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ABSTRACT

In this paper the problem of determining minimum cost modifications for

redesigning existing process flowsheet systems so as to achieve a specified level of

flexibility is addressed. A novel computational strategy for nonlinear models is

proposed, which relies on the iterative solution of an optimal design formulation that

features as constraints a relaxation of the feasibility function for the region of

flexibility. Special structures of nonlinear models are exploited, in particular models

that are bilinear in the uncertain parameters and control variables. Examples are

presented to illustrate the proposed procedures.



INTRODUCTION

The problem of systematically incorporating flexibility in the synthesis and

design of chemical processes has received increasing attention in the literature (e.g.

Douglas, 1982, Grossmann et al, 1983, Grossmann and Morari, 1984, Pai and Hughes,

1987, Reinhart and Rippin, 1987). Also, due to large reductions in grassroots designs,

greater attention has been placed lately in the development of systematic methods

for retrofit designs (Grossmann, Westerberg and Biegler, 1987). As noted by Cabano

(1986) retrofit projects "constitute the ultimate management challenge", due to the

variety of considerations that must be accounted for; e.g. limitations of energy

resources, economic restrictions and market and processing uncertainties. To tackle

retrofit projects, it is clear that one of the problems that is of great importance is

the improvement and optimization of the flexibility of existing processes. However,

this problem has only recently started to receive limited attention in the literature.

Most of the attention for improving flexibility in retrofit design has been

focused on heat exchanger networks. Kotjabasakis and Linnhoff (1986) have

developed procedures that are based on extensive sensitivity tables to incorporate

flexibility in the retrofit design of heat exchanger networks. Although some valuable

insight and interesting case studies results have been reported, their approach cannot

be readily extended to other chemical processes. Calandranis and Stephanopoulos

(1986) have also proposed evolutionary techniques for improving the operability of

heat exchanger networks. These have been implemented in Al computer software that

is supported by graphics.

Pistikopoulos and Grossmann (1988a) have recently developed systematic

procedures to improve the flexibility of existing chemical plants that are represented

by linear models. With their procedures minimum investment cost modifications for

the retrofit can be determined for a specified level of flexibility. Furthermore, the

optimal trade-off between retrofit cost and expected revenue can be established,

yielding an optimal redesign with a level of flexibility that maximizes the total profit



of the process (Pistikopoulos and Grossmann, 1988b). However, the main limitation of

their approach is the assumption that the process model is linear. Since chemical

plants typically exhibit nonlinearities, it is clearly desirable to develop methods that

can treat these explicitly rather than having to rely on linear approximations.

It is the purpose of this two part paper to extend the approaches to retrofit

design by Pistikopoulos and Grossmann to the case of nonlinear models. In Part I a

novel computational strategy is proposed for determining minimum cost

modifications in order to redesign a process at a desired level of flexibility. This

strategy relies on the iterative solution of an optimal design formulation that

features explicit constraints for flexibility. It is shown that the computation in this

strategy can be greatly simplified for the case of models that are linear in the

design variables and bilinear in the uncertain parameters and control variables.

Finally, the cases when no control variables are present, and when the state variables

are not eliminated from the formulations are also discussed. The second part of this

series is focused on establishing the optimal trade-off between investment cost for

the retrofit and expected revenue that result from increasing flexibility.



PROBLEM STATEMENT

The specific problem which is to be addressed in the first part can be stated

as follows.

The nonlinear model of an existing flowsheet with fixed equipment sizes and

fixed structure is given. Nominal values together with positive and negative expected

deviations are also provided for a set of uncertain parameters. The problem is then

to determine minimum cost modifications for redesigning the flowsheet so as to

achieve a specified level of flexibility as quantified by the index proposed by

Swaney and Grossmann (1985).

The performance and specifications of the chemical process will be described

by a nonlinear model, which typically represents the heat and mass balances,

thermodynamic properties, design equations and design constraints. This model will

in general consist of a set of equations and inequalities. For convenience in the

presentation, however, it is assumed that the equations are eliminated so as to lead

to a set of reduced nonlinear inequality constraints of the following form:

f(d,z,d) < 0, JGJ (1)

The vector d of design variables defines the equipment sizes, the vector z of

control variables stands for the degrees of freedom that are available during

operation, and which can be adjusted for different realizations of the vector of

uncertain parameters 0. Note that feasible operation of a design d at a given

parameter value 6 requires the selection of the control z to satisfy the inequalities in

(1).

For the investment cost for each of the design modifications, Ad., i=1,.,r, the

following fixed charge cost model will be assumed:

C. = a w. + y^dAd.) (2)

where a, B, are cost coefficients, w is a 0-1 variable which is activated when
i ' i i



a design change Ad. takes place and c(Ad) is a linear or nonlinear cost function of

this variable. Also, d.*dE+Ad, where d* is the value of the design variable for the

existing process.

As for the flexibility analysis of the process, the feasibility test proposed by

Halemane and Grossmann (1983) will be used as a basis for the formulations. This

test examines whether a given design is feasible to operate over a range of the

uncertain parameters that corresponds to a specified flexibility index value F. The

range is given by T[F)={d \ d"-FA0' £ 6 < dN+FAd*} where 6 is the vector of the

uncertain parameters, 0N is the feasible nominal parameter point, A0", A0* are fixed

negative and positive expected deviations and F is the flexibility index.

The following section will present the mathematical formulation for the retrofit

design problem described above.

PROBLEM FORMULATION

The problem of determining minimum investment cost modifications of an

existing design to ensure feasible operation over a parameter range

T{F)={810N-fA0* < 8 < 8N+FAd*) with fixed flexibility F, can be represented

conceptually as:

min I Investment cost for changes 1
Ad

(P1)

• s.t. Redesign is feasible V 0€T(F)

In order to model the constraint in (P1), Halemane and Grossmann (1983)

introduced the feasibility test, which involves the following max-min-max problem:

*(d,F) = max min maxf(d,z,0) < 0 (3)
0GT(F) z jGJ '

where A(d,F) can be regarded as a feasibility measure for a given design d. This

feasibility test determines whether for each realization d of the uncertain parameters,



9£T{F), there exists a control variable z that can be selected during plant operation to

satisfy each one of the constraint functions f., j€J. The solution of this test

defines a critical point ffc for feasible operation; it is the one where the feasible

region is the smallest if *(d,F) ^ 0, or it is the one where maximum constraint

violation occurs if A(d,F)>0.

In order to solve the max-min-max problem in (3), which in general gives rise

to a nondifferentiable global optimization problem, Grossmann and Floudas (1987)

proposed the following mixed-integer formulation for this problem:

/X(d,F) = max u
0,z,u,s,X.,y

s.t. s • f (d,z,0) - u
j i

i € J
J

I

Z 3 f.

j€J ' d z

X - y 5 0
i j

s - U ( 1 - y. ) * 0

/ . y = n + 1

f • F

(4)

j € J

f • F A9*

y. - 0,1 ; X. , s £ 0 j 6 J

This formulation is obtained by applying the Kuhn-Tucker conditions to the inner

min-max problem in (3), and where the complementarity conditions are represented

through the use of binary variables y. that are equal to one if the constraint f. is



active in limiting the flexibility (i.e. f =u). The non-negative variables s, A, represent

the slacks and Lagrange multipliers, respectively, for the inner min-max problem.

Also, assuming that Haar's condition holds (Madsen and Schjaer-Jacobsen, 1978) there

are n+1 active constraints that limit flexibility, where n is the number of control

variables z.

As noted by Grossmann and Floudas, problem (4) can be decomposed in terms

of candidate sets of active constraints. Each candidate active set k, k=1,.,n ,
AS

corresponds to a particular choice of n+1 active constraints f that satisfy, for non-

negative multipliers X k, the following stationary conditions:

T 8 f
X k = 1, 2- x k -s - 1 - " ° k-1-nAS (5)

where / = { / | f-u). X k>0 for / € / , X k=0 for \fjk. and Ukl=n+1, k«1..,n e.
A j j A J A A AS

Appendix I presents a systematic procedure for identifying the candidate sets of

active constraints assuming the gradients df /dz are one-signed.

Since the choice of a candidate active set k fixes n+1 values of the 0-1

variables y and sets their slacks s. to zero, problem (4) can be reduced to the

nonlinear programming problem:

Xk(d,F) = max u
0k,?,u

s.t. f.(d,z\0k) = u j € JA
k (6)

where 0k, zk are the uncertain parameters and the control variables associated

with active set k. Finally, X{d,F) = max{Xk{d,F)=uk \ Ar=1,.,/7 }, since the active set
AS



with the largest value of uk corresponds to the solution of problem (4). Hence, the

condition of feasible operation for all 0€T(F) represented by X(d,F) £ 0, also implies

Xk(d,F)£0, ks1,.,nAS, or alternatively uk £ 0, k=1,.,nAg.

In the next section it will be shown that incorporation of the feasibility

constraint (3) in (P1) can be accomplished through a relaxation that is based on the

solution of the subproblems in (6) for each candidate active set k.

RELAXATION OF FEASIBILITY TEST

As was shown in the previous section, the constraint for ensuring feasibility in

the range T(F), X(6,F)<0, can be expressed as a set of inequalities:

*k(d,F) < 0 k=1,.,nAS (7)

where *k(d,F) is given by the solution of the NLP in problem (6) for active set

k. In this section it will be shown that (7) can be expressed explicitly in terms of

the inequalities f, jGJ, and that it can be incorporated within an iterative solution of

the optimal design problem.

Firstly, from (6), let *k(d,F) = max uk(d,F), where
8k

uk(df9
k) = max u

U,2

s.t. f.(d,zk,dk) = u jeJA
k (7a)

Then from the Lagrangian at the optimal solution (see Appendix II), the

feasibility function uk that is associated with the k'th active set of a design d can be

expressed for a fixed value 8k of the uncertain parameters in the following way1:

Note, that this expression is an extension for nonlinear models of the result obtained by Pistikopoulos and Grossmann
(1988a) for linear models



\k f(d,z\dk) (8)
' '

where Xk are multipliers satisfying equation (5). Thus, the Feasibility Test

problem for each active set k can be expressed as:

*k(d,F) = max uk(d,0k) (9)

max X A." f (d,z\0k) k=1,.,n e

0k€T(F) J^J-K < ' AS

The main advantage of the expression in (9) is that it provides an explicit

equation for the feasibility of an active set k. The difficulties, however, are that it

involves a maximization problem as well as the evaluation of the Lagrange multipliers

X k, which in general are a function of the design variables d and the uncertain

parameters 9. To circumvent these difficulties it is convenient to first consider the

expression in (9) for a fixed set of parameter point<s) 9 , -£=1,..,L, which then yields:

Xk{d.F) Z y* Xk f(d,z\9ki) 1-1...L (10)

Note that the above inequalities represent a relaxation to the maximization of

problem (9) since they involve only a finite number of parameter values. Hence,

these inequalities will in general overestimate the region for feasible operation.
p

Furthermore, assume that Lagrange multipliers X. are evaluated from (5) at each

potential critical parameter value 9K . Then, by applying the Saddle Point Theorem

(Bazaraa and Shetty, 1979), this leads to the following inequalities from (10):

z\eU) > T \k'lf(dzkdU)Xk f{d.z\0K*-) > > \K**f{d.f.O**') 1-1..L (11)

)6 jA i € jA
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Given L parameter points dk- with associated multipliers Xk' , £=1,.,L, it is then

possible to incorporate the inequalities for *k(d,F)£0 in (11) within the mathematical

formulation (PI) as follows:

min . y [ a w + B.ci&d.)]
w.Ad,zk ^ ' ' '

••t- Z - k *r fW.z\*"-> * 0 J-1...L. k-1...nAI (P4
jej k

A

d = dE • Ad

-Uw < Ad < Uw, w=0,1, i=1,.,r

where U is an upper bound for the design changes. Note that in this way

problem (PL), which involves the solution of a mixed-integer nonlinear programming

problem (MINLP), corresponds to a relaxation of problem (P1). It also has the unique

feature of involving explicit constraints for flexibility. As shown in the next section,

problem (PL) can be incorporated within an algorithmic procedure where the parameter
JO 0

points QK and the multipliers A. are generated successively at each iteration I,

ALGORITHMIC PROCEDURE

Based on the analysis and the formulation (PL) presented in the previous

section, an algorithm can be developed to find the optimal parametric design changes

Ad for a specified degree of flexibility. The steps in this algorithm are as follows:

STEP 0 : Specify the flexibility index F and set d=dE, L=1.

STEP 1 : At the value d of the design variables:

• (a) Identify the n candidate sets of active constraints as shown in
AS
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Appendix I.

(b) For every active set k, k=1,.,nAe solve the feasibility test problem in
AS

(6):

Xk(d,F) = max u
0k,z\u

s.t. f.(d,z\0k) « u j 6 J/ (6)

d" - F AS' £ 8k £ dN + F A(T

which will yield the parameter point dkX and the nonnegative multipliers

X kL of the active constraints (f =u, j€J k).
j j ' A

• (c) If Ak(d,F)£0 for k=1,.,nA , STOP. The design is feasible. Otherwise, go
to step 2.

STEP 2 : Solve the MINLP problem:

min yj [« w + y?c<Ad)]
w,Ad,zk jTT ' ' '

s.t. X x^ U4tz
k,dki) < 0 £«1,..L, k * 1 f . f n e (PL

e r • •
d = d6 + Ad

-Uw 5 Ad S Uw, w=0,1 , i»1,.,r
l i

to obtain the vector Ad of the design changes; set d=dE+Ad, L=l+1, and go back

to step Kb).

It should be noted that this algorithmic procedure involves an iterative scheme

between two basic problems: an NLP feasibility test problem in step 1, and an MINLP

redesign problem in step 2. In the feasibility test problem potential critical

parameter values of the uncertain parameters are determined for each candidate
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active set, as well as the values of the Lagrange multipliers corresponding to the

active constraints of each set. A relaxed form of the feasibility function *k(d,F) is

then generated for each set of active constraints, and these in turn are included in

the redesign problem. The solution of the redesign problem corresponds to a

minimum investment cost retrofit where relaxed feasibility constraints are involved

for the specified flexibility index F. Note that as iterations proceed, the redesign

problem accumulates all the approximations generated for the feasibility test. Also

note that step 1(a) involves the analytical identification of the n active sets. This

requires the inequality constraints in (1) to be monotonic functions of the control

variables z.

It is interesting to note that for the case that a linear model is involved for

the description of the chemical process, the above algorithmic procedure becomes

equivalent to the one suggested by Pistikopoulos and Grossmann (1988a). Instead of

actually solving step 1(b), one can determine the Lagrange multipliers from equation

(5), which are invariant to the design changes and uncertain parameters. The critical

parameters can then be determined by analyzing the sign of the gradients of the

equation in (8). With this, step 3 becomes a mixed-integer linear programming

problem (MILP), whose solution will provide the optimal parametric changes for the

specified flexibility index F. Hence, in the linear case the algorithm only requires one

major iteration.

EXAMPLE 1

This section illustrates through a small analytical example the algorithm

suggested in the previous section.

Consider that the specifications of a design are represented by the following

inequalities:

f1 = z2/3 - (d rd2)^ + d1 - 2d2 £ 0 '

f2 = -0.25(1^ - 3(9/8 + d2 < 0 (12)
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f3 • z + 02/5 - 2d1 - 2 £ 0

These inequalities involve a single control variable z, two design variables d^

d and a single uncertain parameter 6 with nominal value 0N=4, and expected

deviations A0*=5, A0*=4. For flexibility index F=1 the range of the parameter is then

O£0£9. The values of the existing design variables are d**4, d2
E=3.

By examining the plot of the feasible region for the existing design in Fig. 1, it

is clear that for O£0£O.58 and 6.927<0£9.O there is infeasible operation, whereas for

0.58^0^6.927 there is feasible operation. Then the question to be answered is what

are the appropriate changes of the design variables dl and d2 in order that the new

design be feasible for the operating range of the uncertain parameter d with

flexibility index F=1 (i.e. O<0<9).

Applying the algorithmic procedure, the following results are obtained:

STEP 0 : Set F»1. d^=4, d2
E=3, L=1.

STEP 1 : (a) Two active sets can be identified from the following two

equations in (5), (i) *, + * 2
+ * 3

s 1 and (ii) O.eSzX^O^Bd^X^X^O. Since z£0, di
E=4, the

first active set JA
1 involves f1 and f2, and the second one, JA

2 , involves f2 and f3.

(b) For active set J A M i , 2 } the solution of the feasibility test in (6) yields:

A1(dE,F)=0.35 >0, with 0U=O.O and X^'^0.36, X2
u=0.64. For active set JA

2={2,3}

A2(dE,F)=2.912 >0 with fl2'1*^ and X2
2/l=X3

2J=0.5. Then from (11):

X W ) > 0.36 f^cU1,*1-1) *0.64 f ^ z 1 ^ 1 ' 1 ) (13)

X2(6f) > 0.5 f2(d,z2,^21) ^0.5 f3(d,z2,02J)

where z1 and z2 correspond to choices of the control variables for active sets 1

and 2 respectively.

STEP 2 : Assuming cost coefficients tf^a^SO, fi,s/32
s5. problem (P) can be
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formulated as the following MINLP :

50w, + 5Ad + 50w + 5Ad
1 1 2 2

s.t. O.^z1)2 - 0.16<z')dl + O ^ d , - 0.08d2 £ 0
0.5(z2) - O.i25(za)d1 - d, + O.5d2 + 5.4125 <5 0 (14)

d, • 4 + Ad,
d2 = 3 + Ad2

-1Ow £ Ad £ 1Ow, w=O,1, i=1,2
i l i l

The optimal solution of the above MINLP is w ^ w =1, Ad =3.5, Ad =1.88 at a

cost of 127.0 units. Then the new design is dl=7.5, d2=4.88 and we return to step Kb).

STEP Kb) : For both active sets JA
1={1,2} and JA

2={2,3} the feasibility test

yields A1(d,F)=A2(d,F)=0. Therefore, according to step Kc) convergence has been

achieved in one iteration. The results then indicate that in order to obtain a

flexibility index equal to one (i.e. feasible operation for the whole range O<0<9) at

minimum investment cost, both design variables should be increased by 3.5 and 1.88

respectively taking the values:

[ d^ = 7.5, d2
NEW = 4.88 ]

The effect of the redesign over the existing system can be seen in Fig. 2,

which shows the feasible region of the redesigned model.

SPECIAL STRUCTURES OF NONLINEAR PROBLEMS

In this section, it Will be shown that by taking advantage of special structures

of nonlinear process models, the algorithmic procedure that was presented in the

previous section can be further improved in terms of its computational efficiency.

Specifically, two nonlinear models will be considered. First, the case when the

model is bilinear in the uncertain parameters and the control variables, and linear in

the design variables. Second, the case when no control variables are present.
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BILINEAR MODELS

In this case, the process model is assumed to be described with the following

set of equality and inequality constraints:

(a) A(8)x * B(d)z * C(d) = b
(15)

(b) D(0)x * E(0)z • F(0) + Gd £ 0

where x is the vector of the state variables, A, B, C, D, E, F are matrices

whose elements are functions only of the uncertain parameters 6, G is a constant

matrix and b is a constant vector. Then, from (15a) the set of state variables can be

expressed analytically in terms of the control variables and the uncertain parameters

as follows:

x = K\B) [b - B(0)z - C(0)] (16)

By substituting (16) in (15b) this results in the following set of inequality

constraints:

f(d,z,0) = M(0)z • N(0) + Kd £ 0 (17)

where M(d), N(0) and K are matrices that can be computed analytically from

(16)(e.g. through MACSYMA). The inequalities in (17) are bilinear in terms of the

control variables z and the uncertain parameters 6 and linear in terms of the design

variables d. Typically, this is a model describing a number of chemical processes,

such as utility systems with uncertain turbine efficiencies, linear chemical complexes

with uncertainties in the* process conversions and some structures of heat exchanger

networks with uncertain flowrates. It will be shown that for such bilinear models a

number of important analytical properties can be obtained, with which their solution

procedure can be greatly simplified.
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PROPERTIES OF BILINEAR MODELS

Given the bilinear model in (17), two important properties can be shown to hold

to simplify the algorithmic procedure for retrofit design:

PROPERTY 1 : The Lagrange multipliers X k for each active set k are only functions

of the uncertain parameters 6 and can be computed analytically from the system of

equations in (5).

From (17) df./dzsM.(0). Then Xk can be solved analytically (e.g. through

MACSYMA) from the following system of equations:

V • '

Xk M(0) = 0
j i

where c lear ly X k are on l y f u n c t i o n s of the uncer ta in pa ramete rs , i.e. X.k*X.k(0).

PROPERTY 2 : The feasibility function uk(d,0k) in (8) for each active set k can be

expressed analytically in terms of the design variables d and the uncertain parameters

8, and is independent of the control variables z.

Substituting the inequalities in (17) in the expression for function uk(d,0) as

given in (8), and applying equation (18) yields,

uk(d,0) = 2* X i k Vd 'z-^ ) = 2~ \k i M ^ > z * N>{6) + K j d ]

A A

» ^ Xk [ N(0) • Kd ] (19)

The importance of these two properties for bilinear models is that the
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computational effort for the feasibility test in (6) and the redesign problem (PL) can

be reduced significantly as shown in the algorithm of next section.

ALGORITHM FOR BILINEAR MODELS

STEP 0 : Specify the flexibility index F and set d=dE, L=1.

STEP 1 : (a) Identify the nAS active sets as shown in Appendix I, and determine

the Lagrange multipliers X k(0) analytically from the system of equations in (18).

(b) Obtain the feasibility function uk(d,#) analytically from the expression in (19).

STEP 2 : For each active set k, k*1,., n at the value d of the design variables:
AS

• (a) Obtain the potential critical parameter point 8kX by solving the
following nonlinear optimization problem:

max uk(d,0) = ^ X k(0) [ N(0) + K.d ] (20)
6 j eT A

k J

s.t. 0N - FA0" < 0 < 8H + FA0*

• (b) If uk(d,#k'L)<0 for k=1,.,nAS, STOP. The design is feasible. Otherwise, go
to step 3.

STEP 3 : Replacing the constraints in (P1) by (19), the following mixed-integer

optimization problem is solved

min } , [<zw. •
w,Ad ^ T ' '

Xk Vk(0k^) C N
l
{dkl) + K d ] ^ 0 £=1,.,L, k=1,.,nAS (PL

B)

j € J A
k

d = d6 • Ad

-Uw. ^ Ad ^ Uw., w=0,1, i=1,.,r
i i
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to obtain the vector Ad of the design changes; set d=dE+Ad, L=L+1 and go back

to step 2.

It should be noted that in this algorithm problem (20) in step 2 is a

significantly simpler NLP problem than (6) in the previous algorithm since (20) only

involve a nonlinear objective function with simple lower and upper bounds. Also, for

the case when the cost term c(Ad.) is linear, problem (P )̂ corresponds to a mixed-

integer linear optimization problem (MILP), since for the potential critical parameter

points 0k'^ obtained in step 2(a) the constraints in (P )̂ become linear. If the cost

function c(Ad.) is nonlinear, problem (P )̂ corresponds to a MINLP problem involving

only linear constraints. Note also that in this problem no control variables z\

k=1,.,nAS are required as opposed to the general nonlinear problem (PL).

It is also interesting to note that the above algorithmic procedure converges in

one single major iteration (i.e. L=1), if the first critical parameter point 0M obtained

from the solution of problem (20) remains the same for different values of the

design variables d. A proof is given in Appendix C.

The following section illustrates the above algorithm with a small example

problem.

EXAMPLE 2

Consider that the specifications of a design are represented by the following

inequalities :

fl = -250 • z(1-0/2) • 2d1 - 2d2 < 0
f2 = -1900 + z + d1 £ 0 (21)
f3 = 2600 - z - 240 - 2d1 £ 0

These inequalities involve one control variable z, two design variables d^ d2

and a single uncertain parameter 0, with nominal value of 0N=1.O and expected

deviations A0*=1.O, A0*=O.5 (i.e. range O.5£0<2.O for F=1). The values of the existing

design variables are d E=10, d E=5. Note also that the above inequalities are bilinear
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in terms of the control variable z and the uncertain parameter 0,and linear in terms

of the design variables d , d . Therefore the algorithmic procedure suitable for

bilinear structures will be applied here.

The feasible region for the existing design is shown in Fig. 3. It can be clearly

seen that there is an intermediate region for 1.13£0€1.62 of infeasible operation,

whereas for O.5£0£1.13 and 1.62:£0<2.O the existing design is feasible. A redesign is

then required to ensure feasible operation over the expected parameter range

.0; i.e. a retrofit with flexibility index of 1.0.

Applying the steps of the algorithmic procedure the following results are

obtained :

STEP 0 : Set F=1, d ^ i O , d2
E=5, L=1.

STEP 1 : From the system of equations :

x, • x2 * x3 = 1.0
(22)

two active sets can be identified for the existing design de; namely, JA
1 = (f2, f 3 h

STEP 2 : For active set J A M f 2 , f3K the computed values of the Lagrange

multipliers are X2
1 = X3

1=0.5. Then,

u W ) = V V * 3
1 f 3

 = 350-12O+O.5drd2 (23>

By plotting the right hand side of u1(dE,0) as a function of 8 (see Fig. 4(a», it can

clearly be seen that it is negative for O.5£0£2.O with critical parameter value at

01/1=2.O. For active set JA
2s^f^ f K the Lagrange multipliers are given by

X^= 1/(2-0.50), A3
2=(1-O.50)/(2-O.50). Then,

u2(d,0) = X i
2f i + X3

2f3 =[350-13O02-24O^2dl+((9-4)d2]/(2-O.50) (24a)
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For the values of the existing design this results in the following expression,

u2(dE,0) > (3605 - 13O02 -240) / (2-0.55) (24b)

By plotting the right hand side of u2(dE,0) as a function of 8 in Fig. 4(b), it can

clearly be seen that it is positive for 1.13£0£1.62, with the maximum violation at

02-1* 1.398.

For the critical parameters points the functions u\ k=1,2, yield:

u1(d,0°) = 0.5dl - d2 - 50

(25)
u2(d,0c'2) = 1.537di - 2d2 * 1.7044

STEP 3 : Assuming cost coefficients « »« «50, fl^/lf^O. problem (P *) can be

formulated as the following MILP :

min 50w, + 50wo + 10Ad + 10Ad
w w A d A d 1 2 1 2

s.t. 0.5d1 - d2 - 50 < 0
1.537di - 2d2 • 1.7044 <> 0 (26)

d i = 10 + Ad i

d2 = 5 • Ad2

-10w i < Ad l < 10wi

-10w2 ^ Ad2 ^ 10w2

The solution of the above MILP yields w^O, Ad^O, w2=1, Ad2=3.5386 with a

minimum cost of 85.368 units. The feasibility test of step 1(b) for d^iO, d2=8.5386

yields u^d^^O, u2(d,0)£O for both active sets. Therefore, an optimal redesign has

been achieved with values for the redesign [ d ^ ^ i O , d2
NEW=8.5386 ]. Fig. 5 shows

the feasible region for the redesign, whereas in Fig. 6 the functions uk(dNEW,0), k=1,2,

are shown.



21

MODELS WITH NO CONTROL VARIABLES

For the particular case when there are no control variables (n-0), or alternatively

when these are assumed to remain constant during operation, only one constraint is

allowed to be active (see equation (4)). The feasibility test in (4) can then be

decomposed in the following two steps (see Grossmann and Floudas, 1987) :

uJ = . K x f ( d » j€J (27)

with which A(d,F) = max uj (28)
j€J

The idea is then to incorporate the above expressions in an algorithmic

procedure that is similar in nature to the previous algorithms. The steps of this

procedure are as follows :

STEP 0 : Specify the flexibility index F and set d=dE, L=1.

STEP 1 : At the value d of the design variables:

• (a) Solve the feasibility test problem as in (27) for each one of the

individual constraints j€J to obtain its potential critical parameter point
d>\

• (b) If A(d,F)<0, as given by (28), STOP, the design is feasible. Otherwise,
go to step 2.

STEP 2 : Solve the following MINLP problem

min 2-, [ «w . • >5.c(Ad)]
w,Ad frT ' '

s.t. f.(d,0 j '*) * 0 L*\...L. jGJ

(P2
L)
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d = dE + Ad

-Uw < Ad < Uw, w=0,1, i=1,.,r

to obtain the vector Ad of the design changes; set d=dE+Ad, L=L+1 and go back

to step 1(a).

It should be noted that all constraints f ., j€J, are included in problem (P ), since

each one of them is a potential active set. The number of variables, however, is

small, since only the design changes Ad( are free variables for the optimization

problem.

PROCESS EXAMPLES

Three example problems will be considered to illustrate the application of the

proposed procedures. The first one will correspond to the nonlinear model of a

reactor-recycle compressor process system. The second example will correspond to

a bilinear model of a utility system, where the capability of the proposed

methodology to include options for structural modifications will be also pointed out.

The last problem will correspond to the nonlinear model of a heat exchanger network

where no control variables are present and the algorithmic procedure for such a case

will be applied in the presence of explicit equality constraints.

EXAMPLE 3

The flowsheet of a reactor-recycle compressor process system, considered in

Swaney and Grossmann (1985), is shown in Fig. 7. The reactor section is treated

simply as a pressure drop, but due to variations in byproduct formation (catalyst

aging) significant variations in the recycle gas molecular weight MR are introduced.

The existing design has a compressor driver power limit WD of 15400 KW, a

compressor head H# of 192.8 KJ/Kg and a throughtput Q# of 4.432 m3/s. Four uncertain
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parameters are considered: the feed throughtput FQ, the molecular weight of the feed

M , the recycle gas molecular weight MR and the pressure-drop resistance of the

reactor section kf. Nominal values and expected deviations are provided for the four

parameters as shown in Table 1. Control of the recycle flow is provided by a

throttling valve at the compressor discharge.

The specification constraints as well as data for the retrofit investment cost

are presented in Table 2. The problem is then to determine minimum cost

modifications to obtain a redesign with a flexibility index F of 1; i.e. feasible to

operate over the whole parameter range.

The flexibility index of the existing design dE was first computed yielding a

value of F=0.1034 for the critical parameter 0c=(Fo
u, MQ

U , MR
L , kf

u) (see Swaney and

Grossmann, 1985). Applying then the procedure in Appendix I, four active sets were

identified, namely J ^ M I . 4 } , JA
2={1,3}, JA

3={3,5}, J /={4 ,5} . The feasibility test

problem in (6) provided the following results : ^l(dE,F)«31.66 £0 with 0u* (Fo
u , MQ

U ,

MD
L, k,u) and X u=0.086, X /^0 .914 . A2(dE,F)=-1.63 <0 with 02J=(F u, M u, MO

L, k,u) and
R f i 4 O O n f

X 21=0.03, X,21«0.97. *3(dE,F)=-2.15 £0 with 03'=<F S M L, MO
L, k,L) and X 31=0.959,

1 3 o o R f 3

X3 J=0.041. X4(dE,F)=-10.92 50 with 04J=(F L, M u, Mo
u, ku) and X 41=0.50, X41=0.50.

5 o o R f 4 5

Then, problem (PL) was solved with the cost data of Table 2 and the result obtained

was that the compressor head H# should change from 192.8 KJ/Kg to 285.024 KJ/Kg

with a cost for the modification of $9.274x104. The values of the two other design

variables (W°, Q#) remained unchanged. The feasibility test for the new design

variables verified indeed that a feasible redesign is obtained to operate over the

whole parameter range. Therefore, with values for the design variables :

[ WD = 15400 KW, H* = 285.024 KJ/Kg , Q* = 4.432 m3/s ]

an optimal redesign with flexibility index of 1.0 was achieved in one single

iteration.
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EXAMPLE 4

Figure 8 shows a slightly modified version of the steam and power system

discussed in Edgar and Himmelblau (1988). To produce electric power, the existing

system contains two turbines, whose characteristics are listed in Table 3. The first

turbine has higher efficiency but cannot produce as much power as the second

turbine. Data about the steam header, and the current production levels of electric

power, MP steam and LP steam are shown in Table 4. Due to an ongoing expansion

of the supporting plant there is a significant uncertainty on the actual demands on

the system. Variations also exist on the actual values of the turbines efficiencies.

Nominal values and expected deviations for these parameters are listed in Table 5.

The solution of the flexibility analysis problem for the existing system yields a

flexibility index of 0.22, clearly suggesting that retrofit action should take place in

order to ensure that the utility demands are met. Four structural modifications have

been proposed to be included within a superstructure (see Fig. 8); namely, a new

boiler may be installed if the production of HP steam is over 400,000 £b/hr, electric

power (PP) may be purchased from a utility company, and two turbines (3 and 4) may

be installed with similar characteristics as the existing ones (1 and 2, respectively).

Cost data about the proposed modifications are given in Table 5.

The proposed superstructure, shown in Figure 9, can be modeled as a MINLP

problem, which involves a fixed charge cost model representing the investment cost

for the retrofit as an objective function. The model involves 8 linear equalities, 4

nonlinear equalities and 20 linear inequalities in 4 0-1 variables and 29 continuous

variables: 12 state variables, 6 control variables, 7 uncertain parameters and 4 design

variables. Logical linear constraints relating the 0-1 variables and the continuous

variables are also included. Since the model is bilinear in terms of the uncertain

parameters 6 and the control variables z, and linear in the design variables d, the

algorithmic procedure for such cases has been applied. Note that the state variables

have not been eliminated but handled explicitly. Note also that since the number of

potential active sets is rather large in this case (over 200), only the five active sets

with flexibility index less than one for the existing design have been included in the
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redesign problem (P L). It is interesting to note that the demand constraints are

always active and have been included in all five sets.

The solution of the MILP problem in (PB
L) indicates to install a new boiler of

150,000 Iblhr and purchase one turbine (Turbine 4) similar to the second one at a

minimum investment cost of $1.3x106. The other two alternatives, addition of turbine

3 and purchase of electricity, were not chosen. The feasibility test for the redesign

verifies that the new structure is now feasible to meet the demands within the

desired range (i.e. flexibility index of one). Therefore, an optimal redesign has been

obtained, which is shown in Figure 10.

EXAMPLE 5

The heat exchanger network of Fig. 11 (see Grossmann and Morari, 1983) is

shown with given conditions for the heat capacity fiowrates and inlet temperatures.

Inequality constraints are specified the outlet temperature T of the hot stream H
H 1

and the outlet temperature tc2 of the cold stream C2, whereas the outlet temperature

of cold stream C1 has been specified at 500 K. The existing areas of the two heat

exchangers have the values of 31.2 m2 and 41.2 m2, respectively. The values of the

overall heat tranfer coefficients U^ U2 of the heat exchangers are expected to vary

between 0.64 and 0.96 kW/m2K, whereas their nominal values are 0.8 kW/m2K

respectively. Then a redesign is required for the areas of the heat exchangers to

ensure feasible operation over the expected range of the heat transfer coefficients.

The inequalities of the heat exchanger network are shown in Table 6, where

cost data for the retrofit are also shown. Since 8 equations in 8 unknowns are

involved for the nominal values of the two parameters, there are no control variables

in this model. Thus, the algorithmic procedure suitable for such models will be

employed here. The results of the feasibility test for the existing design are also

shown in Table 6, where it can clearly be seen that constraints (e) and (f) are

violated (i.e. u5=0.676 and u6=5.764) with critical parameter values (U^U^), (U^U^)

respectively. Then, by including them in problem (P ), the solution suggests that the
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area of the first heat exchanger should be decreased by 18%, whereas the area of the

second heat exchanger should be increased by 33% in order to obtain a feasible

redesign at a minimum investment cost of $23,200. Therefore, with areas for the two

exchangers of [ A1
NEW=25.77 m2, A2

NEW=54.4 m2 ], an optimal redesign has been

achieved which is feasible to operate over the whole parameter range 0.64£U £0.96

KW/m2K, i*1,2.

DISCUSSION

As has been illustrated with the example problems, the proposed methodology

for retrofit with fixed flexibility is general enough to handle nonlinear chemical

models, and at the same time can be adapted to take advantage of special nonlinear

structures. For the particular case of models with bilinear terms in the uncertain

parameters d and the control variables z, analytical properties can be established

which for the case of linear costs reduce the redesign problem to a mixed-integer

linear programming problem. This greatly simplifies the solution procedure as was

shown with examples 2 and 4.

It is also interesting to note that in all the example problems of this paper

convergence was achieved in only one major iteration of the proposed algorithms.

Theoretically there is of course no guarantee that this will always be the case.

However, a possible explanation of this behavior lies on the following facts. First,

the candidate limiting active sets that are identified "a priori" at F=FE (existing

design) seem to remain always the same at F=FT (redesign), which makes the

consideration of only these active sets sufficient. Moreover, it is also often the case

that the "critical" parameter points evaluated for each limiting active set remain the

same for different choices of the design variables. As shown in Appendix C, this

implies that for the case of bilinear models convergence can be guaranteed for one

single iteration.

Finally, although the design applications are different, it is interesting to note

the differences and similarities between the basic algorithms of this work and the
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one by Halemane and Grossmann (1983) who considered grassroots design problems.

In their work, the mathematical formulation involved the original constraints for

different values of the uncertain parameters, without including explicitly constraints

to account for flexibility. In this paper, however, explicit flexibility constraints were

introduced within the redesign formulation, which allows a more efficient and

compact representation of the problem. In the work of Halemane and Grossmann, the

redesign problem corresponds to a "multiperiod" formulation where constraints are

evaluated at several parameter points. In addition, the selection of the initial set of

parameter points is arbitrary, which may result to including points that will never

become critical. In this work, however, the critical parameter points for each active

set are generated a-priori and only relaxed feasibility constraints have to included for

them. This clearly results in fewer number of constraints and in a fewer number of

iterations required for the algorithmic procedure. For the limiting case of linear

functions, the procedure proposed in this work is guaranteed to terminate in one

step, whereas with the procedure by Halemane and Grossmann this can not be

achieved unless all the vertex parameter points are to be included. Finally, the

limitation in this work versus the one by Halemane and Grossmann is that no control

variables have been assumed to be present in the objective function. This

assumption, however, could be relaxed by explicitly considering in the formulation

one or more parameter points for which control variables are to be selected for the

optimization.
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APPENDIX A. FEASIBILITY FUNCTION

For a candidate active set k, k=1,.,nAS, the feasibility function of a design d at

the parameter value 8k is given by:

uk(d,0k) = max u
k

s.t. fid,z\8k) = u /ej k UD

Provided that each nxn square submatrix of the partial derivatives of the

constraints f, j€JA
k with respect to the control z is of rank n (Haar condition), then

the Kuhn-Tucker conditions of (A1) yield the square system of equations :

X.k • 1 (A2.a)
k J

A

= 0 (A2.b)

Therefore, the Lagrange multipliers Xk are only functions of the design

variables d and the uncertain parameters d, independent of the control variables z,

i.e. Xj
k=X.k(d,^k).

Furthermore, consider the Lagrangian of the function uk(d,0k) in (A1):

Lk (u,z,Xk) = uk * zl X.k (f (d,z,0) - uk) (A3)

Under the assumption of convexity, at the optimal solution (Bazaraa and Shetty, 1979)

uk(d,0k) = Lk (u\z',X#) (A4)

Substituting (A2.a) and (A3) into (A4) leads to:

uk(d,^k) = 2^ X k f <d,z,0k) (A5)
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APPENDIX B. IDENTIFICATION OF ACTIVE SETS

All the candidate active sets nAS in problem (4) are given by those

combinations of the binary variables y., j€J which have n+1 non-zero values and

satisfy the equations in (5)

To identify the potential active sets it is convenient to define matrix A=[a'..]

which will have as components the signs of the gradients Vz f (d,z,0). That is,

a = S
j

1 i
3f.

8f
4
8f

1 if -4-i- < 0 i=1,..,n, j€J

dt.
0 if Cli- = 0

(B1)

A systematic procedure to identify the potential sets of n+1 active constraints

involves the following steps:

STEP 1 : Identify if there are rows m of matrix A having only one element

ams that is positive or negative. Flag the corresponding columns as s.

STEP 2 : By fixing the columns s of step 1 enumerate all nx(n+1) submatrices

from (A). If every row in a submatrix involves positive and negative entries, define

the active set with the corresponding columns. If any row involves only positive or

only negative entries no.active set is associated to that sumbatrix.

In order to illustrate the steps of this procedure consider the following matrix

A:

1
-1
0

1
1

-1

0
1
1

-1
1

0

1
-1
-1

1
1

-1
(B2)

The interpretation of this matrix A is that the system is described by 6
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Inequality constraints in 3 control variables. Therefore, every potential active set

consists of 4 constraints.

Applying the steps of the above procedure, the following results are been

obtained:

STEP 1 : Row 1 has the single element au negative and row 3 has the single

element a33 positive. Therefore, constraints 3 and 4 are included in any potential

active set:

1 1 0 - 1 1 1
- 1 1 1 1 - 1 1
0 - 1 1 0 - 1 - 1

(B3)

STEP 2

active sets:

The following 4x3 matrices are then enumerated to identify the 5

[ 1 1 0 -1 * *
! - i 1 1 1 * *
J 0 -1 1 0 * *

ACTIVE SETS

J A M 1,2,3,4}

k=2
1 * 0 - 1 1

-1 * 1 1 -1
0 * 1 0 - 1

JA
2={ 1,3,4,5}

k=3
1 *

-1 *
0 *

0 -1
1 1
1 0

* JA
3={ 1,3,4,6}

k=4
•* 1
* 1
* -1

0 -1 1
1 1 -1
1 0 -1

#
#
*

J/M2.3A5}

* 1
* 1
* -1

0 -1
1 1
1 0 * -1

violation:{2,3,4,6}

k=5
* *
* *
* *

0 -1 1
1 1 -1
1 0 -1

1
1

-1
JA

5={3,4,5,6}
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APPENDIX C. ON THE CONVERGENCE OF BILINEAR MODELS

Proposition 1: If the feasibility test problem in (20) has a unique
solution 0k<1 for different values of the design variables d, then the solution
of the design problem in (P )̂ provides the optimal redesign values, and
therefore convergence is achieved in one single iteration.

Proof: Since for bilinear models the multipliers A k are only functions
of the uncertain parameters 6, at the unique solution 0M of (20) the
multipliers \\6Ky) are constants. In addition, from (19) for d=dk>] and
d=dE+Ad, yields:

uk(d,0M) = T x ^ k J > C N<0M> + K(dE+Ad)
2"7* I ) J

(CD

• z. M ) + KdE ] +
j€J

J6J/

where uk(dE,0M) is the value of the feasibility function evaluated at
the point (dE,0M), which is a constant number. Since (CD is only a function
of Ad, the solution of problem (P )̂ will set this equation to a non-positive

value. Hence, convergence to an optimal and feasible design for all 0€T(F)
will be achieved in one iteration of the algorithm.
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Table 1: Data for uncertain parameters for example 3

Uncertain
Parameter

e

F (kmol/s)
O

Mo <Kg/Kmol)

MR (Kg/Kmol)

k (x104)

Nominal
Value

0.45

125.0

5.0

12.0

Positive
Deviation

A0*

0.5

10.0

6.0

0.1

Negative
Deviation

A0-

0.08

10.0

1.0

0.2



Table 2: Specification inequalities
and economic data for example 3

Retrofit cost: AWD + 10 AH# + 10AQ# ($102/yr)

Specification inequalities

(i) -AP * AP £ 0
v mm

(ii) W - W° £ 0

(iii) 0.5Q' - Q < 0

(iv)235F - (31.4-MJFD £ 0

<v> (31.4-MJFD - 294F <, 0
R R o



Table 3: Turbine data for example 4

TURBINE 1

Maximum generative capacity

Minimum load

Maximum inlet flow

Maximum condensate flow

Maximum internal flow

6250 KW

2500 KW

192,000 Ib/h

12,000 Ib/h

132,000 Ib/h

TURBINE 2

Maximum generative capacity

Minimum load

Maximum inlet flow

Maximum 62 psi exhaust

9000 KW

3000 KW

244,000 Ib/h

142,000 Ib/h



Table 4: Data for example 4

Steam header data

Header

HP steam

MP steam

LP steam

condensate

Pressure

635 psig

195 psig

62 psig

••

Temperature

720 F

130 F

130 F

••

Enthalpy

1359.8 Btu/lb

1267.8 Btu/lb

1251.4 Btu/lb

193.0 Btu/lb

Current production level

Electric power 12800KW

MP steam 271536 Ib/h

LP steam 100623 Ib/h



Table 5: Data for uncertain parameters and economic data for example 4

Uncertain
Parameter

8

' 2

Power demand

MP demand

LP demand

Data for uncertain

Nominal
Value

0.70

0.65

10,850 <KW)

200,000 (Ibm/h)

90,000 (Ib/h)

parameters

Positive
Deviation

Ad*

0.05

0.04

9,150

100,000

50,000

Negative
Deviation

A0-

0.05

0.04

850

50,000

10,000

Cost data

Fixed ($) Variable

Boiler

Electric power

Turbine 1

Turbine 2

80,000

40,000

45,000

35.000

2 S/lbh*1

0.20 $/KW

0.25 $/KW

0.20 $/KW



Table 6: Inequality constraints, feasibility test
and economic data for example 5

Retrofit cost: 5 w1 + AA^ * 5 w2 + AA2
+ ($103)

Specification constraints Feasibility Test

Ta - 480 £ 0 -36.78

420 - T n < 0 -13.55

Tc2 - TB < 0 -5.25

385 - TH < 0 -19.68

430 - Tc2 £ 0 0.676

TH - 410 ^ 0 5.764



FIGURES

• Figure 1: Feasible region of the existing design for example 1.

• Figure 2: Feasible region of optimal redesign for example 1.

• Figure 3: Feasible region of the existing design for example 2.

• Figure 4: Feasibility functions of the existing design for example 2: (a)
active set 1, (b) active set 2

• Figure 5: Feasible region of optimal redesign for example 2.

• Figure 6: Feasibility functions of optimal redesign for example 2: (a)
active set 1, (b) active set 2

• Figure 7: Flowsheet of a reactor-recycle compressor process system of
example 3.

• Figure 8: Steam and power system of example 4.

• Figure 9: Proposed superstructure for the steam and power system of
example 4.

• Figure 10: Optimal redesign for the steam and power system of example
4.

• Figure 11: Heat exchanger network of example 5.
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