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ABSTRACT

An efficient and rigorous strategy is presented for evaluating the first order sensitivity of

the optimal solution to changes in process parameters or process models. An algorithm that

constructs a reduced Hessian in the null space of the equality constraints is used to solve

the sensitivity equations; the resulting effort to solve these equations depends only on the

space of the decision (independent) variables. Consequently, large computational savings can

be realized because the solution procedure eliminates the need for obtaining second partial

derivatives with respect to tear (dependent) variables explicitly. The method is applied to

several flowsheeting examples in order to determine efficiently the sensitivity of the optimal

solution to parametric and physical property model changes.
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INTRODUCTION

Process simulation has become a widely accepted technique for carrying out design and

cost estimation studies for chemical process flowsheets. Large scale process simulators are

characterized by the presence of numerous complex mathematical models that constitute their

functional core. Various process related properties such as vapor-liquid equilibrium constants,

kinetic rates etc are computed based on the parameters residing within these models. In

reality, several model parameters such as product prices, or kinetic parameters may be

uncertain or may vary over a known range. Also, competing models may exist for physical

properties or unit operations with no single model being accurate over the entire range of

interest The predicted results from a simulation may therefore be subject to uncertainty,

due to imprecise modeling of the process. Also, trends in changing the optimal solution are

often of interest with variations in fixed parameters.

Recent developments in the area of process optimization have provided us with the ability

to implement simultaneous simulation and optimization techniques using large-scale process

simulators (Berna et a/., 1980; Jirapongphan et al.% 1980; Biegler & Hughes, 1982). However.

because of the uncertainties and possible variations involved in process parameters or models,

an optimal solution gained from a deterministic optimization problem may not, by itself, be

entirely useful^ Therefore, as a first step, postoptimality analysis becomes necessary to

ascertain quantitatively how parametric variations and model selection affect the optimal

results obtained under nominal conditions.

In the past, the parametric sensitivity problem has been addressed for simulation by

several researchers. Atherton (Atherton et a/., 1975) proposed a statistical approach to

determine sensitivity coefficients to measure the influence of uncertainties in model

parameters on the solutions obtained from incorporating a particular model. In the context

of flowsheet simulation, Volin and Ostrovskiy developed an approach based on setting up



and solving an adjoint flowsheet system to the nominal problem

(Volin and Ostrovskiy, 1981). A more direct approach to determine the sensitivities of

flowsheet variables to parametric variations utilizing the block Jacobians of unit modules was

presented recently (Gallagher and Kramer, 1984). Their approach involves constructing the

parametric derivative matrix by forward difference perturbations in a manner that resembles

the chainruling procedure employed in other simulation and optimization studies

(Stadtherr and Chen, 1983; Shivaram and Biegler, 1983).

y In this paper we present an efficient and rigorous strategy for evaluating the first order

sensitivity of the optimal solution to changes in process parameters or models. As a first

step we partition the process variables into two sets, the independent (decision) variables, x

and the dependent (tear) variables, y. When the optimum of the nominal problem satisfies

the second order sufficiency conditions (local optimality), the sensitivity results for a

parametric nonlinear programming problem are well known if the gradients of the active

constraints are linearly independent and strict complementary slackness holds

(Fiacco and McCormick, 1968; Fiacco, 1976). In Fiacco's formulation, the application of

sensitivity analysis to determine the first order sensitivity of the optimal solution requires

the Hessian of the Lagrange function in the combined space of the independent and

dependent variables. The computational effort involved in building the Hessian can become

prohibitively large even for a moderately sized flowsheet with a combined <x + </>

dimensionality in the range 2 0 - 5 0 . In this paper, we initially develop a reduced Hessian

decomposition algorithm to solve the sensitivity equations for parametric variations. In this

approach, flowsheet perturbations, most frequently employed in generating second derivative

information for constructing the Hessian, need be performed only in the space of decision

variables. Consequently, significant computational savings are realized in the evaluation of the

sensitivity of the optimum to parametric variations. The procedure yields sensitivity <



infonnation on all optimal variables but the equality constraint multipliers.

We then develop the theory for analyzing the sensitivity of the optimum to model

variations. The problem is formulated as computation of a Newton step in the space of the

new model and the resulting set of linear equations is solved to determine the changes in

the variables. In parallel with the parametric sensitivity problem, the reduced Hessian

strategy can be applied for solving the linear system for model sensitivity. However, unlike

the parametric case where the active set is retained under first order variations in the

parameters, the model sensitivity problem must take into account changes in the active set

due to model changes. To this end, we develop a novel procedure that may rigorously

require solving a Mixed Integer Nonlinear Programming (MINLP) problem, although simpler

approaches can be used and are demonstrated.

We illustrate the reduced Hessian procedure and the model sensitivity approach with

simple analytical examples. In addition, several flowsheet optimization problems are

considered in order to demonstrate the effectiveness of these approaches.

PARAMETRIC SENSITIVITY ANALYSIS

Consider the parameter based flowsheet optimization problem:

- • - .

P(p): Min
2

s.t giz.p°) * 0

h(z,p°) = 0 (1)

where

p = input parameter for base case solution

2 = process variable, z =

<fr - objective function



g - design inequality constraint

h - equality (tear) constraint

Decision variables, x, are usually adjusted by the designer and can include equipment sizes

or temperatures and pressures in the flowsheet Dependent variables, y9 can be computed

from equality constraints once the decision variables are specified. These include the

flowrates, pressure and enthalpy of the recycle streams in the flowsheet as well as any other

variable that is specified explicitly by an equation. For convenience these are also referred

to as tear variables.

At the optimal solution, when the KKT conditions are satisfied we have the following

relations:

where

V^(z° ,p° ) • a°V^(z o ,p o ) «• v°V/Kzo .p°) = 0

uogiz°.p9) = 0; a° * 0; <?(ro.po) £ 0

Mr°.p°) = 0

z° - base case optimal solution, (x°,(/°l

a° ,v° - KKT multipliers at base case optimum

(2)

This result may be interpreted to mean that for the supplied input parameters. p° . the

variable vector, z°, is a local minimum of P(p°) with the corresponding KKT multipliers

u° ,v° . In the context of flowsheet optimization the input parameter vector. p°. can

include a subset of internal process parameters (e.g. kinetic rate constant terms) and

externally supplied parameters (eg. feed flowrates) that are utilized for simulating the

constituent process modules.



The parametric sensitivity problem addressed in this paper is to obtain first order changes in

the optimal process variables and the KKT multipliers with respect to the parameters, p.

The development of the mathematical formulation for sensitivity analysis is based on the

classical Implicit Function Theorem (Fiaceo.1976; Luenberger.1973). We start with the

assumption that at the local minimum* z°, the following conditions are satisfied:

1. the functions defining P(p°) are continuously differentiate in (z, p) in a

neighborhood of (r°.p°)

1 the constraint gradients are linearly independent at z° and, consequently. Strict

Complementary Slackness holds for P(p°) at z° with unique KKT multipliers, u°

and v° and

3. the Second Order Sufficiency conditions are met (cf. Appendix I)

From the KKT conditions at the optimum, r° , we have:

gA(z°.P°) = 0

p°) = 0 (3)

where

L - Lagrange function

gA - active inequality constraint

In order to satisfy these conditions for a perturbation, Ap. in the parameter p. about p°.

we can find the first order corrections by noting that:

d (V^Ur0./*0)) = V r 2 L° dz + Vr / JL° dp = 0

d$A = V ^ dz • V ^ dp - 0 (4)

dA = V J / J 0 dz + V Jtc dp = 0



Rearranging these expressions results in the linear system of equations:

VI*
V To

0

0

0

0

V ,T«

(5)

In terms of the decision and tear variables Eq. 5 can be reformulated in the form:

' V x p L T °

VJ/PL T°

V I °
.VTo

V L°

yyxL

T7 «̂ T o
• w

vx/,T«»

1

vi°
vT-

v:
V:
0

0

Vx*°"

0

0

V xTo

P*

v T o

V uTo

VpuT«

(6)

If Strict Complementary Slackness holds the active set identified for the base optimal

solution is retained within an € - neighborhood of the nominal parameters (Fiacco, 1976).

The derivative vector on the right side of Eq, 6 carries the information regarding the

directional derivatives of the decisions and tears and the KKT multipliers at the optimum.

This information can be used to calculate first order deviations in the optimal variable

vector corresponding to a change, Ap, in the parameters, p. Therefore, in the neighborhood

of the base case optimum we have (for CO = x,</,u.v):

co° Ap (7)

where

- modified optimal solution vector

For flowsheeting applications, the gradients of the Lagrange function, L and constraints in



Eq. 6 are usually generated by a numerical approximation so that (for \J/

= VXL, V ^ . gA, h):

<«>

Alternatively, a response to a specified change in a linear combination of the parameters,

Ap, can be made by computing the directional derivatives for x, c/. a and v. From

Eq. 6 and Eq. 7, we have:

where

V2L|ACJ] = V2L^7p00T Ap^= -V ( V L ) T

VL=[VXL

The last term on the right hand side can be calculated by the finite difference

approximation:

VUp €Ap) VUp)
( V L ° ) = (10)

Of course, we note that the first order sensitivities are necessarily accurate only for a small

€Ap. In addition, in calculating derivatives using finite difference formulae, there are a

number of factors that contribute to errors in these directional derivatives and these must

be carefully controlled.

In order to solve Eq. 9 we need to construct the coefficient matrix consisting of first and

second partial terms. The optimization of the parametric base case flowsheet readily supplies

the gradient information V ^ , V ^ . (for ^ - ^. g* h). In addition we require the



Hessian matrix, B, given by:

B = (ID

Unless the second derivatives are inexpensive to calculate and an actual constrained Newton

method is used, the B matrix requires some effort to calculate. Many standard nonlinear

programming algorithms approximate such matrices of second partials with quasi-Newton

formulae. While these enhance the efficiency of the optimization, quasi-Newton formulae

for B are inappropriate for sensitivity analysis. A justification for requiring the exact B

matrix is given in Appendix II.

REDUCED HESSIAN EVALUATION

The motivation for constructing a Hessian in the reduced space of decision variables comes

from recognizing that the dimensionality of the decision variables, x is often much smaller

than that of the tear variables, y. Consequently, large savings in computations can be

achieved by decomposing the linear system in Eq. 9 so that the decision and tear variables

are decoupled. The smaller set of decision variable deviations can be solved independently

and can then be used to solve for the larger set of tear variable deviations. By working in

the reduced sj&ce, a smaller matrix is constructed by perturbing x and y simultaneously so

that the linearizations of the equality constraints are always specified

The details of this decomposition are presented in Appendix III. Using block Gaussian

elimination on the first two rows of Eq. 9. the resulting linear system is given by

a

b

f

e

I

0

0

0

0

I

0

0

E

L

H

QT

0

M

Q

0

A«/°

AV°

AX°

Att°

(12)



where

I = Identity Matrix

E = - A = CVyh1*)-* VxAT o

M

E>

Q = *xX ~ V <VO)" V *
H = VX

a =

e =

b = -i Ah

f = A(VXL°) -

The effective reduced space linear system of equations can then be written as

f

e

H

QT

Q

0

AX°

Att°
(13)

The reduced matrix, H can be constructed by simultaneously perturbing the decision and tear

variables accordingly as ( AX. -(7yhT)Vxh AX ) (cf. Appendix III for details).

The number of flowsheet evaluations, NFE(. required for the reduced form in Eq. 13 is

given by the sum:

NFE, = (14)

where



10

n - number of independent (decision) variables

In the combined space of the decision and tear variables the corresponding number of

flowsheet evaluations required, NFE2, for Eq. 9 is:

2 ( x „ x ) (15)
where * *

Hy - number of dependent (tear) variables

The savings in the number of flowsheet evaluations compared with that required for

complete Hessian evaluation is thus:

NFE2 - NFE, = V* ( ny
2 + 2 /?x ( ny - 1 ) • ny ) - 2 nx - 1 (16)

It can be seen immediately that the savings in the number of flowsheet evaluations is

directly proportional to the square of the dimension of the dependent variables, n^ By

eliminating the need for developing explicit second partial information in the tear variable

space, the reduced Hessian procedure significantly decreases the computational overhead for

sensitivity analysis. The decision space second partials can be obtained directly by introducing

corresponding flowsheet perturbations. Sensitivities for x and a are readily obtained; those

for y are backed out from E Ax. The only information not obtained from Eq. 12 are

sensitivities for v. Normally sensitivities for equality constrained multipliers are not as

important as those for state variables.

To illustrate the reduced Hessian sensitivity approach* we first consider a small analytical

example.
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Example 1: Parametric Sensitivity Problem

Consider the following minimization problem:

Min <fr: x* + y * • y2
2

s.L hx = 6 Xj • 3 y% • 2 y2 - ux = 0

The problem includes one independent variable, x{t and two dependent variables, y] and y2 .

The terms a , and 0L2 correspond to the parameters. We wish to analyze the sensitivity of

the optimum to perturbations in these parameters about their nominal values, which in this

case may be taken as, 0^° = 6.0 and 0C2° = 1.0

The Lagrange function for this problem can be written as:

The base case optimum can be found to be at (xl°.yl
o.y2°) = (0.7449, 0.4082. 0.1331) with

the associated KKT multipliers (y^. v2
o) = (-0.2245, -0.1429). Also we can evaluate the

following terms:

V »• = [ 6 «,• ] = [ 6 I ]

V SV

To solve for the perturbed optimum due to a perturbation, AOLX & At*2. in the
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parameters, 0Cx and &2, about their nominal values we use the reduced Hessian strategy.

Using this approach (cf. Appendix HI for details) the linear system to detemine the

deviations in the decision space becomes:

H AX| = - f

where

H = [ 7.84 ]

f = [ A«2 v2
o - 0.88 Attj • 0.56 Aa, x%° ]

If we assume AC^ = 0.1 and A<*2 = 0.0S, the corresponding deviations in the variable, x

can be found to be: Ax% = 9.4752 x 10"\ The parametric sensitivity analysis predicts the

independent variable value at the perturbed optimum to be:

Xi
M = xt° • Axx = 0.7544

Using the information regarding the sensitivity of the independent variable, we can solve for

corresponding sensitivities of the dependent variables, Ayf and Ay2. so that

y,M - y^^Ay, = 0.4082 - 0.0101 = 0.3981

y2
M s y2°^Ay2 = 0.1531 ^ 0.0367 = 0.1898

Therefore perturbed optimum with ttt
M = 6.1 and tt2

M = 1.05 is found to be at

H (0.7544. 0.3981. 0.1898)

The true optimum for the same set of parameter values lies at

(x%\ y*. y2*) = (0.7540. 0.3985, ai902)
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SENSITIVITY ANALYSIS FOR MODEL VARIATIONS

Usually, the process optimum is sensitive not just to uncertain or variable process

parameters but to the choice of the process models as well. Often the process models, such

as those describing unit operations (Stewart, 1983; Klein 1983) or physical properties

(O'Connell, 1983; Grens, 1983) can be difficult and expensive to solve. For optimization as

well as for simulation, more complicated models are frequently needed because of the

accuracy they provide.

A frequently asked question, that is often problem dependent, regards which models are

accurate yet simple enough for process optimization. For process simulation this question is

often resolved by running competing models side by side. In fact, for more efficient

operation, simple models are often embedded within simulators to speed up the solution of

more rigorous models. This is especially helpful for physical property calculations (Chimowitz

et a/., 1983; Bryan and Grens, 1983). For process optimization the use of competing models

may lead to very different results even though solutions of simulation problems may be

similar. On the other hand, the nature of the optimization problem may lead two competing

and functionally different models to identify the same active constraint set and perhaps even

the same values for the decision variables as the optimal ones.

In this paper^we develop a strategy for evaluating the sensitivity of the optimal solution

to the choice of the process model (e.g. thermodynamic and/or unit operations model). We

note that this problem is conceptually different from parametric sensitivity because process

relationships and not parameters are being changed. Consequently, the methods discussed in

the first part cannot be applied directly to this problem. Instead we consider the first order

sensitivity (or direction) if one starts from the optimum of Model I and takes a Newton

step for the optimality conditions in the space of Model II. Using this concept we develop

a slightly different strategy that allows application of some features of Part I, in particular.
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the reduced Hessian procedure.

Consider the model based optimization problem:

min
x.yM

s.t g\x.yM) £ 0

tf(x.yM) = 0 (17)

r(x.y9k) = fe - K(x,y) = 0

where

fr - objective function

g9 - inequality constraint

tt - equality (tear) constraint

fe - physical (model based) property

K - model for property evaluation

The property, fe, in Eq. 17 is estimated by using Model I given by, fe = K(x.y). At the

optimum with respect to Model I, (x | t j/t. u | t vf. k%). from the KKT conditions we have:

fe,) = 0

fe,) = 0

^fe,) = 0

lyxMx) = 0 (18)

where

V - Lagrange function

gA
9 - active inequality constraint
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Once again, the first order corrections to satisfy these conditions corresponding to a small

perturbation. Afe, in the property, fe, about fe|f can be found from:

.fe,)) = V X X L / dx • VXIJL; dy • vx f e L l- dfe = o

1.k|» = V y x L/ dx * V ^ L / dy + V ^ L / dfe = 0

ix^k,)) = V fexL; dx «• V f e y L ; dy • VfefeL; dfe = o

d^f - v x ^ ; d * • V A I . ^ ' vfe^;d f e = °
dtr = Vx/? t

l dx • V^A^ dy • V f e^ f dfe « 0

df = - VXK dx - V^K dy * I dfe = 0

If the competing model (Model II) is given by. fe = Kf(x.y). then we are interested in

finding out how the decision variables and the active inequalities are modified with respect

to the new model The sensitivity relationships in Eq. 19 have been expressed explicitly in

terms of the model equations. Since, the property evaluated by the model, fe, is essentially a

function of the decision and tear variables, this system can be first transformed to a form

that implicitly accounts for the presence of the model. This proves advantageous when the

dimension of the model variable, fe. is large, as is almost always the case with stage-wise

unit operations such as distillation involving multicomponent systems. The equivalent problem

can be formulated as:

min $ (x, y. K(x.

s.t g (x. y. K(x.0) £ 0

h (x. y. K(x.y)) = 0 (20)

For Model I. K(x,(f). the optimum has been assumed to be at T = (x|V yx). However the
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KKT conditions at the same point may not be satisfied with respect to Model II

fe = K*(x.y), Le.

(x,. yx, K'ix^)

gA(xx. yx, K'(xt4t))

ttx,. yx. K'Ot,^,))

* 0 (21)

where

L g. h - Lagrange function, inequality constraint and equality constraint
defined w.r.L Model II.

Let us assume that the optimum with respect to Model II is at % - (x2. y2). If we choose

a consistent active set (we will discuss this point later) we can write a first order correction

for the optimality conditions with respect to Model IL Defining a Newton step in the space

of Model II leads to:

V* v.
: o

v.T

V.'
V.
0

0

AX

AU

Av

= 0 (22)

which gives a first order correction for the optimal solution for Model II. Rearranging this

equation we have:

v.
^ A ,

h

AX

Ay

AU

AU

(23)
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The gradients required to solve Eq. 23 are now evaluated with respect to Model II, at the

optimal solution for Model I.

In developing the above relationships we first consider the case where the same active set

with respect to Model I has been assumed to be retained at the optimum for Model IL

The KKT muliplier u. , corresponding to an active inequality, g. , therefore equals u^

provided g is active for Model II. If this is true, the Aa obtained from solving Eq. 23 is

such that itj + Aa remains positive. Once again the reduced Hessian strategy, discussed

previously, can be applied to the linear system in Eq. 23 so that the corrections for

x and a are obtained first; the sensitivity for y can be computed using the Ax information.

We now consider an analytical example to demonstrate this approach.

Example 2: Model Sensitivity Problem Under Active Set Retention

Consider the following model based optimization problem:

Min <f>: 4 (x - 4)2 • 9 (k - S)2

x,k

s.L g%: k • 5 x - 23.2 £ 0

gj k - 8 £ 0

k £ 0 ; x £ 0

The variable, k, represents the model based property in this problem. To illustrate the model

sensitivity approach, we consider two simple defining equations for the property, k, defined

in terms of the variable, x :

Model I: k - 0.2 x2 = 0

Model II: k - e°3776x = 0
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We first compute the optimum for this problem with respect to Model I. The optimal

solution lies at:

(xif kJf ujf v,) = ( 4, 3.2, 7.8545, 24.5455 )

The KKT multiplier, uj, corresponds to the active inequality constraint, g}, at the optimum

with respect to Model I; it can be directly seen that the inequality constraint, g is inactive

at this point so that the corresponding KKT multiplier, u* = 0. Our objective is to

compute the sensitivity of the optimal solution when the defining model for k is changed

from Model I to Model IL

If we assume that the active set determined for the optimum with respect to Model I is

retained at the optimum for Model II, we can write the Lagrange function with respect to

Model II at z. as:

t = 4 (x - 4)2 + 9 (k - 5)2 + u (k + 5 x - 23.2) • v (k - e°3776x)

By taking a Newton step in order to determine the first order correction to the problem

variables, the resulting linear system becomes:

-17148

0

0

-1.3295

7.8567

0

5

1.7106

0

18

1

1

5

1

0

0

-1.7106

1

0

0

AX

Ak

AU

Av

The solution to this system predicts the following corrections for the variables and the KKT
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multipliers:

Ax = -0.19813 ; Ak = 0.9906

Au1 = -4.3727 ; Av = -13.4584

The predicted optimal solution with respect to Model II therefore becomes:

(x2. k2. \i[. v2) = (3.8019. 4.1906. 3.4818. 11.0871)

If we carry out the optimization directly with respect to Model II we find that the true

optimum lies at

(x2. k2. u[. v2) = (3.8. 4.2. 3.7109. 10.6891)

The assumed active set remains consistent under the model change as evidenced by the value

of the KKT multiplier, u1. Fig. 1 gives a physical picture of the change in the optimal

solution from Model I to Model II; both the solutions. A and B. lie on the same active

constraint. gx.

MODEL SENSITIVITY ANALYSIS UNDER ACTIVE SET VARIATIONS

In general, the active set determined for Model I need not be retained at the modified

optimum for Model II. When this occurs the correct active set is not known a priori to

construct the sensitivity relationships. If the Newton step from the Model I optimum, F. is

small we can assume that the active set can be determined by first order corrections of x.

y and a. Thus we have.

VxxZ.(2\o.vl) Ax • VxyL(TjLvx) Ay • V^CT.u.v) = 0

V S L Ax • V ^ G - . u . v , ) Ay • V^.(r.u.v) = 0
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AX • V ^ T ( r ) Ay • g(T) z 0 (24)

Vx/?T(r) AX • V^/?T(r) Ay + /HD = 0

u = u + Au £ 0 ; v = v1 + Av

(u + Au) ( Vx5rT(D Ax • V ^ F ) Ay * $r(F) ) = 0

which can be found from the following quadratic program, using z =

Min V<t>\T) AZ • \ Az1 V22L(TSLvx) AZ

VgT<r> AZ <L 0

- V/?T(F) Az = 0 (25)

u = a • Au ; v s vx • Av

We assume that $<F) has linearly independent columns because this guarantees strict

complementary slackness for the QP solution. Le.

a ( g(T) • VflrT(F) Az ) = 0

implies

for giT) + VgJ(T) Az = 0. a > 0 (26)

for g(T) + V^T(F) Az < 0. a = 0

However the term. a. in V2/L is unknown. This gives rise to two different cases.

Case A Assume a = aj and solve the QP to determine u. If a. f 0. for all a j * 0.

then we have chosen a consistent active set This is the same situation referred to in the

previous section. If this fails, we need to set some of the a to zero and try again.

Case B. In this case, we assume all the a = 0. In doing so, we merely change the starting
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point for the Newton step and let the QP select a that determine the active set This QP is

solvable if and only if

g(T) • VgT(Y) Ar £ 0 is feasible

and

AzT VZ.O-.O.v,) Az = - ArT V<t>(T)

where

ArT V p A ( D = 0 ; AzT V M D = 0 (27)

Very often. Case A provides a simple enough way to estimate the correct active set. A

more rigorous way of choosing the active set is given by a Mixed Integer Nonlinear

Programming (MINLP) formulation in Appendix IV. To see how the active set changes as

a result of model variations consider a small modification of the last example.

Example 3: Model Sensitivity under Active Set Variation

Let us once again consider the model based minimization problem:

Min $: 4 (x - 4)2 • 9 (k - 5)2

x*k

S.L g%: k • 5 x - 23.2 £ 0

g2: k - 3.5 £ 0

k * 0 ; x * 0

This problem is similar to the one previously considered for model sensitivity; however, the

upper bound for the model based property, k, has been reduced resulting in a change for

the inequality constraint, gr Once again we wish to study the first order correction to the

optimal solution in going from the optimum with respect to Model I, k - 0.2 x2 = 0. to

the optimum with respect to Model II, k - e°*377** - a
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We first assume the case when the active set is retained The solution to this case, as

obtained in Example 1, clearly makes g2 infeasible (Fig. 2). By setting u1 = 0 and

introducing g2 into the sensitivity equation, with u2 = 09 (Case B) we develop the modified

system for the sensitivity relationship:

7.8567

0

0

1.7106

0

18

1

1

0

1

0

0

-1.7106

1

0

0

Ax

Ak

AU2

Av

-41.9873

-7.8545

-0.3

-L3295

The perturbed optimum based on the first order correction is found to be:

(x2. k2. u*. v2) = (3.3982, 3.5, 24.2357, 17643)

The true optimum with respect to Model II is at

(x2. k2. u*. v2) = (3.3172, 3.5. 31.1325. -4.1324)

It may be noted that the constraint gx remains feasible; however the model change

introduces a chapge in the active set

For illustration, the above examples use a full Hessian approach for the Newton steps. We

note that the reduced Hessian strategy can be applied in a straightforward manner for model

sensitivity analysis. In the following process examples, a reduced, Hessian approach is

employed for both parametric and modd sensitivity analysis.
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A Simple Flash Recycle Flowsheet

A simple flash recycle problem flowsheet serves to demonstrate the application of the

reduced Hessian strategy for parametric sensitivity and the model sensitivity approach. The

flowsheet is presented in Fig. 3. A light hydrocarbon feed is mixed with recycled bottoms

and flashed adiabatically. The vapor is removed as a product and the liquid is split into a

bottoms product and the recycle, which is pumped back to the feed. The problem

specifications are presented in Table. L The process was optimized using the simulator SPAD

from the University of Wisconsin-Madison on a DEC-20 computer.

The flowsheet includes two decision variables, the splitter ratio and the pressure in the

flash. The six component flowrates and specific enthalpy of the recycle stream together

constitute the seven tear variables for the problem. Since the outlet pressure of the pump is

prefixed in this case the recycle stream pressure does not figure in the set of tear variables.

The objective function for the monotonic optimization problem corresponds to the flowrate

of the lightest component in the overheads from the flash; for the nonlinear case a

predetermined combination of the component flows in the flash overheads was maximized.

For the parametric senstivity study, the flowrates of the components in the hydrocarbon

feed stream were perturbed about their nominal values. The results of the parametric

sensitivity analysis for both monotonic and nonlinear optimization problems are shown in

Table. II.

In the model sensitivity case, two competing models were employed to compute the

physical properties for vapor-liquid equilibrium in the flash: the Ideal Raoulfs law model

and the Ghao-Seader model. The sensitivity of the Ideal Optimum on applying a first order

correction procedure with respect to the Cbao-Seader model was first studied for both

monotonic as well as nonlinear objectives. Going from the Chao-Seader optimum to the

ideal Raoulfs Law model was considered next
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The model sensitivity results are given in Table. III. For the monotonic objective function,

the splitter ratio and the flash pressure stay at their respective lower bounds regardless of

the modeL It may be noted that the active set is retained and the KKT multipliers

corresponding to the active bounds, u = Uj+Au, remain positive. However, in going from the

Raoult's Law Model to the Chao-Seader model, the nonlinear objective function gives rise to

the case in which the active set is no longer retained; in this case the problem is solved by

setting all a - 0 and the solution to the sensitivity equation gives a feasible move for the

decision variables. The requirement for satisfying strict complementarity makes the modified

KKT multipliers for the inequality constraints, a1 = a2 = 0 since both decisions are no

longer at their bounds. Note, however, that since the constraint corresponding to the

decision variable bound happens to be linear, the reduced Hessian is not affected in the

above case. Furthermore the true optimum for the Chao-Seader model makes the constraint,

x, £ 0.8, active. We will comment on this after considering the following flowsheet example.

Monochlorobenzene Separation Flowsheet

This problem is adapted from an example in the FLOWTRAN manual (Fig. 1.1. Seader et

al.% 1977). The flowsheet for this problem is shown in Fig. 4. A mixture of HC1, Benzene

and Monochlorobenzene is fed to the separation process; benzene and monochlorobenzene

are separated in a distillation column and a part of the bottoms from this column is split as

recycle and fed to the absorber. The process was optimized using the FLOWTRAN simulator

on a VAX-11/780. The base case feed flows (parameters) and the process models used for

computing vapor-liqiud equilibrium properties are given in Table. IV.

Once again for the parametric case a variation in the feed was introduced at the base case

optimum. The problem involves 6 decision variables and 5 tear variables. The problem was

solved using the reduced Hessian procedure; the results of the parametric sensitivity analysis

are presented in Table. V. The number of flowsheet evaluations in the reduced Hessian case
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with 6 decision variables is 41 and the corresponding CPU time required is 250.1 seconds. A

full Hessian computation for the same problem requires 67 flowsheet evaluations

corresponding to an equivalent time consumption of 408.7, both times computed on a VAX-

11/780. The reduction in time consumption for sensitivity analysis from the reduced Hessian

strategy is of the order of 39% compared with full Hessian evaluation.

Sensitivity of the optimal solution to a variation in process model was studied by changing

the thermodynamic model that evaluates the liquid phase activity coefficients for the

components. The Ideal Solution option in FLOWTRAN was used as the base case model

(Model I) to compute this property; the Regular Solution Model was chosen as the

alternative model (Model II) to evaluate the activity coefficients. The results of the model

sensitivity analysis are shown in Table. VI. In solving the sensitivity equations using the

reduced Hessian strategy, the active set determined for the base case optimum has been

assumed to be retained. The results indicate that this active set Is retained at the optimal

solution determined from a first order correction. However, at the true flowsheet optimum

corresponding to Model II (Regular Solution) we have a different active set with the

Absorber Input Temperature, x6 reaching its lower bound. The total number of flowsheet

evaluations required in this case is 52 corresponding to a CPU time requirement of 317.2

seconds whereas a full Hessian computation for model sensitivity analysis would require 78

flowsheet evaluations with an equivalent time requirement of 475.8 seconds; the savings in

this case is of the order of 33%.

It may be noted that the number of tear variables in this flowsheet is in fact less than

the number of recycle variables and hence the savings in computation time is limited. In

general the number of tear variables exceeds the number of decision variables by a factor

of 3 or 4 which makes the reduced Hessian procedure computationally very attractive for

sensitivity analysis.
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The treatment of model sensitivity as a Newton step in the spaceiof the new model uses

first order linearization in the decisions and tears, about the base case optimum to satisfy

the KKT conditions at the modified optimal solution. The accuracy of this linearization

dictates the prediction of the correct active set for the modified optimum. The above

examples indicate that, in general the model sensitivity algorithm performs well in

determining the changes in the optimal solution to model variations. If the objective

function or the constraint happens to be highly nonlinear then the linearization may not be

sufficient to predict the change in the active set accurately. This can be seen from the

nonlinear objective function problem (Raoult's Law to Chao-Seader), for the simple flash

flowsheet The linearization also controls the trend in the predicted change for a process

variable; note that in the monochlorobenzene separation problem the actual change in the

absorber input temperature, x6, is in a direction opposite to the one obtained from model

sensitivity analysis. Even in this case, the approach gives the right predictions for sensitivity

directions for all other decision variables.

CONCLUSIONS

Significant computational savings are realized by applying the reduced Hessian algorithm

to determine the sensitivity of an optimal solution of a process flowsheet to parametric

variations. The reduced Hessian strategy, which yields sensitivity information on all but the

equality constraint multipliers, performs the finite difference perturbations required for

constructing the Hessian only in the space of the independent (decision) variables. The

reduction in the number of flowsheet evaluations is seen to be proportional to the square of

the number of the dependent (tear) variables. The procedure is very efficient especially for

sensitivity analysis of medium to large sized flowsheets that involve multiple components and

recycle loops.

The sensitivity of the optimal solution to changes in process models has been ircaicd as a
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Newton step in the space of the new model This results in a linear system of equations

similar to the one obtained for parametric sensitivity and allows the reduced Hessian

procedure to be directly extended for model sensitivity analysis. The problem of determining

the correct active set can be dealt with rigorously by formulating and solving a Mixed

Integer Nonlinear Program (MINLP). From limited calculations with a simple flash recycle

flowsheet and a monochlorobenzene separation flowsheet, the model sensitivity approach

seems to perform well in predicting the changes in the flowsheet optimum to model

variations.
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APPENDIX I

The following constraint conditions are assumed to be satisfied at a local minimum in

developing the basis for sensitivity analysis of the optimum to parametric and model

variations (Edahl, 1982).

Linear Independence of Constraint Gradients

At z° , a feasible solution to P(p°), the gradients of the binding constraints form a

linearly independent set, Le.

]> ./7°) = 0

and g. = 0 => u. = v. = 0 for all i j

Strict Complementary Slackness [ SCS ]

For z°. an isolated minimizes of P(p°). SCS holds if the KKT multipliers u°. v/° are

such that

V/f>° • tt° V ^ ° + v° V ^ ° = 0

uoT giz°.p°) = 0

u° * 0

and g.(zo.p°) = 0 => u.° > 0

Note: <fr° => ^(z°.p°); similarly g°. h°

Second Order Sufficient Condition [ SOC ]

SOC is said to hold for P(p°) at z° if:

1) z° is a fciasible point of P(p°)

There exists a°, v° such that

2) V 7 ^ ° * a o V ^ ° + v ° V / ° = 0



u°g(z\p*) = 0

u° * 0

and

3) for all non-zero q € 1R" satisfying V^A
T<7 = 0 and V/?Tqr = 0 we have

<7T V Z 2 Ur° ,a o . v o .p° ) q > 0

where L = <j> + ug + vh (Lagrange function).



APPENDIX II

Let B be the Hessian of the Lagrange function (Eq. 11) and let Qk be its approximation

from a quasi-Newton update fonnula applied at each SQP iteration. For example, the BFGS

update formula is given by :

Q" d dJ Qk n nT

Qk + 1 - Q k 7
d7 Qk d HT d

If B is positive definite, the following relation applies (Boggs et at., 1982) :

II-2
k -» 00

where z is the null space of f V ^ A V ^ 1 .

Otherwise, it has been conjectured (Powell 1978) that the following property applies :

k -^ 00 IUII

In either case, one can show that at the limit point Qk and B differ by A D AT. where

A = T V ^ A V^ 1 and D is an unknown symmetric matrix. Edahl (1982) has shown that

this difference does not affect the sensitivity of the optimal variables, but substitution of

the limit point Qk causes the sensitivity of the multipliers to differ by

: v ]T.
Aside from this, Q is usually initialized arbitrarily (e.g. Q° = I) and from Eq. II-l one



can see that Qk can be slow to converge to its limit point even as both d and 71 vanish;

and the above properties hold only for Qk at its limit point For example, an optimization

that satisfies the Kuhn-Tucker tolerance after a few iterations may have a Qk far away

from B and close to Q°. The effect of using Qk for sensitivity is therefore inaccurate.

The only reliable way to substitute Qk for B in the sensitivity analysis is to ensure that

Qk has converged to its limit This could require more iterations than solving the

optimization problem and therefore prove inefficient in terms of algorithmic performance.

Moreover, numerical errors may prevent solution of the optimization problem to a tolerance

tight enough for convergence of Qk. Consequently, we have focused instead on an efficient

scheme for calculating a reduced form of B directly.



APPENDIX HI

Reduced Hessian Decomposition Strategy

Consider the linear system of equations:

A(VXL)

A(V^U

A * A

Ah

V X X L

v-
VI
VT

V x y L

V-
VI
V T

VA

V*
0

0

V '
V
0

0

AX

A *

AU

AV

III-l

Rearranging the system of equations in Eq. III-l, we gee

Ah

AC7yL)

A(VXL)

A(7A

V
vyyL

V x ^

.VI

0

V
vx/>
0

vx/»T

VL

V x x L

VI

0

VA

VA

0

A*

AV

AX

AU

III-2

We note that the term, VjJ>T. is square and non-singular. Hence on applying a Gaussian

elimination to Eq. Ill—2 we get the resulting system (Berna et a/., 1980):

a

b

f

e

I

0

0

0

0

I

0

0

E

L

H

QT

0

M

Q

0

Ay

AV

AX

AU

where the terms have been defined previously in the section on
Reduced Hessian Evaluation (refer Eq. 12)

111-3

It is apparent that we have a decomposed (reduced) system only in the space of the decision



variable, x. in order to solve the sensitivity equation given by:

f

e

H

QT

Q

o
AX

Au
III-4

In Eq. III-4 the terms Q and QT are readily obtained from the information regarding the

constraint gradients at the local minimum from the nominal model based optimization

problem. However the terms H and f need to be derived.

Let us first consider the derivation for f. The term, V x / i

for f can be expanded at the base case optimum, (x, (/,)• as follows:

Ah =

(V^T)*! Ah.

{yx.

Once again the second term on the right side of Eq. Ill—5 is directly obtained from the

base case optimization results. However, the first term on the right hand side of this

equation involves perturbations in the tear variable, y. We now proceed to show how the

tear variable perturbations may be reformulated in terms of corresponding perturbations in

the decision variable, x.

The equality constraints, h = 0, are retained under a first order perturbation in the

decisions and tears Le.

VX/>T Ax • Vyhr Ay = 0

AyT = - AxT Vx/> III-6

Next we expand the Lagrangc function, L, about (xf, yx • (7yhTYlAh • A</) to first order



so that:

L (x,, y} • ( V ^ T ) H

T V^L <x|t {^ • (7yhTrxLh) IH-7

We now substitute for Ay1 in Eq. Ill—7 from Eq. III-6 which transforms Eq. III-7

accordingly as:

AXT { VKh (Vyhr1 VyL <yi+<Vy/>
T)-1A/>. x,) } =

L (x r y% • (V^T)HA/7) - L (x | t c/l + (7yhTylAh - (VyhT)'lJ7xh AX)

Eq. Ill—8 implies that the first term on the right hand side of Eq. Ill—5 can be constructed

by introducing perturbations in the decisions alone; it is worth noting that the term. V JL.

need no longer be determined explicitly. Similarly, it can be shown that the term,

X (V^1)"1 A/7, can be constructed from the relations:

rl Ah = VXL (x r yx

and

AxT VXL ( x r yx

L (X^AX. yx + ( V ^ A V A / J ) - L ( x r yx • ( V ^ A V A A ) 111-9

Once again the term, VX (X, need not be determined explicitly; we require only an

additional nx perturbations in the decision variables.

Next we consider the procedure for constructing the matrix term, H. It can be seen that

H can derived from:



AX V f VXXL V , H I AX

A!/ 1 I V L V ^

by introducing the

LU = - (V *V V^ AX. from Eq. III-6. Substituting this result and expanding the

product term gives

r AX rr VIXL v , f i r
lMAx]lVy xL V^ J i

values (cf. Eq. 10).

H AX

where
_ „ i n " 1 0

M = -

(for • - V,L ^
0. P — - »-



APPENDIX IV

Mixed Integer Nonlinear Program Formulation for Active Set Selection

A change in the optimal solution resulting from a model change may be accompanied by

a change in the active set The analytical example (Example 3) serves to illustrate this point

While considering the problem of choosing a consistent active set in order to define a

Newton step from the base optimal point to the modified optimum previously, we identified

two cases: one in which all a = uj and the other in which all a = 0.

The choice of all a - 0 implies that we have a starting point for the Newton step that is

farther away from choosing some a = av to determine a consistent active set However,

we can rigorously formulate the problem of finding the closest starting point in the

following manner

Max \ u.

V2Z.(r,o.v) + V J / C T A V , ) Az = 0

g{T) * Vgr(T) A2 * 0

hiT) + V/7T(D Az = 0 (1)

ti = a + Aa ^ 0 ; v = Vj + Av

0 £ u £ u, y

and for a large U

u. * U y

gfj) • V^.T(r) AZ z U (y - 1)

The formulation leads to a Mixed Integer Nonlinear Programming (MINLP) problem. It

can be seen that the constraints are linear in y and Az. A sufficient condition for a

solution is that the QP is solvable with a = 0. This is also a feasible lower bound. The

upper bound occurs if u = ut but this may not be feasible. This problem can be solved by



applying the Outer Approximation Approach (Duran & Grossmann, 1983), It is obvious that

such as formulation gives rise to a combinatorial problem, although if the constraints are

linear as with active bounds then this problem becomes nonexistent However when nonlinear

inequality constraints exist then the size of the inequalities plays an important role in the

solution of the MINLP formulation. If the number of nonlinear inequality constraints

happens to be equal to n , then the problem of determining the closest starting point to

obtain a consistent active set may require up to 2" discrete decisions.



Figure 1.

Contours of
Obj e c t ive Func t ion

A - Optimum for Model I
B - Optimum for Model II
C - Predicted optimum for Model II from sensitivity analysis



Figure 2,

Contours of
Objective Function

k = 0.2 x'
(Model I)

k , e 0 . 3 7 7

(Model II)

A - Optimum for Model I
B - Optimum for Model II
C - Predicted optimum for Model II from sensitivity analysis
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Table I

Flash Recycle Flowsheet Optimization : Problem Definition

FEED DATA

COMPONENT

Propane
1-Butene
N-Butane
Trans-2-Butene
Cis-2-Butene
N-Pentane

FEED FLOWRATE
(mols/hr)

10.0
15.0
20.0
20.0
15.0
10.0

Feed Pressure : 150 psia

Feed Temperature : 100 F

Decision Variables :

Tear Variables

Splitter Ratio, x ( 0.2 < x < 0.8 )
1 1

Flash Pressure, x ( 10 < x < 50 ) psia
2 2

Component flows in Recycle, y , i = 1....6
i

( 0 < y < 100 ) mols/hr
i

Specific Enthalpy of Recycle, H

( -10000 < H < 10000 ) Btu/mol

OBJECTIVE FUNCTION

Monotonic :

Nonlinear :

max e
1
2 2 3 0.5

max e e - e - e • e - e
1 2 1 3 4 5

( e component flow in Flash Overhead) (Fig. 3)
i



Table II

Flash
Recycle Flowsheet : Sensitivity Analysis

PARAMETRIC VARIATION

COMPONENT

Propane
1-Butene
N-Butane
T-2-Butene
C-2-Butene
N-Pentane

BASE CASE FEED
(mols/hr)

10.0
15.0
20.0
20.0
15.0
10.0

PERTURBED FEED
(mols/hr)

11.0
16.5
22.0
22.0
16.5
11.0

MONOTONIC OBJECTIVE FUNCTION

DECISION
VARIABLE

KKT
MULTPR

u

u

BASE CORRECTION
OPT

0.2 0.0

10.0 0.0

1.005 - 0.45

0.146 0.51

PRED.
OPT.

0.2

10.0

0.55

0.656

TRUE
OPT.

0.

10.

1

0

2

.0

.652

.21

NONLINEAR OBJECTIVE FUNCTION

DECISION
VARIABLE

• KKT
MULTPR

u

BASE
OPT

0.8

23.785

1.654

CORRECTION

0.0

- 0.475

1.877

PRED.
OPT.

0.8

23.31

3.53

TRUE
OPT.

0.8

23 .09

2.56



Table III

Flash Recycle Flowsheet : Sensitivity Analysis

MODEL VARIATION

Monotonic Objective Function

Base Model
Alt. Model

DECISION
VARIABLE

X
i
JL

X
2

: Raoult's Law (Model
: Chao-Seader (Model

KKT
MULTPR

-

u
i
X

u

I)
ID

BASE CORRECTION
OPT

0.2

10.0

1.005

0.146

0.0

0.0

1.065

0.014

PRED.
OPT.

0.2

10.0

2.07

0.16

TRUE
OPT.

0.2

10.0

1.35

0.17

Base Model :
Alt. Model :

DECISION
VARIABLE

X
1

X
2
-

-

Chao-Seader (Model
Raoult's

KKT
MULTPR

—

u
1

u
2

Law (Model
I)
II)

BASE CORRECTION
OPT

0.2

10.0

1.35

0.17

0.0

0.0

0.23

0.024

PRED.
OPT.

0.2

10.0

1.12

0.144

TRUE
OPT.

0.

10

1.

0.

contd.

.2

.0

.005

. 146



Table III

Flash Recycle Flowsheet : Sensitivity Analysis

MODEL VARIATION

Nonlinear Objective Function

Base Model
Alt. Model

DECISION
VARIABLE

Raoult'a Law (Model I)
Chao-Seader (Model II)

KKT
MULTPR

u

BASE
OPT

0.8

23.78

1.65

CORRECTION

- 7.55E-03

- 0.3107

PRED.
OPT.

0.793

23.47

0.0

TRUE
OPT.

0.8

23.03

1.43

Base Model
Alt. Model

DECISION
VARIABLE

Chao-Seader (Model I)
Raoult's Law (Model II)

KKT
MULTPR

u

BASE
OPT

0.8

23.03

1.43

CORRECTION

0.0

1.28

- 0.95

PRED.
OPT.

0.8

24.31

0.48

TRUE
OPT.

0.8

23.79

1.65



Table IV.

MONOCHLOROBENZENE SEPARATION FLOWSHEET

FEED DATA

COMPONENT

HC1
Benzene
MCB

FLOW RATES
(mols/hr)

10
40
50

Feed Pressure : 37 psia

Feed Temperature : 80 ^

PHYSICAL PROPERTY MODELS

Vapor Pressure Model :

Vapor Fugacity Model :

Liquid Fugacity Model :

Liquid Activity
Coefficient Model:

Cavett Equation

Redlich-Kwong Equation

Redlich-Kwong and Poynting Equations

Ideal Solution

DECISION VARIABLES

Absorber Pressure (Bottom)

Absorber Pressure (Top)

Split Fraction to Recycle

Split Fraction to Outside

Flash Input Stream Temp.

Absorber Input Stream Temp.
(Recycle)

25

25

0

0

200

100

4

4

4

<

<

Xl
X2
X3
X4
X5
X-

4

i

i.

s
<
<

35

35

1

1

290

300

psia

psia

y

TEAR VARIABLES

Recycle HC1 Flow

Recycle Benzene Flow

Recycle MCB Flow

Recycle Pressure

Recycle Temperature


