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ABSTRACT

A processing network is modelled as a combination of dedicated and flexible

production facilities. The former produce a set of products in fixed proportions at all times,

while the latter can accommodate different products at different times. Both continuous and

batch operations may be involved. For such a processing network, a multiperiod MILP

investment decision model is presented. The model considers the choice of technology, size of

capacity additions, and allocation of resources over time in order to maximize the net present

value of the project over a long range horizon. The application of the model is illustrated with a

small example.
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Introduction

A processing network is a combination of dedicated and flexible production facilities

which are interconnected in an arbitrary manner. Dedicated production facilities produce a set

of products in fixed proportions at all times and are usually used for the manufacturing of high

volume chemicals. Flexible production facilities can manufacture different products at different

times and are frequently required for the manufacturing of low volume chemicals. Both

dedicated and flexible facilities can operate either continuously or in batch mode.

Today most of the industrial production facilities involve continuous dedicated units;

the Kellogg ammonia synthesis process and the electrolytic production of caustic soda are just

two examples. Paper mills which operate continuously and which can produce several paper

types of different weight or color are examples of flexible continuous plants. Another example

of flexible continuous plants are refineries which can accommodate different types of crude oils

and in which the relative percentage of products changes depending on the operating

conditions. Batch units have been traditionally used for the production of polymers and

Pharmaceuticals. Most of these batch processes are flexible since in the same unit the

production can be changed to accommodate different products which need to be produced in

small amounts. Dedicated batch process can be found in the food industries where for example

the production of beers, wines and liquors requires a dedicated fermenter. Detailed

descriptions of the above and other processing networks can be found in standard reference

books like Austin (1984).

The choice among competing dedicated and flexible technologies and the sizing of each

type of facility to be used is an important concern at the level of planning the capacity

expansion policy of a processing network. This paper addresses the following long range

planning problem for processing networks. It is assumed that a network of processes and

chemicals is given. This network includes an existing system as well as potential new
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processes and chemicals. The processes can be either dedicated or flexible manufacturing

systems and they can operate either continuously or in a batch mode. Also given are forecasts

for prices and demands of chemicals, as well as investment and operating costs over a finite

number of time periods within a long range horizon. The problem then consists of determining

the following items which will maximize the net present value over the given time horizon: (a)

capacity expansion and shut-down policy for existing processes; (b) selection of new

processes and their capacity expansion policy; (c) production profiles; (d) sales and purchases

of chemicals at each time period.

As stated, the above is a multi-product, multi-facility, dynamic, location-allocation

problem. Several planning models in the literature of capacity expansion of chemical processes

address one or another aspect of this problem. A comprehensive survey of these models can

be found in Sahinidis et al. (1989). These authors also presented a multiperiod MILP

formulation for the long range planning problem of a chemical complex consisting of

continuous dedicated processes. In this paper, it is shown that their model can be extended in

order to account for production facilities which are flexible manufacturing systems operating in

a continuous or in a batch mode. The suggested model provides a unified representation for

the different types of process.

Problem Statement

A network consisting of a set of NP chemical processes which can be interconnected in

a finite number of ways is assumed to be given. These processes may be dedicated or flexible

and they may operate in a continuous or in a batch mode. The network also involves a set of

NC chemicals which include raw materials, intermediates and products. Purchases and sales

of chemicals are possible from NM different markets. For any process typevit will be assumed

that the material balances can be expressed linearly in terms of the production amount of a main

product. For continuous processes which are dedicated to the production of a set of products
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in fixed proportions, it will be assumed that the capacity of the plant is defined in terms of the

production rate of the main product. For flexible production systems which can continuously

produce a variety of products, it will be assumed that the capacity of the plant is defined in

terms of the production rate of each of the main products which characterize the alternative

production schemes. Each multiproduct batch process will be modelled as an independent unit

without any considerations regarding inventory between stages. In this way the plant capacity

will be defined by the size of the unit

The objective function to be maximized is the net present value of the project over a

long range horizon consisting of a finite number of NT time periods during which prices and

demands of chemicals, and investment and operating costs of the processes can vary. The

operating cost of a plant will be assumed to be proportional to the manufactured amount of its

main product As for the investment costs of the processes and their expansions, it will be

considered that they can be expressed linearly in terms of the capacities with a fixed charge cost

to account for the economies of scale.

Multiperiod MILP Model for Long Range Planning of Processing Networks

The processing network is modelled on a directed bipartite graph which involves two

types of nodes: one for the processes and another for the chemicals. Let B and C denote the

batch and continuous process nodes, respectively. The nodes of the network will be

interconnected by a finite number of streams which represent the different alternatives which

are possible for the processing and the purchases and sales from different markets.

In the formulation of the problem, the variable Q/r represents the total capacity of the

plant of process i which is available in period t,t= 1,NT. The parameter QZQ represents the

existing capacity of a process at time r = 0. QEz-r represents the capacity expansion of the plant

of process i which is installed in period t. If yz-r are the 0-1 binary variables which indicate the
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occurrence of the expansions for each process / at the beginning of each time period r, the

constraints which apply are:

yit Q£it - QF-it - OS// y/7 1
\ i = l , NP r = l , N T (1)

Vit = 0,1 J

Q/r = Qi>7 + QEir / = 1, NP t = 1, NT (2)

In equation (1),QE^ and QE^ are lower and upper bounds for the capacity

expansions. A zero-value of the binary variables y-lt forces the capacity expansion at period r to

zero, i.e. QEzr = 0. If the binary variable is equal to one, the capacity expansion is performed.

Equation (2) simply defines the total capacity Qz-r which is available at each time period t.

The raw materials, intermediates, and products will be represented by NC nodes of

chemicals where purchases and sales are considered in one of several markets, / = 1, NM. If

the variables for purchases and sales are represented, respectively, by P;/r and S.yr, they must

satisfy the inequalities:

â  < Pv < a^ "1
y/r - 7 ' - 77/ I y = l , N C / = 1 , N M r = l , N T (3)

dy/r - Sy// ^ dy/r J

where ay/r, ayft are lower and upper bounds on the availabilities of the raw materials, and dy/r,

dy/r are lower and upper bounds on the demands of the finished products.

Defining I(j) as the index set of plants which consume chemical y, and O(j) as the index

set of plants which produce chemical y, the mass balances on the chemicals' nodes will be

given by:
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W,y/ j = l ,NC r = l , N T (4)

where the amounts of chemical j being consumed or produced in plant / during period t are

represented by the variables Wzyr According to this equation the total amount of a chemical's

purchases from the various markets plus the amounts produced within the network must be

equal to the sum of sales and the total consumption within the network.

In order to model the mass balances and capacity requirements for each process we

consider two cases:

Case I: Continuous processes (/eC).

Since the case of a dedicated continuous plant is a special case of a flexible continuous

production facility, we will consider flexible processes first. Each flexible process i can

operate at a number of alternative production schemes each of which is characterized by a main

product For simplicity we assume that different production schemes are characterized by

different main products. It will also be assumed that the production rate (rz\-r) of the main

producty of each such scheme is proportional to the capacity of the plant:

r / / r = P ( / Q / r ieC J'eMi r = l , N T (5)

where M / denotes the index set of main products of flexible process / for all the alternative

production schemes of this process. The dimensionless positive constants py represent the

relative production rates for each product j while the variables Q / r (units kg/hr) represent a

multiplying capacity factor which uniformly increases or decreases the production rates. As an

example consider a plant / with relative production rates of pz*^ = 1 and P/g-^ ^ f° r
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chemicals A and B. Then if Qzr = 2 kg/hr, it implies that during period t plant / has production

rates of r ^ r = 2 and r | B r =2.4 kg/hr for products A and B, respectively.

By then defining for each process i the variable Tzyr as the time which during period t is

allocated to the production scheme characterized by the main product j\ the amounts of main

products produced by this process are given by:

/ j Tijt ieC J'eMi r= lf NT (6)

Since the total allocation of production times cannot exceed the maximum available time

of the flexible process:

Tijt £ flu *sC r=l ,NT (7)

where H/r is the time for which plant / is available for operation during period r.

Given the amounts of the main products (/eA// for each process i), the amounts of all

other products are given by the linear relations:

r = l , N T (8)

where Lx is the index set of products which are inputs or outputs of process / and ji^y are

positive constants characteristic of each process.

Although equation (6) is nonlinear, the nonlinearities can be avoided by introducing

variables 0/;r which are defined as follows:
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r = Qit Tijt ieC JeMi r = 1, NT (9)

Then equations (6) and (7), respectively, become:

r = Pi/ Qijt ieC J€Mi r=l,NT (10)

and

ijt <Qit Hit ^C r = l , N T (11)

both of which are linear in terms of the new variables 0 ju.

For the case of only one production scheme (i.e. for a dedicated continuous process 0,

we have p,y = 1 and the above equations (8), (10) and (11) can be simplified to give:

Wm/f < (^ HU ieC jeMt r=l,NT (12)

W / /f '\Hjnti ^ r

Here, the capacity Q/r of plant / is defined in terms of the production rate of its main product

m i whose production therefore cannot exceed the installed capacity (constraint (12)). .

Case IT: Batch processes O'eB).

For batch processes each unit will be considered as a separate process with no

considerations for inventory. Furthermore, no distinction will be made between dedicated and

flexible units since their modelling is identical. Given the capacity Qjt (eg. size in liters) of the

unit, an upper bound for the number of batches (N^) which can be processed for product j in

plant i during time period t is given by (W£yr)(Cy) / (Q/r) where the size factors a/y (eg. in
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liters/kg) define different batch sizes for different products in the same size of equipment. By

letting %a denote the batch time for the production of product,/ in process i, the constraint that

the total available time in unit i cannot be exceeded during period t is expressed as follows:

t = 1, NT (14)

which by substituting (W^Xc^y) / (Q/r) for Nzyr gives:

Qit uit "?B t = 1, NT (15)

Here we can relax the integrality requirements on N^ since for the planning model xzy « Wlt

and therefore the errors introduced by this simplification are negligible.

The production amounts of the secondary products in the batch plants are calculated

similarly to the continuous case:

w ( / r= Z Mijf^ift ie% jeLi r = l , N T (16)

Note that by letting p̂ y = 1 / (azy xzy) for all the batch processes and defining the

variables 9y r = W£yr/pzy as in (10), constraint (15) reduces to constraint (11) which was

developed for continuous processes. In this way, the same constraint representation can be

used for both continuous and batch processes provided the production rate coefficients pzy and

the corresponding capacities Q^ are defined accordingly.

Using the above defined variables, the net present value of the project is given by:
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NPV = -
i = 1 r = 1 i = 1 je M[ t = 1

(17)
y=l /= i / = i

where the parameters a;, and (3z-r represent, respectively, the variable and fixed terms for the

investment cost, Syf is the unit operating cost, and ynt and Ynt are the prices of sales and

purchases of the chemical j in market /. All these parameters are discounted at the specified

interest rate and include the effect of taxes in the net present value.

Additional constraints which can be considered include:

a) Limit on the number of expansions of some processes:

2, y/r < NEXP(i) i e I' c (1,2, ... NP} (18)
/ = 1

b) Limit on the capital available for investment during some time periods:

(an QEU + P& Yu ) < CI(0 t e V c {1,2,... NT} (19)
/ = 1

where a// , P/r are non-discounted cost coefficients corresponding to period r.

Finally, by using the unified representation of equations (10) and (11) for the dedicated

continuous processes and for the batch processes, the complete multiperiod MILP model for

the long range planning problem of processing networks is as follows:
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ModelLREl

Z (a//QE/, + p/,y/7) -NPV = - L Z (a//QE/, + p/,y/7) - S E
= l t= 1 J = 1 ye A// /

+ S I (yjitSjit-rjUPjit)
; = 1 / = 1 < =

S.t.

(17)

y / , QEf, < QE;, < QE? y,-,

Qit = Qi>7 + QE/r

/-1.NP r-l.NT

/ = 1, NP t = 1, NT

(1)

(2)

2 , P y 7 / + Z WyV = Z S y / / + Z WyV y = l , N C r = l , N T (4)
/ = 1 »e<9(y) / = 1 /

r=l,NT (10)

ijt * Qit H/, / = 1,NP r = 1, NT (20)

= Z / = 1,NP r = l , N T (21)

NT
Yi, <NEXP(/) l e l ' C {1,2, ... NP} (18)
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NP
£ (ait QB^+p^ y / l) < CI(f) t e T c {1,2, ... NT) (19)

$ T r = l , N T (3)

y/r = 0 or 1 / = 1 , N P r = l , N T (22)

QE/f, Wzyr, Pju , Sy/r , G^ > 0 (23)

where the parameter pzy is defined as follows:

(a) pij = 1 for a continuous dedicated plant /,

(b) py is a specified constant for a continuous flexible plant i,

(c) Pij = 1 / (^ii T(/) f°r a batch process i (dedicated or flexible).

The production times allocated to different production schemes on a flexible unit can be

determined after the solution of this model from (9): Tzyr = 6zyr / Qit

Discussion of the Model

The following comments can be made about model (LRP) regarding its nature and

methods for its solution.

1. The above model is a multiperiod mixed integer linear programming model.

2. For this type of.multiperiod MELP problems, Sahinidis et al. (1989) have compared the

performance of several computational strategies including branch and bound, strong cutting

planes followed by branch and bound, Benders decomposition and strong cutting planes
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followed by Benders decomposition. Among these, a combination of strong cutting planes and

branch and bound seems to be the most successful for large problems.

3. The development of nonstandard formulations for multiperiod MELP models for planning

and scheduling has proved to be quite successful in some applications (see Sahinidis and

Grossmann, 1989, 1990), Following those approaches, we can disaggregate the capacity

expansion variables of our model by introducing new variables <P[tx to denote capacity

expansion of plant i made in period t in order to serve production requirements up to period

T ( T > t). In this case, we also need to introduce the following additional constraints:

QE/r > cp/,T / = 1.NP t = 1,NT %>t (24)

9/rr ^ cin Yit i = 1.NP t = 1.NT r>t (25)

and substitute (20) by the linear constraint:

t

<Pm - HT X Qijt ~ 0/0 i = 1.NP t = 1,NT (26)
U

Although this alternative model requires more constraints and variables and the a priori

calculation of the coefficients C/rr in (25), it is expected that it will exhibit a tighter linear

programming relaxation than the more standard formulation presented above and therefore have

lower computational requirements for its solution.

4. In the development of the constraints describing the material balances for flexible

production facilities considerations of transition times and costs, and inventory holding costs

were omitted. Although these can constitute an important factor for these processes, their



- 14-

inclusion would introduce many nonlinearities into the model (see for example Sahinidis and

Grossmann, 1990).

Example

In order to illustrate the application of the multiperiod MILP model, consider the

processing network shown in Fig. 1. Products C and D are to be produced by process 2 or 3,

and 3 or 4, respectively. Processes 2 and 4 are dedicated respectively to the production of

products C and D only. On the contrary, the continuous process 3 has the flexibility of

producing either product C or product D and to switch the production between these two

products. The feedstock B to processes 2, 3 and 4 is either bought or manufactured in

process 1. There are no processes initially installed and no limits on investment were

specified. Three time periods were considered each of two years length.

The data for this example are shown in Tables 1 to 8. The objective function coefficients

have already been discounted at a specified interest rate and include the effect of taxes in the net

present value. Two different scenarios for the demands of products C and D were considered

as shown in Table 8. The market demands for products C and D increase with time in scenario

1. In scenario 2, the demand for C decreases while the demand for D increases with time. In

each case, the MILP model involved 12 binary variables, 100 continuous variables and 97

constraints. Each problem was solved in 1.2 CPU seconds on an IBM-3083 using MPSX.

The results for Scenario 1 are presented in Tables 9 and 10 while those for Scenario 2 are

presented in Tables 11 and 12.

Scenario 1

The analysis of the results indicates that the dedicated processes 2 and 4should be

preferred to the flexible process 3. This happens because as seen in Tables 1, 2 and 4 the
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flexible process 3 is more expensive to build and operate than each of the dedicated processes 2

and 4. In particular, the optimal solution with a net present value of $15,404.6 x 10^ involves

installing processes 1, 2 and 4 in time period 1 (see Fig. 2). Also, as seen in Table 9, all

processes operate below maximum capacity in periods 1 and 2 and are fully utilized only

during the last time period 3. This illustrates the effect of economies of scale on the optimal

solution: the cost of maintaining an idle (partially used) process is outbalanced by the savings

of a large installation (the more capacity that is purchased, the less the price per unit of

capacity). Finally, it can be seen in Table 10 that chemical B is not only purchased from the

external market but also produced within the complex.

Scenario 2

The results for scenario 2 indicate that the flexible process 3 should be preferred to the

dedicated processes 2 and 4, despite of the fact that the flexible process 3 is more expensive to

build and operate than either of the dedicated processes. In particular, the optimal solution with

a net present value of $8,784.3 x 10^ involves installing processes 1 and 3 in time period 1

(see Fig. 3). This happens because, as seen in Table 8, the market demand for product C

decreases with time. As a result of this, if product C were to be produced in a significant

amount, a dedicated process for the production of this product would have to operate well

below full capacity during a significant portion of the planning horizon. On the other hand, the

flexible process can easily accommodate the dynamic requirements of the market especially

since while the market demand for product C decreases with time, the demand for product D

increases during the same time. In this way, the flexible process will be used to mostly

accommodate the demand of product C during the first time period and that of product D during

the final time period. In particular, the following percentage of the capacity will be allocated

for product C during the three time periods: 68%, 37% and 5% , while-the corresponding
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figures for product D are 10%, 43% and 95%. As in scenario 1, here too, pan of the capacity

remains unused during the first two time periods.

Conclusions

This paper has presented an extension of the multiperiod MILP planning model of

Sahinidis et al. (1989) for dedicated continuous processes. It has been shown that the case of

processing networks with flexible processes, either continuous or batch, can be incorporated

into this model under a unified mathematical representation. In order to illustrate the potential

of the model, two different scenarios for product demands were considered for a small example

problem involving a processing network with flexible and dedicated processes.
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Sets:

j

I

mi

t, x

process 0 = 1, NP);

chemical (/=1,NC);

market (/=1,NM);

main product of process /;

time period it, x = 1, NT)

B

C

Ki)
Li

Mi

Parameters:

set of batch processes;

set of continuous processes;

the index set of processes which consume chemical j;

the index set of products which are inputs or outputs of process /;

the index set of main products of flexible process / for all the alternative

production schemes;

the index set of processes which produce chemical j.

a / r variable term of investment cost;

P;r fixed term for the investment cost;

a/r» P/7 non-discounted investment cost coefficients;

prices of sales of the chemical; in market / during time period r,

prices of purchases of the chemical; in market / during time period t;

unit operating cost for process i [$ / unit of production amount of product;];

material balance coefficients characteristic of each process /, main product;'
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and product/,

p̂ y dimensionless production rate coefficients characteristic of each process /

and main product j; they are equal to one for continuous dedicated

processes, they are given constants for continuous flexible processes, while

for batch processes they are defined as pzy = 1 / (azy x^);

azy size factors for batch process i and product/;

if; batch production time for process i and main product;;

dfjlt, a& lower and upper bounds for availability of raw materials;

tflt»^jlt l ° w e r anc* upper bounds for demand of finished products;

Cz-rr upper bounds for disaggregated capacity expansions, defined in (25);

CI(r) the capital investment limitation corresponding to period r,

Hj-r the time for which plant i is available for operation during period r;

NC number of chemicals in the network;

NEXP(z) the maximum allowable number of expansions for process /;

NM n umber of markets;

NP number of processes in the network;

NT number of time periods considered;

existing capacity of process i at time r = 0;

lower bounds for the capacity expansions;

upper bounds for the capacity expansions.

Variables:

production amounts defined in (9);

capacity expansion of plant i made in period r in order to serve production

requirements up to period r (T > r);

number of batches of product; in plant / during time period r;
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NPV net present value;

P.yj amount of product; purchased from market / at the beginning of period t\

Ox total capacity of the plant of process i which is available in period r;

QE;* capacity expansion of the plant of process i which is installed in period r;

rz-;r the production rate of the main product ; in process i during period r,

S n t amount of produc t ; so ld to market / at the beginning of period t\

Tj-;, t ime which during period t is al located in process i to the production scheme

characterized by the main product;;

Wz-:r amount of f low of produc t ; to/from process i during t ime period r;

yzY decis ion variable which is 1 w h e n e v e r there is an expansion for process i at

the beg inning of t ime period r, and 0 otherwise .
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l i s t of Tables:

Table 1.

Table 2.

Table 3.

Table 4.

Table

Table

Table

Table

Table

Table

Table

7,

8,

?,

10,

11.

12,

Variable investment coefficients (az-r [=] 102 $/(ton yr *)).

Fixed investment coefficients (fyr [=] 10^ $).

Prices of raw materials and products (102 $/ton).

Operating expenses coefficients (5̂ - t [=] 102 $/ton).

Table 5. Mass balance coefficients (|i/ym )•

Production rate coefficients, process availability

per period, capacity expansion bounds.

Upper bounds for raw material availabilities (kton/yr).

Upper bounds for product demands (kton/yr).

Selected processes and production profiles (kton/yr) for Scenario 1.

Purchases and sales (kton/yr) for Scenario 1.

Selected processes and production profiles (kton/yr) for Scenario 2.

Purchases and sales (kton/yr) for Scenario 2.



Tahle 1, Variable investment coefficients (a^ [=] 102 $/(ton yr

Process

1

2

3

4

1

1.58

4.40

4.64

2.64

Time Period

2

1.36

3.12

3.24

2.24

3

1.28

2.52

2.56

1.56

Table 2.

Process

1

2

3

4

Fixed investment

1

112

102

114

128

coefficients (p,-, [-] 10°

Time Period

2

95

82

97

115

3

85

73

89

100



Table 3. Prices of raw materials and products (lO^ $/ton).

Chemical Period

1 2 3

Raw materials

Products

A

B

C

D

7.32

13.52

45

58

5.24

11.52

40

50

4

9.6

36

47

Table 4. Operating expenses coefficients (5;/ t [=] 10^ $/ton)
" A T I *

Process

1

2

3-scheme 1

3-scheme 2

4

1

0.6

0.8

0.9

0.8

0.7

Time Period

2

0.5

0.7

0.8

0.7

0.6

3

0.4

0.6

0.7

0.6

0.5



Table 5. Mass balance coefficients (|Hzym.).

Process

1

2

3-scheme 1

3-scheme 2

4

*: Denotes main

A

1.11

product

Chemical

B

1*

1.05

1.05

1.05

1.05

C

1*

1*

D

1*

1*

Table 6. Production rate coefficients, process availability

per period, capacity expansion bounds.

P3C = 1 »

Hit = 2yr;

QEfr = 0 ; QE^ = 200kton/yr



Table 7. Upper bounds for raw material availabilities (kton/yr).

Chemical Period

1 2 3

Availability

A

B

30

100

40

125

45

150

Table 8. Upper bounds for product demands (kton/yr).

Scenario 1

Scenario 2

IT K

Chemical

C

D

C

D

IT

1

65

85

65

10

Period

2

75

95

35

45

3

90

100

5

100



Table 9. Selected Processes and Production Profiles (kton/yr) for Scenario 1.

Process

1

2

3

4

Capacity

Production

Capacity

Production

Capacity

Production

Capacity

Production

1

20.3

13.5

40.7

18

0

0

50

42.5

Period

2

20.3

18

40.7

29.2

0

0

50

47.5

3

20.3

20.3

40.7

40.7

0

0

50

50

Table 10. Purchases and Sales (kton/yr) for Scenario 1.

Purchases

Sales

Chemical

A

B

C

D

1

15

50

18

42.5

Period

2

20

62.5

29.2

47.5

3

22.5

75

40.8

50



Table 11. Selected Processes and Production Profiles (kton/yr) for Scenario 2.

Process Period

1

2

3

4

Capacity

Production

Capacity

Production

Capacity in terms of C:

Production of C:

Capacity in terms of D:

Production of D:

Capacity

Production

20.3

13.5

0

0

48

32.5

52.8

5

0

0

20.3

18

0

0

48

17.5

52.8

22.5

0

0

20.3

20.3

0

0

48

2.5

52.8

50

0

0

Table 12. Purchases and Sales (kton/yr) for Scenario 2.

Purchases

Sales

Chemical

A

B

C

D

1

30

51.7

32.5

5

Period

2

40

48

17.5

22.5

3

45

69.7

2.5

50
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Fig. 1: Processing Network.

Fip. 2: Optimal Configuration for Scenario 1.

Fip. 3: Optimal Configuration for Scenario 2.
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