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Abstract

Successive Quadratic Programming (SQP) algorithms have been effective
and efficient in solving nonlinearly constrained optimization problems. To
guarantee global convergence, however, a line search must be performed after
solving the quadratic program. The line search terminates when a step size is
found that causes a suitable decrease in some merit function. Because of some
problems with previously suggested merit functions, a line search that uses an
augmented Lagrangian is proposed.

This function follows quite naturally from the derivation of SQP
methods and exhibits superior convergence properties compared to an exact
penalty function. First, global and local convergence results are presented
which are valid for penalty parameters that allow descent directions. We
then present an algorithm that chooses penalty parameters that allow good
performance. Finally, a numerical study on 15 test problems is presented
that compares the proposed line search to existing strategies.

1. INTRODUCTION

The nonlinear programming problem can be written as

(1.1) Min
X

s. t.

f(x)

g(x)

h(x)

£ 0

= 0

f o r f:Rn -

h:Rn - Rk

To solve this problem, successive quadratic programming (SQP)
algorithms were first proposed as the SOLVER methods of Wilson (1963) and
Beale (1967). However, these require second derivatives of the constraints
and objective function and initial estimates of the Kuhn-Tucker multipliers.
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proven even if the Hessian in the quadratic program is approximated by
some positive definite updating scheme.

Han (1977) was able to show global convergence properties by conduct-
ing an inexact minimization on an exact penalty function, in the search
direction found by the quadratic program.

The algorithm proposed by Han and later modified by Powell (1977) is
the following:

1) Solve the QP:

Q (x1 ,**-) Min VfT(x1)d + \ dTB1d

s.t. g(xX) -f Vg(xX)Td £ 0

h(xX) +

where B is a positive definite quasi-Newton approximation to V L(x ,u ,v )(

Here, L(x,u,v) = f(x) + uTg(x) + vTh (x) , a n d t h e multipliers (u, v)

are found from the QP.

2) If j Vf(xr) Td j + | u 1 gCx1) | + | v l T h(xX) | i Z , stop. Here Z > 0 is some

smaij.1 Kuhn-Tucker tolerance.

3) Else, find a stepsize X such that

P(xX + Xd) £ P(xi) + 6XP' (x1)

where
m

(1.2) P(x)=.f(x) +T r j 8 j ( x > +
 + y s i l h j ( x ) l

i. j J -J L-> J J

8j(^)+ = max (gj(x),O) 9

m . K

= Vf(xi)Td -I r j g. (xi)+- I S j | hj

J=i J J=i
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is an approximation to the directional derivative of P(x),

and 6 e (0,1/2) .

With Han's line search function, the vectors r and s have constant scalar

elements, c, given by:

c > Ilu ,v I I
00

where u,v are the multipliers at the K-T point of (1.1).

Powell's implementation, which is not as restrictive on the penalty
terms, defines the vectors r and s to be

r ° = 0 , s ° = 0

i 1 . i . i-1
, = max u, , - (u. + r, ) , j = 1, m

s = max ( |v 1, 1 j 1 j i-1 \ , j = 1, k
J y J 2 V j j J J

However, Powell's implementation does not have the global convergence
properties shown by Han.

Chamberlain (1979) gave two examples where Powell's algorithm
cycled between two vertices of the linearized constraints. Continued
cycling in the second problem even caused the Hessian approximation
matrix to become unbounded. However, Chamberlain et al. (1982) showed
that use of Han's penalty function causes convergence to be too slow in
some cases.

To resolve some of these difficulties, Chamberlain et al (1982)
proposed the watchdog technique. Here the method alternates between
an exact penalty line search and full steps in the search direction. If
the exact penalty function decreases ir.onotonically, then usually full steps
will be chosen. This method is harder to implement because the convergence
proof may require a restart from a previous point. Thus, all the information
at this point must be stored.



The next section discusses the use of the augmented Lagrangian line
search function. To motivate the discussion we show that this follows quite
naturally from the development of earlier quasi-Newton and augmented
Lagrangian algorithms. It should be mentioned that our line search function
differs from the recent work of Yamashita (1982) and Schittkowski (1981) be-
cause our function is nondifferentiable at certain points and our penalty para-
meter is chosen adaptively.

The third section presents global convergence results that, parallel
the work of Han (1977) and local convergence properties that use the recent
work of Schittkowski (1981). The fourth section discusses an adaptive stra-
tegy for choosing the penalty parameter and presents the line search al-
gorithm. Other enhancements to the SQP algorithm are also mentioned. This
section is followed by an extensive numerical comparison that includes the
slow convergence effects of Chamberlain et al (1982), the cycling problems of
Chamberlain (1979) as well as numerical results for fifteen well-known test
problems.

Finally, we summarize the results of the paper and state conclusions in
the last section.

2) AUGMENTED LAGRANGIAN LINE SEARCHES

To motivate the presentation of this line search function, let us first
consider the equality constrained problem:

(2.1) Kin f(x)

s.t. h(x) = O

Necessary optimality conditions can be written as:

Vf (x) + Vh(x) v = 0

h(x) = O

which are simply stationary points with respect to x and v of the Lagrange
function:

L(x,v) = f (x) + h(x)Tv

If we augment this function with a penalty term:

(2-2) La <x,v,cr') = f (x) + h(x)
Tv + ~ h(x) Th(x)

we find that the augmented Lagrangian has the same stationary point as the



Lagrange function, regardless of the value of cy , the penalty parameter.

The stationary point can be found by applying Newton's method to

V La (>:,v,cy ) •= 0 .

Expanding L a (x,vrCy ) formally in a Taylor series with respect to x

and v about a point (x* , v x ) CR
n yields!

i i i i % TL_ (x,v,a ) = L (xx , v x , a ) + VL (x , v , a )

• T "

' x-x1 1 2 . 1 1 . f x-x1 I
i 7 L a ( x 'v .•» > J i

v-v I v-v I

x-x

v-v

+ 0
x-x

v-v

Truncating the series after three terms and finding a stationary point with
respect to x and v, yields:

(2.3) 7 L (x * , v * , a ) + V2L (x1 , v1 , a)
x-x1

0

Let (x-x L) be defined by the vector d. Since

VL" (x,v, a ) = 'Vf(x) + Vh(x)v -f a Vh(x) h(x)

h(x)



V L (x,v,a) =
xx a

Vh(x)

, and

Vh(x)

V L (x,v,a) = V f(x) + V2h(x)v + a Vh(x)vh(x)T

xx a

+ or V h(x) h(x)

we can simplify (2.3) to:

h(xL) + VhCx1) T d = 0

If the constraints are not highly nonlinear we can neglect o-V h(x)h(x),

the last term in v L (X,V, a ) - The above equations can then be ex-
xx a

panded to:

(2.4) Vf (x1) + Vh(xL)v + a

|72f (x1) + V2h(x' ) v.+ a d = 0

(2.5) + Vh(x1) Td = 0

Because of equation (2.5) it is clearly seen that the truncated

Newton step for L (x,v,or ) can be found by solving the following quadratic
program:

(2.6) Kin Vf(x1) Td + \ dTV L(xX ,vi)d
^ xx

n

s.t.. h(xX) + d = 0



and obtaining d and v.

Note that the solution to (2.6) is independent of of (Han 1978)

FJetcher (1974)). Since V M x 1
 r v

1 ) involves calculation of second

derivatives we approximate this matrix by Bf which is constructed by quasi-
Newton updates to V L(x,v).

XX

The result is the familiar SQP algorithm for equality constrained
problems. Since this method follows from minimization of an augmented La-
grangian function, it is quite natural to choose this function to determine
the stepsize X along the direction, fd . "] chosen by the QP.••[iv ]

Inequalities can be included by allowing the QP to determine the
active set from linearizations of all the constraints. After solving the
QP:

Q(x Kin Vf (x x) T d + - d TBd

g(x

) T d = 0

the stepsize along

ru '1
L v-v J

augmented Lagrangian function:

can be found by minimizing a modified

(2.7) L*(x,urv,or) = f (X) + u
T g ( x ) + + v Th(x)

Of

2 9 ( X )+ '

where

g . (x) - max (O,g.(x))
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u,v - multipliers for
g and h, respectively

- the Euclidean norm

The form of (2.7) ignores the inequality constraints unless they are violated
during the line search.

(2.7) is similar to classical differentiate augmented Lagrange functions
(BertseKas,1976) :

m

v T h(x) +f || h(x) ||

However, classical techniques or multiplier methods are less efficient
because they generally involve two nested iterations. The inner iteration
minimizes the augmented Lagra.ngian for x with ufv, and or fixedr while the
outer iteration updates u and v to maximize the function. The penalty para-
meter is increased in the outer iteration only if there is no decrease in the
magnitude of the constraint violation.
The classical augmented Lagrangian function was also used for an SQP line
search in the recent work of Yamashita (198Z) and Schittkowski (1981). Though
they have substantially different implementations, both authors present de-
sirable convergence properties.

Although our line search function (2.7) is not everywhere dif-
ferentiable, it has several advantages over the functions of Han and Powell. In
addition to promoting convergence, the line search function should help main-
tain or approach feasibility. The function used by Han and especially the one
used by Powell may not suitably penalize constraint infeasibilities. The
vectors r and s are determined directly from the Kuhn-Tucker multipliers of a
quadratic program that handles linearized constraints. Thus a violation of a
nonlinear constraint at x+d may be ignored if the quadratic program does not
make this constraint active. Two examples of this are given by Chamberlain
(1979). The augmented Lagrangian has similar multiplier-related terms but also
contains a squared penalty term that emphasizes all of the constraint in-
feasibilities. Because the QP solution is independent of cy , we can adjust
this penalty parameter as needed to approach or maintain feasibility in the
search.

Another important feature is the number of derivative discontinuities
in the line search function. With P(x,rfs) each active constraint has a dis-

continuous derivative at g(x) or h(x)=O. With L only the u xg(x) + term con-
tains derivative discontinuities. During the line search, the stepsize can be
found efficiently by minimizing a quadratic function fitted by values of the
line search function at the two end points and the directional derivative.
If fewer derivative discontinuities are present, the quadratic fit and the
choice of stepsize will be more accurate. For the augmented Lagrangian func-
tion, this is especialy true if equality constraints are present.



3) CONVERGENCE OF AUGMENTED LAGRANGIAN LINE SEARCHES

We begin by showing that the search direction found by the quadratic
program is a descent direction of the augmented Lagrangian function if a is
sufficiently large. This will be used later for the global and local convergence
proofs.

Lemma 3.1 (Dem'yanov and Kalozemov (1974), referred by Han (1977))

If q. , i=lr I are continuously differentiate functions from

R n - R and

(x) = max fq £ (x) }
i

then for any direction d, the upper directional derivative D $ (x)

exists and

Y(x) = max (7q.(x)Td)
iel(x) X

where

= C i I q. (x) » • (x)

Theorem 3.1

Let f,g and h be continuously differentiable on x and B be a positive

definite, symmetric matrix. Here x e Rn , d € Rn, u € Rm, v € R and B € R n x n.

If (d,u , v ) is a Kuhn-Tucker triple of Q (x,B) , d ^ O and

T

a >
I i . i I I 2
Ig + » h I

\
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Then D L (x,u,v,a) < O where p =
d
•— iu-u
- iv-v

Proof

We v:rite the upper directional derivative of L (x,u,vf<y ) as:

D L = Vf d + u
P

i iT
+ v Vh d

i T iTV h1Td+T Vg iTd) + cy(hiTV h1Td)

1 T
+ (U - U ) (g^;) + (\T - V

Here 0
A A

J f j : gj(x) < 0 }

max { 0 , (Vg d ) . ) j e J

J - { j : g4(x) > 0 }

5 = f j : gj(x) =0 }

From the QP we have:

i iT
-h = Vh d

1 •> r, i T j-g * Vg d
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which gives

D L* * vfiTd +/rs
P f

Substituting for a gives

-« \\l\

Dp L < 0.

We call the lower bound of or that gives the descent direction > a
66

Corollary 3-1

If the search direction p d

u-u

v-v

then 3 a \ > 0 such that

L*( z1 + \ p , a ) <; L" ( x1 , u1 , v1 , a ) + 6 X (jf (z1)

where > odd 6 € (0,^) and = D

We continue with a perturbation lemma which is due to Daniel (1973).

(See also Lemma 3.2, Han (1977))

Lemma 3.2 (Theorem 4.3, Daniel (1973))

Let d minimize q(d) = \ dT

s.t,
A

Ad

Cd

a

c
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and let d minimize

q(d) * j dTBd + bTd

s . t . Ad ̂  a

Od = ^

Then for any f ixed norm 1|*I1 , there e x i s t s > 0 and some e such t h a t

d- d | j £ SG

i f a) € £ €

b) B is positive definite

' i-in , 11 A-AII , iic-cii, l u - m .

Similarly, we can establish a bound on the multipliers by applying this lemma
to the dual quadratic program:

1 T T T - 1 T T T T
Min r- (b + A u +C v) B (b + A u + C v ) - a u - c v

s . t . u ^ 0
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The bounds on the multipliers are therefore:

(u, v) - (u,v) te

whenever e •£. e and e = max ( | | H - H | | , | | r - r |

where H =
AB'V

- 1 T
CB A

- 1 T
AB C

- 1 T
CB C

t > 0
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Let f, g and h be continuously diffcrentiable and assume some fJ,g > 0

such that:

x T B x

and a is always greater than or, , at each i t e r a t i o n .
dd

Then any sequence { x1, u , v X] with well-defined Quasi-Newton

updates [B ) either terminates at a Kuhn-Tucker point of (1.1) or any ac-

cumulation point {x* ru* , v* } satisfying the Mangasarian-Fromowitz Constraint

3 w c Rn I 7 gR (x~"*)_ T
w < 0 , k e K

where K = { k |g (x ) = 0 )

* "T
Vh(x ) w = o

and Th(x ) has f u l l rank

is a Kuhn-Tucker p o i n t of ( 1 . 1 ) .

Proof

If p1 = 0, then (x1 , u* , v* ) sat isf ies the Kuhn-Tucker conditions of

(1.1). Suppose p1 7^ O then z i + 1 = z1 + \ p1 ex is ts for some X > O where

L* ( z1 , a ) + 6 \ <f ( z 1

Let z be an accumulation point of (z } satisfying tbe constraint quali-

fication. Because B1 is formed by well-defined Quasi-Newton updates, then as

Z* , B 1 - B*

From the definition of B1 and the MFCQ it follows that Q (x* , B*) has a Kuhn-

Tucker point, p* . If p = O then z is a Kuhn-Tucfcer point of (1.1) and
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we are done. Suppose"p / 0. By Lemma 3.2 and the solution of Q(x* B*):

u* -* u*

i *v -* v

By Corollary 3.1 we can find X such that:

L (z + X p , or ) - L (z ,or) < : 6 X / ) ( z ) < 0

Since p* ̂  0, , X x - O. Here 3 i sufficiently large that for some Y > 1

the steplength rule is violated:

L* ( z1 + X 1 y p 1 , or ) - L" ( ^ <* ) > 6 X ^ /(z1)

'•- The LHS can be expanded in X to yield; : -- - ,

YX X
y^(z

1) + yX^CX1) > Y X1 6 / ( z1)

and dividing by Y X gives:

( z1) + O C X 1 ) > 6 f( ( z1)

From Theorem 3.1 , p (z ) < 0 and we have a contradict ion s ince :

0> - . ( d 6 V 6) j ( z 1 ) ^ ( 1 6 ) / ( z 1 ) + 0 ( X 1.6V 6) j ( z1) ^ ( 1-6) / ( z1) + 0 ( X1) > o

and 6 € (0 , 1/2) .

Theorem 3 .3

Based on the assumptions in Theorems 3 .1 and 3 . 2 , there e x i s t s a f i n i t e or
such that or > max ofi , .

i d d

Proof

From Theorem 3.1

i i
u T7g^,Td + v T7 h"d + LV-V : LJ Lh^J
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From the QP:
iT T iT _ iT

Vf d = - d Bd - u Vg d - v Vh d

xt)Jd £ - g(xL)+

T T T "i

u Vg(x i) d - u g(x )

Substituting for a gives :
dd

dd
+ 2 ( u-u1 ) T g (x1), + 2(v-vL)Th (x1)

Hi4 .

Now, realizing that B is positive definite, we take the norm of the numerator
and write:

add
||d ||2 + 2

- i
u-u.
v-v

II gj. , hi

Moreover, since p =
_ i
u-u
— i
v-v

we write:

II2 + 2 | | P 1 | ||gi , hi

i 112II gi , h 1 jl

For , a remains bounded above even if | | gi , h1 | ]-* 0.



. . . . 1/

K M W if I I r I 1-2;. 0> t|lcn c

0 || R + f h

a d d s - p U P I I 2 + 2 K | | P I I 2 _. _ ? J L -
- R2

v:here K is a postive constant. Hence or has a finite upper bound
dd

Here Kii) II g+ , M l = o||p|

2K-P

K2

and any positive value of a gives a descent direction,

iii) ||p||= o ||g+ , h||. Here K - 0

2 | | g h | I 2 ^ 2K
"dd * " B K —

( 2 - I K ) K - o

and any positive a gives a descent direction.

Remark 3.1

To show that an accumulation point exists we require that: x and d be

bounded, that the gradient matrix of active constraints at each iteration has

full rank, and that each QPP is solvable. Thus (u,v,) is bounded, and because

the Armijo inequality is always satisfied for L* (zi ), an accumulation point

will be found. (see e.g. Ortega & Rheinboldt (197O))

Local Superlinear Convergence

We restrict the analysis to show that the Armijo inequality on this
line search function allows full steps in the region about the solution of
(1.1). Once this can be shown we invoke the local results of Kan (1976) and \ ,
Powell (1978). We also assume that the active set has been determined. Mere V
any inactive constraints may be discarded and the constraint set
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J = ( j I 8j(x) > 0 )

is at worst a subset of the active constraints.

In addition we assume that the Hessian approximation, B, is always
positive definite and satisfies the property:

dT( V L( z*) - B)d = o ( || d||2) .

as it converges. This is characteristic of several guasi-Newton updating
formulas (see Boggs, et al.r 1982),

Theorem 3.4

If V i sufficiently large, we have:

1) Y lip II * d TBd ̂  Y ||p ||

for some y , y > 0

2) The active set of inequality constraints is determined and

J e J = ( j | g . ( x ) > 0 } belongs to this set.

3) V h* and V g!" are finite, Y x 1

4) d T ( V L( z*) - Bi)d = o ( ||d |I2) as i -

where z * is the Kuhn-Tucker triple of (1.1)

5) and
a ^ r (1.2c)d TBd + 2 (o-uSgCx1^ + 2(f-vi)h(xi) 1
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T 7 *
where e > - min ( 0, E u.d V g. (x1)d )

^ J J
jej

(l-26)d TBd

J A f i f j I g j ( x ) < 0 ) .

Then

* i * i / i
L ( z . + p ) £ L (z1) + 6/5 (z )

and the Armijo inequality is satisfied with a stepsize of unity.

Proof
We first relate the modified augmented Lagrangian functions to the

Lagrangian.

*( z1 ) = f ( X ) + i T ( 1L*( z1 ) = f(xX) + u i T g ( x 1 ) + +

L( z1 ) " u^Cx1 + f

where
T1

u1 g(xX)_ = ^ u j 8 j ( x i

= f j I gj (x1) < 0 ]

(zX + p ) = f(xX + d ) + uTg(xX + d••) + vTh(xX + d )

f
1 + p") - uJs(xX + d ;_ + f | | g ( x L + d ) + , h(xl + d )

T"
± i ^ v iTVh(xX)Td
T"

1 ) = Vf(xX) Td + u ± Vg(xi)^d + v i T V h ( X ) T

+ ( 5-uXf g(xX)+ + ( v-v1 )Th(xX)

- a | | g ( x X ) + , h ( x X ) | | 2

= V L(zX)Tp - uX Vg(xX)^ d - ( U-u 1 ) T g(x X )_

- a l l g C x 1 ^ , h ( x X ) | | 2

b u t s i n c e a l l c o n s t r a i n t s a r e a c t i v e ' - ( b y 2 ) )
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/ ( z 1 ) = V L ( £ X ) p + ( 2 u

Now v;e need to show that:

(AI) H L * ( z 1 + p ) - L* ( z 1 ) - 6 & ( z 1 )

is nonpositive. Substituting the above quantities in (AI) gives:

FL( ZL + p ) - L (z1) - 6 V L (zVp J

- uTg (x1 + d )^ + | (I g(xX + d ) + , hCx
1 + d ) ||2

+ u i Tg(x i). - f II gCx1)^. , hCx1) |12 - 6 (2 ui-S)Tg(xi)>

From a Taylor series expansion and the solution of the QP we know:

T . '
g j ( x 1 + d ) = g j ( x X ) + V g j ( x X ) T d + j d V 2 g j ( x i ) d + O ( | | d | | 3 )

T
= \ d V 2 g j (x

1) d +0 ( ||d||3)

T
i j ( x 1 + d ) = h j ( x 1 ) + V h . ( x 1 ) T d + | d V 2 h . ( x X ) d + O ( | | d | | 3 )

d + 0

so (AI) becomes

[L (ZL + p ) - L (z1) - 6 V M z V p J - | (uTdTV 2g (x±)_ d)

+ 0 ( | | d | | A ) + ( l - 2 6 ) u 1 T g ( x i ) _ - | ( 1-26 ) M-'--*•* «-' ^ 1 1 2

+ 6 TT T g ( x X ) ( by 3 ) )
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The bracketed quantity above i s :

[(1-6) V L ( z1 ) Tp + \ p V W ) p + 0 ( | | P | | 3 ) ]

where
T

VL(z ) p = Vf(xL) d + u 1 1 VgCx1) *d + v \

i T i i T i
+ ( u-u )g(x ) + ( v-v )h(x )

= - d B d * + 2 (J-u1) g (x1) + 2 (v-v1)h(x i)

(by the QP)
T T1

p V Mz1)? = d v LCz1) d +2 (u-uL)TVg(x i) Td

. T
+ 2 (v-v1) V hCx1) Td

T
= dT v

x x
L ( z l ) <* " 2(G-u i)g(x i)

T
1 ) h C 1- 2CV-V1) hCx1) (from 2))

Thus (AI) becomes:

T '
1 I T i

- ( 2" - 6 ) d B d + j d ( VyxL(z ) - B ) d

+ ( 1-2 6) [(G-uVgCx1) + (v-
* T

1) + u1 g (x1) 1

f ( 1-26)| | g(x
i)+ , h (x1) | | 2 + 6 GTg(xi)

\ (u Vv 2g (x 1 ) . d )+ 0 ( | | p | | 3 )
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Now because :

, T ( V L (z ) - V Lv xx xx

1 T

6 < ± u g (x)_ < 0

(O) + (Vvv L (z*) - B )]
XX I

T T
, ug(x) £ u g(x) +

d = Idll2)

and using assumption 4) we have:

(AI) £ ( i - 6 ) - dTB d + 2 (u-ui)Tg(xi

i T
+ 2 (v-v ) 1

_T j 2 i
u d V g (x ) d

( 1-26 )

Using assumption 1) and 5) gives

(AI) s .( \ - 6 ) c Y I I P I I 2 + o (

and for i sufficiently large:

( A I ) * - ( ^ - 6 ) C Y I I P I I 2 + o ( | | p | | 2 ) - ( i - 6 ) ^

Thus the Armijo Inequality is satisfied for a stepsize of one and the theorem
is proved.
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Kcmark 3.2

In practice, assumption ]) of Theorem 3.4 is not really required. If

for example, ||d|| = o ( H ^ - u 1 ) , (v-v1)!!) = o (||p||),

then the algorithm still converges superlinearly if K (||p|j ) / ||g h ||

(for some K > O ) is added to the right hand side of assumption 5). As will be

seen in the next section, our algorithm covers this case as well. Note that

even here a ̂  a, _ .
da

4. An algorithm for choosing the penalty parameter.

From the convergence results of the previous section we can state the
following conditions for the penalty parameter,

1) If a is large enough to give a descent direction at every iteration,
then an SQP algorithm with this augmented Lagrangian line search is
globally convergent.

2) If a is larger than Q^ and large enough to compensate for any
active inequality constraints that remain feasible as the algorithm

T 2
converges, (since d V g d < 0, these will be locally concave),then the
algorithm has local superlinear convergence.

These two statements suggest an adaptive strategy for updating a
This contrasts our work from the a priori updating algorithms of SchittkowsXi
(1981) and Yamashita (1982).

Here, it is straightforward to calculate the lower bound a,, and
(upper or lower) bounds on a that satisfy the Armijo inequality for a
given stepsize. Thus, instead of explicitly fixing or for the line ,
search, we merely determine if a region exists for a that satisfies the
Armijo inequality and the descent condition. This prevents any unnecessary
stepsize restriction during the line search.



We consider two quantities at each iteration

, h(x£)

where

( X )

uTg(x)

• X d ) + , h ( x



The above expression for <y, c is derived from rearranging the
Lo

Armijo inequality (AI). Here & can represent either an upper or lower

.* bound which a must satisfy for any given X . If • ( X ) is positive

then any a ^ <*LS will automatically satisfy the (AI); conversely if ^ (X) < 0

then any a £ a satisfies the (AI)-

Lo

We can now replace step 3 of the algorithm presented in section 1
with the following L.S. procedure

a) Set X = 1

b) or = max ( a ,1.1 a,,)

c) calculate a
LS

<3) If aLS < max ( 0, o ^ ) or * (X) = 0, go to e.)

i i LS
If aTCl > max ( cr\. ) set a = a

(the (AI) is automatically satisfied at the current X go to f.)

e) Test the (AI) for a
x f r o m b)

L* (z1 + \ p , a1) - L*(ZX , a1) £ 6 \ d (z1 ,

(At this point v;e know that

-0 since cy_ < a,, < a
LS dd

i

LS can not be used as a basis for changing a because this will

destroy the certainty of a descent direction

2) if a happens to be a lower bound, either postive or negativer
LS

then since a 1 £ a the (AI) will be satisfied on the
Lb

first try. This will be the case if t(X)i> 0
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3) if <'CX) i s non-positive then (AI) is not satisfied for \j, (X) < 0,

(AI) does not depend on a for f(X) = 0 j

]f now the (AI) is satisfied go to f.)- Otherwise reduce X using

quadratic interpolation of L (z) and go to c.)

f. update according to

i+1 i
x = x + X d

i+1 i . - i.
U = U + A. (U - U )

i+1 i . i /- • i%v = v + X ( v - v )

i = i + 1

Go to Step 1) of the algorithm in section 1

The next section presents a comparison of our stepsize strategy

with those of both Powell (1977) and Schittkowski (1981) on fifteen well-

known test problems. It will be seen that our strategy never required more

function evaluations than the other two and sometimes required less.

Schittkowskifs strategy is less efficient because o/ increases monotonically

and may even be unbounded. Also, Schittkowkki|s line search function may reward

feasibility rather than just penalizing infeasibility. This function contains

the terms tor g. + u.] where: g. is

the constraint value, u. the Lagrange multiplier and a the penalty term.

Notice here that, for any g. < 0 (feasible) , the term [or g. + u.]

will be positive, unless a> - _J[ , thereby providing a contribution to the

gj

penalty function for a feasible constraint. No provisions are made to prevent

this condition in Schittkowski1s algorithm although in practice a does tend

to become very large.

Initially we set (u° , v° ) = 6 and a° « I

(some small positive number, e.g. 10 ).

Again, we note that as long as o/.dd gives a descent direction for
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all iterations j, the algorithm is globally convergent. Since, from Theorem

3.3f we know this quantity is bounded, we use the (heuristic) updating

strategy in step d) to determine a - From Theorem 3.4 we know that near the

solution 3 cy ̂  a. that allows full steps along the search direction

generated by the QP. This a is given by a in step d) of the algorithm.
L»S

Thus we have an adaptive strategy for choosing c* that exploits the pro-

perties determined in Section 3.

5. NUMERICAL RESULTS

This section is divided into two parts. In the first, we illustrate

hew two shortcomings of the line search strategy of Powell (1977) are re-

medied by the approach described in the previous section. Here we present

detailed results of our strategy and explain why the slow convergence

and cycling problems encountered with Powell's line search are avoided.

A. Illustrations of the Line Search

i) Slow convergence with exact penalty function line search
(see Chamberlain et al. (1982)].

Consider the problem Min F(x) = -x + j (x + x - 1)
1 1 2

s.t. c (x) = x 2 + x 2 - 1 = 0

This is similar to the example used by Maratos(1978) to discuss the slow
convergence effect.

The solution can be seen by inspection as: x =

0

Let x
k cos 9

and assume

sin 8
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no errors are made in approximating the matrix

* * k+1
V L(x ,v )= I . x is therefore
xx y

2
cos0 + sin G

sin9 (l-cos8)

k ^ >= x + d

As mentioned by Chamberlain et al. (1979) , it follows that for any small
positive number e r

I k * lx -x and the ratio I|xk+1-x*||/||xk -x*|

can be made less than € if 9 is chosen sufficiently small.

From the definition of P(x)

P(x ) = -cosQ

P(xk+1) = -cose • sin2e + ( T + s) sin 6

But for a reduction to occur in P(x ) .,

(4.1) T + S < 1

Here, since s ^ 0 , the algorithm can not take full steps for 7

The Lagrangian and augmented Lagrangian functions are given by:
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k .
L(x ,v ) = -cos9

, K+1 —x 2 / c o s 8 sin 8 \L(x >v) = -cos - sin 9 + I ^ 1

* k
L (x ,v,v ) = -cos9

L* ( xk+l^) = -cos9 - £ i n
2 e 4- f COS2

9 i 2 Q ) + f

and the multiplier on the constraint c is:

cos8
—r - T

* T T 2
Also: VL ,p = V L p = - sin 0

So a descent direction is guaranteed . V cr > -

The Armijo inequality for L (x,v) is :

s i n
2
e + cos9 sin26 + a (sin^S) ^ - 6

sin 9

Heref from the nature of the functions, or is bounded by: (1-26) £ or ^ «> , Y 0

1 *
and 6 € ( 0 , — ) • Thus the augmented Lagrangian function will take

full steps to the solution because f (1) < 0 and a £ a *

Here, even the Lagrange function takes full steps because a = 0 .
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( i i . ) C y c l i n g with Powell's line search function
(Chamberlain (1979))

The Problem Min

s.t. C j (>:) = a(>:x ) - 0

c2(x) = ad-^) - x2

2 3
where a(x) = 2x — x

cycles between x

function is used.

0

0

and if Powell's line search

Let
(O

0

c: = o £°-0

The solution to the quadratic program gives TT = I I d=x = I I

Ur I o J
and r

f1 = o
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0 0
P(x ,r )• = 1

L(x° ,u°) = 0

* 0 0 . a
L (x ,u , a) = -

p'(x° ,

VL (z ) p

OVT

l/(z°) = 0

*•
VL (z")p = L (z") = - (ff-1)

where *f is the directional derivative V • d

The Armijo inequality holds for P(x ,r ) and L(x fu ) for the step

size, X = l

PCx1 ,r°) £ P(x° ,r°) + 6 P'(x°

L(xX ,u°) ^ L(x° ,u°) + 6 Lf(x° ,u°)

0 ^ 0 + 6

v:here 6 is set to O.I by Powell (1977). The augmented Lagrangian line search

does not satisfy the inequality for \ = 1 . Here :

L* (x1 ,u , a) £ L* (x° ,u° , a ) + 6 L* ' (x° ,u° ,cv) r

which is

only if or

| - 6(or - , is satisfied

LS
1. However, or must also be greater than or,, = 1.

dd

( Note that the Lagrangian function L(x,u) cycles because here a = 0 < a,, . v

dd )
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Setting B to I, u° to 0 and x to 0 and using the algorithm in

Section 4, with quadratic line search interpolation, this optimization problem

T
converges to the optimum > x = [ O.5 , O.375 ], in 4 iterations.

B. Numerical Comparison on Test Problems

In this section we compare three line search strategies embodied in
the following computer programs:

OPT - uses the line search strategy described in Section 4.

OPTHP - uses the strategy given by Powell (1977)

OPTSCH - uses the stragegy proposed by Schittkowski (1981)

Otherwise, the three codes use the quadratic programming algorithm of
Gill and Hurray (1978). This program has the desirable feature that
the minimum norm of the infeasibilities is returned if linearization
of the constraints is inconsistent. If this happens we merely resolve
the QP with the constraint tolerance set to 1.01x(min norm).

We find this device safer than the one suggested by Powell. His
strategy introduces a new parameter into the QP and transforms it from:

(QP1) Min a T d + i d T B d

s . t . c + C

r + R X6 = O

t o :

(QP2) Kin • •m*
S . t .

JB . 0 I p , J
1° ° J \lj

T
'_ 0
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> J = f J I c j

c + - c.eJ , J - f j I c. * 0 J

T| is a large negative number (-10 in VF02AD (1977))

Incorporation of the £ parameter will help correct the inconsistent

linearization. However, there is no guarantee that d from (QP2) is

equivalent to d from (QP1) even if the linearized constraints have a feasible

region I

For example, if the QP solution is completely determined by the

T -1
equality constraints (d = -(R ) r), it is easy to show that (QP2) will not

find this solution if:

T T -1
a
 X(RA) r - T] < 1

r T R-

The following table provides a listing of the fifteen problems solved;
N represents the number of independent variables, M the total number of con-
straints and KEQ the number of equality constraints. Each problem is denoted
by a letter and number. The letter corresponds to the reference while the
number identifies the problem number in the reference.

Table 5.1 shows, firstly, that the augmented Lagrangian strategy in
OPT never required more function evaluations than either OPTHP or OPTSCH. In
addition, the cycling exhibited on some problems by the OPTHP algorithm is
always avoided as was shown by Theorem 3.2 and Remark 3.1.

The implementation of the Schittkowski line search function suffered
often from illconditioning. Both the QPP subproblem, where illconaitioning was
measured by the Hessian condition number, and the line search subproblem, where

very large a values (sometimes 10 or more) were calculated, were re-
sponsible for the excessive number of function evaluations or failures shown.
Attempts were made at restarting the failed problems with an initialization
of the Hessian to I, but this did not always prove successful.

Conclusions

Based on theoretical considerations and numerical results we find
that our adaptive augmented Lagrangian strategy performs both more effectively
and reliably than previously implemented line search strategies. By exploiting
the descent property and the Armijo inequality our adaptive procedure provides
a more flexible way of choosing the penalty parameter when compared to other
methods.



34

TABLE 5.1: ALGORITHM COMPARISON

ROBI

Al
A2

Bl
B3
B4
B6

C3

C5

C13

C24

D4
D5
D9

E

F+

.EM

N

2

1

5

5

4
6

2

3

5

2

10

10

4

2

4

DESCRIPTION

M

2
2

10

6

0

4

3

2

6

2

11

3

4

1

3

A.
B.
C.

D.
E.
F.

MEQ

0

0

0

0

0

4

0

2
0

0

3

3

0

0

0

OPT

#FN
EVALS

4 '

3

5
3

52

13

10

9

4
4

30

30

5

10

12

CHAMBERLAIN(1979)

COLVILLE(1968)
HIMKELBLAU{1972)

BRACKEN

OPTHP

flFN
EVALS

CYCLES

CYCLES

5

3

52
25

10

9

4

8

30

30

5

10

14

& KcC0RMICK(1968)

SCHULDT(1975)

ROSEN & SUZUKI(1965)

OPTSCH

#FN
EVALS

4
3

5

3

52

>77*

23*

15

38

16

>112*

30

5

10

33

•converged to a tolerance of io"15; other problems to 10~3

•required resetting the hessian to I
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After introducing the current algorithm and describing its features, we
motivate the use of augmented Lagrangian line searches in section 2. This
section follows a similar derivation for diagonalized multiplier methods by
Tapia (1977).

Section 3 presents conditions for the penalty parameter that lead to
local superlinear and global convergence. Based on these conditions we present
a line search algorithm that adaptively adjusts a by using the Armijo in-
equality and descent conditions.

Finally, section 5 presents a numerical comparison that demonstrates
the benefits of this approach. Here we examine two problems that have
plagued previous line searches and compare results from the solution of 15
test problems.
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