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Abstract

A new implicit enumeration algorithm locates the minimum weighted

tear sets among those which belong to the nonredundant families of Upadhye

and Grens [1975]. Theoretical developments support the algorithm and give

a new insight relating nonredundancy to the tearing of unit loops in a flow-

sheet. If all loops can be torn exactly one time, the nonredundant family

is unique and a member of it is trivial to find. If not possible, two or

more nonredundant families exist and the aoove algorithm discerns among

them, picking a tear set which minimizes the maximum number of times any

unit loop is torn.
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The literature abounds with algorithms to find the "tear11 streams

automatically for process flowsheeting calculations. Tear streams are those

which are to be guessed and iterated in the course of solving a process

flowsheet containing recycles, using a so-called sequential modular type

of flowsheeting system such as FLOWTRAN (Seader, Seider and Pauls [1974]),

CONCEPT [1973] or PACER [1971]. One criterion for selecting tear streams

is to select the fewest such streams. The algorithm of Barkley and Hotard

[1972] is one of many which solves this problem. Another is to select the

minimum weighted tear set where each stream is assigned a weight, and the

best tear set is defined as the one which gives rise to the minimum sum

of weights associated with the tear streams. Christensen and Rudd [1969]

present one of the many algorithms for this criterion.

The best criterion appears to be that of Upadhye and Grens [1975]

wherein the tear set is required to belong to a nonredundant family of tear

sets. All tear sets in this family are shown to have the same convergence

behavior using successive substitution, and Upadhye and Grens give quali-

tative arguments, together with numerical evidence, that these tear sets

are likely to be better than any others. Rosen and Pauls [1977] support

this contention with further numerical evidence using the well-known Cavett

problem (Cavett [1963]).

Wfe shall show in this paper that the nonredundant family of tear

sets is directly related to the unique tearing of unit loops within the

flowsheet. We shall discover that the inability to find a tear set which

tears all unit loops exactly one time gives rise to more than one nonredun-

dant family in the Upadhye and Grens sense. Such a discovery allows us

to distinguish among nonredundant families and argue qualitatively that

some of these should have better convergence properties than others.
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Finally ve give an algorithm to find the minimum weighted tear

set from among those in the nonredundant families deemed best by the above

arguments. If only a member of a nonredundant family is desired and that

family is unique, a trivially easy algorithm is available, provided the

unit loops are available.
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Theory

The structure of a flowsheet can be captured in an obvious man-

ner using graph theoretic concepts. We shall assume we are dealing with

an irreducible subset of units within the flowsheet, wherein all the units

in the subset must be solved together because of recycles. We shall make

the following standard definitions to aid us.

A digraph G(N,E) is a directed graph comprising a set of nodes

and directed edges connecting those nodes, where

N = {n. | n is a node in G}

E = {e | e is a directed edge in G running

from a source node n to a des-

tination node n,, n , n, area s d.
members of N}

Clearly the nodes relate to the process units in a process flowsheet and

the directed edges to the connecting process streams.

A path p(jt) is a string of nodes and edges in G of the form

p(jt)=n e n e • • • • n e nFV J 1 1 2 2 m m mfl

where n is the source node and n is the destination node for edge e
k k+1 e k'

A node loop, u(jt) > is a path where n = n
1 nrt-1

A simple node loop is a node loop which does not contain two or

more node loops within it.

^n e<fee tear set ET(jfc) is a set of edges with the properties

1) If the edges in ET(/) are deleted, G will contain
no node loops.

2) If any single edge in ET(X) is not deleted while
the remaining ones are, G will contain node loops.
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We shall now define a covered node loop o(n) > ^iere u(n) is a

simple node loop in G. To do this we present the following algorithm,

Algorithm I

I. Select any (tear) edge e which is not a member of u(*0 .

II. Flag edge e and all edges which are in any simple node loop with

it. Some of these flagged edges may be in u(n) •

III. Repeat, selecting another (tear) edge e which is not a member of
©

u(n) and is not yet flagged. Continue until the edges in all other

node loops with any edges in common with \j(n) are flagged.

If no edge in u(*0 remains unflagged, we shall define u(n) as

a covered node loop. Clearly then u(*0 can be a covered node loop if and

only if a subset of k of the (tear) edges selected by Algorithm I have the

following properties.

1) None of them is in a simple node loop with any of the
rest of them.

2) Each tear edge is responsible for flagging some of the
edges in u(*0 by being in simple node loops with these
edges.

3) As a set they must cause all edges in u(*0 to be flagged

Consider two nodes n- and n connected by the paths p(l) and p(2).

See Figure la. Path p(l) goes from n^ to n2 and p(2) from n^ to i^, Let

u(l) ~ P(l) P(2) be a covered node loop. We must be able to locate a sec-

ond simple node loop, u(2), which contains p(l) but not p(2) ; therefore

we need a second path p(3) from n to i^ with u(2) = p(l) p(3) resulting.

In addition we need a simple node loop, u(3), containing p(2) and neither

p(l) nor p(3). We therefore require a second path p(4) from n^ to n2 with

u(3) - p(2) p(4) , but we find we have also formed the node loop u(4) - p(3) p(4)
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P(D

n2
(a)

P(3)

n,, (b)

P(6) P(5)

Figure 1. The Minimum Structure Required in a Digraph for a Covered
Loop to Exist.
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Selecting an edge from p(3) will cause us to flag all edges in p(l) but

will also cause us to flag all edges in p(4) . Clearly both p(3) and p(4)

must be created if u(l) is to be covered. The node loop p(3) p(4) must

result; it cannot be a simple node loop therefore (a simple node loop con-

tains no other node loops) . Paths p(3) and p(4) must pass through a com-

mon third node, n-, which breaks p(3) into two paths, p(5) and p(6) , and

p(4) into p(7) and p(8) as illustrated in Figure lb. The node loop p(3)

p(4) then contains two node loops and is no longer simple.

The simple loops for Figure lb are (p(l) p(2)), (p(6) p(7)),

(P(5) p(8)), (p(l) p(5) p(6)) and (p(2) p(7) p(8)). To cover loop u(l)

= p(l) p(2) we select one edge each from p(5) and p(7) (or from p(6) and

p(8)). Selecting an edge from p(5) flags all edges in p(l), p(5)f p(6),

and p(8) . Then selecting an edge from p(7) flags all edges in p(2) and

p(7). Thus u(l) - p(l) p(2) is indeed covered.

Result 1: If a digraph contains no covered loops, an edge tear set can

always be developed which tears each node loop exactly one time.

proof: Using Algorithm I, no untorn loop can be encountered that has

no unflagged edges remaining. If one does, then the loop is covered, which

contradicts our assumption. Algorithm I will therefore find the desired

tear set. Q.E.D.

We shall call such a tear set when it exists an exclusive edge

tear set.

We note some properties of the structure in Figure lb which are

required for a covered node loop to exist. At least three nodes must ex-

ist with each having at least two input edges and two output edges.
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Result 2: If a digraph G(N,E) contains fewer than three nodes, each with

both multiple inputs and outputs, it cannot contain a covered node loop

and an exclusive tear set can always be found.

Proof: The proof is a direct consequence of the above observation. Q.E.D.

We shall call the structure in Figure lb a cyclic cascade and

note that if and only if one exists in a digraph, then so does a covered

node loop. Apparently such a structure is not commonly found in the digraph

corresponding to a process flowsheet so an exclusive edge tear set exists

for the digraphs corresponding to most flowsheets and is readily found by

Algorithm I. Anticipating the connection between exclusive tear sets and

unique nonredundant families, we note that Upadhye and Grens discovered

but one flowsheet with more than one nonredundant family out of several

hundred tested, and this flowsheet was highly heat integrated. (Heat ex-

changes have two inputs and two outputs each.)

We now wish to prove the following theorem.

Theorem 1: If and only if a digraph G(N,E) has an exclusive tear set, then

the nonredundant family of edge tear sets as defined by Upadhye and Grens

is unique, and each member of it is an exclusive tear set with no other

nonredundant family of tear sets existing.

Proof: IF PART: We shall first need to define a nonredundant family

of edge tear sets which we shall do using the Upadhye and Grens replacement

rule. This rule states that an edge tear set is transformed to another

in the same family by first identifying a node which has all of its input

edges in the tear set. These edges are deleted and replaced by all the
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output edges of that node. The family is nonredundant if, after exhaustive

application of the replacement rule, no edge already in the tear set is

also introduced by the replacement rule. This double listing of an edge

is redundant, and the algorithm to find a nonredundant family by this ap-

proach states that one should delete all but one listing of the repeated

edge, moving to a new family and then continue. The above steps are re-

peated until a family is found which is shown to be nonredundant.

Let us assume an exclusive tear set exists. Then each simple

node loop is torn exactly one time (see Result 1 and definition of an ex-

clusive tear set). The replacement rule replaces all of a node's input

edges by its output edges. All simple node loops passing through that node

are torn once by these input edges before the replacement by assumption.

Clearly they are all torn exactly once after the replacement by the output

edges. Thus if the replacement rule starts with an exclusive edge tear set,

it can only generate exclusive edge tear sets.

We shall next prove that, if an exclusive tear set exists, re-

peated application of the replacement rule will transform it into all others,

Assume that exclusive edge tear set ET(1) exists. Generate any other by

use of Algorithm I and call it ET(2) . We shall show that one can transform

ET(1) into ET(2) by systematic application of the replacement rule, and,

since ET(1) and ET(2) are arbitrary exclusive tear sets, we prove the "if

Part11 of our theorem. Order the simple node loops, and then, for each such

loop, identify the edge which tears it in ET(1) and the edge which tears

it in ET(2) . We apply the following algorithm.
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1. Select a simple node loop and call it u(l)•

2. Move the tear for u(l) forward around u(l) via the replacement rule

until either (a) the tear for the loop reaches the desired location

for it in ET(2) or (b) a node n(l) is encountered with multiple inputs.

a. If (a) is true, select a node loop whose tear is not yet in the

position desired in ET(2) and repeat from 2. Call this node

loop uf(1)•

b. If (b) is true, continue with step (3).

3. Discover a loop u(2) with the properties (1) the loop passes through

n(l), (2) the loop is not torn by the tear for u(l) and (3), if u(l)

and u(2) have conmon portions, these common portions are connected.

(If a node loop exists which satisfies properties (1) and (2) but not

(3), then another node loop exists which satisfies property (3), and

it is to be the one selected. Figure 2 presents an example. Figure

2a shows our digraph. Figure 2b identifies node loop u(l) and Figure

2c, node loop u(2). Note that u(2) has two disconnected portions in

common with u(l) • For this example we replace the parallel path in

u(2) which connects the two common portions by the part of \j(l) ex-

isting between these portions and find a loop 0(2) which satisfies prop-

erty 3.)

4. Merge portions of u(l) and u(2) which are in common, as illustrated

in Figure 3, into one supernode. Clearly the tear for u(2) cannot be

in the common portions for otherwise u(l) would be doubly torn.
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(a) (b) (c) (d)

Figure 2. Finding a Loop Satisfying Property 3.

Figure 3. Merging Common Portions of Two Loops into a Supernode.
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5. Starting now with u(2), move the tear forward via the replacement rule

until either (a) node n(l) (which may now be in a supernode) is encoun-

tered or (b) a node n(2) is encountered which has multiple inputs.

a. If (a) is true then

1. Repeat from 3 if n(l) has an as yet untorn input edge.
Call the new loop found uf(2).

2. Otherwise all edges to n(l) are now in the tear set
so we can move the tear set through n(l) via the re-
placement rule. If n(l) is in a supernode, unmerge
the supernode and move the tear set through n(l) via
the replacement rule. Continue with step 2.

b. If (b) is true continue with step 6.

6. Find a loop u(3) with the properties (1) the loop passes through n(2),

(2) the loop is not torn by the tears for u(l) nor u(2) and (3), if

u(l), u(2) and u(3) have common portions, these portions are connected.

7. Merge portions of u(3), u(2) and/or u(l) which are in comnon into one

supernode. (If the supernode includes parts of u(l), then in fact u(3)

is not separated from u(l) by u(2) . It should be relabeled as loop

uf(2), a "second (not third) level" node loop relative to u(l).)

8. Start now with u(3) and move its tear forward via the replacement rule

until either (a) node n(2) is encountered or (b) a node n(3) is encoun-

tered which has multiple inputs.

t Etc.

It should be clear with the above how to continue. The loops

u(l)> u(2), • • • • can be discovered only to a finite depth because each

must not be torn by the tears of the earlier ones and only a finite number

of simple loops occurs in a finite digraph.
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The loops u(l), u(2), . . . . form a "tree11 of loops with 0(1)

being the root. Figure 4 illustrates. The structure must be a tree for,

if it is not, then it will contain a covered loop and an exclusive tear

set does not exist. Loops u'(k) and u(k) may contain common edges and nodes,

but, since they are not dealt with at the same time, no merging need occur

among them unless they both join loop O(k-l) at the same node (or supernode) .

We now argue that, since the loops form a tree structure, we can

move the tear for loop u(l) to its position in ET(2) , and then we can re-

turn the tears for all loops above u(l) in the three to their original po-

sitions unless the tear for u(l) in ET(2) is in the portion of u(l) and

u(2) which is in conmon. The tear for u(2) in ET(2) must be that for u(l)

in this case, and it need not be moved.

Assume the tear is not in the common portion. Clearly the tear

for u(l) can be moved forward via the replacement rule through n(l) and

then nf(l) if necessary to get it to the position desired in ET(2). After

moving through n(l) the tear for u(2) just follows n(l) . It can be moved

forward anywhere around u(2) without encountering n(l) again, and thus the

tear for u(2) can be put back to its original position without moving the

tear for u(l) . proceeding up the tree to level 3 the tear for u(3) can-

not be in the common section for loops u(l), u(2) and 0(3) for if it were

then o(3) would have become a loop at level 2 in our tree. Thus this tear

can always be returned to its original position, and it can be done with-

out disturbing u(l) or u(2). Etc.

While we can see that all tears for the loops in the tree struc-

ture can be returned to their original places, except perhaps for u(2) vhere

it is not necessary if it cannot be done, tears for other loops not in the

tree may have been moved because of the moving of the tear for o(l) .
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U'(3)

U'(2)

Figure 4. The Tree Structure to the Loops Discovered When Moving Tears
for ( )
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Such tears must come because the tear for u(l) passes through

a "diverging11 node n(l) which has an edge leaving it which is not a part

of any of the loops appearing in the tree of loops. Since all paths leav-

ing u(l) must return to u(l) eventually (because G(N,E) is irreducible),

such a path must belong to one (or more) loops which are torn by the tear

for u(l) in ET(1) but not in ET(2) . Otherwise the edge would appear in

the tree. In other words the edge starts one of more paths which leave

u(l) at node n(l) to return at a one of more nodes, all of which follow

the desired tear for u(l) in ET(2). Figure 5 illustrates, the original

tear for u(l) is shown in Figure 5a, the final desired tear in Figure 5b.

Wfe note that in passing the tear through node n(l), a tear is

created along the parallel path at its beginning. Clearly the path must

have a tear in ET(2) since the path p(l) is covered by the tear for u(l)

and the loop p(l)p(3) must therefore be torn along p(3). Having the tear

at the beginning of p(3) guarantees us that the tear in p(3) can be moved

anywhere along p(3) and thus to its desired position in ET(2) without af-

fecting the tear for loop u(l)«

The approach is therefore to move the tear for each loop in turn

using the above algorithm. Tears are created for parallel paths at their

beginning so they may then be moved forward to exactly where needed. Tears

in loops created above the loop of interest in the tree structure can always

be returned to their original position so previously moved tears can be

moved back to their target position if they appear later in the upper lev-

els of a tree for a different loop.

Thus we can take each loop in turn and place the tear for it from

ET(1) to its position in ET(2) without moving previously moved tears, and

this position may be anywhere in the loop. The digraph has a finite number
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P(3) P(D

Figure 5. Moving a Tear in u(l) through a Diverging Node.
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of simple loops so the process is finite. Thus the replacement rule will

generate all the exclusive tear sets starting from any given one.

ONLY IF PART: The proof depended on the nonexistence of a covered

loop for otherwise the loop tree in Figure 4 would cease to be a tree. A

loop at a higher level would find itself connected to a loop at a lower

level as illustrated in Figure 6.

The tear set indicated by the single strokes cannot be transformed

into the one indicated by the x's by systematically using the replacement

rule. QED.

An example will illustrate. Consider the graph in Figure 7a.

Select u(l) (Figure 7b) as the paths {1,2,7} and move the tear from path

2 to just before node C, a node with two inputs. We discover u(2) an un-

torn loop passing through node C, It has common edges 1 and 7 with u(l)

so Figure 7d is formed by merging these edges, forming a single supernode

(comprising nodes C,A,B) which joins the two loops u(l) an(* u(2) .

The tear for loop o(2) is moved to just before supernode C,A,B.

Note it creates a tear at the start of path 5 because diverging node D has

two output edges. Figure 7e shows the result of expanding the supernode

and then applying the replacement rule across node C, creating a tear on

paths 4 and 7. We find node A on u(l) has two inputs so we must locate

a loop u'(2) (Figure 7f) which is not torn and which passes through C.

Figure 7g shows the tree of loops with common edges 1 and 2 merged. Node

E has two inputs, so we find loop u(3) but it has edges 8 and 1 in common

with both u(2) and u(l). Merging these edges yields the tree in Figure

7i. We see that our supernode is nodes EABC combined and that u(3) really

is a second loop tied to loop u(l) at the supernode; u(3) is relabeled un(2)

since it is at the second level only of the tree.
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Figure 6. A Digraph Leading to a Nontree Loop Structure.



-18-

A,B,C

0(1)
A finished

(j) (k) (1)

(m) (n)

Figure 7. Moving Tears from T(l) = 2,3,9 to T(2) = 1,5
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We can now move the tears on 9 and 4 through node E to path 8.

At this point both paths into node A are torn, and we can move our tears

through A onto path 1 (Figure 7JL) , our desired goal for the tear for loop

u(l). Since the tear on path 1 is in the common part of u(l) with u(2),

u'(2) and u"(2), these loops are torn, and we cannot put the tears along

these loops back to their original positions — nor should we.

We finally find loop uf(l) comprising paths 3 and 5 but the tear

is already on path 5 from when we moved the tear for loop u(2) through node

D. Thus this tear is already in place. Figure 7n shows the final tear

set, ET(2), imposed on our network.
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Nev Tear Algorithm

We extend the argument of Upadhye and Grens by favoring those

tear schemes which tear unit loops the fewest number of times. We would

prefer to select tear schemes which minimize the maximum number of times

any loop is torn. Thus if an exclusive tear set exists, we want our best

tear set to be an exclusive tear set.

Wfe examine the digraph in Figure 6. This digraph contains a loop-

ing cascade and thus has no exclusive tear set. We display the simple node

loops for this digraph by using a loop/edge incidence matrix. We list each

loop along the left border of the matrix and each edge across the top. If

an edge appears in the loop, we put a nonblank character (e.g. fxf) in the

row for the loop. For the digraph in Figure 6, the loop incidence matrix

is

\
Loop

1

2

3

4

5

6

We can first apply Algorithm I and discover a covered loop. We first remove

edge 1 which covers (flags) edges e^ e , e3, e, and e and tears loops

u(l) and o(5). we then remove edge efi which covers edges e_ and eft and

tears loops y(2) and u(6). Clearly loops u(3) and u(4) are covered but

not torn. The Upadhye and Grens replacement rule would find three differ-

ent nonredundant families:

Edge 1

X

X

2

X

X

3

X

X

4

X

X

5
X

X

6

X

X

7

X

X

8

X

X
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1) based on one tear of loop u(5) and three of loop u(6)

2) based on two tears each of loops u(5) and loop o(6)

3) based on three tears of loop o(5) and one of loop u(6).

We see that families 1 and 3 triple tear a loop whereas family 2 double

tears two loops.

The algorithm we wish to propose will select the second family

as best because no node loop is torn more than twice for it.

We now devise an algorithm based on implicit enumeration (branch

and bound) to locate effectively an edge tear set for an irreducible graph.

We shall allow an edge e. to have a weight W. assigned to it. We define

the multiplicity m(X) of an edge tear set ET(jt) as the maximum number of

times any of the node loops are torn. The weight of an edge tear set is

the sum of the weights assigned to the edges in the edge tear set ET(/).

Our algorithm will locate an edge tear set such that no other edge tear

set has a lower multiplicity, and, of all those with the same multiplicity,

the selected set has the minimum weight. The algorithm, with explanation,

is as follows.

I. For the irreducible digraph, locate all node loops (an algorithm which

extends in an obvious and minor way the LOOPFINDER algorithm in Forder

and Hutchison [1969] is recommended) and display them in a node inci-

dence matrix, 11.
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II. Assign to each loop i a multiplicity y, « 0, set level count LEV ° 0,

set E, - W. • «, set n • number of rows in M, set WTSUM • 0.

III. Assign to each edge e the following three numbers:

A. An untorn loop count \.9 where \ is the number of loops

which are as yet untorn and which include edge e .

B. An edge efficiency J\m9 where T\. « X./w. • TL equals the

number of loops \rfiich would be torn per unit of assigned

weight for the edge e,.

C. An edge multiplicity $., where

« « max{^|e appears in loop

With these numbers we can assess the value of adding edge e next

to the edge tear set partially completed. If edge e is added

to the edge tear set, X. more loops will be torn with an effi-

ciency per unit of edge weight T|. • At least one loop in the set

of all loops will be torn with multiplicity «.+ 1.

IV. Increment LEV by one. Reorder onto a list, List I of level LEV, the

indices of all edges in increasing order of multiplicity, reordering

edges with equal multiplicity in order of decreasing efficiency.

V. For each edge e on the ordered List I, develop a lower bound on mul-

tiplicity. The lower bound assumes all edges before e on the ordered

list are not in the edge tear set and that edge e is and all fol-

lowing can be in the edge tear set. To establish the multiplic-

A

ity bound use e and, in order, each of the edges following. If n

loops reamin to be torn, then the fewest edges needed to tear all
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the remaining loops, using edges e. ,• • • • e vould be such that

where 0 < 0- £ 1. Since this number assumes loops cut by each edge

are different from those cut by the other edges, we clearly have a

lower bound on the number of edges needed from the sequence used.

The multiplicity e, establishes the multiplicity bound b* for edge

i. If an insufficient number of edges exist for (1) to be established

for an edge, no multiplicity bound exists for that edge.

VI. Establish, for each edge e. on the ordered List I for level LEV and

for which a multiplicity bound exists, a lower bound on the required

sum of weights to complete the edge tear set. For edge e#, consider

all edges following e . up to e where q is the last edge with mul-

tiplicity uu = b* . Reorder these edges e. - to e in order of

decreasing edge efficiency onto a temporary list, List II. Let this

list contain the indices S« , So, • • • • S . . Select e. and just
l 2. *l"i *•

enough edges in order from List II such that

. . . . % A

1 t-1

where 0 < e? £ 1

The lower bound on the sum of weights for edge e.# is then

b^ - Wi + Wg + Wg + + Wg + 92WS + WTSUM

Note, the bounds bf for edges on List I for level LEV are in increas-

Wing order but the bounds b may not be.
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VII. Set NXT(LEV) = 1.

VIII. Set k = NXT(LEV) and increment NXT(LEV) by one. Set £ = k-th index

on List I for level LEV.

IX. A. If b* > , or if bf does not exist, go to Step XII.

B. If BY ̂  W, ,_, return to Step VIII.
£ best

X. Add edge e£ to the edge tear set as follows. It will be the LEV-th

edge in the set.

A. Increment VTTSUM by W£.

B. For each loop X. in which e£ appears, increment p, by one.

C. If jj,. just becomes one

1. decrement n by one

2. for each edge e in loop JL., decrement the untorn loop coun-
ter by one.

XI. If all loops jfc. are not yet torn (at least one y, » 0), return to Step

IIIB. Otherwise

ft W

A. Set «. = b, and W, = b- for current tear set.

Desc K Desu K

B. Save current edge tear set as best.

C. Go to Step XIII.

XII. All edges not yet considered on List I at level LEV need not be con-

sidered further as they cannot lead to a better tear set than the

best found so far.

A. Decrement LEV by one.

B. If LEV = 0, exit algorithm.

C. Set k » NXT(LEV) - 1, and set £ - k-th index on List I for level LEV.
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XIII. Remove edge e£ from current edge tear set by

A. Decrement WTSUM by W^.

B. For each loop u(i) in which e£ appears, decrement p, by one.

C. If p». just becomes zero

1. increment n by one

2. then for each edge e in loop u(i)> increment the untorn loop
counter \ by one. n

XIV. Return to Step VIII.

We can illustrate the algorithm with an example, the digraph of Figure 7a.

Wfe arbitrarily assign weights to the edges and use the algorithm to find

a best edge tear set.

Step I. The five node loops for the digraph in Figure 7a are illustrated

in the incidence matrix shown in Figure 8. Loop u(l) contains edges e..,

e^ and e_. Weights W. are assigned across the top to each edge, e.g. edge

e- has a weight of 5.

Step II. Again looking at Figure 8, we see p,.= 0 assigned to each loop

along the left border, n is 5 here.

Step III. Figure 8 also has \ , T] and * values assigned for each edge.

X-.- 3 because edge e- appears in three as yet untorn loops. 7| = 3/5 = 0.6

and « = max(p,-, p,,, p,_) » 0. Since all loops are as yet untorn, all loops

torn in the first step will be torn once, i.e. with a multiplicity of

«.+ 1 = 1 -
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Step IV. Increment LEV to one. List I will be the indices (8,2,4,7,9,3,1,

6,5)- Edge e has the highest efficiency (7)^ 2) and edge e5 the lowest

oi5- °-
2)-

Step V. Figure 9 shows the multiplicity bounds for each edge with edges

reordered as done in Step IV. For edge 8 we need to tear at least eg and

e2 to tear n - 5 loops so bg - max(«g,«2) = 0 . For edge e2 we need to tear

it and at least edges e, and e to tear 5 loops so t>2 = ^ ^ ' ^ ' V *" °#

bf = max(e,, c7, « ,O = 0, and so forth. Edge e^ has no bound since e^

and all edges following (e.) can tear only 2 loops. Similarly e5 has no

bound•

Step VI. In a manner similar to establishing the multiplicity bound for

an edge, we establish a weight bound. Since all multiplicity bounds are

equal to zero, list II is the same as list I. For the first edge, e o, we
o

need edge eo and eo at least to tear 5 loops so b^ = W o+ W o+ WTSUM = 1 + 2o Z o o Z

+ 0 = 3. b2= W 2+ W 4+ W y+ WTSUM = 2 + 1 + 1 + 0 = 4 . For edge e? we need

e7* e9* e3 a n d ° n l y l^3 °f el tO g e t 5 l o O p t e a r s so b^ = W 7 + W9 + W3 + wi^ 3

+ WTSUM = 6-2/3.

Step VII. Set NXT(l) = 1.

Step VIII.Set k = 1, NXT(l) = 2 and £ = 8, the first index on List I for

level 1.

Step IX. b* = 0 < E, = 09 and bg = 3 < Wbegt = » so continue to step X.
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Step X. We shall add edge eg as the first edge in the tear set. WTSUM

will be incremented from zero to zero + Wg= 3. y,, and p, are incremented

to unity because eo appears in loops u(^)
 an^ u(5) • n will be decremented

o

to 5 - 2 s 3 since all loops which are torn are torn for the first time

here. The untorn loop counter for e- is decremented by 2 since two loops

in which it occurs have just been torn, e by 1, e_ by zero and so forth.

Step XI. For our example y • tu ~ M»3 ~ ° y e t so ^ r e t u r n to steP

Steps IIIB and C, IV, V and VI lead to the results in Figures 10 and 11.

LEV is reset to 2 in Step IV.

Step VII. NXT(2) = 1

Step VIII.k = 1, NXT(2) = 2 . k = 7.

Step IX. Continue to Step X.

Step X. Add edge e_ to the edge tear set.

Step IX will return us to IIIB where Steps IIIB and C, IV, V and V lead

to the results in Figures 12 and 13.

Step VII. NXT(3) = 1

Step VIII.k = 1, NXT(3) - 2, k - 3.

Step IX. Continue to Step X.

Step X. Add edge e to the edge tear set. We now find all loops torn

(no ^= 0) . So we set ebest= b« = 0 and Wbest= b* - 5.
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Step XII. No further edges at level 3 need be considered. Decrement LEV

to 2 and set k = NXT(2) - 1 - 1 . Set £ = 7.

Step XIII.Remove edge e. from the tear set. Decrement ^- by one, set n - 3,

and increment \-, \ and X_ by one. Note, we have simply recovered Figure

10 by these steps.

Step XIV. Go to Step VIII.

Step VIII.Set k - NXT(2) = 2, NXT(2) - 3 and £ - 3.

Step IX. See Figure 11. We are now looking at replacing e. by e as the

second tear, b® - 0 - e, t" 0. b^ - 7 :> W. - 5 so we go to Step VIII.

(It would require a tear weight of at least 7 so skip.)

Step VIII. k - NXT(2) - 3, NXT(2) - 4 and £ - 6.

Step IX. bg - 1 > «b j.8" 0 (see Figure 11). Putting edge 6 or any follow-

ing in as a tear would raise the multiplicity of the solution to 2 (a loop

would become doubly torn) so we can forget looking at level 2 options. Go

to Step XII.

Step XI. Set LEV to l(we should now return to Figures 8 and 9) , k - NXT(l) - 1

- 1, £ - 8.

Step XIII. Delete edge eg from the tear set.

Step VIII. Set k - NXT(l) - 2, NXT(LEV) - 3 and £ = 2.
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Continuing (see Figure 9) we find replacing eo by eo will give
o Z

a weight bound of 4 which is less than 5, the best so far. We develop the

Wloop incidence matrix and bounds in Figures 14 and 15 and find bQ at level

2 is already up to a minimum tear weight of 8 so we stop looking with e

as the first level tear. The next first level tear option is e, (Figure

9), but it has a weight bound of 6 so we can stop altogether. The best

tear set is eft, e_ and e with a multiplicity of 1 (an exclusive tear set)

and a tear weight of 5. Note we examined only alternatives e_ and efi (no

effort required) at level 2, returned to level 1 and followed one more false

trail based on e , e . Very few options had to be explored to find the

best.
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