition (1.22) of yk will be
defined by

Xk = -[Y?Ak]-
lY?gk. (1.25)

This formula is motivated by the fact that, at a solution xm of (1.1)-(1.2), we have
—gm = AmXm, and since KJA^K,]"*1 is a right inverse of J4^\

A. = -\YjA.]-lY?g..

Using the same right inverse (1.14) in the definitions of pY and A* will allow us a con-
venient simplification in the formulae presented in the following sections. We stress,
however, that other Lagrange multiplier estimates can be used, and that the best choice
in practice might be the one that involves the least computation or storage.

We can now outline the sequential quadratic programming method analyzed in this
paper.

Algorithm I

1. Choose constants tj € (0,1/2) and r, r' with 0 < r < T* < 1. Set k : = 1 and choose
a starting point xi and an ( n - m ) x (n-ra) symmetric and positive definite starting
matrix B\.

2. Evaluate fk,gkyck and Ak, and compute Yk and Zk.

3. Compute pY by solving the system

(AlYk)pY = -ck. (range space step) (1.26)

4. Compute an approximation wk to (Z^WkYk)pY.

5. Choose the damping parameter (k € (0,1] and compute p2 from

Bkpz = -[Zlgk + (kwk], (null space step) (1.27)

Define the search direction by

dk = YkpY + ZkPz.' ' (1.28)



6. Set c*k = 1 and choose the weight fxk of the merit function (1.7).

7. Test the line search condition

ixkidk), (1.29)

where D^^x^dk) is the directional derivative of the merit function <j> in the
direction dk.

8. If (L29) is not satisfied, choose a new a* € [Tak,T'ak] and go to (7); otherwise set

Xk+i =xk + akdk. (1.30)

9. Evaluate A+i,0Ji-+iic*+i, Ak+X, and compute Y/-+1 and Z*+i.

10. Compute the Lagrange multiplier estimate

A*+i = -{Y^Ak+^Y^g^. (1.31)

Define Wk (as will be discussed in §3), and compute

*k = otkPz, (1.32)

and
y* = ti[[VxL(xk+u\k+i) - VxL(xk9 Aib+0] - uJ*. (1.33)

If the update criterion (to be discussed in §3.3) is satisfied, compute 2?*+i by the
BFGS formula (1.24); else set J9*+i = Bk.

11. Set k := k + l f and go to (3).

The algorithm has been left in a very general form, but in the next sections we
discuss all its aspects in detail. In §2 we consider the choice of the basis matrices Yk and
Zfc. In §3 we describe the calculation of the correction terms wk and wk, the conditions
under which BFGS updating takes place, the choice of the damping parameter £*, and
the procedure for updating the weight fik in the merit function. §4 and §5 present an
analysis of the local behavior of the algorithm, and show that the rate of convergence is
at least R-linear. §6 presents a superlinear convergence result, and some final remarks in
§7 conclude the paper.

We now make a few comments about our notation. Throughout the paper, the
vectors pY and pz are computed at xk, and could be denoted by pY^ and pz^

kK but we
will normally omit the superscript for simplicity. The symbol || • || denotes the I2 vector
norm or the corresponding induced matrix norm. When using the l\ or /<*> norms we will
indicate it explicitly by writing || • ||i or || • ||oo. A solution of problem (1.1) is denoted by
x*, and we define . -

ek = xk - xm and ak = max{||ej;||, ||e*+i||}. (1-34)



Here, and for the rest of the paper, V I ( i , A) indicates the gradient of the Lagrangian
with respect to x only.

2. The Basis Matrices,

As long as Zk spans the null space of Aj[, and [Yk Zk] is nonsingular, the choice of Yk
and Zk is arbitrary. However, from the viewpoint of numerical stability and robustness
of the algorithm it is desirable to define Yk and Zk to be orthonormal, i.e.

Z(x)TZ(x) = In_m

Y(x)TY(x) = Im

Y(x)TZ(x) = 0.

One way of obtaining these matrices is by forming the QR factorization of A. However,
for large problems computing this QR factorization is often too expensive. Therefore
many researchers, including Gabay (1982), Gilbert (1991), Fletcher (1987), Murray and
Prieto (1992), and Xie (1991), consider other, non-orthogonal, choices of Y and Z. For
example, if we partition x into m basic or dependent variables (which without loss of
generality are assumed to be the first m variables) and n—m nonbasic or control variables,
we induce the partition

A(x)T = (C(x) N(x))t (2.1)

where the mxm basis matrix C(x) is assumed to be nonsingular. We now define Z(x)
and Y(x) to be

[ [ [ ]
When A(x) is large and sparse, a sparse LU decomposition of C(x) can often be computed
efficiently, and this approach will be considerably less expensive than the QR factorization
of A. Note that from the assumed nonsingularity of C(x) both Y(x) and Z(x) vary
smoothly with xr provided the same partition of the variables is maintained. In our
implementation of the new algorithm (Biegler, Nocedal and Schmid (1993)) we choose
Yk and Zk by (2.2).

There is a price to pay for using non-orthogonal bases. If the matrix C is ill-
conditioned (and this can be difficult to detect) the step computation may be inaccurate.
Moreover, even if the basis is well conditioned the range space step YkpY could be large
and ignoring the cross term can cause serious difficulties. This phenomenon is illustrated
in a 2-dimensional example given in Biegler, Nocedal and Schmid (1993). It is shown in
that example that if the cross term ZjWkYkPr is ignored, the ratio \\xk + rf*||/||£*|| can
be arbitrarily large, even close to the solution. It is also shown that these inefficiencies
disappear if the cross term is approximated as suggested in the following sections.

In the rest of the paper we allow much freedom in the choice of the basis matrices.
They can be given by (2.2), can be orthonormal, or can be chosen in other ways. The



only restrictions we impose are that A^Zk = 0 is satisfied, that the nxn matrix [Yk Zk] is
nonsingular and well-conditioned, and that this matrix varies smoothly in a neighborhood
of the solution.

3. Further Details of the Algorithm

In this section we consider how to calculate approximations wk and v3k to {Z^WkYk)pY

to be used in the determination of the search direction pz and in updating 2?&, respectively.
We also discuss when to skip the BFGS update of the reduced Hessian approximation,
as well as the selection of the damping factor £* and the penalty parameter /z&.

To calculate approximations to (ZTWY)pY we propose two approaches. First, we
consider a finite difference approximation to Z%Wk along the direction YkpY. While
this approach requires additional evaluations of reduced gradients at each iteration, it
gives rise to a very good step. The second, more economical approach, defines Wk and
wk in terms of a Broyden approximation to Z^Wk, as discussed in §1, and requires no
additional function or gradient evaluations. Our algorithm will normally use this second
approach, but as we will later see, it is sometimes necessary to use finite differences.

3.1. Calculating wk and JDk Through Finite Differences.

We first calculate the range space step pY at xk through equation (1.26). Next we
compute the reduced gradient of the Lagrangian at xk + YkpY and define

wk = Zl[VL(xk + YkpY,\k) - VL(xki A )̂]. (3.1)

After the step to the new iterate Xk+i has been taken, we define

Wk = Z\[VL(xk + akYkpY,\k+x) - VL(xk, A*+1)], (3.2)

which requires a new evaluation of gradients if or* ^ 1.
We note that this finite difference approach is very similar to the algorithm of Coleman

and Conn (1982, 1984). Starting at a point zkj the Coleman-Conn algorithm (with
steplength ak = 1) is given by

Zkpz = -Z(zk)Bj;lZ(zk)Tg(zk) (3.3)

YkpY = -Y(zk)[A(zk)
TY(zk))-

lc(zk + ZkPz) (3.4)

= Zk + ZkPz + YkpY. (3.5)

Let us now consider Algorithm I, and to better illustrate its similarity with the Coleman
and Conn method, let us assume that instead of (3.1), Wk is defined by

wk = Z(xk + YkpY)Tg(xk + YkpY) - ZJLzk)
Tg(xk),



which differs from (3.1) by terms of order O(||pY||). Then Algorithm I with ak = 1, is
given by

= -Y(xk)[A(xk)
TY(zk))-

lc(zk) (3.6)

= -Z(xk)Bj-l[Z(xk)
Tg(xk)

= xk + YkpY

(3.7)

(3.8)

The similarity between the two approaches is apparent in Figure 1, especially if we
consider the intermediate points in the Coleman-Conn iteration to be the starting and
final points, respectively.

Coleman-Conn step The step of Algorithm 1

Figure 1

In the Coleman-Conn algorithm, the approximation Bk to the reduced Hessian Zj\VkZk

is obtained by moving along the null space direction Zkpz, and making a new evaluation
of the function and constraint gradients. To be more precise, Coleman and Conn define

y* = Zj[7L(xk + ZkPzj \k) -

and sk = Zl\xk+\ - £*], and apply a quasi-Newton formula to update Bk. Algorithm I,
using finite differences, amounts essentially to the same thing. To see this, note that if
formula (3.2) is used in (1.33) then

yk = ~ VL(xk

which represents a difference in reduced gradients of the Lagrangian along the null space
direction Zkpz,

Byrd (1990) and Gilbert (1989) showed that the sequence {zk + Zkpz} (but not the se-
quence {zk}) generated by the Coleman-Conn method converges one-step Q-superlinearly.



If Algorithm I always computed the correction terms Wk and Wk by finite differences, its
cost and convergence behavior would be similar to those of the Coleman-Conn method.
However, we will often be able to avoid these additional gradient evaluations by using
the more economical approach discussed next.

3.2. Using Broyden's Method to Compute Wk and 10* •

We can approximate the rectangular matrix ZjWk by a matrix Sk updated by Broy-
den's method, and then compute Wk and Wk by post-multiplying this matrix by Y*py

or by a multiple of this vector. As discussed in §1 it is reasonable to impose the secant
equation (1.20) on this Broyden approximation, which can therefore be updated by the
formula (cf. Fletcher (1987))

c , (»*

where
yh = Z%[VL(zk+u\M) - VL(x*, A**,)] (3.10)

and
$k = **+i - **• (3.11)

We now define
Wk = SkYkpY and IE* = akSk+iYkpY. (3.12)

It should be noted that this approach requires the storage of the (n — m)xn matrix
Sk* For problems where n — m is small this expense is far less than the storage of a full
Hessian approximation to Wk. On the other hand, if n - m is not very small it may
be preferable to use a limited memory implementation of Broyden's method. Here the
matrices Sk are represented implicitly, using, for example, the compact representation
described in Byrd, Nocedal and Schnabel (1992). The advantage of the limited memory
implementation is that it only requires the storage of a few n-vectors to represent S.

There is no guarantee that the Broyden approximations Sk will remain bounded, and
therefore we need to safeguard them. At the beginning of the algorithm we choose a
positive constant T and define

otherwise.

The correction Wk will be safeguarded in a different way. We choose a sequence of positive
numbers {7*} such that EgL^jt < 00, and set

- {•* ••= { «. -diedl otherwise. ( 3 ' 1 4 )

10



As the iterates converge to the solution, pv -» 0, so that from (3.12) and from the
boundedness of Yk we see that these safeguards allow the Broyden updates Sk to become
unbounded, but in a controlled manner. We will show in §4 and §5 that with safeguards
(3.13) and (3.14) Algorithm I is locally and R-linearly convergent, and that this implies
that the Broyden updates Sk do, in fact, remain bounded, so that the safeguards become
inactive asymptotically.

Our Broyden approximation to the correction terms Wk and tZ;* was motivated by
recent work of Gurwitz (1993). She approximates Z^WkZk by the BFGS formula with

sk = Z

and
yk = Z

and approximates Z][WkYk by a matrix Dk using Broyden's formula (3.9) with

yk = Z

Since the updates may not always be defined, Gurwitz proposes to sometimes skip the
update of 27* or Dk, and shows 1-step Q-superlinear convergence if and only if one of the
updates is taken at each iteration. We will argue below that it is preferable to update
an approximation to Z%Wk, as is done in Algorithm I, instead of an approximation to
ZjWkYk, as proposed by Gurwitz.

A related method was derived by Coleman and Fenyes (1992). Their partitioned
Lower Half Update (LHU) simultaneously updates approximations to ZjWkZk and
Z^WkYky by means of a new variational problem. The resulting updating formula re-
quires the solution of a cubic equation, and its roots can correspond to cases where
updates should be avoided (e.g. s%yk < 0). The drawback of this approach is that
choosing the correct root is not always easy.

Finally, an earlier proposal, due to Tagliaferro (1989), consists of approximating the
matrix

using a formula that can be viewed as an extension to the PSB update. One disadvantage
of this approach is that the matrices generated by this updating procedure may become
very ill-conditioned.

3.3. Update Criterion.

It is well known that the BFGS update (1.24) is well defined only if the curvature
condition sjyk > 0 is satisfied. This condition can always be enforced in.the uncon-
strained case by performing an appropriate line search; see for example Fletcher (1987).

11



However when constraints are present the curvature condition s^yk > 0 can be difficult
to obtain, even near the solution.

To see this we first note from (1.33), (1.28), (1.32) and from the Mean Value Theorem
that

Vk = Z \ V2
xxL{xk + rakdk, Ajt+i)dr akdk -

L/o J
- wk

= ZlWkZksk + akZlWkYkPy - Wk, (3.15)

where we have defined

V2
xxL(xk + rakdk,Xk^)dT. (3.16)/

Jo

Thus
*Ivk = si (zlWkZk) sk + aksl (zfWkYk) PY - 4W (3.17)

Near the solution, the first term on the right hand side will be positive since Z%WkZk

can be assumed positive definite. Nevertheless the last two terms are of uncertain sign
and can make sjy* negative. Several reduced Hessian methods in the literature set VJk

equal to zero for all fc, and update Bk only if py is small enough compared with sk that
the first term in the right hand side of (3.17) dominates the second term (see Nocedal
and Overton (1985), Gurwitz and Overton (1989), and Xie (1991)).

Skipping the BFGS update may appear to be a crude heuristic, but we argue that
it gives rise to a sound algorithm. First of all, the last two terms in (3.17) normally
converge to zero faster than the first term, so that the right hand side of (3.17) will often
be positive and BFGS updating will take place frequently. Furthermore, if the right
hand side of (3.17) is negative, the range space step Ykpy is relatively large, resulting in
sufficient progress towards the solution. These arguments will be made more precise in
§5.

We conclude that skipping the BFGS update is desirable in some circumstances and
we now present a strategy for deciding when to do so. Recall that ck, defined by (1.34),
converges to zero if the iterates converge to x«.

Update Criterion I*
Choose a constant 7M > 0 and a sequence of positive numbers {7*} such that £ £ ^ 7 * < 00

(this is the same sequence {7*} that was used in (3.14))-

• Ifwk is computed by Broyden's method, and if both sjyk > 0 and

IIPvll < ll\\Pz\\ (3.18)
hold at iteration k, then update the matrix Bk by means of the BFGS formula (1.24)
with sk and yk given by (1.32) and (1.33). Otherunse, set Bk+i = Bk.

12



is computed by finite differences, and if both s^yk > 0 and

\'2 (3.19)

hold at iteration k, then update the matrix Bk by means of the BFGS formula (1.24)
with Sk and yk given by (1.32) and (1.33). Otherwise, set J9jb+1 = Bk.

Note that a* requires knowledge of the solution vector z«, and is therefore not com-
putable. However we will later see that a* can be replaced by any quantity which is of
the same order as the error e*, for example the optimality conditions (||Zjff*|| + ||cjfc||).
Nevertheless for convenience we will leave a* in (3-19).

We now closely consider the properties of the BFGS matrices Bk when Update Cri-
terion I is used. Let us define

which, as we will see, is a measure of the goodness of the null space step Z*p2. We begin
by restating a theorem from Byrd and Nocedal (1989) regarding the behavior of costf*
when the matrix Bk is updated by the BFGS formula.

Theorem 3.1 Let {Bk) be generated by the BFGS formula (1.24) where, for all Jfc > 1,

sk 4 0 and

(3.21)

(3.22)

Then, there exist constants fix, fa, (3$ > 0 such that, for any k > 1, the relations

cosOj > Pi (3.23)

f1 < A (3.24)

hold for at least \^k] values of j € [l,fc].

This theorem refers to the iterates for which BFGS updating takes place, but since for
the other iterates i?*+i = £*, the theorem characterizes the whole sequence of matrices
{Bk}. Theorem 3.1 states that, if sjy* is always sufficiently positive, in the sense that
conditions (3.21) and (3.22) are satisfied, then at least half of the iterates at which
updating takes place are such that costf, is bounded away from zero and BJSJ. =' 0(||$j||).
Since it will be useful to refer easily to these iterates, we-make the following definition.

13



Definition 3.1 We define J to be the set of iterates for which BFGS updating takes
place and for which (3.23) and (3.24) hold. We call J the set of "good iterates", and
define Jk = Jd {1,2, . . . ,*}.

Note that if the matrices Bk are updated only a finite number of times, their condition
number is bounded, and (3.23)-(3.24) are satisfied for all k. Thus in this case all iterates
are good iterates.

We now study the case when BFGS updating takes place an infinite number of times.
Let us assume that all functions under consideration are smooth and bounded. If at a
solution point a:* the reduced Hessian ZjWmZ+ is positive definite, then for all xk in a
neighborhood of xm the smallest eigenvalue of ZjWkZk is bounded away from zero (Wk is
defined in (3.16)). We now show that in such a neighborhood Update Criterion I implies
(3.21)-(3.22).

Let us first consider the case when wk is computed by Broyden's method. Using
(3.17), (3.18) and (3.14), and since 7* converges to zero, we have

> m\\sk\\\ (3.25)

for some positive constants C,m. Also, from (3.15), (3.18) and (3.14) we have that

(3.26)

We thus see from (3.25)-(3.26) that there is a constant M such that for all k for which
updating takes place

which together with (3.25) shows that (3.21)-(3.22) hold when Broyden's method is used.
Uwk is computed by the finite difference formula (3.2), we see from (1.33) and the

Mean Value theorem that there is a matrix Wk such that

Vk =

Reasoning as before we see that (3.25) and (3.26) also hold in this case, and that (3.21)-
(3.22) are satisfied in the case when finite differences are used. These arguments show
that, in a neighborhood of the solution and whenever BFGS updating of Bk takes place,

is sufficiently positive, as stipulated by (3.21)-(3.22).

3.4. Choosing fik and (k-

We will now see that by appropriately choosing the, penalty parameter /x& and the
damping parameter Ok for ti;*, the search direction generated by Algorithm I is always
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a descent direction for the merit function. Moreover, for the good iterates J, it is a
direction of strong descent.

Since dk satisfies the linearized constraint (1.11) it is easy to show (see eq. (2.24) of
Byrd and Nocedal (1991)) that the directional derivative of the l\ merit function in the
direction dk is given by

D4>vkixk\dk) = gjdk - Hk\\ck\\i. (3.27)

The fact that the same right inverse of Aj is used in (1.26) and (1.31) implies that

(3.28)

Recalling the decomposition (1.28) and using (3.28) we obtain

\ dk) = gJ j
= (Zfgk + CkVfk)TPt ~ OfcfjfPz ~ /»*ll«fc||i + **«*• (3.29)

Now from (1.32) and (1.27) we have that

Bksk = -ak(Zjgk + &»*)• (3.30)

Substituting this in (3.20) we obtain

Recalling the inequality A^cfc < ||A/t||oo||cjk||i, and using (3.31) in (3.29) we obtain, for all

',dk) < -\\Zlgk + ati>/t|| llftllcos^ - (kwlpz - (ttk - \\Xk\\co)\\ck\\i. (3.32)

Note also from (3.30) and (1.32) that

INI = llftll
\\BkSk\\ \\Zlgk

We now concentrate on the good iterates J, as given in Definition 3.1. If j € J, we have
from (3.33) and (3.24) that

fyzJQi + Ci^ll < llpl̂ H < jUj9j + 0«»il|. (3.34)

Using this and (3.23) in (3.32) we obtain, for j € J,

xj;dj) < ~\\ZfSj + Cî lPcos0j - awjAJ) ~ (H - UAUUcjh.

< - | l l ^ i l l 2 - '^p-(gJzjWj) - <jWjP? - ( w - \\XJ\U\\CJ\U,
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where we have dropped the non-positive term —(.] cos 0J\\WJ\\2 / fa. Since we can assume
that p3 > 1 (it is defined as an upper bound in (3.24)), we have

Wvixjidj) < -jJZfgjW2 + facosOjlgjZjWjl - QwJpP] - {N - IIAjlU)!!^.

It is now clear that if

20 ccsBAgJZjwA - Qwjp{j) < p\\cj\\u (3.35)

for some constant />, and if

N > Halloo + 2p, (3.36)

then for all j € J,

xfidi) < -jJlZjgjW2 - PUCJUL (3.37)

This means that if (3.35) and (3.36) hold, then for the good iterates, j € J, the search
direction dj is a strong direction of descent for the i\ merit function in the sense that
the first order reduction is proportional to the KKT error.

We will choose Ok so that (3.35) holds for all iterations. To see how to do this we
note from (1.27) that

so that for j = k (3.35) can be written as

x l # * (3.38)

It is clear that this condition is satisfied for a sufficiently small and positive value of Ot-
Specifically, at the beginning of the algorithm we choose a constant p > 0 and, at every
iteration &, define

G = min{l,G} (3.39)

where Ot is the largest value that satisfies (3.38) as an equality.
The penalty parameter fj.k must satisfy (3.36), so we define it at every iteration of

the algorithm by

a. _ / «*-! if W-i > Halloo + 2p
*k~\ IIAtlloo + 3/> otherwise.

The damping factor Cfc and the updating formula for the penalty parameter fik have
been defined so as to give strong descent for the good iterates J. We now show that
they ensure that the search direction is also a direction of descent (but not necessarily of
strong descent) for the other iterates, k £ J. Since (3.35) holds for all iterations by our
choice of Ok, we have in particular . *
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Using this and (3.40) in (3.32), we have

The directional derivative is thus non-positive. Furthermore, since wk = 0 whenever
Cfc = 0 (regardless of whether wk is obtained by finite differences or through Broyden's
method), it is easy to show that this directional derivative can only be zero at a stationary
point of problem (1.1)-(L2).

3.5. The Algorithm

We can now give a complete description of the algorithm that incorporates all the
ideas discussed so far, and that specifies the only remaining question, namely when to
apply finite differences and when to use Broyden's method to approximate the cross term.
The idea is to consider the relative sizes of pY and pz. Update Criterion I generates the
three regions R\, R2 and R3 illustrated in Figure 2. The algorithm starts by computing
it;* through Broyden's method and by calculating pY and p2. If the search direction
is in R\ or #3, we proceed. Otherwise we recompute wk by finite differences, use this
value to recompute pz, and proceed. The reason for applying finite differences in this
fashion is that in the middle region Ri neither Broydens' method*is good enough, nor is
the convergence sufficiently tangential, to give a superlinear step. Therefore we need to
resort to finite differences to obtain a good estimate of wk. The motivation behind this
strategy will become clearer when we study the rate of convergence of the algorithm in
§6.

IIPvll = flWPzW

Figure 2

Note from Updating Criterion I that the BFGS update of Bk is skipped if the search
direction is in R3. A precise description of the algorithm follows.
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Algorithm II

1. Choose constants 77 £ (0,1/2), p > 0 and T,T' with 0 < r < r' < 1, and positive
constants F and j{d for conditions (3.13) and (3.19), respectively. For conditions
(3.14) and (3.18), select a summable sequence of positive numbers {7*}. Set k := 1
and choose a starting point x\, an initial value fi\ for the penalty parameter, an
(n — m) x (n — m) symmetric and positive definite starting matrix B\ and an
(n — m)xn starting matrix S\.

2. Evaluate fk^ffk^k &nd Ak, and compute Yk and Zk-

3. Set findiff = false and compute pY by solving the system

(AlYk)pY = -c*. (range space step) (3.42)

4. Calculate Wfc using Broyden's method, from equations (3.12) and (3.13).

5. Choose the damping parameter 0- from equations (3.38) and (3.39) and compute
pz from

BkPz = -[Zlgk + CkWk)- (nuU space step) (3.43)

6. If (3.19) is satisfied and (3.18) is not satisfied, set findiff = true and recompute w*
from equation (3.1).

«
7. If findiff = true use this new value of 10* to choose the damping parameter Ofc from

equations (3.38) and (3.39) and recompute pz from equation (3.43).

8. Define the search direction by

dk = YkpY + Zkpz, (3.44)

and set a& = 1.

9. Test the line search condition

<f>»k(*k + <**<**) < <t>vk(*k) + VOtkD^ixk;dk). (3.45)

10. If (3.45) is not satisfied, choose a new a* € [raj^r'a*] and go to 9; otherwise set

s*+i = xk + akdk. (3.46)

11. Evaluate A+i^+iiC/fe+iMfc+ii a nd compute l^+i and Z*+i.

12. Compute the Lagrange multiplier estimate

*k+i = - [ n + i ^ * + i ] " ! n + i ^ i . • •• (3.47)

and update /Zjt so as to satisfy (3.40).
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13. Update Sk+i using equations (3.9) to (3.11). If findiff = false calculate wk by
Broyden's method through equations (3.12) and (3.14); otherwise calculate wk by
(3.2).

14. If s^yk < 0 or if (3.19) is not satisfied, set Bk+\ = Bk. Else, compute

H = a*pz, (3.48)

yk = Z%[VL(xk+u Ajb+O - VI(**, Afc+OJ - TO*, (3.49)

and compute Bk+i by the BFGS formula (1.24).

15. Set k := k + 1, and go to 3.

We mentioned in §3.1 that, when using finite differences, there are various ways of
defining wk and TcJ*, but for concreteness we now assume in steps 6 and 13 that they are
computed by (3.1) and (3.2), respectively. We should also point out that the curves in
Figure 2 may intersect, creating a fourth region, and in practice we should stipulate a
new set of conditions in this region. We will not discuss these conditions here and leave
this to the paper that considers the implementation of the algorithm (Biegler, Nocedal
and Schmid (1993)).

In the next sections we present several convergence results for Algorithm II. The
analysis, which does not assume that the BFGS matrices Bk or the Broyden matrices Sk

axe bounded, is based on the results of Byrd and Nocedal (1991), who have studied the
convergence of the Coleman-Conn updating algorithm. We also make use of some results
of Xie (1991), who has analyzed the algorithm proposed by Nocedal and Overton (1985)
using non-orthogonal bases Y and Z. The main difference between this paper and that
of Xie stems from our use of the correction terms wk and wk, which are not employed in
his method.

4. Semi-Local Behavior of the Algor i thm.

We first show that the merit function <j> decreases significantly at the good iterates J,
and that this gives the algorithm a weak convergence property. To establish the results
of this section we make the following assumptions.

Assumptions 4.1 The sequence {xk} generated by Algorithm II is contained in a convex
set D with the following properties.

(I) The functions / : Rn -• R and c : Rn -• Rm and their first and second derivatives
are uniformly bounded in norm over D.

(II) The matrix A(x) has full column rank for all x 6 D, and there exist constants 70
and fio such that

)||<A>, • (4.1)

for all x € D.

19



(III) For all k > 1 for which Bk is updated, (3.21) and (3.22) hold.

(IV) The correction term Wk is chosen so that there is a constant n > 0 such that for all
k,

IKH < KIMI 1 / 2 . (4.2)

Note that condition (I) is rather strong, since it would often be satisfied only if
D is bounded, and it is far from certain that the iterates will remain in a bounded
set. Nevertheless the convergence result of this section can be combined with the local
analysis of §5 to give a satisfactory semi-global result. Condition (II) requires that the
basis matrices Y and Z be chosen carefully, and is important to obtain good behavior in
practice. Note that (4.1) and (3.42) imply that

linpvll < 7o|M|. (4.3)

Condition (III) is justified in the last paragraphs of §3.3, where it is shown that (3.21)
and (3.22) are satisfied whenever BFGS updating takes place in a neighborhood of a
solution point. Condition (III) and Theorem 3.1 ensure that at least half of the iterates
at which BFGS updating takes place are good iterates.

We have left some freedom in the choice of w* since (4.2) suffices for the analysis of
this section. Relation (4.2) holds for the finite difference approach, since (3.1) implies
that Wk = O(YkPy), and since (I) ensures that {||c*||} is uniformly bounded (see (5.21)).
Furthermore, the safeguard (3.13) and (4.3) immediately imply that (4.2) is satisfied
when the Broyden approximation is used.

The following result concerns the good iterates J, as given in Definition 3.1.

Lemma 4.1 If Assumptions 4-1 hold and if/ij = ft is constant for all sufficiently large
j, then there is a positive constant 7M such that for all large j € Jf

> 7M [\\zjgjf + IM|,]. (4.4)

Proof. Using (3.37) we have for all j € J

where 62 = min(/?i//?3,/>). Note that the line search enforces the Armijo condition (3.45),

(xj; dj). (4.6)

It is then clear from (4.5) that (4.4) holds, provided the a,-, j € J, can be bounded from
below. Suppose that aj < 1, which means that (4.6) failed for a steplength a:
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where
ra < aj (4.8)

(see step 10 of Algorithm II). On the other hand, expanding to second order we have

*Mi(*i + &dj) - tvMi) < &D^(xj;dj) + a2bx\\dj\\\ (4.9)

where b\ depends on /ij . Combining (4.7) and (4.9) we have

(r,- ^aD^xjidj) < aXWdjW2. (4.10)

Next we show that, for j 6 «/,

ll<*;ll2 < HWZfgjW2 + IkiHi], (4.11)
for some constant 63. To do this we make repeated use of the following elementary result,

a, b > 0 => a2 + 2ab + b2 < 3a2 + 3b2. (4.12)

Using (3.44), (4.12), (4.1) and (4.3) we have

IK-II2 <
<
< 3 [fito&tf + 7o2l|c;||2] • (4.13)

Also by (3.34), (4.12), (4.2) and noting that || • || < || • ||i we have that for j € J

since Ci < 1- Since ||CJ||I is uniformly bounded on D, we see from this relation and (4.13)
that (4.11) holds, where

b3 = max{9^/^ 2 , 3 (3 /c 2 ^/^ + ^ s u p ||c

Combining (4.10), (4.5) and (4.11), and recalling that rj < 1 we obtain

This relation and (4.8) imply that the steplengths aj are bounded away from zero for all
j € «/, and since by assumption fij = ft for all large j we conclude that (4.4) holds with
7/x = 1762 mm{1,(1 - 77)7-62/(6163)}.

D

It is now easy to show that the penalty parameter settles down, and that the set of
iterates is not bounded away from stationary points of the problem.
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Theorem 4.2 If Assumptions 4.1 hold, then the weights {fik} are constant for all suffi-
ciently large k and

fc-KX)

Proof, First note that by Assumptions 4.1 (I)-(II) and (3.47) that {||A/.||} is bounded.
Therefore, since the procedure (3.40) increases /z* by at least p whenever it changes the
penalty parameter, it follows that there is an index k0 and a value /x such that for all
k>ko,fik = fx> IjAjbH + 2p.

If BFGS updating is performed an infinite number of times, by Assumptions 4.1-(III)
and Theorem 3.1 there is an infinite set J of good iterates, and by Lemma 4.1 and the
fact that <f>n(xk) decreases at each iterate, we have that for k > fco>

> 7M
j€Jn[kotk)

By Assumption 4.1-(I) <f>^(x) is bounded below for all x 6 D, so the last sum is finite,
and thus the term inside the square brackets converges to zero. Therefore

(||j5ill + INIi) = 0. (4.15)
j

If BFGS updating is performed a finite number of times then, as discussed after
Definition 3.1, all iterates are good iterates, and in this case we obtain the stronger
result

it—MX>

5. Local Convergence
In this section we show that if xm is a local minimizer that satisfies the second order
optimality conditions, and if the penalty parameter /x* is chosen large enough, then xm

is a point of attraction for the sequence of iterates {z*} generated by Algorithm II. To
prove this result we will make the following assumptions. In what follows G denotes the
reduced Hessian of the Lagrangian function, i.e.

Gk = ZlV2
xxL(xk,\k)Zk. (5.1)

Assumptions 5.1 The point xm is a local minimizer for problem (1.1)-(1.2) at which
the following conditions hold.
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(1) The functions / : Rn —• R and c : Rn —• Rm are twice continuously differentiable in
a neighborhood of xmy and their Hessians are Lipschitz continuous in a neighborhood
of a;*.

(2) The matrix A(xm) has full column rank. This implies that there exists a vector
A* 6 Rm such that

VL(xm, A.) = g(xm) + A(xm)Xm = 0.

(3) For all q € Rn~m, q ^ 0, we have qTGmq > 0.

(4) There exist constants 70, 0o and 7C such that, for all a: in a neighborhood of xm,

\\Y(x)[A(x)TY(x)]-l\\ < 70, ||Z(x)|| < fa (5.2)

and
| | [ r (x)Z( i ) ] - 1 | |< 7 c . (5.3)

(5) Z{x) and A(x) are Lipschitz continuous in a neighborhood of xmj i.e. there exist
constants 72 and 7A such that

\\X(x) - X(z)\\ < fx\\x-z\\, (5.4)

\\Z(x)-Z(z)\\ < fz\\x-z\\, (5.5)

for all z,z near xm.

Note that (1), (3) and (5) imply that for all (z, A) sufficiently near ( i . ,A.) , and for all
q e RB~m,

m\\q\\2<qTG(x,X)q<M\\qf, (5.6)

for some positive constants m,M. We also note that Assumptions 5.1 ensure that the
conditions (3.21)-(3.22) required by Theorem 3.1 hold whenever BFGS updating takes
place in a neighborhood of xm, as argued at the end of §3.3. Therefore Theorem 3.1 can
be applied in the convergence analysis.

The following two lemmas are proved by Xie (1991) for very general choices of Y and
Z. Their result generalizes Lemmas 4.1 and 4.2 of Byrd and Nocedal (1991); see also
Powell (1978).

Lemma 5.1 If Assumptions 5.1 hold, then for all x sufficiently near xm

Till* ~ *.|| < IK*)|| + HZ(*)r5(*)ll < Tall* - *.||, (5.7)

for some positive constants 71,72-

This result states that, near xm, the quantities c(x) and Z(x)Tg(x) may be regarded
as a measure of the error at x. The next lemma states that, for a large enough weight,
the merit function may also be regarded as a measure of the error.
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Lemma 5.2 Suppose that Assumptions 5.1 hold at x«. Then for any // > HA*!^ there
exist constants 73 > 0 and 74 > 0, such that for all x sufficiently near xm

7311* - ar.lt2 < M*) ~ *,.(*.) < 74 [||Z(x)Tir(x)||2 + HcWIU] . (5.8)

Note that the left inequality in (5.8) implies that for a sufficiently large value of the
penalty parameter, the merit function will have a strong local minimizer at z*. We will
now use the descent property of Algorithm II to show convergence of the algorithm.
However, due to the non-convexity of the problem, the line search could generate a step
that decreases the merit function but that takes us away from the neighborhood of z*.
To rule this out we make the following assumption.

Assumption 5.2 The line search has the property that, for all large A:, ^ ( ( 1 — 0)xk +
0£*+i) ^ 4>ii{xk) for all 0 € [0,1]. In other words, Xk+\ is in the connected component of
the level set {x : <£M(z) < <t>n(xk)} that contains a*.

There is no practical line search algorithm that can guarantee this condition, but it
is likely to hold close to z*. Assumption 5.2 is made by Byrd, Nocedal and Yuan (1987)
when analyzing the convergence of variable metric methods for unconstrained problems,
as well as by Byrd and Nocedal (1991) in the analysis of Coleman-Conn updates for
equality constrained optimization.

Lemma 5.3 Suppose that the iterates generated by Algorithm II are contained in a con-
vex region D satisfying Assumptions 4-1 //<*** iterate x^ is sufficiently close to a solution
point x* that satisfies Assumptions 5.1, and if the weight /x^ is large enough, then the
sequence of iterates converges to z*.

Proof. By Assumptions 4.1 (I)-(II) and (3.47) we know that {||A*||} is bounded. There-
fore the procedure (3.40) ensures that the weights /*& are constant, say /i* = /1 for all
large k. Moreover, if an iterate gets sufficiently close to z«, we know by (3.40) and by
the continuity of A that \i > ||A,||. For such value of /*, Lemma 5.2 implies that the
merit function has a strict local minimizer at z*. Now suppose that once the penalty
parameter has settled, and for a given c > 0, there is an iterate z/^ such that

727470

where 70 is such that || • ||i < 7o|| • ||- Assumption 5.2 shows that for any A: > fco, %k
is in the connected component of the level set of z^ that contains z ^ , and we can
assume that e is small enough that Lemmas 5.1 and 5.2 hold in this level set. Thus since
<f>n(xk) < <Pt*(xko) f° r k ^ ^0* and since we can assume that ||£j£flfjfcJl < 1, we have from
Lemmas 5.1 and 5.2, for any k > k0
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< €.

This implies that the whole sequence of iterates remains in a neighborhood of radius €
of x*. If € is small enough we conclude by (5.8), by the monotonicity of {<t>p(xk)} and
Theorem 4.2 that the iterates converge to xm.

a
The assumptions of this lemma, which is modeled after a result in Xie (1991), are

restrictive - especially the assumption on the penalty parameter. One can relax these as-
sumptions and obtain a stronger result, such as Theorem 4.3 in Byrd and Nocedal (1991),
but the proof would be more complex, and is not particularly relevant to Algorithm II
since it is only based on the properties of the merit function. Therefore instead of further
analyzing the local convergence properties of the new algorithm, we will proceed to study
its rate of convergence.

5.1. R-Linear Convergence.

For the rest of the paper we assume that the iterates generated by Algorithm II
converge to £*, which implies that for all large fc, /i* = fi > ||A*||. The analysis that
follows depends on how often BFGS updating is applied, and to make this concept precise
we define U to be the set of iterates at which BFGS updating takes place,

U = {* : Bk+i = BFGS(Bk, sk% yk)h (5.9)

and let
Uk = Un{l,2 k}. (5.10)

The number of elements in Uk will be denoted by \Uk\-

Theorem 5.4 Suppose that the iterates {**} generated by Algorithm II converge to a
point xm that satisfies Assumptions 5.1. Then for any k € U and any j > k '

(5.11)
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for some constants C > 0 and 0 < r < 1.

Proof. Using (4.4) and (5.8) we have for z € J,

M*i) ~ M*i+i) > — lM*i) ~ *M(*01 • (5.12)

Let us define r = (1 - 7^/74) *. Then for i € •/

0M(x,-+i) - tfM(*.) < r4 [*„(*,•) - <^(x,)]. (5.13)

We know that the merit function decreases at each step, and by (5.8) we have, for j > k
and keU,

We continue in this fashion, bounding the right hand side by terms involving earlier
iterates, but using now (5.13) for all good iterates. Since by Theorem 3.1 at least half of
the iterates at which updating takes place are good iterates, i.e. \Jk\ > \\Uk\, we have

P
P

This result implies that if {\Uk\/k} is bounded away from zero, then Algorithm II is
R-linearly convergent. However, BFGS updating could take place only a finite number
of times, in which case this ratio would converge to zero. It is also possible for BFGS
updating to take place an infinite number of times, but every time less often, in such a
way that \Uk\/k —• 0. We therefore need to examine the iteration more closely.

We make use of the matrix function rp defined by

= tr(B) - ln(de*(B)), (5.14)

where tr denotes the trace, and det the determinant. It can be shown that

lncond(U) < tf(fl), (5.15)

for any positive definite matrix B (Byrd and Nocedal (1989)). We also make use of the
weighted quantities

yk = G;1/2yfc, h = G i ' V (5.16)
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Bk = GZll2BkG:"\ (5.17)

cosdk = -\ , (5.18)
l|£fc«*IIIMI

and

One can show (see eq. (3.22) of Byrd and Nocedal (1989)) that if Bk is updated by
the BFGS formula then

- ( 5 - 2 0 )

This expression characterizes the behavior of the BFGS matrices Bk, and will be
crucial to the analysis of this section. However before we can make use of this relation
we need to consider the accuracy of the correction terms. We begin by showing that when
finite differences are used to estimate wk and tZ ,̂ these are accurate to second order.

Lemma 5*5 // at the iterate xk, the corrections wk and Wk are computed by the finite
difference formulae (3.1)-(3.2), and if Xk is sufficiently close to a solution point xm that
satisfies Assumptions 5.1f then

»k = O(||py||), (5.21)

|K - ZjW.Ykp*\\ = Otelfev||) (5.22)
and

\\wk - ZjW.YkPvW = O(ak\\pY\\). (5.23)

Proof. Recalling that Vi(x, A) = g(x) + A(x)\, we have from (3.1) that

, A.)] + Zl[(A(xk + YkPy) - Ak)(Xk - A.)]

V2
xxL{xk + rYkPY, A.)rfr] YkpY + Zl[{A(xk + Yk?Y) - Ak)(Xk - A.)]

-X.)]. (5.24)

Let us assume that xk is in the neighborhood of x+ were (5.2)-(5.5) hold. Then \\\k—\*\\ =
= O(crk), where ak is defined by (1.34). Therefore the last term in (5.24) is
*), which proves (5.21). Also a simple computation shows that

[ZfWk - ZJW.]5'*PY = O(^llPvll).) (5.25)

27



Using these facts in (5.24) yields the desired result (5.22). To prove (5.23), we only note
that ak < 1, and reason in the same manner.

a
Next we show that the condition number of the matrices Bk is bounded, and that

at the iterates U at which BFGS updating takes place the matrices Bk are accurate
approximations of the reduced Hessian of the Lagrangian.

Theorem 5.6 Suppose that the iterates {xk} generated by Algorithm II converge to a
solution point xm that satisfies Assumptions 5.1. Then {||JB*||} and {\\B^11|} are bounded,
and for all k 6 U

| | (5 , - ZjWmZ+)pz\\ = o(||<f*||). (5.26)

Proof, We will only consider iterates k for which BFGS updating of Bk takes place. We
have from (3.49), (3.46), (3.44), (3.16) and (3.48)

yk = Z

\J rakdk, A*+1 )dr\ akdk - wk

+ <*k(ZlWk - ZjWm)YkPY + (ctkZjWA'kPy - to*). (5.27)

Since Wk can be computed by Broyden's method or by finite differences, we need to
consider these two cases separately.

Part I. Let us first assume that wk is determined by Broyden's method. A simple
computation shows that ||ZjW* - ZjWm\\ = O(ak), and from (3.14) we have that wk =
0(IIPYII/7*)- Using this and Assumptions 5.1 in (5.27) we have

yk =
= [ZlWkZk - Gm)sk + Gmsk + (ak + 1 + 1/7*)O("*IIPY||)- (5.28)

Recalling (5.16) and noting that yjsk = yjsk we have

since \\sk\\ and ||5jt|| are of the same order. Therefore

= 1 + 0{ak) + {ak + 1 + l/7ftX> (jj^) • (5.29)

Similarly from (5.28) and (5.16) we have

ylyk < \\(ZjWkZk - G.)sk\\
2\\G:l\\ + 2\\(ZjWkZk - G.)sk\\ ||G;1/2|| | | j A | | + ||5ik||2

+2(<rfc + 1 + l/7*)0(||a*pv||)|K?:*|| (ll^H + \\{ZlWkZk - G.)
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and thus

. (5.30)

At this point we invoke the update criterion, and note from (3.18) that if BFGS
updating of Bk takes place at iteration A:, then \\akpYII < 7jtlk*ll where {7*} is summable.
Using this, the assumption that ak converges to zero, and (5.29) we see that for large k

(5.31)
n**ir

and using (5.30)

Therefore

fe£ fej|W (5.32)
We now consider if>(Bk+i) given by (5.20). A simple expansion shows that for large

, ln(l + O(ak + 7*)) = O(crk + Tib)- Using this, (5.31) and (5.32) we have

2 § k + \ l - - ^ (5.33)
[ 20 COS20*J

Note that for z > 0 the function 1 — x + In x is non-positive, implying that the term in
square brackets is non-positive, and that In cos2 §k is also non-positive. We can therefore
delete these terms to obtain

*(Bk+i) < HBk) + O(ak + 7*). (5.34)

Before proceeding further we show that a similar expression holds when finite differences
are used.

Part II. Let us now consider the iterates k for which updating takes place and for which
wk is computed by finite differences. In this case (3.19) holds. Again we begin by
considering (5.27),

yk = ZlWkZksk + ak(ZlWk - ZjWm)YkPY + (akZjW.YkpY - wk).

Using (5.23) the last term is of order tfjt(afc||pv||), and so is the second term. Thus

yk = Z

- Gm)sk + G.sk + 0(<7*a*||pY||). (5.35)
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Noting once more that yfsk = yjsk and recalling the definition (5.16) we have

\h\\2

since \\sk\\ and \\sk\\ are of the same order. Therefore

_ sl{ZlWkZkG.)sk / ||atPv||\
~ + PIP + \klM~)

(iifr)- (5-36)
Similarly from (5.35) and (5.16) we have

k - Gm)skf\\G:l\\ + 2\\(ZlWkZk - G.)sk\\ \\GZll2\\ \\sk\\ + p f c |

+*k0 (\\akp*\\\\G:*\\ [INI + \\(ZlWkZk - G.)sk\\\\G:1/2\\]\

+olO(\\akPY\\)\

and thus

We now invoke Update Criterion I, and note from (3.19) that if BFGS updating of
Bk takes place at iteration k, then ||pY|| < 7fd||Pz||/^i/2- Using this, (5.36) and the fact
that ak converges to zero, we see that for large k

and using (5.37)

Therefore

We now consider tl>(Bk+i) given by (5.20). Noting that ln(l + O(al
k
/2)) = O(al

k
/2) for all

large it, we see that if updating takes place at iteration k

+(Bk+i) = HBk) + 0{a\12) + In cos2 9k + f 1 - - ^ - + In
[ COS20fc

. (5.39)

Since both In cos2 0& as well as the term inside the square brackets are non-positive, we
can delete them to obtain

Oiol'*). (5.40)
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We now combine the results of Parts I and II of this proof. Let us subdivide the set of
iterates U for which BFGS updating takes place into two subsets: U* corresponds to the
iterates in which Wk is computed by Broyden's method, and U" to the iterates in which
finite differences are used. We also define U'k = U'H {1,2, ...A:} and U% = U"C\ {1,2, ...&}.

Summing over the set of iterates in Uk, using (5.34) and (5.40), and noting that
2?j+i = Bj for j £ Uk, we have

+ d £ °T + ^E ai + C* £ TJ. (5-41)

for some constants Ci,C2,Cz. By (5.11) and since \U"\ < \Uj\,

rV2 <

\U"\
r'/2

< OO.

Similarly

E*i<».

and since {7*} is summable we conclude from (5.41) that {tp(Bk)} is bounded above, fiy
(5.14) if>(Bk) = S L i ( ' t — !»'•)» where /, are the eigenvalues of J3*f and it is easy to see
that this implies that both \\Bk\\ and H^1!! are bounded.

To prove (5.26), we sum relations (5.33) and (5.39), recalling that <r*, 7* and a]j2 are
summable, to obtain

for some constant C. Since tf>(Bk+i) > 0, and since both In cos2 0* and the term inside
the square brackets are non-positive we see that

lim In cos2 §k = 0,
fc —OO

and

lim 1 ^ + in—2tJ _ o .
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Now, for x > 0 the function 1 -z + ln a: is concave and has its unique maximizer at x = 1.
Therefore the relations above imply that

lim cos 6k = lim 4* = 1. (5.42)
t 0 0 i t 0 0it—00

Now from (5.18)-(5.19)

11**11*
- 2slBkh +

It is clear from (5.42) that the last term converges to 0 for k 6 £/, which implies that
(5.26) holds.

D

This result immediately implies that the iterates are R-linearly convergent, regardless
of how often updating takes place.

Theorem 5*7 Suppose that the iterates {x&} generated by Algorithm II converge to a
solution point xm that satisfies Assumptions 5.1. Then the rate of convergence is at least
R-linear.

Proof. Theorem 5.6 implies that the condition number of the matrices {£*} is bounded.
Therefore all the iterates are good iterates, and reasoning as in the proof of Theorem 5.4
we conclude that for all j

II*; - *.|| < Cr»",
for some constants C > 0 and 0 < r < 1.

D

We can now show that the Broyden matrices Sk are bounded. This is easy to do,
since we have established that the iterates {xk} converge R-linearly. We make use of the
well-known bounded deterioration property for Broyden's method (cf. Lemma 8.2.1 in
Dennis and Schnabel (1983)), which states that under Assumptions 5.1

HSib+i - zTw.\\ < \\sk - zjw.\\ + c<7*,

for some constant C > 0. Due to the R-linear convergence of {x^}, we obtain:

k

< 00,

32



which shows that the matrices Sk remain bounded. We then see from (3.12) that the
Broyden corrections wk and wk satisfy

wk = O(\\pr\\) wk = 0(||/>Y||), (5.43)

and it is clear that the safeguards (3.13) and (3.14) become inactive for all large k.
Therefore the algorithm will not modify the information supplied by Broyden's method,
asymptotically, and this is important in establishing superlinear convergence.

6, Superl inear Convergence

Without the correction terms wk and TDk, and using appropriate update criteria,
Algorithm II is 2-step Q-superlinearly convergent. This was proved by Nocedal and
Overton (1985) assuming that Yk and Zk are orthogonal bases, and assuming that a
good starting matrix B\ is used. This result has been extended by Xie (1991) for more
general bases and for any starting matrix B\ > 0. In this section we will show that
if the correction terms are used in Algorithm II, the rate of convergence is 1-step Q
superlinear. This result is possible by Update Criterion I and by the selected application
of finite difference approximations, which allow BFGS updating to occur more frequently.

To establish superlinear convergence we need to ensure that the steplengths a* have
the value 1 for all large k. When a smooth merit function, such as Fletcher's differentiate
function (Fletcher (1973)) is used, it is not difficult to show that near the solution unit
steplengths give a sufficient reduction in the merit function and will be accepted. However
the non-differentiable l\ merit function (1.7) used in this paper may reject steplengths
of one, even very close to the solution. This so-called "Maratos effect11 requires that the
algorithm be modified to allow unit steplengths and to achieve a fast rate of convergence.
We will not consider this modification here, so as not to complicate the already lengthy
analysis of this paper and since it does not affect the main structure of the algorithm or
its essential properties. In the companion paper (Biegler, Nocedal and Schmid (1993)),
which is devoted to a numerical investigation of Algorithm II, we describe how to incor-
porate the non-monotone line search (or watchdog technique) of Chamberlain et al (1982)
that allows unit steplengths to be accepted for all large k. The analysis of the modified
algorithm would be similar to that presented in §5.5 of Byrd and Nocedal (1991).

In the remainder of this section we assume that the iterates generated by Algorithm II
converge R-linearly to a solution and that unit steplengths are taken for all large k. We
begin by showing that the damping parameter 0>, used in (3.43) to ensure that descent
directions are always generated, has the value of 1 for all large k.

We have shown in Theorem 5.6 that HJŜ "1!! is bounded above. Also (5.21), (5.2) and
(3.42) show that, when finite differences are used, wk = <3(||pY||) = O(lk*||)> and by
(5.43) we see that this is also the case when Broyden's method is used. Using these facts,
and noting that || • || < || • ||i, we see that there is a constant C such that the left hand
side of (3.38) can be bounded by

Ck[2cos0k\glZkwk\ + wT
kB:lZlgk + (kwjB]:lwk) < [CkC(\\ek\\ + Ck\\ck\\))\\ck\\u
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since g{Zk = O(||efc||). As the iterates converge to the solution, and since Qk < 1> the
term inside the square brackets is less than the constant p given in (3.38), showing that
& = 1 for all large k. This, and the remarks made at the end of §5 show that all the
safeguards included in Algorithm II become inactive asymptotically.

We can we show that the Broyden matrices satisfy the condition of Dennis and More
(1974) for superlinear convergence. Note from Algorithm II that a Broyden update of Sk
is always performed, regardless of whether a BFGS update of Bk takes place or not. The
following result is a straightforward modification of a well-known property for Broyden's
method.

Lemma 6.1 Suppose that the iterates generated by Algorithm II converge R-linearly to
a point xm that satisfies Assumptions 5.1 and that the matrices Sk remain bounded. Then

H(sfc - zjw.)dk\\
\\dk\\ • K°' '

Proof. The proof is essentially given in Griewank (1986), and is also very similar to the
analysis in Dennis and Schnabel (1983, pp. 183-4), but we will give it here for the sake
of completeness. Using the Broyden formula (3.9) we have

Sk+i-ZjW. = Sfc-

c <*TW , (ft - ZjWmsk)sl
$j.Sk

= (Sk - ZjW.)(I - sksl/slh) + (ft -

Defining Ek = S* - Z?W*, applying Lemma 8.2.5 of Dennis and Schnabel (1983),
recalling (3.10)-(3.11) and using the Mean Value theorem, we obtain

Rearranging this expression yields

< 2\\Ek\\F [\\Ek\\F - HJEMIP + 0(ck)\, (6.2)

and since the elements of Sk remain bounded we have for some A that for all k > k,
\\Ek\\ < A/2 and
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Since {<Jk} converges R-linearly, the last term is summable, which implies that

,:m H^*lla n
l i m . . . IIO = U.

Noting that Sk = <*kdk gives the desired result.
D

This lemma shows that Sk is an accurate approximation to ZjWm along d*, and
Theorem 5.6 shows that, when updating takes place, Bk is an accurate approximation to
Zj\VmZ* along pY . We will make use of these two facts and the following lemma, which
is an application of the well-known result of Boggs, Tolle and Wang (1982).

Lemma 6.2 Suppose that the iterates generated by Algorithm II converge R-linearly to
a point xm that satisfies Assumptions 5.1, and that ctk = 1 for all large k. If, in addition

\\BkPz + wk T Z?W.dk\\

then the rate of convergence is 1-step Q-superlinear.

Proof. Nocedal and Overtoil (1985, Theorem 3.2) show that if an algorithm of the form

= Xk + d*,

converges to a point xm that satisfies Assumptions 5.1, and if

- zjw.)dk\\
j j j j °

(6-5)
then the rate of convergence is superlinear. Algorithm II clearly satisfies the second
equation in (6.4), Ajdk = —c^. Now since dk = YkP\ + ZkPz we have

J ,[Yk Zk)~Uk = | £ J , (6.6)

and let us write Wk = TkpY for some matrix 7*. Then recalling that (k = 1 for all large
fc, we have from (3.43) that

Thus we can define Sk = [Tk Bk][Yk Zk]"1, and the condition (6.5) for superlinear con-
vergence is

\\([TkBk)\)'kZk]-*-ZTWm)dk\\ _
% u
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However, using (6.6) and wk = TkpY we have that [Tk Bk][Yk Zk]~ldk = TkpY + Bkpz =
wjt + Bkpz<, giving the desired result.

a
We can now prove the final result of this section. The analysis is complicated by the

fact that BFGS updating may not always take place, and by the fact that the correction
terms are sometimes computed by finite differences and sometimes by Broyden's method.
We therefore consider the following three sets of iterates, based on Update Criterion I
and illustrated in Figure 2.

and note that both ~fk and ak are summable.

Theorem 6.3 Suppose that the iterates generated by Algorithm II converge R-linearly
to a point xm that satisfies Assumptions 5.1, and that ak = 1 for all large k. Then the
rate of convergence is 1-step Q-superlinear.

Proof. Since dk = YkpY + Zkpz we have

Therefore assumption (5.3) implies that

llpvl! = O(||dfc||), HPZII = 0( | |<y) . (6.7)

Now

< \\BkPz - ZjWm

+0(\\ek\\\\Pz\\).

Since by (6.7) the last term is of order o(||pz||) = o(||<{*||), the objective of the proof is
to show that

11**1* - ZjW.ZmPz\\ + |K - ZTWmYkPy\\ = o(||dfc||), (6.8)

for this together with (6.3) will give the desired result. We consider the three regions
R\,Ri and R% separately. Algorithm II is designed so that in 7?2, tok must be computed
by finite differences. On the other hand since pz is recomputed in step 7, after which we
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can be in any of the three regions, we see that in R\ and #3 Wk may be computed by
finite differences or by Broyden.

If A: € Ru we have that ||pY|| = o(||pz||) = o(| |4 | | )• We also know from (5.43) that
Wk = O(| |PY| |) when the correction is computed by Broyden's method, and by (5.21) this
relation also holds when Wk is computed by finite differences. Therefore for k € Ru

\). (6.9)

Furthermore, since updating always takes place in Ru (5.26) holds i.e.

\\BkPz - Z?W.Zmpz\\ = o(| |4| |). (6.10)

We have thus established (6.8) for all k e R\.
Let us now suppose that k 6 #2* in which case Wk is computed by finite differences.

Using (5.22) we have that

|K - ZjW.YkPvW = o(\\pY\\) = od|*| |) f (6.11)

where the last step follows from (6.7). Since updating always takes place in #2* equation
(6.10) also holds in this case, and we conclude that (6.8) holds for all k € /?2-

Finally we consider the case when k 6 R3. Now pz satisfies

). (6.12)

If k € Rz and the correction term wk is computed by Broyden's method as Wk =
(see (3.12)) we have

\\wk-ZjW.Ykp*\\ =

Using (6.1), (6.12) and the boundedness of Sk we see that the right hand side is of order
o(| |*| |), so that (6.11) holds. On the other hand, if wk is computed by finite differences,
we have directly from (5.22) that (6.11) holds. In addition (6.12) and the boundedness
of Bk shows that (6.10) holds for all A: € R3, regardless of whether finite differences or
Broyden's method are used.

D

7. Final Remarks

We have presented a new reduced Hessian algorithm for large scale equality con-
strained optimization. The motivation for this work has been practical: an earlier re-
duced Hessian code of ours, designed for large problems, was often subject to instabilities,
and we have aimed to develop a more robust algorithm that resembles the full-space SQP
method, but is less expensive to implement. In a forthcoming paper (Biegler, Nocedal
and Schmid (1993)) we discuss our computational experience with the new method. That
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paper describes how to handle inequality constraints and discusses numerous important
details of implementation not considered here. These include the choices of all constants
and tolerances, the strategy for coping with the case when the basis matrix C in (2.1)
changes, and the procedure for computing the damping parameter Cfc, which was only
outlined in (3.39). We also discuss in that paper how to apply the updating criterion
away from the solution. We believe that the new algorithm can be very useful for solving
large problems, especially those with few degrees of freedom.

We have only focused on convergence results that helped us in the design of the
algorithm and that revealed its main properties. The analysis was complicated by two
factors. We did not assume that the BFGS matrices Bk or the Broyden matrices Sk
were bounded, which required careful consideration of their behavior. This analysis paid
off by suggesting safeguards that are useful in practice and ensure a superlinear rate of
convergence. The other complicating factor was the fact that the frequency of BFGS
updating can vary drastically: it can take place at every iteration, never, or in various
patterns. As was found earlier by Xie (1991), it is necessary to develop the theory
in sufficient generality to cover all of these cases, and this significantly increased the
complexity of some of the results.

Acknowledgement. We would like to thank It. Byrd for for many interesting discus-
sions on the subject of this paper.
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