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Abstract.

In this paper we propose a method for the integrated scheduling and design for a

special class of multipurpose batch processes. The type of plants considered are the ones

where not all the products use the same processing stages, and manufacturing of the

products can be characterized through production routes. A novel representation for

cyclic schedules is proposed that has the effect of aggregating the number of batches for

each product. It is shown that the no-wait characteristics of subtrains can be exploited

with a reduction scheme that has the effect of greatly decreasing the dimensionality of the

problem. This reduction scheme can be complemented with a tight formulation of the

underlying disjunctions in the MILP to reduce the computational expense. The proposed

MILP model for scheduling is extended to design problems in which the potential

existence of intermediate storage in the production paths is also considered. In addition to

the rigorous scheduling of the process, the sizes of the equipment constituting the various

production stages are determined. By using exact linearization schemes it is shown that

the problem can be reformulated as an MILP model and solved rigorously to global

optimality. Application of the proposed model is illustrated with several example

problems.
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Introduction
Batch processes consist of a collection of processing equipment where batches of

the various products are produced by executing a set of processing tasks or operations

like reaction, mixing or distillation. Every processing equipment can perform particular

operations. Thus, it is possible to recognize production paths consisting of processing

equipment which indicate potential routes a batch might follow. A batch of a particular

product might follow alternative paths through the process. Processing equipment that

can perform the same operations can be grouped in a production stage.

The major classification of batch processes is based on the consideration of the

production paths required for the products. If all the products follow the same production

path then significant simplifications of the preliminary design problem can be achieved,

allowing the creation of a separate class of plants called the multiproduct batch plants

(Figure 1). The plants which do not belong to this category are generally classified as

multipurpose batch plants. Since the multipurpose class is a superset of the multiproduct

class, all the design methods proposed for multipurpose plants are applicable to the

multiproduct case. In conjunction to this, the design methods for multipurpose plants are

significantly more difficult compared to the methods for multiproduct plants. In this work

we introduce a special classification for the multipurpose batch plants. More specifically

we divide the multipurpose plants in sequential plants and nonsequential plants (Figure

1). In a sequential plant it is possible to recognize a specific direction in the plant floor

that is followed by the production paths of all the products. Nonsequential plants are all

the remaining cases. Clearly, every multiproduct plant is a sequential multipurpose plant,

but the converse is not true. Also, according to Reklaitis (1990), multiproduct plants are

used when the products exhibit a chemical similarity to each other. As the similarities

decrease, the plant becomes a multipurpose batch plant. Among these, sequential

multipurpose plants are common in industry and hence of practical importance.

A second major classification of batch processes is due to the transfer policies

between the production equipment. At one extreme lie the no-wait plants where no

intermediate storage is considered and all intermediates have to be immediately processed

by the downstream equipment. At the other extreme lies the case where unlimited

intermediate storage is available between every processing equipment that do not belong

to the same production stage. In between lies a spectrum of alternative policies (see Ku

and Karimi, 1990). A general class under this classification are the plants with mixed

intermediate storage (MIS) policy where the process consists of no-wait subtrains

separated by an appropriate number of intermediate storage vessels.



Literature review

Because of its relative simplicity, the preliminary design of multiproduct plants

has been in focus by many researchers. Rippin (1993) reviews most of the work in this

area in recent years. In this review the need for a comprehensive algorithm that will

automatically consider and select from all structural possibilities considered

simultaneously is recognized. Voudouris and Grossmann (1993) developed a

comprehensive MILP model for multiproduct batch plants that considers all the structural

possibilities, and even further, considers final product inventories within a periodic

scheduling approach.

For multipurpose plants the mixed integer approaches for design and scheduling

can be categorized in thrce broad arcas. The main difference between these approaches is

the way with which the scheduling subproblem is dealt with. The first approach is based

on a simplified campaign planning scheme as for instance with the work by Vaselenak et

al (1987). In this approach a central issue is the production campaign formation. Namely,

during a production campaign which consists of batches of the same product, two

products are allowed to be produced in the same campaign only if their production paths

do not share any processing equipment. Faqir and Karimi (1990) generalized this

approach by allowing more than one path for the production of a particular product The

model they developed was a nonconvex MINLP which was later reformulated as an

MILP by Voudouris and Grossmann (1992). Papageorgaki and Reklaitis (1990) also

developed a nonconvex MINLP model which incorporated many additional aspects like

flexible task-to-equipment allocation, but still was based on a campaign planning mode.

A variant of this campaign approach is proposed by Shah and Pantelides (1992) where

the assumption of simultaneously utilizing production paths with noncommon equipment

for the formation of production campaigns is applied to production stages instead of

production paths. The main problem with these approaches is that the scheduling problem

is solved based on a simplifying assumption, thus allowing underutilization of time, the

generation of relatively large idle times for the processing equipment, and significant

overdesign of the plant when the design subproblem is integrated.

The second approach tries to tackle the problem of time underutilization. For this

reason it is recognized that a rigorous scheduling of production paths has first to be

performed and to serve as a lower level subproblem to the capacity allocation problem.

The work by Wellons and Reklaitis (1991) is representative of this approach.

Unfortunately the resulting models are highly intractable mainly because of the

nonlinearities that arc involved. Furthermore, an arbitrary selection of the total number of

batches that are considered may lead to suboptimai solutions.



The third approach is based on solving the scheduling problem by discnetizing the

time domain in uniform time intervals (Kondili et al, 1993). The major advantage here is

the capability of considering complex task networks and handling resource constraints.

The major problem with this approach is the large size of the MILP model and the

problem of mapping the discretization points with the actual points in time when the

events take place. Even though it might seem that the problem can be alleviated by

assuming nonuniform time intervals, the identification of these discretization points in the

context of the preliminary design is still an unresolved problem. For these reasons

approaches based on nonuniform and uniform discretizations are, thus far, considered

only for the short term scheduling subproblem and not as a scheduling subproblem inside

a larger preliminary design framework.

In this work we address the problem of integrating scheduling in the design of

sequential multipurpose plants. As shown in Figure 1 these are plants where all batches

follow the same sequence throughout the stages although some of these might be skipped.

In the scheduling subproblem an exact model is developed for the sequential batch plant

under MIS policy. Starting from the generic machine scheduling formulation, the

structure implicit in sequential multipurpose plants is exploited and a reduction scheme is

proposed which significantly decreases the dimensionality of the problem. To address the

integration of the scheduling subproblem with the design problem, an aggregation

scheme is proposed which allows to solve the problem in the space of products, rather

than in the space of individual batches. This aggregation scheme is based on a periodic

scheduling approach. In this way it is possible to optimize the Production Cycle time,

during which the optimal schedule is repeated, and in the design problem, to incorporate

costs for final product inventories. The scheduling subproblem is considered for two

different cases. In the first case all potential production paths are given and fixed,

whereas in the second case the selection of the actual production paths is an optimization

variable. The difference between these two cases when the design problem is considered,

is the following. In the first case all the equipment in the plant are utilized and the actual

decisions are only in terms of sizing the equipment and the scheduling. In the second case

the equipment that will actually be used are selected from a set of potential units to

synthesize the optimal plant configuration.

Problem definitions.

The general design approach followed in this paper is described in a previous

paper (Voudouris and Grossmann, 1993). One of the most important steps in this

approach is to identify the space of alternatives (see Figure 2). This space of alternatives



can be redefined if the optimal solution involves undesirable operational conditions. The

verification step can be performed using a discrete event simulator. In this section we

identify the issues that will define our space of alternatives. We should note that some of

the set notation used in this work is not standard mathematical notation, but it has a one

to one correspondence with the one in the GAMS modeling language (Brooke et al,

1988).

Consider that a set of products P=(p} is given with deterministic demand

specifications Qp that have to be satisfied during a design horizon 3Z The production of

those products involves the processing of a set of tasks I={i} in a set of processing

equipment K={k}. Let j be an alias for the index of tasks L Every product p is associated

with a number of processing tasks i. This association is expressed with the set of dyads

A={ (p, i) : task i is associated with the production of product p }. Every processing

equipment can perform only a restricted number of tasks. This is expressed with the set of

dyads B=( (k, i) : task i can be performed on equipment k). Because of the above

definitions, it is possible to identify a set of production paths H=(h} in the plant floor

(see Figure 3). Every production path is associated with a number of processing

equipment which is indicated with the set M={ (h, k) : equipment k belongs to path h }.

In Figure 3 the set M is defined as, M = { (1,1), (1,4), (2,1), (2,5), (3,2), (3, 4), . . . } .

Furthermore, every path h will be dedicated to the production of a particular product p

which is indicated by the set C={ (h, p): V (k, i)e B , (p, i) € A A (h, k) € M }. Again in

Figure 3, set C is defined as, C = { (1,A), (2,A), (3,A), (4,A), (5,A), (6,A), (7,B), (8,B)}.

The specific production recipes for every product are expressed with a particular

precedence among the operations. This precedence can be expressed with the set G=( (i,

j) • V p , (p, i) e A A (p, j) e A A (j has to be executed immediately after i ) } or with the

setoftriadsD={(h,k,k'):V(i,j) e G,(k,i)€ B, (k\ j )€ B,(h,k)G M, (hjc')<= M).

For the example shown in Figure 3 we get D={ (1,1,4), (2,1,5), (3,2,4), (4,2,5), (5,3,4),

(6,3,4), (7,4,6), (8,5,6)}. Scheduling of the operations consists, in this work, identifying a

sequence of operations in the equipment while ensuring that potential clashes will not

occur. The potential pairs of clashes are expressed with the set E={(h, h\ k): (h, k) e M

and (h\ k) e M} which for our example is defined as E={(1,2,1), (2,1,1) (3,4,2), (4,3,2),

(1,3,4), (3,1,4), (1,4,4), (4,1,4), (1,7,4)... }.

The sequential multipurpose plant is a restricted version of the multiple directions

plant. More specifically, when the processing equipment are specified to belong to a

sequence, then the set D includes elements which have the property that for every path h,

k* has a higher sequence number than k. This can easily be verified for the instance of

Figure 3. Graphically this means that it is possible to identify a sequence of the



processing equipment such that all production paths flow in a single direction. This

property can also be shown with a Gantt chart as in Figure 4. We have to emphasize that

this is a simplified version of multipurpose batch plants but is a more general class than

the multiproduct plants. In Figure 4 it can be seen that in the possible sequence given, the

operation of product A is after the operation of product B in equipment 1. The reverse is

true however for equipment 3. It is therefore not correct to consider a zero processing

time of batch C at equipment 2 and treat the plant as multiproduct because this

assumption allows only the same sequence in every equipment

Some other interesting characteristics of sequential multipurpose plants is that

they can be used as a representation of sequential plants with parallel equipment.

Consider for example the plant shown in Figure 3 which involves 3 parallel equipment at

stage 1 and 2 parallel equipment in stage 2. By defining the corresponding production

paths it is easy to show that the process is a sequential multipurpose batch plant As was

mentioned before, the execution of the operations in a production path is performed in a

no-wait fashion. This means that a subsequent operation has to be started as soon as the

previous operation in a path is finished. Intermediate storage can be treated by the proper

definition of the production paths. The existence of an intermediate storage vessel at

some point in a production path (e.g. between equipment 2 and 3 in Figure l.b) can be

considered by decomposing the paths in two independent no-wait subpaths (or subtrains)

as is shown in Figure 5.

We address the scheduling problem in two phases. First, it is required that a given

number of batches for every product npp has to be produced in the minimum amount of

time. As a major second step we present aggregated models for cyclic scheduling in

which the number of batches appear as parameters that can be relaxed as variables in

design problems. Furthermore, we address the scheduling subproblem for two cases: a)

the production paths in the processing network are given and fixed; b) the production

paths have to be selected. This hierarchy of models is proposed because there is a trade-

off between computational efficiency and generality of the models.

The second part of the paper deals with the optimal design of a process by

simultaneously considering the production schedule. In this phase the inputs are the

demand specifications for every product during a design horizon. A selection of the sizes

and layout of the equipment has to be made is such a manner that the profitability of the

process expressed by the Net Present Value (NPV) is maximized. Major assumptions for

developing the models include processing times that are independent from batch size, and

semicontinuous units arc not considered. The batch plant is assumed to consist of no-wait

subtrains which are separated by intermediate storage vessels. The location of the



intermediate storage vessels is given, and sizing for these vessels is not considered.

During a production cycle a production path is utilized only once to produce the optimal

number of batches. Synthesis decisions regarding task to equipment allocation are not

considered in this work, although they could have been treated by proper definition of the

production paths. However, note that the vessel sizes are considered in standard values.

This allows the application of the linearization transformations proposed in our previous

work ( Voudouris and Grossmann , 1992,1993; Grossmann et al 1992). Next we present

the mathematical programming models proposed for the above problems.

Scheduling of sequential multipurpose plants under MIS

Suppose a processing network is given by means of the sets defined above. In

general, a production path can be utilized several times to produce identical batches. In

this section, however, we assume for simplicity that every batch follows every inidividual

path only once. In this section, the MIS policy is assumed to be a combination of the no-

wait and the unlimited intermediate strorage policy (UIS), whereas in the later sections it

is assumed to be a combination of the no-intermediate storage (NIS) and UIS policies.

Consider that thk represents the starting time of the proper operation of path h performed

on equipment k and dhk is the processing time of the same operation. We define the

following binary variable,

f i if path his before path hf in machine k
y h h k - j Q otherwise

The generic machine scheduling model can be treated with the following well known

formulation (e.g. see Balas, 1985a).

minMs (P.I)

s.t Ms^thk+dhk V ( h , k ) e M

t^ ^ 0 V (h, k) e M

thk- ^ ^dhk V(h,k,k') eD

V(h,h\k) e E+



-thk + thk + ( d h k • L h h k ^ y h h k ^ d h k v * h ' h ' k )

f0'1* V(h,h\k)

where Ms = Makespan of the schedule, E = E + u E ' with (h, h\ k) € E+ if and only if

(h\ h, k) € E". A very simple way to calculate E+ is to consider only those indices h and

hf which satisfy the condition ordinality(h) < ordinality(hf). Note that Lhh k = Lhk - Uhk

where Lhk is the lower bound on the starting time of the operation of path hf performed

on machine k and Uhk is the upper bound on the starting time of the operation of path h

performed on machine k.

Although a general formulation like the one in (P.I) is relatively simple, it is

notoriously difficult to solve (see also Raman and Grossmann, 1992). Significant

improvements can be obtained, however, by exploiting the structure of a particular

problem. In our case we start by exploiting the fact that our network consists of no-wait

subtrains. In other words, the third constraint in (P.I) is defined as an equality.

Furthermore, we exploit the fact that the plant is sequential which means that we can

identify an equipment which we can characterize as being first in the sequence. Defining

the starting times th for every path in the first equipment, the starting times thk at each

machine k arc given by,

k-l

thk=th+ £ dhk' V(h,k)€ M (1)
k'=l

Note that the sum is defined over all the equipment. In case an equipment does not belong

to path h then dhk is zero. Note that equation (1) is equivalent to the third constraint in

(P.I) when it is an equality, and thus this constraint is replaced by (1).

The fixed paths case

Consider that all production paths in a process have been identified and all of

them will be used in the schedule. The existence of intermediate storage vessels as well as

parallel equipment in a production stage is treated by the path decomposition method

illustrated in Figure 5. By assuming no-wait transfer, i.e. the third constraint in (P.I) is an

equality, we can substitute the starting times thk in (P-l) with the definition in (1). Thus,

we get the following model,



min Ms (P.2)

I id
S.L. MS £ th +

k = l

Vh

k-1

S V(h,h',k)

k k-1

+W yhhlc >( X dhV- S dWcO V(h,h\k)

{ 0 , 1 } V(h,h\k)

Note that the calculation of bounds for the disjunctions is not required here due to the no-
wait transfer assumption. Also, note that it is possible to consider the existence of
intermediate storage vessels by a proper definition of the paths. The production paths
have to be classified into two classes. First there are the paths that are producing
intermediate products called the intermediate paths. Then there are the paths that produce
final products called market paths. The set FT = {h} is a subset of H and has as entries all
the market paths in the process. For every path producing an intermediate, there is exactly
one path (either market of intermediate path) that is considered to be the downstream path
after the intermediate storage vessel. The correspondence between upstream and
downstream paths is indicated with the set of dyads F = { (h, hf): path h is the upstream
path for the downstream path h1}. Note that for every market path there can be one or
more intermediate paths related to it. One of these is the immediate predecessor of the
market path. The following constraint ensures that the downstream path starts operating
after the upstream path has produced a batch,

IK)
th+ X di*' <th< V(h,h') eF (la)

k f = l

Although models (P.2) and (P.I) are mathematically equivalent under the no-wait
transfer assumption, model (P.2) has significantly smaller number of continuous
variables, the same number of binary variables and a relatively smaller number of



constraints. It is thus a formulation of model (P.I) in a reduced continuous space. Since

the lower bounds in model (P.I) are implicitly considered in model (P.2), the LP

relaxation of model (P.2) is the same as model (P.I) when equality of the third constraint

is enforced. This means that model (P.2) requires less computational effort to solve a

particular instance of the same problem. The main problem, however, that model (P.I)

exhibits, is also present in model (P.2). More specifically, it has been proved (Balas,

1985a) that the disjunctive constraints defined over the set E, do not have any

constraining power when the corresponding binary variable is relaxed. In order to

alleviate this problem many researchers have dedicated significant efforts to devise strong

cutting planes for particular cases of model (P. 1). Since model (P.2) is a particular case of

model (P.I) which is obtained by applying well defined mathematical steps, it is possible

to modify some of the most efficient of these cutting planes and to apply them in model

(P.2). Some efficient cutting planes have been proposed by Balas (1985b). From our

experience the most effective cutting planes have been initially proposed by Dyer and

Wolsey (1990) for the one machine scheduling problem with release times and due dates,

and later modified for model (P.I) by Applegate and Cook (1991). The form of these

cutting planes for model (P.2) is given in Appendix I. By also exploiting the no-wait

character of model (P.2), we propose in the next section a reduction scheme which leads

to an equivalent model (P.3) that has a significantly lower dimensionality in the binary

space.

Reduction scheme

The dimensionality of the binary space in model (P.2) is equivalent to the

cardinality of set E+, since the binary variable yhh* is defined over that set. A geometric

interpretation of the principles where the reduction scheme is based, are given in the

Gantt chart of Figure 6. In the first case of this figure, yABi= 1 and yAB2= 1 arc implied

when yAB3 = 1 and thus they arc redundant In the second case however the instance yAC3

= 1 is not redundant when yAci = 1 because, as shown in the third case, it is possible to

get a 'reversal1 where yAci = 1 and yAc3 - 0 (or ycA3= 1). Based on these ideas we devise

the following reduction scheme which significantly reduces the cardinality of the domain

of the sequencing binary variables without compromising the optimality of the model.

Let us first define the variables DhhTc, Vhh' and Slkhh'k with the following
equations,

k-l k

DhhTc = X 4IY - £ dhk« V (h,h',k) e E+ (2)
k'=l k '= l
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= min [Dhhic.O] Vh,hf (3)
k: (h,h\k) € E*

D ^ - Vhh- V (h, h\ k) e E+ (4)

The slacks Slkhhic represent the forced idle time imposed on machine k when path
h is followed by h' in a no-wait multipurpose plant A geometrical interpretation can be
seen in the Gantt chart of Figure 7. In this figure only two pairs of paths are given and the
corresponding slacks are shown in Table I.

We further define Plhh* and Chhh'kk' w^*1 *e following equations,

V(h,h\k) €E+ (5)

max[0, Slkhh* - Plhhic] V (h, h\ k) e E+ and (h, hf, k') e E+ (6)

or
Chwi'kk' = e ( s m a ^ positive number) if Slkhhic =

V (h, h\ k) e E-1" and (h, hf
f k

f) e E+ (7)

Finally, the sets Q and R are defined as follows,

Q = \ (h,h\k) : (h,h\k) e Eand 2, Chhhick' >0> (8)

(h, h\ k) : (h, h1, k) € E+ and (Slkhhic= 0 v Slkh"hk= 0
\ v ( h , h \ k ) € Q v ( h \ h , k ) € Q )

Note that all triads belonging to set R belong to set E+, but they have to also satisfy one of
the four conditions in (9). Thus depending on these conditions, the cardinality of set R is
smaller or at most equal to the cardinality of the set E+ . Next we prove the following
proposition.

Proposition 1. Problem (P.2) is equivalent to a reduced problem (RP.2), in which the
disjunctions are defined only over the set R rather than set E+,
Proof. See Appendix n.
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Due to the restrictive nature of the conditions imposed when set R is defined, the number

of binary variables and disjunctive constraints is significantly reduced The effectiveness

of this reduction scheme and of the cutting planes is illustrated in the next example.

Example 1

Consider the case where 4 products will be produced in a multipurpose batch

plant For product A three batches will be produced, for product B also three and for

products C and D two batches for each. In Hgure 8 the production paths are shown for

the batches of each product. The objective is to find the schedule that minimizes the

makespan. Although this problem with 4 products and 10 batches, seems to be relatively

small, the computational effort required to solve this instance is surprisingly large. The

optimal schedule is shown in the Gantt chart of Figure 9. The optimal makespan is 52

hours.

In order to study the impact of the reduction scheme and the cutting planes, 4

particular models have been tested All the models were generated with GAMS 2.25

(Brooke et al, 1988) and the MILP solver was OSL (OSL, 1991). The computer platform

was an IBM/R6000/Power 530 workstation. Note that a custom fit options file was used

to optimally set the optimization parameters on OSL. More details on the settings of these

parameters are given in the section of computational considerations. In the first version

model (P.2) was used with no cutting planes and no reduction scheme. The model

involved 182 constraints and 97 variables of which 86 were binary. After more than 2

CPU hours and 144,063 nodes enumerated in the branch and bound tree, the solution had

still a relaxation gap of 47%. This solution was 53 hours which is not the optimal

solution. In the second version the same model was used but now only the reduction

scheme was applied. The model involved 120 constraints and 66 variables of which 55

were binary. Again in this case the model failed to report the optimal solution in 2 CPU

hours. Instead a solution of 53 was the best reported The relaxation gap was 20.9% and

137,532 nodes were enumerated In the third case only the cutting planes were used The

optimal solution of 52 hours was found after 42 CPU minutes and 51,232 nodes. The LP

relaxation of this model was 52 hours so the relaxation gap was 0% and the tree was

enumerated to identify an integer solution with the same makespan as the relaxation. It

should be noted that in the first two versions the relaxation had a solution of 18 and thus

the relaxation gap was 65%. Finally, in the fourth case both the cutting planes and the

reduction scheme were used. This model involved 130 constraints and 66 variables of

which 55 were binary. The optimal solution was now obtained in 601 CPU seconds and

after 16,092 nodes. Note that the reduction scheme reduces the number of binary
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variables from 86 to 55. For the final version we also solved the model with GAMS

2.25/Sciconic 2.11 and the solution was obtained in 293 CPU seconds and 13,177 nodes

were enumerated. Sciconic (SCICONIC, 1991) however did not always perform better

thatOSL.

To also clarify the difference between the multiproduct and sequential

multipurpose plants the same example was solved as if it were a multiproduct plant with

zero processing time on the stages that are skipped. The optimal solution in this case was

71 hours which is 40% higher than the optimal makespan! This schedule is shown in

Figure 10. The model used for the rigorous scheduling was the one proposed by Birewar

and Grossmann (1989).

From the computational results that are reported here it is apparent that the

combination of the cutting planes and the reduction scheme improves significantly the

computational performance of model (P.2). These methods however are not sufficient to

address the intractability of the model. For this reason we propose in the next section an

aggregation scheme in which the objective is the minimization of the cycle time.

Aggregated model

In this section we further exploit a significant characteristic of multipurpose plants

to reduce the computational demands and thus make possible the solution of larger

problem instances before the computational "exponential wall*' is reached. One of the

main problems in the reduced model (RP.2) is the fact that when the number of paths (or

total number of batches) is large, the number of disjunctive constraints is increased

quadratically to the number of batches. The main idea in the aggregated model is to

employ a periodic scheduling approach in which a smaller nested scheduling subproblem

is solved optimally. It is assumed that this elementary scheduling subproblem (production

wheel) is formed with single product campaigns and that the actual schedule is obtained

by repeating the elementary schedule a number of times. This number of repetitions has

to be determined optimally. This approach has successfully been implemented in the case

of multiproduct batch plants (see Voudouris and Grossmann, 1993). The key decisions in

the elementary schedule is the optimal sequence of the products, the number of batches

produced and the length of the elementary schedule. For the overall schedule it will be

decided how many times the elementary schedule will be repeated. As an example,

consider the scheduling problem given in Figure 11. A total of 12 batches will be

produced where 3 batches are of product A, 6 of B and 3 of C One possible realization of

the periodic scheduling approach is to repeat three times an elementary schedule which

introduces the production of 1 batch each of A and C and 2 batches of B. A restriction of
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the above approach would seem to be that the total number of batches will be a multiple

of the number of repetitions. This restriction is, however, not so important because the

total number of batches considered in the schedule will be the next higher multiple of the

number of repetitions compared to the total number of batches required. In other words,

we assume the schedules to be periodic even if this is not always optimal. Also, we will

allow for possible overproduction of batches to introduce more freedom in the selection

of a periodic schedule.

Timing of the elementary schedule is based on the recognition of the bottleneck

stage. The notion of a bottleneck stage is well understood in the case where batches of the

same product are considered. In this case the stage with the largest processing time is

considered to be the bottleneck stage. The processing time of the bottleneck stage

represents the period of repetition. This period is widely known as the cycle time of that

product. When a larger number of products with various production paths are involved,

the timing pattern in every stage becomes relatively complicated. It is possible, however,

to recognize a bottleneck stage whose operation defines the period of repetition for the

whole elementary schedule. This period of repetition will be denoted in this paper as the

production cycle time.

Given that at least npp batches have to be produced, consider nbh batches that arc

produced in path h for product p ((h, p) € C) in each cycle. In any particular equipment

k the starting time of the corresponding operation of path h is defined as thk and the finish

time is defined as f\±. As shown in Appendix III, the finish time fhk is given by the

following equation,

fhk = thk + dhk + ( n b h . l ) T l h V ( h , k ) e M (10)

where Tlh is the cycle time of path h and is equal to the processing time of the operation
in the path with the largest duration,

Tlh= max {dhk} V h (11)
k: (h, k) € M

Since an explicit expression of the finishing time of single product campaign within an

elementary schedule is given with equation (10), the disjunctions in model (P.2) can be

written to arbitrate clashes among campaigns. The modified disjunctive constraints arc,
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k k4
Tlh + £ dhk'< th-+ X d h Y + W d - y t o ) V ( h , h ' , k ) e R (12)

k k-1

l) Tlh« + £ dhV< th+ £ dhk'+Wy^ V ( h , h \ k ) e R (13)
k'= l k '= l

Note that the disjunctions are again defined over the set R. This is because the reduction

scheme is still valid with the aggregated disjunctive constraints.

Proposition 2 : The production cycle (or cycle time of the elementary schedule) can be

defined rigorously by the following equation,

P= max [th+(nbh-l) Tlh + £ d^ - (fc + £ <W)] (14)
(h,h\k)eR k' = i k' = i

Proof: See appendix in.

In terms of inequalities in a cycle time minimization problem (14) is given by,

k k-l

P>th+(nbh-0 Tlh + £ d,*.- (th'+ X dhv) V(h,h\k)eR (15)
k f = l k# = l

As mentioned in the multiproduct case (Voudouris and Grossmann, 1993), when a

periodic scheduling approach is considered, and particularly for cases of small number of

elementary schedule repetitions, it is imperative to devise constraints that ensure the

integrality of the ratio,

I£ = Nr (15a)

where Tc = Total time required.

Nr = Number of elementary schedule repetitions.

P = Production cycle time.

Consider the following binary variable defined over the set SV = {sv} whose entries

represent the number of repetitions of the elementary schedule,
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I 1 if sv repetitions of the elementary schedule arc considered
Fsv " I 0 otherwise j

Then the following constraints ensure the integrality of the ratio Tc / P.

Isvl
X rsv = l (16)

Isvl
X aP s v=P (17)

s v = l

ap s v<Ur s v Vsv (18)

Isvl
X ord(sv)apsv=Tc (19)

s v = l

The total number of batches produced by the market paths has to be greater or

equal to the required number of batches for each product. This is expressed by the

constraint,

Nr X nbh^npp Vp (20)
h: (h, p) € C, h e H*

where the inequality sign has been specified to allow an overproduction of batches for a

periodic schedule as discussed previously. When strict equality is enforced, the optimal

solution will be equal or worse to the optimal solution obtained when only the inequality

is considered as will be illustrated in example 2. The nonlinear constraint in (20) can be

linearized using a case 2 linearization scheme (Grossmann et al , 1992). The equivalent

linear set of constraints is,

Isvl
X X ord(sv) arnbhsv ^ npp V p (21)

h: (h, p) e C, h e H' sv = 1

X arnbhsv ^ U rsv V sv (22)
h
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= nbh V h (23)
SV

The following constraints have to be satisfied in order to ensure proper operation

of the intermediate storage vessels,

IKJ
t h + X dhk'^th' V(h,h') e F (24)

k'=l

nbh^Zhh^nbh. V(h,h ' ) eF (25)

Constraint (25) ensures the proper time coordination between the upstream and

downstream paths. Zhhf is a fixed rational number whose value is indicated by the ratio of

the cycle times of the upstream and downstream subtrains. This ratio is such that the

productivities of the two subtrains are equal (see Karimi and Reklaitis, 1985; Modi and

Karimi, 1989). When fixing the value of Zhhf care should be given to the fact that even

though the ratio of the cycle times is unrestricted, the ratio of the number of batches is a

ratio of integral numbers.

The final MELP model is given by,

min Tc (P.3)

s.t (12), (13), (15), (16)-(19), (21) - (25)

t h £ 0 V h

P > 0

ap sv>0 sv = l

ambfev^O Vh, sv =

nbh = integer V h

, r s v e {0,1}
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Example 2

In example 2 we resolve the problem described in example 1 but this time we use

the periodic scheduling model (P.3) which involves 301 constraints and 322 variables out

of which 12 arc discrete. The optimal schedule obtained from model (P.3) is shown in the

Gantt chart of Figure 12. The elementary schedule involves one batch of every product.

Since model (P.3) was used, the objective was to minimize the cycle time of the schedule

and not the makespan as was the case before. The cycle time of the elementary schedule

(Production Cycle) is 16 hours and it has to be repeated three times. The total cycle time

required is 48 hours and the makespan is 58 hours. In comparison, model (P.2) yields an

optimum makespan of 52 hours. Note also that 3 batches of each product will be

produced. Hence equations (21) will not all be active since there is an overproduction of

one batch of C and one of D. Figure 13 shows the optimal schedule with only one

repetition of an elementary schedule involving 3 batches of A, 3 of B, 2 of C and 2 of D.

In other words we enforce strict equality on equation (21). In this case the optimal value

for the total cycle time is 61 hours. Thus the schedule of Figure 12, even though it

involves more batches than required, is more efficient compared to the one in Figure 13.

Model (P.3) was solved in 24 CPU seconds using GAMS 2.25/OSL on an

IBM/R6000/Power 530. A total of 305 nodes were enumerated in the branch and bound

tree. Note that Special Ordered Sets (see Voudouris and Grossmann, 1992) are not

considered as discrete variables although they are present. The set of repetitions S V had

10 entries starting from repetition 1 (see tree partitioning scheme on the computational

considerations section).

The path selection problem

Many times in a multipurpose plant it is possible to identify more than one

production path that a batch of a particular product can follow. The demand for a

particular number of batches can then be satisfied from batches produced in every

individual path. These paths may produce batches of the same or different size and of the

same or different number. As an example, if in an otherwise single-equipment-per-stage

subtrain, only one stage has two equipment operating in parallel, then it is possible to

identify two production routes dedicated for the product produced in the subtrain. The

ability to consider different batch sizes per route allows the consideration of equipment of

unequal sizes in a stage operating in parallel. This can have a significant effect in the

throughput of the process. Furthermore, the fact that the time relation of the paths is not

restricted, allows to consider both in-phase and out-of-phase cases resulting in additional

throughput
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The models developed thus far in this paper have considered that all identifiable

paths for the production of batches of a particular product will actually be used. It is

conceivable, however, that in some cases the forced utilization of a production path is

unnecessary. Therefore, an important extension of the basic model must consider the

nonexistence of a path.

In mathematical terms the nonexistence of a path can be considered in various

ways. The main idea of these methods is to make the disjunctive constraints (12) and (13)

redundant for the cases where one path in this disjunction is nonexistent Furthermore, the

number of batches produced in such a path has to be forced to zero.

Consider the following binary variables,

- _ I i if path h exists!
10 otherwise |

Note that two paths h and h' belonging to two different products, may otherwise be

exactly the same in terms of direction inside the plant Since some of the processing

parameters associated with these two paths like processing times, may be different, a

distinction of these paths has to be made.

One possible way to consider the nonexistence of a path is the following,

th+ (nbh -

th+ (nbh -

1)

1)

Tlh-

Tlh-

k

k ' = l

k

*• X dhk
k ' = l

1 ^ V

1 ^ th-

k-l
+ X dhv +

k'=l

k-l
+ X dh*k" +

k*=l

W (3 - yhhic - y3h - y3hO

V (h, h\ k) e R

W (2 + yhh-k - y3h - y3h0

V (h, h\ k) G R

(26)

(27)

nbh < U y3h V h (28)

Note that there is no need to include any logical constraints to enforce consistency

between the binary variables. This is because the only way that both constraints (26) and

(27) are non redundant is for the variables y3h and y3h' to be one. In this case, depending

on the value of the binary variable yhh'k> only one of these constraints will be

nonredundant

Another alternative to model the above is by introducing the following binary variables,
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i -1 1 if Path h *s before path hf in machine k
Y " I 0 otherwise

which is defined over the set R, and

_/ 1 if path h'is before path h in machine k
- j Q otherwise

which is again defined over the set R. Note that because of the difference in defining the

variables, when both of them are not zero the following condition must hold,

ylhh*+y2hh* = l V ( h , h \ k ) €=R

Therefore, the following constraints can replace constraints (12) and (13),

th+(nbh-l) Tlh + X dhk^ th'+ 2 4 * + W ( l . y l u f t ) V ( h , h \ k ) € R (29)
k'=i k f=i

k k-1

Tlh + Z ^^ »bl + X dhV+W(l-y2hhlc) V(h,h f ,k)eR (30)

The logical consistency between the binary variables ylhhk, y2hh'k and y3h is enforced
with the following constraints (in aggregated form),

(yihhic + y2hMc) ^ y3h Vh (31)

Vhf (32)
(hJ0:(hJi\k)

y2hhic ^ y3h + y3h—l V (h, h\ k) e R (33)

The sets of constraints (29)-(33) and (26)-(27) are equivalent to each other in the binary

space which means that they are equivalent as far as representation of the problem is

concerned. They exhibit, however, significant differences related to computational

performance. The advantage of constraint set (26)-(27) is that a smaller number of binary

variables and constraints is required. The main disadvantage, however, is that the upper
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bound in the disjunctive constraints is 3 times larger compared to the upper bound in

constraints (29)-(33), This means that the constraining power of these constraints is

significantly reduced when the binary variable is relaxed. This might lead to a larger

enumeration of the branch and bound tree (Nemhauser and Wolsey, 1988). The above

effect however, is mostly significant when constraints (26)-(27) are a dominant part of the

MILP model. In our case this is not the case and the intractability of (26)-(27) is reduced.

From our experience the above argument has been justified and constraints (26)-(27) have

been chosen. By replacing the disjunctive constraints (12) - (13) in model (P.3) with

constraints (26M27) and by adding constraint (28), the following model is obtained,

min Tc (P.4)

s.t (15),(16)-(19), (21).(28)

t h £ 0 V h

v^O Vh, sv=l . . . . |SV|

nbh = integer V h

This model addresses the problem of path selection and scheduling of the selected paths

in a sequential multipurpose plant, and its application is illustrated later in this paper.

The design problem

In this section we will expand the scheduling models to design by considering the

selection of sizes of the various equipment Furthermore, when the underlying scheduling

subproblem is the path selection case, this also involves the selection of units.

The number of batches of each path that will be produced during the total design

horizon is the product of the number of batches produced during a production cycle

multiplied by the number of repetitions. Thus,
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Vh (34)

where q^ = demand for product p satisfied by path h (Note that (h, p) € C).

Bh = Batch size of path h.

Since every vessel must be able to accommodate the batches of the paths that are utilizing

that vessel,
h V ( h , k ) e M (35)

In this problem the total number of batches for each product npp is not given. Instead the

total demands Qp that have to be satisfied during the design horizon are the input data.

For this reason constraint (20) has to be replaced with the following constraint,

Nr
te(h,p)€C,heH'

Because of the periodic scheduling that is assumed, it is possible to incorporate the

inventory and operating costs in the design model. The objective in this case is to

maximize the profitability of the process as expressed by the Net Present Value. This is

defined with the following equation,

NPV = -Pc + (R - Oc) (1-tx) (prcoef)+(Pc/Ny) tx (prcoef) (37)

where rx is the tax rate, Ny the expected life of the plant in years, R is the total revenue

from selling the products which is calculated only for the required amount of products

and not for the overproduction. Prcoef is the present value coefficient with which future

profits are projected to the present. This coefficient is given by,

( 3 8 )
in

where in represents the interest rate.

The plant cost Pc can be calculated by the following equation,

(39)
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which is the capital investment required for the equipment

The cyclic operating costs Oc are calculated by the expression,

mintNr (40)

where the first summation is the inventory cost and the second term is the setup cost paid

every time the optimal schedule is repeated. Nr is the total number of repetitions of

cycles, mint is the cost in $ per repetition and Mp is the inventory cost per unit mass of

inventory of product p per unit time. Note that the calculation of the inventory cost is

different to the one proposed for the case of multiproduct plants ( Voudouris and

Grossmann, 1993). This operating policy is indicated in Figure 14. The main reason

behind this assumption is the fact that in multipurpose plants it is relatively difficult to

identify production times for each of the products. Even further, the consideration of

production times generates nonlinear terms that cannot be linearized.

The consideration of intermediate storage can be performed in a similar fashion as

in the pure scheduling and operation subproblem. The main difference, however, is that

constraint (25) has to be replaced by the following constraint,

V ( h , h ' ) e F (25a)

As mentioned before it is possible to consider two distinct cases. In the first case

only the simultaneous capacity allocation and scheduling of an existing process with

selected production paths, is considered. The nonlinear model for this case is,

max NPV (R5)

s. t. (12M13), (15), (15a), (24), (25a), (34)-(37), (39)-(40)

Non negativity and integrality constraints

The second case addresses the potential existence of paths and units in addition to the

items in (P.5). This gives rise to a model that partially addresses the issue of flowsheet

synthesis. Again the nonlinear model is,

max NPV (P.6)

s.t (15), (15a), (24), (25a), (26)-(28), (34)-(37), (39)-(40)

Non negativity and integrality constraints
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Linearization of nonlinear design models.

By considering the availability of equipment in standard sizes, it is possible to

linearize models (P.5) and (P.6) from nonconvex MINLPs to MttP's and therefore define

a model for which the global optimum can be rigorously obtained with the LP based

branch and bound method. First the following binary variable is defined,

I 1 if equipment k has size s I
Xks ~ j o otherwise |

Note that the sizes of the equipment are indicated by the set S'k = (s}. The first entry in

that set corresponds to zero size or nonselection of that equipment. We therefore define

the modified set Sk = Sfk\ {1} which indicates only nonzero sizes. The sets Sk and S^ are

associated with the discrete sizes VSk={ Vki, Vk2, .., VkS }. Thus the size of a vessel is

given by,

vksXks (41)

(42)

for the case of selected paths. For the path selection cases the sum in (42) is over set Sk

instead of set Sk for equation (42).

By combining constraints (34) and (35) we get,

V ( h , k ) e M (43)

In order to consider the availability of intermediate storage the following condition must

hold,

qh = qh' V (h, h1) € F (43b)

Because of the multiple choice character of constraint (42), constraint (41) can be written
as,

Vk
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By replacing this into (43) we get,

V ( h , k ) e M (45)

In the left hand side of this constraint the bilinear term has already been linearized by

replacing (20) with (21)-(23). The right hand side has also the bilinear terms qh x^. By

applying a case 2 linearization scheme we get,

(46)

(47)

(48)

(49)

V (h, k) e M (50)

s k

Similarly, constraint (36) can be linearized and replaced with the following constraints,

X X ord(sv) aqh$v=Qp Vp (51)
sv h:(h,p) €C,he H1

X aqhsv^Qprsv Vp,sv (52)
h: (h,p) e C

X aQhsv = qh V h e H (53)

Isvj
2^ ord(sv) arnbfov

sv«l

2 arnbhsv ^ U rsv
h

2) arnbhsv = nbh
sv

h:(hjc) G M,he H

Shkaiqhks
Vks

ks

V (h, k) e M

Vsv

Vh

Vk.s

SV

In order to consider the proper operation of intermediate storage (43b) has to be
combined with the following constraint,

nbh' V ( h , h ' ) e F (25b)
Tin
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It can easily be proved that (25b) and (43b) are equivalent to (25a) by considering that qh

= Bh nbh. Because of the consideration of standard sizes the nonconvex equation (39) can

be written as,

ks (54)
k Sk

where the parameter cstks = otk vj£ is the cost of every equipment k. Finally equation

(19) has to be rewritten in terms of the design horizon which is a parameter instead of the

total production time required which is a variable,

|SV|

£ ord(sv) ap^ = H (19a)
sv= 1

For the case of fixed paths the design and scheduling model is,

max NPV (P.7)

s. L (12)-(13), (15), (16)-(18), (19a), (24), (25b), (40), (42), (46)-(53), (54)

Non negativity and integrality constraints

For the path selection problem the synthesis, design and scheduling model is,

max NPV (P.8)

s. t. (15), (16)-(18), (19a), (24), (25b), (26)-(28), (40), (42), (46)-(53), (54)

Non negativity and integrality constraints.

Computational considerations

As mentioned earlier in the paper, the disjunctive constraints involved in

scheduling problems are notorious for the computational difficulties they add to a MHP

model. For this reason a number of cutting planes have been proposed in the literature

which alleviate this problem. This is achieved by improving the relaxation gap between
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the LP subproblems that are solved in the branch and bound tree and the integer solutions

of the problem. More details about these cutting planes are given in Appendix I.

Significant differences in the computational performance of the models can be

achieved by modifying the default options the OSL solver is using (OSL, 1992). These

options have to be properly adjusted for every particular model in order to get the

maximum benefit. In our case it was found that the best solutions were achieved by using

the following options. First the LP problems solved at the nodes of the branch and bound

tree are solved by both dual and primal simplex methods depending on the relative

number of rows and constraints of the LP. In the default version OSL uses only the

primal simplex method. Scaling of the problem is also performed. We allow OSL to

generate 200 cutting planes. OSL generates these cutting planes automatically based on

methods for general integer linear models. The branch and bound algorithm is modified

in such a way that the utilization of supernodes are allowed. By utilizing supernodes,

OSL analyzes many nodes of the branch and bound tree at once. This analysis is based on

applying logical tests on the 0-1 structure of the problem using implication lists and

probing. The preprocessor also performs tests to eliminate continuous variables from the

LP relaxation and finally the branch and bound tree is kept in core and not in the disk

enhancing the processing speed by reducing the amount of time for input/output

operations.

The main enhancement in computational performance was obtained by utilizing a

tree decomposition scheme similar to the one proposed in one of our previous papers

(Voudouris and Grossmann, 1993). The basic characteristic of this decomposition scheme

is that the logic inherent in a Mixed Integer Optimization model can be exploited to

generate a partial enumeration of the vector of discrete variables that is expressed through

a partial Disjunctive Normal Form (DNF). Thus the solution domain is partitioned in a

number of subsproblems each one of which can be exploited by a smaller instance of the

original MILP. For example, in the path selection scheduling problem one potential

partitioning scheme is to consider selections of equipment that constitute a feasible

flowsheet and to assume existence of the paths that utilize the selected equipment. For

every selection, the binary variables for path existence can be fixed accordingly, and the

MILP partition will search only the remaining solution space. One such scheme has been

employed to enhance the computational performance of the MILPs in our work in design

of multipurpose plants with multiple production routes (Voudouris and Grossmann,

1992). In this work the tree partitioning scheme is mainly based on the proper definition

of the set S V which indicates the number of repetitions of the elementary schedule. By

doing so, in addition to the reduced binary space that has to be searched, it is possible to
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define upper and lower bound in the production cycle for every partition. Furthermore, it

is possible to identify good values for the parameter W in the disjunctive constraints (26)-

(27). Finally efficient upper and lower bounds in the number of batches produced in

every path, can be derived for every partition. More specifically, the lower bound in the

production cycle is defined by the following equation,

<55>

where cp is a parameter which depends on the partition and indicates the starting number

of repetitions considered; |SV| is the cardinality of the set of repetitions. The upper

bound in the production cycle is defined as,

(56>

A reasonable overestimation for the parameter W is to consider this variable equal to the

upper bound in the production cycle. The lower bound in the number of batches is given

by the equation,

* £ (57)

whereas the upper bound on the number of batches is,

< - = (58,

Finally, there are cases in which the instance that is considered generates models

that are particularly large and hard to solve. In these cases it is always possible to solve

the models with an e-optimality tolerance instead of the obtaining the globally optimal

solution. One of the big advantages of the branch and bound based algorithms is that in

every instance it is possible to determine the relaxation gap of the current best integer

solution (provided there is a feasible design). This means that if the designer feels

comfortable with the current relaxation gap, he/she can terminate the solution procedure

and retrieve the currently best integer solution. One characteristic of the branch and

bound algorithms is that the globally optimal solution is obtained relatively fast, but in

order for the solver to prove optimality by closing the relaxation gap to zero requires

significantly more time. This means that in many practical cases working with an e-

optimality criterion is a justified alternative.
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Numerical Results

Example 3

Here we illustrate the fact that problem (P.3) has the very important characteristic

of handling instances with large number of batches belonging to few products. In this

example a total of 200 batches of product A, ISO batches of product B, 100 batches of

product C and 300 batches of product D must be produced. The rest of the data are the

same as in examples 1 and 2. The model used involved 301 constraints, 322 variables of

which 12 were discrete. A total of 141 CPU seconds were required to solve the problem

to optimality and 2294 tree nodes were enumerated. Again GAMS 2.25/OSL were used

to generate and to solve the model on the same computer. The partition used had a lower

bound of fifty and a upper bound of 100 on the number of repetition. When the partition

with bounds on the number of repetitions of 0 and 50 was used, the solution did not have

the overproduction of batches that is reported by the optimal solution, but the optimal

time was significantly worse. The optimal schedule and the optimal values of the

variables are shown in the Gantt chart of Figure 15. Note that since 200 batches of A are

produced, 200 of B, 100 of C and 300 of D, this means that B is overproduced by 50

batches.

Example 4

The data are the same as in example 3. This time, however, it is assumed that

unlimited intermediate storage is available between stages 3 and 4 for all the products.

The model involved 515 constraints and 531 variables of which 17 were discrete. The

optimal schedule is shown in Figure 16. The time required to produce the batches is now

3,600 hours. Thus, when intermediate storage is not utilized, the time required to produce

the specified amount of batches is almost 20% higher. In Figure 16 only one repetition of

the elementary schedule is shown. The previous and next repetitions will conform with

this repetition in such a way that the idle times for the equipment shown in the schedule

will be significantly reduced. The time coordination of the subtrains is ensured in the long

run. This means for example that the amount of material required for the second batch of

product B in the downstream is provided by the first batch of the upstream plus some

reminder from the previous repetition. The amount of material of the various products

that is kept in the intermediate storage is relatively high in this case. It is however

possible to add a constraint in model (P.3) that will for example, constrain the difference

between the finish time of the upstream and the start time of the downstream.
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GAMS2.25/Sciconic2.11 were used to generate and to solve the model on the same

computer and a total of 35 CPU minutes were required. The optimal partition had a lower

bound of 20 and an upper bound of 30 repetitions.

Example 5
In this problem the path selection scheduling subproblem is illustrated. We

consider an existing process that is indicated in Figure 17. The process involves 7

processing equipment Equipment 2 and 3 are identical and constitute processing stage 2.

The same is valid for equipment 5 and 6 which constitute processing stage 4. A total of 3

products will be produced More specifically for product A, 32 batches will be produced;

for product B, 21 batches; and for product C, 43 batches. There are two alternative

production paths for the batches of product A. These are paths 1 and 2. For product B

there are again two alternative production paths 3 and 4, whereas for product C the only

production path that the batches can follow, is path 5. The processing times required for

every task in every path are indicated in Figure 18. By using model (P.4) we decide

which of these production paths do we have to use and how to schedule them in order to

produce the specified amount of batches in the least amount of time. Note the since the

alternative paths are exactly identical as far as processing times are concerned, we

perform a small modification in the objective function in (P.4). This modification consists

of adding the sum of the binary variables y3h which denote the path existence, multiplied

by a small weight. This weight is sufficiently small so that the optimal solution is not

affected. The above modification is necessary in order to identify the solutions which

require the least number of equipment but still do not jeopardize optimality. In this

particular example the weight we used was 0.1. The model consists of 141 constraints,

106 variables of which 24 were discrete. The optimal partition had a lower bound of 10

and an upper bound of 20 repetitions The optimal schedule is shown in Figure 19. It

should be noted that the only path that was not selected is path 3. A total of 16 CPU

seconds were required and a total of 573 nodes were enumerated. The matrix generator,

solver and computer used are the same as in the previous example.

Example 6
Here we illustrate the application of the MILP model for design and scheduling of

sequential multipurpose batch plants. In order to illustrate the difference of perspective

between this woric with a more typical campaign planning approaches in the literature, we

will consider as objective function the minimization of the capital investment instead of

the maximization of the NPV since the capital investment is the objective most campaign
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approaches utilize. We consider the same process as in example 5 which is shown in

Figure 17. The difference now is that we need to decide which equipment will be used

and in what size. The processing time data for every path are shown in Figure 18. The

size factors, cost data and demand specifications are shown in Table II. A tree

partitioning scheme has been used. In this scheme the number of repetitions has been

considered in groups of 10 repetitions starting from 0 and ending in 200. For every

individual group 4 other partitions have been solved. These partitions have been

generated by recognizing that all possible combinations of path and equipment existence

are the following. First, only one equipment is used in stages 2 and 4 which means that

only paths 2,4, and 5 exist (Or another equivalent alternative that only paths 1,3, and 5

exist). Second, two equipment are used in stage 2 and only 1 in stage 4, which means that

only paths 1,2,4, and 5 exist Third, two equipment exist in stage 4 and only 1 in stage 1,

which means that only paths 2, 3 ,4 and 5 exist Finally, 2 equipment exist in both stages

2 and 4, which means' that all paths exist. Note that this scheme allows explicit

exploitation of structural logic and eliminates degeneracy. A total of 80 MILP

subproblems with their corresponding tighter relaxations due to equations (55) - (58)

have been solved for the instance. These problems were solved in parallel by utilizing the

multitasking capabilities of the IBM/R6000 workstation. The optimum solution was a

design of $247;680. The optimal schedule is shown in Figure 20. This design has been

obtained in a large number of partitions. Out of these, the partitions with smaller

production cycles have a more efficient utilization of time. The optimal design requires

for equipment 1, 3, 4, 6 to be of 6,000 liters, equipment 2 and 5 to be not selected, and

equipment 7 to be of 10,000 liters.

The same problem was solved with the campaign approach used by Voudouris

and Grossmann (1992) for designing multipurpose batch plants with multiple production

routes. The optimal design in this case required the same equipment to be selected but

now equipment 6 and 7 had to be of 10,000 liters. The cost of the process in this case is

$280,000 or about 14% higher. This difference is explained by the fact that in this case

the campaign mode will dedicate long campaigns to every product and therefore will

generate large idle times to the equipment that are not uaiized at each campaign. It is

interesting to note that when the optimal schedule of example 5 was considered (by

properly constraining the problem), the optimal design was $278,171 which even though

is worse than the best solution, is still better than the solution reported with the campaign

approach.

The partition which generated the optimal solution had 274 constraints and 229

variables of which 19 were discrete. The same partition required 195 CPU seconds in the
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same computer as above to enumerate 3376 nodes. GAMS2.25 was utilized for matrix

generation and OSL was the solver. Although the solution of the model is

computationally demanding (80 parallel problems of about 4 minutes each), we believe

that using a proper partition scheme in a distributed computing environment (Kudva and

Pekny, 1993) allows the solution of problems whose dimensionality is restricted only by

the number of available processes in the computer network.

Example 7
Note that in example 6 the objective was the minimization of capital investment

which is utilized by the campaign approach mentioned in the literature. It has been shown

in example 6 that the integration of rigorous scheduling and design offers significant

savings in investment A significant advantage, however, of the formulations proposed in

this work is the fact that the operating costs are also incorporated in the design procedure.

In this example the profitability of the process as expressed by the Net Present Value will

be illustrated.

The data in this example are the same as the ones in example 6. In addition, it is

assumed that the market prices of the three products are 0.7 $/kg for A, 0.4 $/kg for B and

0.5 $/kg for C. The cost of keeping the final product in inventory is assumed to be the

same for all products and equal to 0.1 $/ton/hr. The taxation rate is 45%, the interest rate

is 10%, the expected life of the plant is 10 years.

The solution reported by the campaign approach used by Voudouris and

Grossmann (1992) requires, as mentioned in the previous example, $280,000 in capital

investment. The production plan requires that the three products be produced in 3

campaigns. The first campaign has a length of 2908 hrs and only product A will be

produced in it. The second campaign has a length of 1100 hrs and only product B will be

produced during the whole campaign. Finally the third campaign has a length of 1472 hrs

and only product C will be produced in it. For the calculation of the operating cost zero

changeover cost is assumed and the inventory costs are calculated as shown in equation

(40) but with the time component corrected to (P-Tj) instead of P. The reason for this

correction is the fact that the campaign approach considers a production cycle to be equal

to the design horizon. For this case, however, the inventory policy shown in Figure 14

tends to give significant overestimations of the inventory costs since the depletion due to

product selling is not considered. The use of the term (P-T*) instead of P addresses

exactly this depletion. More details on the inventory policy that best describes cases of

large production cycles is given in Voudouris and Grossmann (1993). By considering all

the above, the operating costs are 228,802 $/yr, and the NPV is $ 1,203,967.
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The optimal design that has been obtained by using model (P.8) is utilizing the
schedule that is illustrated in Figure 20 and involves equipment 1,3,4 and 6 with a size
of 6,000 liters and equipment 7 with a size of 10,000 liters. The capital investment for
this design is $247,680 and the NPV is $1,992,901 which means an increase in
profitability of 65.5 % compared to the previous case! Note that the operating costs in
this case have been calculated with equation (40) and correspond to $ 2,275 per year.

Again the partition scheme of the previous example has been used. The partition
which generated the optimal solution had 277 constraints and 235 variables of which 19
were discrete. The optimal number of repetitions of the elementary schedule was 146.
The optimal partition required 164 CPU seconds in the same computer as in the previous
examples in order to enumerate 2836 nodes. GAMS2.25 was utilized for matrix
generation and OSL was the solver.

Conclusions and significance

In this work we have addressed the scheduling and design of sequential
multipurpose batch plants. Even though this class is more restrictive than the general
nonsequential multipurpose batch plants, it is still significantly more general than the
multiproduct case. Furthermore, the mathematical structure of this problem can be
exploited to significantly reduce the computational difficulty. More specifically, a
reduction scheme was proposed that yields a significant decrease of the binary
dimensionality of the models. In addition, an aggregation scheme based on a periodic
scheduling was derived that allows the consideration of problems of practical size. The
scheduling models were successfully incorporated with the design and synthesis
problems making possible a global approach to the preliminary design of batch processes.

By considering the availability of equipment in standard sizes, it was possible to
derive MDLP models which can be solved to global optimality. A number of solution
techniques were suggested to improve computational performance and permit in this
manner, the consideration of larger practical problems. Finally, an example was presented
to show that a significantly lower capital investment can be obtained compared to
methods that assume production campaigns.
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Nomenclature.

Indices.

i Index of individual operations (tasks).

k Index of processing equipment.

p Index of products.

h Index of processing paths.

s Index of discrete sizes for processing equipment {1,2, , nsk}.

sv Index of number of production cycles.

Variables!Parameters.

Bh Batch size for path h.

dhh*k Cleanup time required in equipment k when path hf follows path h.

cp Parameter indicating smaller number of repetitions considered in

each tree partition.

dhk Processing time of the operation of path h on equipment k.

fhk finishing time of the last batch of path h on equipment k.

H Time horizon in which the demand has to be satisfied.

Ms Makespan of a schedule.

nbh Number of batches produced in path h during a production cycle,

npp Number of batches of product p during the horizon.

Nr Number of production cycles during the horizon.

Oc Operating costs

P Length of production cycle.

Pc Capital investment

qh Amount of production by path h during one production cycle.

Qp Market demand for product p.

Sy Size factor of equipment k for the proper operation of path h.



Idle time (slack) imposed in equipment k when path h' follows path h.

thk Start time of the first batch of path h on equipment k.

th Start time for the first operation of path h.

Tc Total time required to satisfy demands on number of batches.

Cycle time for path h.

Volume of equipment k.

Standard volume of size s for equipment k.

Z rational number that ensures time coordination of neighbouring subtrains.

Its value is a rational number close or equal to the ratio of the cycle times.

Greek Letters.

<Xk Cost coefficient for equipment k

Pic Cost exponent for equipment k.
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Appendix I. Cutting planes for model (P.2).

Dyer and Wolsey (1990) proposed a number of strong valid inequalities for the
problem of minimizing the weighted sum of completion times for the one-machine
scheduling problem with release times and due dates. Applegate and Cook (1991) modified
the tightest of these inequalities for the general machine scheduling problem and considered
it as cutting planes in model (P. 1)- The equations they proposed are,

X d h k t h k ^E k d h + X <ihkdh.k Vk (A.1)
h: (h, k) € M (h, h'): (h, h\ k) e E*

X d h k (Ms- t h k )>F k d h + X dhk+ X dhk4h'k Vk (A.2)
h: (hjc)€ M h: (hjc)€ M (hji'): (hji\k)e E*

where Ek is the minimum of the earliest possible start time of the operation of path h on
machine k, and Fk is the minimum of the earliest possible completion time of the operation
of path h on machine k. The earliest possible start time of the operation of path h on
machine k is calculated by adding the processing times of the operations of the same path
on all the preceding machines. The earliest possible completion time of the operation of
path h on machine k is calculated by adding the processing times of the operations of the
same path on ail the remaining machines, dk is the sum of the processing times of the
operations of all paths h that utilize machine k. By utilizing equation (1) the above
inequalities can be written as,

dhk0h+ £
h:(h.k)eM * - ! (h. h1): (h. h\ k) e E'

V k (A.3)

dh k(Ms-(th+ £ dhk'))2Fkdh+ £ <*hk+ X dhkdh 'k
h:(h,k)eM k < = 1 h: (h,k)€M (h,h'): (h,h',k)eE*

V k (A.4)



A similar modification can be applied to the two-job cutting planes proposed by Balas

(1985). For model (P.2) the triangular cutting planes are written as,

Yhh'k + YhVk - Yhh-k ^ 1 V (h,h',k), (h\h",k), (h,h'\k) € E+ (A.5)

which in logical terms means that when the operation of path h is before the operation of

path hf on machine k, and the operation of path hf is before the operation of path h" then

the operation of path h" must have place after the operation of path h on the same machine.

All of the above mentioned cutting planes assist is reducing the relaxation gap of

model (P.2). From our experience, however, it seems that the strong inequalities (A.3) and

(A.5) are dominant to the rest of the cutting planes. Therefore, in the final version of the

model we included only constraints (A.3) and (A.5) because the incorporation of the rest

only adds to the number of constraints.



Appendix II. Reduction scheme.

Proposition 1. Problem (P.2) is equivalent to a reduced problem (RP.2), in which the

disjunctions are defined only over the set R rather than set E+.

Proof: We know that problem (P.2) is equivalent to problem (P.I) plus equation (1).

Therefore, it suffices to prove that the reduced problem (RP.2) is equivalent to (P.I) plus

(1). Consider a triad (h,hf,k*)e EAR. We will prove that any disjunctive constraint

defined by this triad is redundant Assume initially that yhh'k* = 1 ( exactly the same

procedure applies when yhh'k* = 0 ) . This means that the fourth constraint in (P.I) is

redundant and that the third constraint takes the form,

(CB.l)

or by introducing a non negative slack a,

thV = thk# +dhk- + a (B.I)

Since (h,hf Je*) € R it follows from the conditions in (9) that,

(B.2)

From the definition of Sl^^ it is clear that for every pair h and hf there is at least one triad

(h,h\k) such that,

S I M A - 0 (B.3)

Consider first the instance in which the disjunction imposed by (h,hf,k) is arbitrated by
^ l . This means that the only nonredundant constraint imposed by this triad is,

thk-thk ^ d h k (CB.2)

or by introducing a non negative slack p,

th k= thk + dhk + P (B.4)



By subtracting equation (B.4) from (B.I) we get

thY - thk = thk" - thk + dhk# - dh k +( a - p ) (B.5)

From the definition of the slacks it is easy to verify that the following is a valid system of

equations,

By subtracting these equations we get,

th' k' - th» k = th k* - th k + dhk"-dhk+ Slkhh'k- (B.6)

From (B.6) and (B.5) we get that,

which from (B.2) yields a > p. This in turn implies that constraint (CB.l) is redundant

with respect to (CB.2).

We consider next the instance in which the disjunction imposed by (h,h\k) is

defined by yhh*k= 0. This means that the only nonredundant constraint imposed by this

triad is,

thk - th*k£ dhk (CB.3)

or by introducing a non negative slack y,

thk = th'k+ 4k + 7 (B.7)

adding (B.7) to (B.I) we get the following equality,

th'k'- th'k= thk*- to* dhk* + dh'k+Y +<* (B.8)

Adding and subtracting dhk on the right hand side gets,



th'k#- th'k= thk#- thk+ dhk# + dh'k+dhk- dhk+Y + <* (B.9)

Comparing equation (B.9) and (B.6) yields,

SlkhhV = dh'k + dhk + a + y (B.10)

Since (h,hf Jc*) £ R it follows from the conditions in (9) that,

SlkhhV < Plhh'k < dhk + dh.k V k : ( h , h\ k) € E+

From the above result and (B.10) it follows that,

a + Y <0

which is impossible for non negative a and Y .

Therefore when yhhfc* = 1 the instance in which yhh* = 0 is infeasible. The only

feasible instance is when yhh'k = 1 in which case the triad (h, h\ k*) defines only

redundant disjunctive constraints.

Using exactly the same procedure we can find that yhh'k* = 0 also defines only

redundant constraints. So the triad (h,h\ k*) can be ignored in (P.2).

In conclusion, the reduced model (RP.2) is equivalent to model (P.2) because all

the additional constraints in (P.2) are redundant As a final point it should be noted that

since R £ E + , the number of disjunctions in model (RP.2) is smaller than the one. in

model (P.2). Actually because of the quite restrictive nature of the conditions imposed

when set R was defined, the number of disjunctions is significantly reduced. For example

in the problem defined in the first example the number was reduced from 172 to only

110.



Appendix III. Timing of the elementary schedule.

Proposition 2 : The production cycle (or cycle time of the elementary schedule) can be

defined rigorously by the following equation,

k k-l

P= max [th+(nbh- 1) Tlh + £ dhk" (V+ X dhk')]
(h,h\k)eE k '=l k

f=l

Proof: It is obvious from Figure A.I that for every sequential repetition r and rf in the

production of a batch through path h, the following constraint holds,

dhk + S l k ^ = dh (k.i) + S l k ^ D V (h,k)e M, (hjc-l)€ M ( C l )

The finish time fhk of the operation of path h on machine k is expressed by the following

equation,

fhk= thk+ (d i k + Slk12k)+ (d2k + Slk23k) + ... -Kdnbhk + Slknb.u) V (h,k) e M (C.2)

For every path h there is a stage k where the processing time thk is the maximum for all

operations of the path h. This stage is considered as the bottleneck stage and its processing

time is referred to as Cycle time for path h and is noted as Tlh. Because the optimization

direction is to minimize P and thus to minimize the slacks Sln^ (in case they were

variables), it follows from (C.I) that the slack for the bottleneck stage is zero. In Figure

(A.I) for example the third stage is the bottleneck stage for the 3 batches of product A and

the cycle time for product A is 4 hours. Thus the following constraint holds,

= thk + Slkrfk V (h,k) e M , (r, rf) are sequential batches produced through path h

(C.3)

In equation (C.2) the above term exists nbh -1 times for each path h, where nbh is the

number of batches produced through path h. For the example in Figure (A.I) the term in

equation (C.3) for product A exists two times in equation (C.2). For this reason equation

(C.2) can be restated as

fhk= thk+ (nbh - 1) Tlh V (hjc) e M (C.4)



By using equation (1) the above can be restated as,

k

fhk= th + X dhk'+ (nbh - 1) Tin V (hjc) € M (C.5)
kf=i

The elementary schedule consists of time intervals during which the various processing

equipment are utilized. These time intervals have constant relationship to each other. For

this reason the optimal production cycle is defined as the time intervals with the maximum

duration. This can be stated as,

P = max { fh* - thk ) (C.6)
(h,h\k)€E

By considering equation (1) and (C.5), the above can be written as,

k k
P = max { th« + X dh'k+ <nbh' - 1)Tlh- (th + ]£ d,*.) } (C.7)
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Path 2

Path 3

Path 4

Path 5

Eg. 1
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Discrete Sizes
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4.0
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1 0 55

2.0
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Design

Eq.7
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6.3

Horizon =

Demands (kR/yr)

A

B

C
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Table II. Data for example 6
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