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Abstract 
Discrete-continuous optimization problems in process systems engineering are commonly 
modeled in algebraic form as mixed-integer linear or nonlinear programming models. Since 
these models can often be formulated in different ways, there is a need for a systematic modeling 
framework that provides a fundamental understanding on the nature of these models, particularly 
their continuous relaxations. This paper describes a modeling framework, Generalized 
Disjunctive Programming (GDP), which represents problems in terms of Boolean and continuous 
variables, allowing the representation of constraints as algebraic equations, disjunctions and 
logic propositions. We provide an overview of major research results that have emerged in this 
area. Basic concepts are emphasized as well as major classes of formulations that can be derived.  
These are illustrated with a number of examples in the area of process systems engineering. As 
will be shown, GDP provides a structured way for systematically deriving mixed-integer 
optimization models that exhibit strong continuous relaxations. 
 
1. Introduction 
Mixed-integer optimization provides a powerful framework for the mathematical modeling of 
many optimization problems that involve discrete and continuous variables. Over the last few 
years there has been a pronounced increase in the development of Mixed-integer Linear/ 
Nonlinear Programming (MILP/MINLP) models in Process Systems Engineering[10][12][21][23][29]. 
Synthesis models can be formulated as MILP for high level targeting, and as MINLP for more 
detailed superstructure optimization[11]. For planning and scheduling, the majority tends to be 
MILP models[6][9][24][28] although gradually there is also an increasing trend to MINLP, especially 
as process models are incorporated[17]. MILP/MINLP models, however, are based on algebraic 
formulations which are not unique. Although there has been significant progress in software for 
solving mixed-integer problems, especially MILP, how one formulates a model can have a major 
impact in the performance and capability to find a solution. Therefore, deriving “good” 
formulations or finding potential improvements in existing models is commonly regarded as an 
art and strongly depends on the modeler skills. 
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Generalized Disjunctive Programming (GDP) originated with the goal of facilitating the 
modeling of discrete/continuous optimization problems through the use of higher level logic 
constructs[19][32]. This approach involves algebraic equations, disjunctions and logic propositions 
in the formulation of a model. Unlike direct MINLP formulations, this higher level modeling 
framework makes the formulation process more intuitive and systematic, while retaining in the 
model the underlying logic structure of the problem. Although there are some special techniques 
to solve this type of problems, such as Disjunctive Branch and Bound[26] and Logic Based Outer 
Approximation[40], GDPs are normally directly reformulated as MILP/MINLP[25][30] to exploit 
the developments in these solvers (A review on MINLP methods is provided by Grossmann[13]) .  
 
The focus on this paper is on the systematic formulation of MILP/MINLP models using GDP as 
a theoretical framework. In the first section we introduce the concept of GDP and provide some 
chemical engineering illustrations. We next examine the process for transforming GDP to 
MILP/MINLP models, describing alternative reformulations and application of logic tools to 
improve the formulations. Finally, we illustrate the application of these concepts on several 
problems. 
 
2. Generalized Disjunctive Programming 
An alternative approach for representing discrete/continuous optimization problems is by 
modeling them using algebraic equations, disjunctions and logic propositions[3][19][20][25][32][40]. 
Such a model is known as Generalized Disjunctive Programming[16][32], the main focus of this 
paper, which can be regarded as a generalization of disjunctive programming developed by 
Balas[1]. Process Design[12][40][45] and Planning and Scheduling[6][17] are some of the areas where 
GDP formulations have shown to be successful. 
 
2.1 Motivation 
In order to illustrate that the way we formulate MILP/MINLP models can have a major impact in 
time and capability to find a solution, consider the following simple example. A company has to 
decide whether to produce either product A or product B, in order to maximize its profit. The 
profit of product A is 3, and the profit of product B is 2. The limit on production of A is 4, and 
the limit in production of B is 5. There are at least three different formulations for this problem 
(P1a), (P1b) and (P1c) that are given below. 
 

 
 
The basic idea in (P1a), (P1b) and (P1c) is to formulate the problem as an optimization problem 
in which the 0-1 variables 𝑦1, 𝑦2 are needed to determine whether A or B are produced, 

max 𝑧 = 3𝐴 + 2𝐵 

𝑦1 + 𝑦2 = 1 

(P1c): 

s.t.  0 ≤ 𝐴 ≤ 4 ∗ 𝑦1  
 0 ≤ 𝐵 ≤ 5 ∗ 𝑦2 
 
 
 

 𝐴,𝐵 ∈ ℝ 
             𝑦1,𝑦2 ∈ {0,1} 

max 𝑧 = 3𝐴 + 2𝐵 

𝑦1 + 𝑦2 = 1 

𝑦1,𝑦2 ∈ {0,1} 

(P1b): 

s.t.  𝐴 ≤ 10 − 10 ∗ 𝑦2  
 𝐵 ≤ 10 − 10 ∗ 𝑦1 
 

0 ≤ 𝐴 ≤ 4  
 0 ≤ 𝐵 ≤ 5 

 𝐴,𝐵 ∈ ℝ 

max 𝑧 = 3𝐴 + 2𝐵 

𝑦1 ∗ 𝑦2 = 0 

𝑦1 + 𝑦2 = 1 
0 ≤ 𝑦1,𝑦2 ≤ 1 
𝐴,𝐵,𝑦1,𝑦2 ∈ ℝ 

(P1a): 

s.t.  𝐴 ∗ 𝑦2 = 0  
 𝐵 ∗ 𝑦1 = 0 

0 ≤ 𝐴 ≤ 4  
 0 ≤ 𝐵 ≤ 5 
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respectively. The three formulations are valid representations of the problem, while (P1a) 
corresponds to a nonlinear program (NLP) due to the nonlinear functions involved, both (P1b) 
and (P1c) correspond to two alternative linear MILP models. Note that one can only set either 𝑦1 
or 𝑦2 equal to 1. When 𝑦1 = 1 and 𝑦2 = 0 then 𝐵 = 0 and 0 ≤ 𝐴 ≤ 4; when 𝑦1 = 0 and 𝑦2 = 1 
then 𝐴 = 0 and 0 ≤ 𝐵 ≤ 5. Since all three formulations are valid MILP/NLP, they have the same 
optimal solution zNLP = zMILP = 12. However, the solution efficiency is strongly linked to the type 
of model. (P1a) is nonlinear and nonconvex, which requires a global optimization algorithm and 
is therefore expected to be considerably slower than the other two small MILP formulations. In 
the MILPs, the difference between zMILP and the value of the optimal solution to the continuous 
LP relaxation zLP, in which 𝑦1 and 𝑦2 are treated as continuous variables between 0 and 1, is 
known as the relaxation gap. The relaxed solution zLP of (P1b) and (P1c) is 22 and 12 
respectively. Since the relaxation gap in (P1b) is 10 while the gap in (P1c) is zero, the time to 
solve (P1c) is expected to be much faster than the other two formulations. Figure 1 illustrates the 
feasible region for A and B, in the continuous relaxation of the formulations. 

 
Figure 1. Feasible region of continuous relaxation of (P1a), (P1b) and (P1c) projected in A and B 

 
Not only are there several ways in which to formulate MILP/MINLP problems, but also the 
transformation of a conditional argument into a constraint is not always obvious. Consider the 
following process synthesis requirement[4]: (P2) “If the absorber to recover the product (𝑦𝑎) or 
the membrane separator (𝑦𝑚) is selected, then do not use cryogenic separation (𝑦𝑐)”. This logic 
condition can be modeled with any of the following three constraint(s), in which 𝑦𝑎, 𝑦𝑚 and 𝑦𝑐 
are 0-1 variables: 
 
(P2a) 𝑦𝑎 + 𝑦𝑚 + 2𝑦𝑐 ≤ 2  
 
(P2b) 𝑦𝑎 + 𝑦𝑐 ≤ 1 
          𝑦𝑚 + 𝑦𝑐 ≤ 1 
 
(P2c) 𝑦𝑐 + 𝑦𝑎 + 𝑦𝑚 − 𝑦𝑎 ∗ 𝑦𝑚 ≤ 1 
 
While the three constraints above are all valid representations of the logic condition, with the 
first two being linear and the last nonlinear, the modeling of logic constraints can be made more 
systematic by using logic propositions in which the 0-1 variables 𝑦 are replaced by Boolean 
variables 𝑌. Following the previous example, the corresponding logic proposition is 
𝐼𝑓�𝑌𝑎 𝑜𝑟 𝑌𝑚� 𝑡ℎ𝑒𝑛 (𝑛𝑜𝑡 𝑌𝑐). Or in standard Boolean logic: 

A

B

Z*

Zrel

(P1a)

A

B

Z*

(P1b)

A

B

Zrel =Z*

(P1c)
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(P2d) 𝑌𝑎 ∨ 𝑌𝑚 ⇒ (¬𝑌𝑐) 
 
As will be seen later, (P2d) can be systematically transformed into linear inequalities with 0-1 
variables, yielding constraints (P2b), which in fact provide a “tighter” formulation than (P2a) 
when relaxing the integrality constraints (i.e. considering the 0-1 variables as continuous 
variables between 0 and 1). 
 
The following notation (logic operators) will be used throughout the paper: 
˅ means OR (inclusive, i.e. A or B or both) 
˄ means AND 
¬ means NOT (negation or complement)   
⟹ means IF…THEN… (implication) 
⊻ means XOR (exclusive OR, i.e. either A or B) 
⟺ means IF AND ONLY IF 
 
As shown in the next section, GDP is a higher-level representation that allows the use of logic 
arguments in optimization problems like in the above example. This approach not only facilitates 
the development of the models by making the formulation process more systematic and intuitive, 
but it also keeps in the model the underlying logic structure of the problem that can be exploited 
to find the solution more efficiently. 
 
2.2 GDP Formulation 
The general structure of a GDP can be represented as follows2: 

 
 
As shown in (GDP), the objective is a function of the continuous variables 𝑥. It contains the 
global constraints 𝑔(𝑥) ≤ 0 that must hold true regardless of the discrete decisions. The logic in 
the continuous space is represented by a set of disjunctions 𝑘 ∈ 𝐾, each of which contains 𝑖 ∈  𝐷𝑘 
terms, linked by an XOR operator (⊻). Each term of the disjunction has a Boolean variable 𝑌𝑘𝑖 
and an associated set of inequalities 𝑟𝑘𝑖(𝑥) ≤ 0. For an active term in a disjunction (𝑌𝑘𝑖 = 𝑇𝑟𝑢𝑒), 
the corresponding inequalities are enforced. When the term is not active (𝑌𝑘𝑖 = 𝐹𝑎𝑙𝑠𝑒), the 
                                                      
2 This is a slightly more general form than the one originally presented in [32] 
 

min 𝑧 = 𝑓(𝑥) 

𝛺(𝑌) = 𝑇𝑟𝑢𝑒 

𝑥 ∈  ℝ𝑛 

𝑌𝑘𝑖 ∈  {𝑇𝑟𝑢𝑒,  𝐹𝑎𝑙𝑠𝑒}               𝑘 ∈ 𝐾, 𝑖 ∈ 𝐷𝑘 

(GDP): 

s.t. 𝑔(𝑥) ≤ 0 

⊻ 𝑖 ∈ 𝐷𝑘 �
𝑌𝑘𝑖

𝑟𝑘𝑖(𝑥) ≤ 0�  𝑘 ∈ 𝐾 
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corresponding constraints are ignored. The symbolic equation 𝛺(𝑌) = 𝑇𝑟𝑢𝑒 represents the set of 
logic propositions that relates the Boolean variables. Note that GDP is a more structured 
alternative for modeling discrete-continuous optimization problems compared to mixed-integer 
programming, which is represented as: 
 
(MINLP): 
 min𝑍 = 𝑓(𝑥,𝑦) 
s.t. 𝑔(𝑥,𝑦) ≤ 0 
 𝑥 ∈  ℝ𝑛, 𝑦 ∈ {0,1}𝑚 
 
where 𝑓(𝑥,𝑦) is the objective function, 𝑔(𝑥,𝑦) ≤ 0 are inequality constraints, and 𝑦 are the 0-1 
variables, the counterpart to the Boolean variables 𝑌. It should be noted that since (MINLP) is 
expressed through algebraic equations, the modeler has to directly express the logic in the format 
of 𝑓(𝑥,𝑦) and 𝑔(𝑥, 𝑦), while in (GDP) the disjunctions capture the logic in continuous form and 
the logic propositions 𝛺(𝑌) capture the logic in the Boolean space. 
 
While model (GDP) is quite general, in the Appendix we present the reformulation for the case 
of embedded disjunctions and inclusive or, in which the models are eventually transformed to the 
form of model (GDP). Note that in both general forms (GDP) and (MINLP), we only represent 
inequalities, since any equality can be considered as a set of inequalities (i.e. ℎ(𝑥,𝑦) = 0 can be 
expressed as the two inequality constraints ℎ(𝑥,𝑦) ≤ 0 and −ℎ(𝑥,𝑦) ≤ 0). 
 
2.3 GDP in Process Systems Engineering 
Decision making is a major element in Process Systems Engineering (PSE), making GDP a very 
useful framework for modeling PSE optimization problems. Particularly in process synthesis, the 
decisions are normally associated as to whether certain equipment should be included or not in a 
process flowsheet. If the equipment is selected, then the mass and energy balance, physical and 
chemical equilibrium (if any), and cost constraints need to be satisfied. If it is not selected, then 
all the equations can be ignored. Therefore, in PSE GDP problems will normally take the 
following form[32]: 
 

 

min 𝑧 = 𝑓(𝑥) +  � 𝑐𝑘
𝑘 ∈𝐾

 

𝛺(𝑌) = 𝑇𝑟𝑢𝑒 

(GDP1): 

s.t. 𝑔(𝑥) ≤ 0 

⊻ 𝑖 ∈ 𝐷𝑘 �
𝑌𝑘𝑖

�̂�𝑘𝑖(𝑥) ≤ 0
𝑐𝑘 =  𝛾𝑘𝑖

�  𝑘 ∈ 𝐾 

𝑥 ∈  ℝ𝑛, 𝑐𝑘 ∈  ℝ1,𝑌𝑖𝑘 ∈  �𝑇𝑟𝑢𝑒,  𝐹𝑎𝑙𝑠𝑒�, 𝑖 ∈ 𝐷𝑘,𝑘 ∈ 𝐾 
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Note that (GDP1) is a particular case of (GDP), where 𝑓(𝑥) = 𝑓(𝑥) +  ∑ 𝑐𝑘𝑘 ∈𝐾  and 𝑟𝑘𝑖(𝑥) ≤ 0 
is �̂�𝑘𝑖(𝑥) ≤ 0 and 𝑐𝑘 =  𝛾𝑘𝑖 in (GDP1), where 𝑐𝑘 represents the cost associated with enforcing a 
term in the disjunction. In process synthesis the continuous variables normally represent flows, 
temperatures and pressures of the stream in a process superstructure, while the Boolean 
variables represent the selection of equipment 𝑖 for performing a process task 𝑘. The objective 
is a function of the continuous variables and the cost associated with each of the disjunctions 𝑘. 
The global constraints 𝑔(𝑥) ≤ 0 normally represent mass and energy balances in the system. 
For an active term in a disjunction, 𝑌𝑘𝑖 = 𝑇𝑟𝑢𝑒, the cost 𝑐𝑘 =  𝛾𝑖𝑘 and the constraints �̂�𝑘𝑖(𝑥) ≤ 0 
are normally associated with the investment cost, the energy and mass balance, and physical and 
chemical equilibrium for the particular equipment 𝑖 that is selected for the processing task 𝑘. 
The argument 𝛺(𝑌) = 𝑇𝑟𝑢𝑒 generally represents the logic implications among the equipment in 
order to define a feasible topology for the process flowsheet. The logic constraints may be 
“hard” constraints like specification of choices, or redundant constraints in the sense that they 
may be implied by the mass balances at a process network. In the latter case the logic 
constraints can help to expedite the search for the optimum 
 
(GDP1) provides a general and systematic framework for modeling process networks. Although 
it is a particular case of (GDP), it has some MILP/MINLP reformulation advantages that will be 
discussed in section 3.2 of this paper. 

 
2.4 Illustrative examples 
We illustrate the concept of the model (GDP) with four PSE examples: Synthesis of a process 
flowsheet, determination of number of trays in a distillation column, job shop scheduling, and 
design of a batch process. 
 
2.4.1 Process Synthesis 
Consider the optimization of a simple process superstructure shown in Figure 2 that produces a 
product B by consuming raw material A. The variables F represent material flows. The problem 
is to determine the amount of product to produce (F8) with a selling price P8, the amount of raw 
material to buy (F1) with a cost P1 and the set of unit operations to use (i.e. HX1, R1, R2, DC1) 
with a cost 𝑐𝑘, in order to maximize the profit[33]. 

 
Figure 2. Process network example 

 
The GDP that represents the problem can be formulated as model (GDP1) as follows: 
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(P3): 

 
s.t. 

 

 

 
  𝐹𝑗 ≥ 0     𝑗 = 1,7 
  𝐹𝑗 ,  𝑐𝑘 ∈  ℝ, 𝑌𝑘 ∈  �𝑇𝑟𝑢𝑒,  𝐹𝑎𝑙𝑠𝑒�  𝑗 = 1,7  𝑘 ∈  {𝐷𝐶1,𝑅1,𝑅2} 
 
In the above, equation (1) represents the objective function; (2) are the global constraints 
representing the mass balances around the splitter and mixer respectively; (3) are the disjunctions 
that represent the selection or not of the unit operation 𝑘, with their respective characteristic 
constraints and fixed costs; and (4) the logic propositions that enforce the selection of DC1 if and 
only if R1 is chosen, and HX1 if and only if R2 is chosen. For illustration purposes we have 
presented here a simple linear model. In the actual application to a process problem there would 
be hundreds or thousands of nonlinear equations in the GDP model. 
 
2.4.2 Distillation Column Design 
The optimal design of selecting the feed tray and the number of trays in a distillation column has 
remained a major challenge since the pioneering work by Sargent and Gaminibanadara[36] 
reported in 1976. Viswanathan and Grossmann[43] proposed an MINLP formulation involving a 
superstructure with variable reflux location as depicted in Figure 3. The idea is to consider a 
fixed feed tray and a fixed number of trays above and below the feed that represent an upper 
bound for the rectifying and stripping sections, respectively. The reflux is returned to any of the 
trays above the feed, and the reboil to any tray below the feed. A 0-1 variable 𝑧𝑟𝑖, 𝑧𝑏𝑖 is assigned 
to the reflux and reboil return to each tray i, respectively. The solution of the MINLP assigns 
only one binary variable 𝑧𝑟𝑖 to one, for the return of the reflux into the selected tray, so that all 
the trays above the selected tray are not required in the optimal design. Similarly, there is only 
one binary variable 𝑧𝑏𝑖 equal to one in the reboil return, and all the trays below this selected tray 
are not included in the optimal design. The main difficulty with this approach is that in the trays 
that are not selected (i.e. trays are inexistent and there is no mass transfer), vapor liquid 
equilibrium (VLE) equations still have to be satisfied[15][43]. 
 

𝑌𝑅1 ⇔  𝑌𝐷𝐶1 

�
𝑌𝑅2

𝐹5 = 𝛽𝑅2𝐹3
𝑐𝑅2 = 𝛾𝑅2

� ⊻ �
 ¬𝑌𝑅2

𝐹3 = 𝐹5 = 0
𝑐𝑅2 = 0

� 

�
𝑌𝑅1

𝐹4 = 𝛽𝑅1𝐹2
𝑐𝑅1 = 𝛾𝑅1

� ⊻ �
 ¬𝑌𝑅1

𝐹2 = 𝐹4 = 0
𝑐𝑅1 = 0

� 

�
𝑌𝐷𝐶1

𝐹6 = 𝛽𝐷𝐶1𝐹4
𝑐𝐷𝐶1 = 𝛾𝐷𝐶1

� ⊻ �
 ¬𝑌𝐷𝐶1

𝐹4 = 𝐹6 = 0
𝑐𝐷𝐶1 = 0

� 

 

𝐹1 =  𝐹2 +  𝐹3 
𝐹7 =  𝐹5 +  𝐹6 (2) 

max 𝑧 = 𝑃7𝐹7 − 𝑃1𝐹1 −  ∑ 𝑐𝑘𝑘 ∈𝐾   (1) 

(3) 

(4) 
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Figure 3. Variable reflux and reboil location with fixed feed tray 

 
In contrast, Yeomans and Grossmann[45] proposed a GDP model for the same problem. In this 
model the selection of the trays is represented with the Boolean variables 𝑌𝑛. If a certain tray is 
selected (𝑌𝑛 = 𝑇𝑟𝑢𝑒), then the VLE equations have to be applied for that tray; if is not selected 
(𝑌𝑛 = 𝐹𝑎𝑙𝑠𝑒), then there is no heat and mass transfer in the tray (e.g. simply a “by-pass”). In this 
way, this formulation overcomes the difficulties of satisfying VLE in trays that are not selected. 
Figure 4 shows a column representation for this approach. 

 
Figure 4. Structure of disjunctive model with permanent and conditional trays 

 
Given the complexity of the formulation, we present the GDP model as shown in equation (P4), 
without explicitly including all the well-known equations. 
 

Discrete variables: Number of trays, feed tray location.
Continuous variables: reflux ratio, heat loads, exchanger areas, column diameter.

No liquid on tray

No vapor on tray

Existing trays

Vapor Flow

Liquid Flow

Non-existing tray

Non-existing tray

1=mzr

1=nzb

1,0=izb

MINLP
Number
trays

1,0=izr

Condenser Tray
(permanent)

Rectification Trays
(conditional)

Feed Tray
(permanent)

Stripping Trays
(conditional)

Reboiler Tray
(permanent)Heavy Product

Feed

Light
Product

}
-OR-

-OR-

-OR-

-OR-

}
Vapor Flow

Liquid Flow

Equilibrium Stage

Non-equilibrium Stage

Permanent and conditional trays:
• MESH equations for condenser, 

reboiler and feed trays
• Mass & energy balances for 

rectification and stripping trays

Conditional trays only:
• Apply VLE constraints (Yn=True) or 

not (Yn=False)
• Use disjunctions as modeling tool
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(P4): 

Min Cost 
s.t. 

MESH equations for permanent trays 
Mass / energy balances for conditional trays 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑌𝑛
𝑓𝑛,𝑖
𝐿 = 𝑓�𝑇𝑛,𝑃𝑛, 𝑥𝑛,𝑖�
𝑓𝑛,𝑖
𝑉 = 𝑓�𝑇𝑛,𝑃𝑛,𝑦𝑛,𝑖�

𝑓𝑛,𝑖
𝐿 = 𝑓𝑛,𝑖

𝑉

𝑇𝑛𝐿 = 𝑇𝑛𝑉
𝐿𝐼𝑄𝑛,𝑖 = 𝐿𝑛𝑥𝑛,𝑖
𝑉𝐴𝑃𝑛,𝑖 = 𝑉𝑛𝑦𝑛,𝑖

𝑠𝑡𝑔𝑛 = 1 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⊻

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

¬𝑌𝑛
𝑓𝑛,𝑖
𝐿 = 0
𝑓𝑛,𝑖
𝑉 = 0

𝑇𝑛𝐿 = 𝑇𝑛−1𝐿

𝑇𝑛𝑉 = 𝑇𝑛+1𝑉

𝐿𝑛 = 𝐿𝑛−1
𝑉𝑛 = 𝑉𝑛+1
𝑥𝑛,𝑖 = 𝑥𝑛−1,𝑖
𝑦𝑛,𝑖 = 𝑦𝑛+1,𝑖
𝑠𝑡𝑔𝑛 = 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

𝑛𝑡𝑟𝑎𝑦 = ∑𝑠𝑡𝑔𝑛 

𝛺(𝑌) = 𝑇𝑟𝑢𝑒 

 
Note that if a tray is not selected (¬𝑌𝑛) the inlet and outlet flows, composition and temperatures 
of the liquid and vapor remain unchanged, while the fugacity is set to zero. 
 
2.4.3 Job shop scheduling 
Consider a job shop scheduling problem where a set of jobs i I∈  must be processed sequentially 
on a set of consecutive stages j J∈ , with given processing times for each stage 𝜏𝑖𝑗. All jobs can 
be sequenced on a subset of stages ( )j J i∈ . Furthermore, zero-wait transfer is assumed between 
stages, and the objective is to obtain a schedule that minimizes the makespan ms. A small 
example of such a problem is given in Table 1, where it can be seen that job A requires only 
stages 1 and 3, job B, stages 2 and 3, and C stages 1 and 2.  
 
Table 1. Processing times (𝝉𝒊𝒋) for small illustrative example. 

Jobs/ Stages 1 2 3 
A 5 0 3 
B 0 3 2 
C 2 4 0 

 
By defining the Boolean variables 1

ikY  and 2
ikY  to indicate whether job i is executed before job k 

or job k before job i, respectively, Raman and Grossmann[32] proposed the following model:  
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(P5): 
min𝑚𝑠          (P5.1) 

s.t. 
𝑚𝑠 ≥ 𝑡𝑖 + � 𝜏𝑖𝑗

𝑗∈𝐽(𝑖)

               ∀𝑖 ∈ 𝐼                                                                   (P5.2) 

⎣
⎢
⎢
⎡ 𝑌𝑖𝑘1

𝑡𝑖 + � 𝜏𝑖𝑚
𝑚∈𝐽(𝑖)
𝑚≤𝑗

≤ 𝑡𝑘 + � 𝜏𝑘𝑚
𝑚∈𝐽(𝑘)
𝑚<𝑗 ⎦

⎥
⎥
⎤
⊻ 

�
𝑌𝑖𝑘2

𝑡𝑘 + ∑ 𝜏𝑘𝑚𝑚∈𝐽(𝑘)
𝑚≤𝑗

≤ 𝑡𝑖 + ∑ 𝜏𝑖𝑚𝑚∈𝐽(𝑖)
𝑚<𝑗

�    ∀𝑗 ∈ 𝐶𝑖𝑘 ∀𝑖, 𝑘 ∈ 𝐼, 𝑖 < 𝑘    (P5.3)     

𝑚𝑠, 𝑡𝑖 ∈ ℝ,    𝑌𝑖𝑘1 ,𝑌𝑖𝑘2 ∈ {𝑇𝑟𝑢𝑒,𝐹𝑎𝑙𝑠𝑒}     ∀𝑖,𝑘 ∈ 𝐼, 𝑖 < 𝑘 

 
in which ti is the start time of job i. Equations (P5.1) and (P5.2) correspond to the objective 
function and aim to minimize the makespan ms. The disjunction in (P5.3) ensures that no clash 
between jobs occurs at any stage at the same time, where for each pair of jobs i,k, the stages with 
potential clashes are { }( ) ( )ikC J i J k= ∩ . More specifically, the first term in each disjunction 

states that at a given stage j the completion time of job i is less or equal to the start of job k, and 
vice versa in the second term of each disjunction. Note that this requires the second job to have 
its processing times summed up to one stage less (𝑚 < 𝑗) than the first job (𝑚 ≤ 𝑗), to represent 
start and completion times respectively. The optimal schedule for the small example in Table 1, 
which has a minimum makespan of 11 hours, is shown in Figure 5.  

stage 1

stage 2

stage 3

A

5

3

3

2

B

2

4

C

time

makespan = 11

 
Figure 5.  Optimal Schedule for Illustrative Example  

 
2.4.4 Synthesis of Multiproduct Batch Plant 
The simultaneous synthesis, sizing, and scheduling of a flowshop multiproduct batch plants can 
be stated as follows[5]. It is desired to design a batch plant to produce different products (i = 
1,…,Np) in a sequence of stages. The manufacturing of all of these products requires that they 
undergo a sequence of processing tasks (t = 1,...,T) in exactly the same order to obtain the final 
products. There are different types of units available (j = 1,…,M). Production requirements Qi of 
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the different products are specified over a given time horizon H. Processing times 𝑝𝑡𝑖𝑡𝑗 and size 
factors Sit (volume required per unit batch size) are given for each product i at the processing task 
t. To simplify the problem, cleanup times are assumed to be negligible. Each of the units j is 
capable of performing a corresponding task or a subset of the T tasks. The problem then consists 
in determining the structure of the plant by deciding which tasks should be assigned to which 
unit, the number of parallel equipment for each of these units, and their corresponding sizes. 
Also, a production schedule must be determined that will ensure that the plant will be able to 
meet the production requirements over the given horizon time. Since the plant to be synthesized 
is a flowshop network, the tasks to be merged in any processing unit need to be adjacent. In 
addition, the cost of each unit is assumed to be given by an equation of the form βαγ jjjj VC += , 
where 𝛾 is a fixed cost charge and 𝛼 and 𝛽 are cost parameters for the unit size V. For simplicity, 
the sizes are assumed to be continuous within specified lower and upper bounds VL and VU. 
Finally, the scheduling policies of unlimited intermediate storage (UIS) and zero wait (ZW) are 
considered for both types of campaigns, single and mixed product campaigns (SPCs and MPCs). 
The GDP formulation for the superstructure in Figure 6 is given by (P6): 
 

 
Figure 6. Illustrative Superstructure for Multiproduct Batch Plant Synthesis 
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In the above, the global constraints define equations for sizing, satisfying demands for each 
product and completing the production time within the specified time horizon 𝐻. The first set of 
disjunctions refers to the assignment of a task 𝑡 to an equipment 𝑗. The second disjunction 
corresponds to the selection of equipment 𝑗, which within its term has an embedded disjunction 
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for selecting the number of parallel units (See Appendix 1 for embedded disjunctions). The third 
disjunction is for deciding whether to install a storage tank after unit 𝑗. The logic constraints 
define the feasible assignments of tasks (𝑌𝑡𝑗) according to the equipment selection (𝑌𝐸𝑋𝑗), while 
the condition of adjacency is imposed with the auxiliary Boolean variables 𝑊 to define the 
feasible topologies. 

3. GDP-to-MILP/MINLP transformation 
A number of methods have been proposed for solving directly GDP models as disjunction 
problems (see Appendix 2). However, in order to take advantage of the existing MILP/MINLP 
solvers (see Grossmann[13] for a review on MINLP algorithms), GDPs are often reformulated as 
MILP/MINLP. This section will address this procedure, which some software programs have 
partially automated[18][22][41]. To describe this transformation process, the GDP formulation is 
partitioned into three sections as shown in Figure 7. 

 
Figure 7. Partition of GDP formulation 

 
For the first partition, the objective function and global constraints remain the same in both, the 
GDP and the MINLP formulations. 
 
For the transformations of the second and third partition (disjunctions, logic propositions) it is 
required to convert them into algebraic form. Before we outline the detailed description of these 
transformations, the Boolean variables 𝑌𝑘𝑖 are converted into binary variables. To do this, binary 
variables 𝑦𝑘𝑖 ∈  {0,1} are introduced with a one-to-one correspondence with the Boolean 
variables: 𝑌𝑘𝑖 = 𝑇𝑟𝑢𝑒 will be transformed to 𝑦𝑘𝑖 = 1; 𝑌𝑘𝑖 = 𝐹𝑎𝑙𝑠𝑒 will be transformed to 
𝑦𝑘𝑖 = 0. 
 
3.1 Logic proposition into MILP constraints   
Each of the logic operators (for notation see section 2.1) can be transformed into a a set of linear 
0-1 MILP constraints as shown in Table 2[4][7][31][44]: 
 
 

(GDP):

s.t.
Objective function and

global constraints

Disjunctions

Logic propositions
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Table 2: MILP representation of Boolean connectives 
Logic operator Boolean Expression  MILP representation 

˅(OR) 𝑌1 ∨ 𝑌2 ∨ …∨ 𝑌𝑛  𝑦1 + 𝑦2 + ⋯+ 𝑦𝑛 ≥ 1 
⊻ (XOR) 𝑌1 ⊻ 𝑌2 ⊻ …⊻ 𝑌𝑛  𝑦1 + 𝑦2 + ⋯+ 𝑦𝑛 = 1 

˄ (AND) 𝑌1 ∧ 𝑌2 ∧ …∧ 𝑌𝑛 

 𝑦1 = 1 
𝑦2 = 1 

… 
𝑦𝑛 = 1 

¬ (NOT) ¬𝑌1  1 − 𝑦1 
⟹ (IF) 𝑌1 ⇒ 𝑌2  𝑦1 ≤ 𝑦2 
⟺ (IF AND ONLY IF) 𝑌1 ⇔ 𝑌2  𝑦1 = 𝑦2 

 
In order to systematically derive the linear constraints with 0-1 variables using propositional 
logic, the following Boolean algebra rules are used (see Williams[44]): 
 

(1) Removing implication: 𝑌1 ⇒ 𝑌2   ¬𝑌1 ∨ 𝑌2 
(2) De Morgan’s laws:  ¬(𝑌1 ∨ 𝑌2)  (¬𝑌1) ∧ (¬𝑌2) 

¬(𝑌1 ∧ 𝑌2)  (¬𝑌1) ∨ (¬𝑌2) 
(3) Distributivity:   (𝑌1 ∧ 𝑌2) ∨ 𝑌3  (𝑌1 ∨ 𝑌3)  ∧ (𝑌2 ∨ 𝑌3) 

 
There are many equivalent logic forms for representing a logic proposition. One form of 
particular interest is the conjunctive normal form. In this form, the logic statement is represented 
by a conjunction of clauses 𝑄1 ∧ 𝑄2 ∧ …∧ 𝑄𝑠 (i.e. connected by AND operators ∧), where the 
clauses correspond to logic propositions that only involve the OR operator. For the conjunctive 
normal form to be true, each clause 𝑄𝑖 must be true. With the Boolean rules described above, it is 
possible to systematically transform any logic proposition into its conjunctive normal form by 
applying recursively the following rules[4][8][31]: 

1. Replace the implication by its equivalent disjunction. 
2. Move the negation inward by applying DeMorgan’s rules. 
3. Recursively distribute the “OR” over the “AND”. 

 
Once the logic proposition is converted into conjunctive normal form, each of the clauses 𝑄𝑖 has 
to be satisfied, and therefore each 𝑄𝑖 will translate into an inequality constraint according to the 
linear representation of Boolean expressions. This procedure is illustrated with the following 
example: 
 
(P7): Consider the proposition[4]: 
 

(𝑌1 ∧ 𝑌2) ∨ 𝑌3 ⇒ (𝑌4 ∨ 𝑌5)    (P7.1) 
 

1. Replace the implication by its equivalent disjunction 
 

¬[(𝑌1 ∧ 𝑌2) ∨ 𝑌3] ∨ (𝑌4 ∨ 𝑌5)    (P7.2) 
 

2. Move the negation inward by applying DeMorgan’s rules 
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[¬(𝑌1 ∧ 𝑌2) ∧ ¬𝑌3] ∨ 𝑌4 ∨ 𝑌5    (P7.3) 
[(¬𝑌1 ∨ ¬𝑌2) ∧ ¬𝑌3] ∨ 𝑌4 ∨ 𝑌5   (P7.4) 

 
3. Recursively distribute the “OR” over the “AND” 

 
(¬𝑌1 ∨ ¬𝑌2 ∨ 𝑌4 ∨ 𝑌5) ∧ (¬𝑌3 ∨ 𝑌4 ∨ 𝑌5)  (P7.5) 

 
Since (P7.5) is already in conjunctive normal form, and since it is required to satisfy each of the 
two clauses, the original logic proposition is equivalent to the two linear constraints in terms of 
the 0-1 variables 𝑦1,𝑦2, 𝑦3,𝑦4,𝑦5: 
 
   𝑦1 + 𝑦2 − 𝑦4 − 𝑦5 ≤ 1    (P7.6) 
  𝑦3 − 𝑦4 − 𝑦5 ≤ 0 
 
Note that if we apply this procedure to the example (P2d) 𝑦𝑎 ∨ 𝑦𝑚 ⇒ (¬𝑦𝑐), we obtain the two 
constraints shown in (P2b) 𝑦𝑎 + 𝑦𝑐 ≤ 1 and 𝑦𝑚 + 𝑦𝑐 ≤ 1 
 
3.2 Disjunctions into MILP/MINLP constraints 
Disjunctions in GDP problems are often reformulated using either Big-M (BM)[30] or Hull 
Reformulation (HR)[25] formulations: 
 
Big-M (BM):  
(GDP Disjunctions):   (BM Constraints): 
 

⊻ 𝑖 ∈ 𝐷𝑘 �
𝑌𝑘𝑖

𝑟𝑘𝑖(𝑥) ≤ 0� 𝑘 ∈ 𝐾   
𝑟𝑘𝑖(𝑥) ≤ 𝑀𝑘𝑖(1 − 𝑦𝑘𝑖)
∑ 𝑦𝑘𝑖𝑖 ∈ 𝐷𝑘 = 1                

𝑘 ∈ 𝐾, 𝑖 ∈ 𝐷𝑘
𝑘 ∈ 𝐾             

 

 
Note that the constraint ∑ 𝑦𝑘𝑖𝑖 ∈ 𝐷𝑘 = 1  will guarantee that for each disjunction 𝑘 ∈ 𝐾 only one 
term 𝑖 ∈ 𝐷𝑘 is active (i.e. only one binary variable 𝑦𝑘𝑖 in each 𝑘 ∈ 𝐾 will take a value of one). In 
this formulation when 𝑦𝑘𝑖 = 1 (Boolean variable is active), the disjunction constraints 𝑟𝑘𝑖(𝑥) ≤
0 are enforced, where 𝑟𝑘𝑖(𝑥) can be linear or nonlinear. When 𝑦𝑘𝑖 = 0 and the parameter M is 
significantly large, the associated constraints become redundant. 
 
Hull-Reformulation (HR): For the Hull-Reformulation it is convenient to distinguish between the 
linear and nonlinear case. 
 
Linear 
(GDP Disjunctions):   (HR MILP Constraints): 

⊻ 𝑖 ∈ 𝐷𝑘 �
𝑌𝑘𝑖

𝐴𝑘𝑖𝑥 ≤ 𝑎𝑘𝑖
�    𝑘 ∈ 𝐾   

𝑥 = ∑ 𝜈𝑘𝑖𝑖 ∈𝐷𝑘                 
𝐴𝑘𝑖𝜈𝑘𝑖 ≤ 𝑎𝑘𝑖𝑦𝑘𝑖            
𝑥𝑙𝑜𝑦𝑘𝑖 ≤ 𝜈𝑘𝑖 ≤ 𝑥𝑢𝑝𝑦𝑘𝑖
∑ 𝑦𝑘𝑖𝑖 ∈ 𝐷𝑘 = 1               

  

𝑘 ∈ 𝐾             
𝑘 ∈ 𝐾, 𝑖 ∈ 𝐷𝑘
𝑘 ∈ 𝐾, 𝑖 ∈ 𝐷𝑘
𝑘 ∈ 𝐾             
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Nonlinear 
(GDP Disjunctions):   (HR MINLP Constraints): 
 

⊻ 𝑖 ∈ 𝐷𝑘 �
𝑌𝑘𝑖

𝑟𝑘𝑖(𝑥) ≤ 0� 𝑘 ∈ 𝐾   

𝑥 = ∑ 𝜈𝑘𝑖𝑖 ∈𝐷𝑘                 
𝑦𝑘𝑖𝑟𝑘𝑖�𝜈𝑘𝑖/𝑦𝑘𝑖� ≤ 0     
𝑥𝑙𝑜𝑦𝑘𝑖 ≤ 𝜈𝑘𝑖 ≤ 𝑥𝑢𝑝𝑦𝑘𝑖
∑ 𝑦𝑘𝑖𝑖 ∈ 𝐷𝑘 = 1               

  

𝑘 ∈ 𝐾             
𝑘 ∈ 𝐾, 𝑖 ∈ 𝐷𝑘
𝑘 ∈ 𝐾, 𝑖 ∈ 𝐷𝑘
𝑘 ∈ 𝐾             

 

 
In the above, the constraint ∑ 𝑦𝑘𝑖𝑖 ∈ 𝐷𝑘 = 1  will guarantee that for each disjunction 𝑘 ∈ 𝐾 only 
one term 𝑖 ∈ 𝐷𝑘 is active (same as in (BM)). The variables x are disaggregated into the variables 
𝜈𝑘𝑖 for each disjunctive term. An upper and lower bound constraint of the disaggregated 
variables associated with the binary variables is added 𝑥𝑙𝑜𝑦𝑘𝑖 ≤ 𝜈𝑘𝑖 ≤ 𝑥𝑢𝑝𝑦𝑘𝑖, so when 𝑦𝑘𝑖 = 1 
the variable can take values between the upper and lower bound, and when 𝑦𝑘𝑖 = 0 then 𝜈𝑘𝑖 = 0. 
Also, when 𝑦𝑘𝑖 = 1 the constraints 𝑟𝑘𝑖�𝜈𝑘𝑖� ≤ 0 are enforced; and when 𝑦𝑘𝑖 = 0, they are 
trivially satisfied (0 ≤ 0). To avoid singularities in the nonlinear case the following 
approximation can be used[37]: 
 
𝑦𝑘𝑖𝑟𝑘𝑖�𝜈𝑘𝑖/𝑦𝑘𝑖� ≈ �(1 − 𝜀)𝑦𝑘𝑖 + 𝜀�𝑟𝑘𝑖 �

𝜈𝑘𝑖

(1−𝜀)𝑦𝑘𝑖+𝜀
� − 𝜀𝑟𝑘𝑖(0)(1 − 𝑦𝑘𝑖)  (APP) 

 
where 𝜀 is a small finite number (e.g. 10-5). This approximation is convex if 𝑟𝑘𝑖(𝑥) is convex, 
and it yields an exact value of the function at 𝑦𝑘𝑖 = 0, 𝑦𝑘𝑖 = 1. It should also be noted that for 
linear disjunctions it is sometimes possible to eliminate the disaggregated variables by algebraic 
manipulation, particularly when a variable is set to zero in one of the disjunctive terms[32]. 
 
Disjunction reformulation in model (GDP1): For the particular form (GDP1) of (GDP), the (HR) 
and (BM) can be modified to provide better reformulations. The inequality in the disjunction 
�̂�𝑘𝑖(𝑥) ≤ 0 is reformulated with either (BM) or (HR) as explained earlier; but the cost equality 
𝑐𝑘 =  𝛾𝑘𝑖, where 𝛾𝑘𝑖 is a fixed cost, is directly transformed in the objective, so the objective 
function 𝑓(𝑥) +  ∑ 𝑐𝑘𝑘 ∈𝐾  becomes 𝑓(𝑥) +  ∑ ∑ 𝛾𝑖𝑘𝑦𝑖𝑘𝑘 ∈𝐾𝑖 ∈𝐷𝑘 . It is not difficult to show that 
this is simply the (HR) of 𝑐𝑘 =  𝛾𝑘𝑖 after algebraic substitution. The advantage of this 
reformulation is that it eliminates the need of introducing disaggregated variables for 𝑐𝑘, while 
producing the (HR) of this equality. Sawaya and Grossmann[38] provide further insight in the 
difference between both formulations for the linear case. 
 
3.3 Comparing MINLP reformulations 
In summary, by denoting 𝐻𝑥 ≥ ℎ the MILP transformation of the logic propositions (obtained 
through the process described in 3.2), the reformulation of the linear and nonlinear GDP is as 
follows[25][30]: 
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Linear GDP 

 
 
Nonlinear GDP 

 
 
Note that because of the disaggregated variables 𝜈𝑘𝑖, (HR) has more variables than BM. 
Additionally, in (HR) two constraints are included for each disaggregated variables (to set upper 
and lower limits multiplied by the binary variables), as well as the constraint that relates a 
variable to the disaggregated variables. Therefore, (HR) has more constraints than (BM). On the 
other hand, as proved in Grossmann and Lee[14] and discussed by Vecchietti, Lee, Grossmann[42], 
the continuous relaxation of the (HR) formulation is at least as tight and generally tighter than 
the BM when the discrete domain is relaxed (i.e. 0 ≤ 𝑦𝑘𝑖 ≤ 1;  𝑘 ∈ 𝐾,  𝑖 ∈ 𝐷𝑘) . This is of great 
importance considering that the efficiency of the MILP/MINLP solvers heavily relies on the 
quality of these relaxations. Figure 8 illustrate the (BM) and (HR) relaxations projected in the 
space of the continuous variables of a linear GDP that involves two disjunctions, each with two 
terms. Note that the feasible region is disjoint as it consists of the two rectangles with bold 
dashes. While this feasible region is the same for both formulations, the continuous relaxations 
are different, with the case of the (HR) clearly being tighter as it corresponds to the intersection 
of the convex hulls of each of the two disjunctions. 

(GDP):

s.t.

(BM):

s.t.

(HR):

s.t.

(GDP):

s.t.

(BM):

s.t.

(HR):

s.t.
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Figure 8. Illustration of Big-M and Hull Reformulation relaxation 

 
3.4 GDP-to-MINLP illustrations 
We illustrate the process of transforming a GDP into an MILP/MINLP with two simple 
examples. The first one is a linear GDP for a process synthesis problem, and the second one is 
the optimization of a quadratic function over three circles. 
 
3.4.1 Linear GDP-to-MILP: Process Synthesis Network 
Consider the process network illustrated in Figure 9, in which only one reactor and at most one 
separation unit can be selected. The objective is to maximize the profit of selling 𝐹11 at a price 
𝑃11. The cost of purchasing 𝐹1 is 𝑃1. Each equipment has an associated cost, but unlike (GDP1), 
it is not constant. It can be described by a linear function representing the investment cost 𝛾𝑘 and 
the operating cost as a function of the flow coming out of the equipment 𝐶𝑘 = 𝛾𝑘 + 𝛼𝑘𝐹𝑘𝑜𝑢𝑡. 
 

 
Figure 9. Illustration of a process network problem 

The problem can be formulated as follows: 
 
(P8.1): 

max𝑃𝑟𝑜𝑓𝑖𝑡 = 𝑃11𝐹11 − 𝑃1𝐹1 − 𝐶𝑅 − 𝐶𝑆  
s.t. 

𝐹1 = 𝐹2 + 𝐹4 
𝐹5 = 𝐹6 + 𝐹7 

x2

x1

x2

x1

F: (BM):
Variables: 6 (4 binary)
Constraints: 18

(HR):
Variables: 14 (4 binary)
Constraints: 36

F:

Tighter than (BM)

Feasible 
Region

Continuous 
relaxation

Feasible 
Region

Continuous 
relaxation
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𝐹10 = 𝐹8 + 𝐹9 
𝐹11 = 𝐹3 + 𝐹10 

�

𝑌𝑅1
𝐹3 = 𝛽𝑅1𝐹2

𝐶𝑆,𝐹4,5,6,7,8,9,10 = 0
𝐶𝑅 = 𝛾𝑅1 + 𝛼𝑅1𝐹3

� ⊻

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑌𝑅2
𝐹5 = 𝛽𝑅2𝐹4
𝐹2,3 = 0

𝐶𝑅 = 𝛾𝑅2 + 𝛼𝑅2𝐹5

�

𝑌𝑆1
𝐹8 = 𝛽𝑆1𝐹6
𝐹7,9 = 0

𝐶𝑆 = 𝛾𝑆1 + 𝛼𝑆1𝐹8

� ⊻  �

𝑌𝑆2
𝐹9 = 𝛽𝑆2𝐹7
𝐹6,8 = 0

𝐶𝑆 = 𝛾𝑆2 + 𝛼𝑆2𝐹9

�

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
 

0 ≤ 𝐹𝑖 ≤ 𝐹𝑖𝑈𝑃; 0 ≤ 𝐶𝑅 ≤ 𝐶𝑅𝑈𝑃;0 ≤ 𝐶𝑆 ≤ 𝐶𝑆𝑈𝑃;  𝑌𝑅1,𝑌𝑅2,𝑌𝑆1,𝑌𝑆2 ∈ {𝑇𝑟𝑢𝑒,𝐹𝑎𝑙𝑠𝑒} 
 
The first step is to reformulate the problem in (GDP) form (see Appendix 1 for embedded 
disjunctions). Additionally, in order to obtain a smaller reformulation, in (P8.GDP) we relax the 
equality constraints into inequalities. It is easy to show that the problem with inequality 
relaxations is equivalent to the original problem. 
 
(P8.GDP): 

max𝑃𝑟𝑜𝑓𝑖𝑡 = 𝑃11𝐹11 − 𝑃1𝐹1 − 𝐶𝑅 − 𝐶𝑆  
s.t. 

𝐹1 = 𝐹2 + 𝐹4 
𝐹5 = 𝐹6 + 𝐹7 
𝐹10 = 𝐹8 + 𝐹9 
𝐹11 = 𝐹3 + 𝐹10 

�

𝑌𝑅1
𝐹3 ≤ 𝛽𝑅1𝐹2
𝐹4,5 ≤ 0

𝐶𝑅 ≥ 𝛾𝑅1 + 𝛼𝑅1𝐹3

� ⊻ �

𝑌𝑅2
𝐹5 ≤ 𝛽𝑅2𝐹4
𝐹2,3 ≤ 0

𝐶𝑅 ≥ 𝛾𝑅2 + 𝛼𝑅2𝐹5

� 

�

𝑌𝑆1
𝐹8 ≤ 𝛽𝑆1𝐹6
𝐹7,9 ≤ 0

𝐶𝑆 ≥ 𝛾𝑆1 + 𝛼𝑆1𝐹8

� ⊻  �

𝑌𝑆2
𝐹9 ≤ 𝛽𝑆2𝐹7
𝐹6,8 ≤ 0

𝐶𝑆 ≥ 𝛾𝑆2 + 𝛼𝑆2𝐹9

� ⊻  �
𝑌𝑛𝑜𝑡𝑅2

𝐶𝑆,𝐹6,7,8,9,10 ≤ 0� 

 𝑌𝑅1 ⟺ 𝑌𝑛𝑜𝑡𝑅2  
𝑌𝑅2 ⟺ 𝑌𝑆1 ⊻ 𝑌𝑆2 
0 ≤ 𝐹𝑖 ≤ 𝐹𝑖𝑈𝑃; 0 ≤ 𝐶𝑅 ≤ 𝐶𝑅𝑈𝑃;0 ≤ 𝐶𝑆 ≤ 𝐶𝑆𝑈𝑃;  𝑌𝑅1,𝑌𝑅2,𝑌𝑛𝑜𝑡𝑅2 ,𝑌𝑆1,𝑌𝑆2 ∈ {𝑇𝑟𝑢𝑒,𝐹𝑎𝑙𝑠𝑒} 
 
 

With the procedure described for the logic propositions and the (BM) or (HR) transformation to 
the disjunctions in sections 3.1 and 3.2, the two MILP reformulations are as follows: 
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𝐹1 = 𝐹2 + 𝐹4 
𝐹5 = 𝐹6 + 𝐹7 
𝐹10 = 𝐹8 + 𝐹9 
𝐹11 = 𝐹3 + 𝐹10 

𝐹3 ≤ 𝛽𝑅1𝐹2 + 𝑀𝑅1(1 − 𝑦𝑅1) 
𝐹4,5 ≤ 𝑀𝑅1(1 − 𝑦𝑅1) 
𝐶𝑅 ≥ 𝛾𝑅1 + 𝛼𝑅1𝐹3 − 𝑀𝑅1(1 − 𝑦𝑅1) 

𝐹5 ≤ 𝛽𝑅2𝐹4 + 𝑀𝑅2(1 − 𝑦𝑅2) 
𝐹2,3 ≤ 𝑀𝑅2(1 − 𝑦𝑅2) 
𝐶𝑅 ≥ 𝛾𝑅2 + 𝛼𝑅2𝐹5 − 𝑀𝑅2(1 − 𝑦𝑅2) 

𝐹8 ≤ 𝛽𝑆1𝐹6 + 𝑀𝑆1(1 − 𝑦𝑆1) 
𝐹7,9 ≤ 𝑀𝑆1(1 − 𝑦𝑆1) 
𝐶𝑆 ≥ 𝛾𝑆1 + 𝛼𝑆1𝐹8 − 𝑀𝑆1(1 − 𝑦𝑆1) 

𝐹9 ≤ 𝛽𝑆2𝐹7 + 𝑀𝑆2(1 − 𝑦𝑆2) 
𝐹6,8 ≤ 𝑀𝑆2(1 − 𝑦𝑆2) 
𝐶𝑆 ≥ 𝛾𝑆2 + 𝛼𝑆2𝐹9 − 𝑀𝑆2(1 − 𝑦𝑆2) 

𝐶𝑠,𝐹6,7,8,9,10 ≤ 𝑀𝑛𝑜𝑡𝑅2(1 − 𝑦𝑛𝑜𝑡𝑅2) 

𝑦𝑅1 + 𝑦𝑅2 = 1 
𝑦𝑆1 + 𝑦𝑆2 + 𝑦𝑛𝑜𝑡𝑅2 = 1 

𝑦𝑅1 = 𝑦𝑛𝑜𝑡𝑅2  
𝑦𝑅2 = 𝑦𝑆1 + 𝑦𝑆2 

0 ≤ 𝐶𝑅 ≤ 𝐶𝑅𝑈𝑃 
0 ≤ 𝐶𝑆 ≤ 𝐶𝑆𝑈𝑃 

(P8.BM): 
max𝑃𝑟𝑜𝑓𝑖𝑡 = 𝑃11𝐹11 − 𝑃1𝐹1 − 𝐶𝑅 − 𝐶𝑆  
s.t. 

 
 

 
 
 
 

 

 

 

 

 

 

 
            0 ≤ 𝐹𝑖 ≤ 𝐹𝑖𝑈𝑃               𝑖 = 1, … ,11 

 
𝑦𝑘 ∈  {0,1};    𝑘 ∈ {𝑅1,𝑅2, 𝑆1, 𝑆2, 𝑛𝑜𝑡𝑅2} 

𝐹1 = 𝐹2 + 𝐹4 
𝐹5 = 𝐹6 + 𝐹7 
𝐹10 = 𝐹8 + 𝐹9 
𝐹11 = 𝐹3 + 𝐹10 

𝐹3𝑅1 ≤ 𝛽𝑅1𝐹2𝑅1 
𝐹4,5
𝑅1 ≤ 0 

𝐶𝑅𝑅1 ≥ 𝛾𝑅1𝑦𝑅1 + 𝛼𝑅1𝐹3𝑅1 

𝐹5𝑅2 ≤ 𝛽𝑅2𝐹4𝑅2 

𝐶𝑅𝑅2 ≥ 𝛾𝑅2𝑦𝑅2 + 𝛼𝑅2𝐹5𝑅2 

𝐹8𝑆1 ≤ 𝛽𝑆1𝐹6𝑆1 
𝐹7,9
𝑆1 ≤ 0 

𝐶𝑆𝑆1 ≥ 𝛾𝑆1𝑦𝑆1 + 𝛼𝑆1𝐹8𝑆1 

𝐹9𝑆2 ≤ 𝛽𝑆2𝐹7𝑆2 
𝐹6,8
𝑆2 ≤ 0 

𝐶𝑆𝑆2 ≥ 𝛾𝑆2𝑦𝑆2 + 𝛼𝑆2𝐹9𝑆2 

𝐶𝑆
𝑛𝑜𝑡𝑅2 ,𝐹6,7,8,9,10

𝑛𝑜𝑡𝑅2 ≤ 0 

𝑦𝑅1 + 𝑦𝑅2 = 1 
𝑦𝑆1 + 𝑦𝑆2 + 𝑦𝑛𝑜𝑡𝑅2 = 1 

𝑦𝑅1 = 𝑦𝑛𝑜𝑡𝑅2  
𝑦𝑅2 = 𝑦𝑆1 + 𝑦𝑆2 

0 ≤ 𝐶𝑆𝑘 ≤ 𝐶𝑆𝑈𝑃𝑦𝑘 

(P8.HR): 
max𝑃𝑟𝑜𝑓𝑖𝑡 = 𝑃11𝐹11 − 𝑃1𝐹1 − 𝐶𝑅 − 𝐶𝑆  
s.t. 

 
𝐹𝑖 = 𝐹𝑖𝑅1 + 𝐹𝑖𝑅2  𝑖 = 1, … ,11 
𝐹𝑖 = 𝐹𝑖𝑆1 + 𝐹𝑖𝑆2 + 𝐹𝑖

𝑛𝑜𝑡𝑅2   𝑖 = 1, … ,11 
𝐶𝑅 = 𝐶𝑅𝑅1 + 𝐶𝑅𝑅2   
𝐶𝑆 = 𝐶𝑆𝑆1 + 𝐶𝑆𝑆2 + 𝐶𝑆

𝑛𝑜𝑡𝑅2   
 

 

𝐹2,3
𝑅2 ≤0 

 

 

 

 

 

 
0 ≤ 𝐹𝑖𝑘 ≤ 𝐹𝑖𝑈𝑃𝑦𝑘  𝑖 = 1, … ,11; 
0 ≤ 𝐶𝑅𝑘 ≤ 𝐶𝑅𝑈𝑃𝑦𝑘 𝑘 ∈ {𝑅1,𝑅2, 𝑆1, 𝑆2,𝑛𝑜𝑡𝑅2} 

 
𝑦𝑘 ∈  {0,1};    𝑘 ∈ {𝑅1,𝑅2, 𝑆1, 𝑆2, 𝑛𝑜𝑡𝑅2} 
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As can be seen these two alternative formulations have been derived systematically from the 
GDP (P8.1). Thus, we have avoided a direct ad-hoc formulation of this problem in algebraic 
form as an MILP which may or may not correspond to a “good” formulation. Having the two 
models (P8.BM) and (P8.HR) we have a better understanding and insight of what we can expect 
from each formulation, although clearly the numerical performance will depend on the actual 
parameter of the given instance. 

3.4.2 Nonlinear GDP-to-MINLP: Quadratic function over three circles[25] 
Consider the analytical problem given in Lee and Grossmann[25] which consists in finding the 
minimum of a quadratic objective function, subject to a disjoint feasible region defined by circles 
as shown in Figure 10. The problem formulation is given by (P9.GDP). 
 
(P9.GDP): 

 

 
Figure 10. Illustration of (P9.GDP) 

 
(P9.BM) and (P9.HR) show the corresponding MINLP transformation. For the case of the (HR) 
transformation we use the approximation (APP)[37]. 
 
(P9.BM): 

min𝑍 = (𝑥1 − 5)2 + (𝑥2 − 5)2 
𝑠𝑡. 

Z*

x1

x2

min  𝑍 = (𝑥1 − 5)2 + (𝑥2 − 5)2 

𝑠𝑡. 

�
𝑌1

𝑥12 + 𝑥22 ≤ 1� ⊻ �
𝑌2

(𝑥1 − 4)2 + (𝑥2 − 1)2 ≤ 1� ⊻ �
𝑌3

(𝑥1 − 2)2 + (𝑥2 − 4)2 ≤ 1� 

−5 ≤ 𝑥1,  𝑥2 ≤ 5; 𝑌1,𝑌2,𝑌3 ∈ {𝑇𝑟𝑢𝑒,𝐹𝑎𝑙𝑠𝑒} 
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 𝑥12 + 𝑥22 ≤ 1 + 𝑀(1 − 𝑦1) 

(𝑥1 − 4)2 + (𝑥2 − 1)2 ≤ 1 + 𝑀(1 − 𝑦2) 

(𝑥1 − 2)2 + (𝑥2 − 4)2 ≤ 1 + 𝑀(1 − 𝑦3) 

𝑦1 + 𝑦2 + 𝑦3 = 1 

−5 ≤ 𝑥1,  𝑥2 ≤ 5 

𝑦1,2 ∈  {0,1} 
 
(P9.HR): 

min𝑍 = (𝑥1 − 5)2 + (𝑥2 − 5)2 
𝑠𝑡. 

 𝑥1 = 𝑥1_1 + 𝑥1_2 + 𝑥1_3 

 𝑥2 = 𝑥2_1 + 𝑥2_2 + 𝑥2_3 

 

((1 − 𝜀)𝑦1 + 𝜀) ��
𝑥1_1

(1 − 𝜀)𝑦1 + 𝜀
�
2

+ �
𝑥2_1

(1 − 𝜀)𝑦1 + 𝜀
�
2
− 1� + 𝜀(1 − 𝑦1) ≤ 0 

((1 − 𝜀)𝑦2 + 𝜀) ��
𝑥1_2

(1 − 𝜀)𝑦2 + 𝜀
− 4�

2
+ �

𝑥2_2

(1 − 𝜀)𝑦2 + 𝜀
− 1�

2
− 1� − 16𝜀(1 − 𝑦2) ≤ 0 

((1 − 𝜀)𝑦3 + 𝜀) ��
𝑥1_3

(1 − 𝜀)𝑦3 + 𝜀
− 2�

2
+ �

𝑥2_3

(1 − 𝜀)𝑦3 + 𝜀
− 4�

2
− 1� − 19𝜀(1 − 𝑦3) ≤ 0 

𝑦1 + 𝑦2 + 𝑦3 = 1 

−5𝑦𝑖 ≤ 𝑥𝑗_𝑖 ≤ 5𝑦𝑖         𝑖 = 1,2,3;    𝑗 = 1,2 

𝑦1,2 ∈  {0,1} 
 
The optimal solution to (P9.GDP) is 4.68. If the continuous relaxations of (P9.BM) and (P9.HR) 
are considered by solving the corresponding NLPs, the respective lower bounds 0.45 and 4.20 
are obtained, showing that the (HR) provides a stronger lower bound since it has a tighter 
relaxation. 
 
3.5 Improving convex GDP reformulations through Basic Steps 
While the HR formulation provides tighter formulation than (BM), it is possible to develop 
formulations that are even tighter than HR using some basic concepts of disjunctive 
programming[1][2]. 
GDP can be regarded as an extension of the well-known Disjunctive Programming model 
developed by Balas[1][2], and which consists of a linear program with disjunctions, but no 
Boolean variables. Sawaya and Grossmann[37][38] proved that any Linear (GDP) can be 
equivalently formulated as a Disjunctive Program, and therefore the rich theory behind 
Disjunctive Programming can be used in order to solve Linear GDPs more efficiently. Ruiz and 
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Grossmann[33][35] extended this theory to nonlinear convex GDP. A convex GDP is a particular 
case of (GDP) in which the functions 𝑓(𝑥), 𝑔(𝑥) and 𝑟𝑘𝑖(𝑥) are convex. 
 
A particular logic operation in disjunctive programming that helps to generate a tighter 
formulation than the (HR) of the problem is the so-called Basic Step[2]. 
 
3.5.1 Basic Step in Disjunctive Programming[1][2][35] 
To describe this operation it is important to consider the following definitions[2][35]: 
 
Convex inequality: (Halfspace in linear case) 
𝐻 = {𝑥 ∈ ℝ𝑛|𝜙(𝑥) ≤ 0�}, where 𝜙(𝑥):  ℝ𝑛 → ℝ1 is a convex function 

Convex set: (Polyhedron in linear case) 
P = ⋂ 𝐻𝑖𝑖∈𝑀  

Elementary disjunctive set: 
D = ⋃ 𝐻𝑖𝑖∈𝑀  
 
A disjunctive set can be expressed in many different logically equivalent forms. Three of them 
are of particular interest: 
Conjunctive Normal Form (CNF): F  = ⋂ 𝐷𝑖𝑖∈𝑇 = ⋂ ⋃ 𝐻𝑖𝑖∈𝑀𝑖∈𝑇  

Disjunctive Normal Form (DNF): F  = ⋃ 𝑃𝑖 = ⋃ ⋂ 𝐻𝑖𝑖∈𝑀𝑖∈𝑄𝑖∈𝑄  

Regular Form (RF)(intersection of DNFs): F = ⋂ 𝑆𝑗𝑗∈𝑇 , where 𝑆𝑗 = ⋃ 𝑃𝑖𝑖∈𝑄  
 
Note that the CNF and DNF are two extremes of equivalent forms, while RF is in between them. 
Also note that while any 0-1 MILP/MINLP is in CNF, the GDP is in RF. 
 
As stated and proved in Theorem 2.1 of Balas[2], any disjunctive set in Regular Form can be 
converted into DNF by a recursive application of an operation called Basic Step. In particular, 
given a disjunctive set in RF, it can be brought to DNF by |T| − 1 recursive applications of the 
following basic step, that involves intersecting pairs of disjunctions. That is, for some k, l ∈ T, k 
≠ l, Sk ∩ Sl is brought to DNF by replacing it with Skl = ⋃ (Pi ∩ Pj) i∈Qk,j∈Ql . 
 
Additionally, as stated and proved in Theorem 4.3 of Balas[2], the hull relaxation of a disjunctive 
set ℎ𝑟𝑒𝑙(𝐹) ≔ ⋂  𝑐𝑙 𝑐𝑜𝑛𝑣(𝑆𝑗)𝑗∈𝑇 , where 𝑐𝑙 𝑐𝑜𝑛𝑣 is the closed convex set, after the application 
of a basic step is as tight, if not tighter, than the previous hull relaxation. It follows that the hull 
relaxation of a disjunctive set in DNF is equal to its convex hull (or perfect formulation, since it 
can be solved as a continuous optimization problem). 
 
It is important to note that when a basic step is applied, the hull relaxation of the new disjunctive 
set has more continuous variables and constraints. There are different rules that have been 
proposed for deciding when to apply or not a basic step[2][35][37].  
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3.5.2 Illustrative example of Basic Step in GDP 
A Basic Step is illustrated with the following example: The objective is to maximize profit by 
selling a product P at a price 10. To produce it, it is required to buy either reactor R1 with cost 
C=5*inlet flow and 90% conversion of raw material A, or reactor R2 with C=4.6*inlet flow and 
80% conversion of raw material B. The cost of raw material A is 1.1 and of B is 1. The 
maximum allowed cost for any selected equipment is 30, and we can select only one of the raw 
materials. There is a limit on the availability, for A = 5, and B = 7. The GDP can be formulated 
as follows: 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
Note that the problem has 2 proper disjunctions (those that contain the XOR operator), with two 
terms each disjunction, and two equations each term. It also contains 6 improper disjunctions 
(the upper and lower bounds of 𝐹𝐴, 𝐹𝐵 and 𝐶𝑒𝑞, i.e. the global constraints). The solution to this 
problem is to select reactor 2 and purchase raw material B, with profit = 15.7. For the relaxation 
of (BM) the profit = 50,050, and for the relaxation of (HR), the profit = 16.1, which is clearly 
much tighter. 
Intersecting the two disjunctions, which represents performing a basic step, and distributing the 
XOR over the AND operator, leads to the following problem: 

 

 

max𝑃𝑟𝑜𝑓𝑖𝑡 = 10𝐹𝑃 −  𝐶𝑒𝑞 − 𝐶𝑟𝑎𝑤 

⎣
⎢
⎢
⎢
⎡
𝑌𝑅1 𝐴𝑁𝐷 𝑌𝑅𝑎𝑤𝐴
𝐹𝑃 = 0.9𝐹𝐴
𝐶𝑒𝑞 = 5.0𝐹𝐴
𝐶𝑟𝑎𝑤 = 1.1𝐹𝐴

𝐹𝐵 = 0 ⎦
⎥
⎥
⎥
⎤

⊻

⎣
⎢
⎢
⎢
⎡
𝑌𝑅1 𝐴𝑁𝐷 𝑌𝑅𝑎𝑤𝐵
𝐹𝑃 = 0.9𝐹𝐴
𝐶𝑒𝑞 = 5.0𝐹𝐴
𝐶𝑟𝑎𝑤 = 1𝐹𝐵
𝐹𝐴 = 0 ⎦

⎥
⎥
⎥
⎤

⊻

⎣
⎢
⎢
⎢
⎡
𝑌𝑅2 𝐴𝑁𝐷 𝑌𝑅𝑎𝑤𝐴
𝐹𝑃 = 0.8𝐹𝐵
𝐶𝑒𝑞 = 4.6𝐹𝐵
𝐶𝑟𝑎𝑤 = 1.1𝐹𝐴

𝐹𝐵 = 0 ⎦
⎥
⎥
⎥
⎤

⊻
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Figure 11: Structure of Reactor and 
raw material selection in (P10.1) 
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It is easy to see that (P10.1) and (P10.2) are logically equivalent, since (P10.2) is only 
enumerating the potential combinations between R1 and R2 with raw materials A and B. Also 
note that the problem now contains a single proper disjunction, with 4 disjunctive terms, and 5 
equations each term. This “distribution” operation is called proper Basic Step. The application of 
this operation to the improper disjunctions (global constraints), is called an improper Basic Step. 
The extreme case in which the problem is defined over a single disjunction is called Disjunctive 
Normal Form. The DNF of (P10.1) is then as follows: 
 

 

It is also clear to see the logic equivalence of (P10.2) and (P10.3), only that in (P10.3) the global 
constraints are inside the disjunctive terms. The relaxation of the (HR) of (P10.3) yields a profit 
= 15.7, which is the same as the optimal MILP solution. Note that with the application of |K|-1 
Basic Steps a problem achieves DNF[35][ 15] form. 

 
There are three main consequences of this operation[2]: i) The size of the problem increases as we 
apply BS (exponentially in terms when applying proper Basic Steps, and increase in the number 
of constraints when applying improper Basic Steps); ii) The problem generated after applying a 
BS is at least as tight as before, and possibly tighter; iii) The HR of the DNF is a perfect 
formulation. For a recent algorithmic implementation of these concepts see [39] 
 
3.5.3 Extension of Basic Step to Global Optimization of Nonconvex GDP 
A discussion on global optimization of nonconvex GDP problems is out of the scope of this 
paper. However, to provide some context we include the following brief description. In order to 
apply the theory of Disjunctive Programming into nonconvex GDP for global optimization, Ruiz 
and Grossmann[34] proposed a two stage approach. The first stage relaxes the nonconvexities by 
replacing them with over and under estimating functions, or convex envelopes, such as the ones 
by McCormick[27] for bilinear terms. Figure 12 shows the general framework of this approach, 
which has the net result of providing stronger lower bounds for the global optimum solution of 
the nonconvex GDP. This is important because the effectiveness of the global optimization 
method relies heavily on the quality of this bound. 
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Figure 12. Two phase approach for nonconvex GDP 

 
4. Numerical examples 
In this section we compare the different formulations and improvement after the application of 
Basic Steps (according the corresponding reference) for three examples of modest size taken 
from the literature. The first example (P11) is linear; the next is nonlinear but convex (P12); and 
the final example is nonconvex (P13). For the nonconvex problem, problem size refers to the 
MINLP reformulation of the convex GDP relaxation. 
 
4.1 Linear GDP: Strip-packing Problem[38] 
A given set of rectangles is to be packed into a strip of fixed width W but unknown length L. The 
objective is to minimize the length of the strip while fitting all rectangles without any overlap 
and without rotation. The GDP formulation is as follows[38]: 
 
(P11): 

 
where 𝑥𝑖 and 𝑦𝑖 represent the coordinates of the upper-left corner of the rectangles 𝑖 ∈ 𝑁. There 
is one disjunction for each pair of rectangles (e.g. if there are 4 rectangles there will be 6 
disjunctions representing the combinations of rectangles (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)). 
Each term in a disjunction represents the possible relative placement of the rectangles to ensure 
that they will not overlap. Specifically, the four terms represent that rectangle 𝑖 is either to the 
right or to the left, or above or below rectangle 𝑗, respectively: 
 

 
Figure 13. Strip packing illustration for a 13 rectangle problem 
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The example presented in Sawaya et al[38] consists of 8 rectangles with the dimensions shown in 
Table 3 and with a Width of 10. 
 
Table 3: Dimensions for 8-rectangle strip-packing problem. 

Rectangle Length  Height 
1 4  3 
2 3  3 
3 2  2 
4 2  2 
5 3  3 
6 3  5 
7 4  7 
8 4  7 

 
The solution, size of the problem and tightness of the relaxation as reported in [38] is shown in 
Table 4. The MILP solver used was CPLEX. 
 
Table 4: Results for 8-rectangle strip-packing problem. 

 (BM) (HR) (HR) after Basic Steps1 (HR) in DNF 
Optimal solution 11 11 11 11 
Relaxation 4 6 11 11 
Number of constraints 168 862 932 344,081 
Number of variables 123 535 563 147,473 
Number of binaries 106 106 106 - 
Number of nodes 212,464 2,596 1,464 0 
Solution time (s) 13.7 2.5 1.6 >3,600 

1. Selection of disjunctions to apply the basic steps is discussed in source 
 
It is clear from Table 4 that the size of the problem is considerably larger in (HR) than in (BM). 
It is also possible to observe that the application of some Basic Steps leads to a major 
improvement in the relaxation, yielding the optimal solution of 11, and increasing slightly the 
size of the problem. It is important to mention that the authors performed a preprocessing to 
select in which disjunctions to apply the basic steps, and such preprocessing would require some 
execution time. Finally, although the problem in explicit DNF form represents the convex-hull of 
the problem[2] (i.e. its continuous relaxed solution will always provide an integral value for the 
discrete variables), the size of the problem makes it impossible to solve it in less than 3,600 
seconds using the MILP solver CPLEX. 
 
4.2 Non-linear convex GDP: Process Network[35] 
In general, the underlying goal of a classical process synthesis problem consists in selecting the 
process that maximizes the profit when selling a product or set of products considering the cost 
of raw materials and the cost of the process units. The model in the form of the GDP problem 
involves disjunctions for the selection of units, and propositional logic for the relationship of 
these units. Each disjunction contains the equation for each unit (these relax as convex 
inequalities). This example is a particular instance with twelve unit operations as illustrated in 
Figure 14. A general GDP model is shown in (P12): 
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Figure 14. Process Network illustration for a 12-unit instance 
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The solution, size of the problem and tightness of the relaxation as reported in [35] is shown in 
Table 5. The MINLP solver used was SBB. 
 
Table 5: Results for 12-unit process network problem. 

 (BM) (HR) (HR) after Basic Steps1 
Optimal solution -69.5 -69.5 -69.5 
Relaxation -1,108.9 -74.8 -69.5 
Number of constraints 114 184 1,462 
Number of variables 69 149 807 
Number of binaries 12 12 12 
Number of nodes 234 8 2 
Solution time (s) 27.7 1.0 2.9 

1. Selection of disjunctions to apply the basic steps is discussed in source 
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As shown in Table 5, it is clear that (HR) has much better relaxation than (BM). In this example, 
the application of Basic Steps slightly improves the relaxation of (HR), yielding in fact the 
optimal solution. Furthermore, it also reduces the number of nodes in the MINLP branch and 
bound method (SBB was used). However, the problem size grows considerably, although the 
computational time is quite reasonable 
 
4.3 Nonconvex GDP: Heat Exchange Network (HEN)[34] 
This problem consists of finding the heat loads of utilities, the intermediate temperatures and the 
area of each exchanger that minimizes the investment and operation cost. In this case the 
investment cost is given by a discontinuous cost function defined over three intervals in terms of 
the area. Note that the structure of the network is fixed and that we use the arithmetic mean 
temperature as the driving force. Figure 15 illustrates the HEN structure. 

 
Figure 15. Heat Exchange Network (HEN) structure 

 
The problem can be formulated as follows: 
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},{ FalseTrueYij ∈  i = 1,2,3  j =1,2,3      
1RTi ∈    i = 1,2 
1RAi ∈    i = 1,2,3 

 
where, 
FCPi : Heat Capacity of stream i , where i ∈{h,c} 
Tin,i : Inlet temperature conditions of the stream i , where i ∈{h,c} 
Tout,i : Outlet temperature conditions of the stream i, where i∈{h,c} 
Ui : Overall Heat Transfer Coefficient for exchanger Ei , where i∈{1,2,3} 
Chu : Cost of hot utility 
Ccw : Cost of cooling water 
T1,2 : Intermediate temperatures  
Ai : Area of heat exchanger Ei , where i ∈{1,2,3} 
 
The parameters for this problem are shown in Table 6. 
 
Table 6: Data for Heat Exchange Network example 
 

Heat Exchanger Area (m2) Investment Cost ($/yr) 
 0≤A≤10 2750 A0.6 + 3000 

1,2 and 3 10≤A≤25 1500 A0.6 + 15000 
 25≤A≤50 600 A0.6 + 46500 

 

Heat Exchanger Overall Heat Transfer 
1 1.5 
2 0.5 
3 1 

 

Stream FCP(kW/K) Tin(K) Tout(K) Cost($/kW yr) 
Hot 10.0 500 340  
Cold 7.5 350 560  

Cooling Water  300 320 20 
Steam  600 600 80 

 
Table 7 shows the solution, size of the problem and tightness of the relaxation [34]. Note that the 
relaxation in this case represents the lower bound of the global minimum (144,385). In this case, 
the HR after basic steps yield an increase of 3.5% in the lower bound, and interestingly requires 
less time than the HR without basic steps. 
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Table 7: Results for HEN problem. 
 (HR) (HR) after Basic Steps1 

Optimal solution 114,385 114,385 
Relaxation 91,671 94,926 
Number of constraints 87 206 
Number of variables 52 106 
Number of binaries 9 9 
Number of nodes 10 1 
Solution time (s) 9.0 5.0 

1. Selection of disjunctions to apply the basic steps is discussed in source 
 
 
Concluding Remarks 
 
This paper has given a general overview of Generalized Disjunctive Programming (GDP), a 
systematic modeling framework that represents discrete-continuous optimization problems in 
terms of algebraic equations and high level symbolic logic expressions.  Several examples in 
process systems engineering including optimization of flowsheet superstructures, design of 
distillation columns, design of batch processes and to scheduling problems have been presented 
to illustrate how GDP greatly facilitates the modeling of these problems. Furthermore, big-M and 
hull relaxation reformulations have been presented as two major mixed-integer algebraic models 
that can be systematically derived from a GDP model. The former is smaller in size, but the latter 
exhibits stronger continuous relaxations, and hence stronger lower bounds, which may 
potentially translate into a more efficient solution times, although this is not always the case due 
to the increased size of the reformulation.  
 
Furthermore, the concept of basic steps for reformulation in GDP models has been presented in 
order to further improve the continuous relaxations of these problems.  In the limit where the 
disjunctions are converted into Disjunctive Normal Form through these basic steps, a perfect 
mixed-integer formulation can be obtained that corresponds to the convex hull, meaning that the 
mixed-integer problem can be solved as a continuous optimization problem. The application of 
basic steps following some basic rules have been illustrated with a number of computational 
results from several examples in the area of process systems engineering showing that the 
predicted lower bounds can be significantly improved, including the case of global optimization 
problems. Finally, it is hoped that this paper will help to clarify the scope of GDP as a 
fundamental theoretical framework for modeling discrete-continuous optimization problems. 
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Appendices 
 
Appendix 1. Embedded disjunctions and inclusive OR Formulations 
(GDP) represents the general form of Generalized Disjunctive Programming. However, there are 
logic models that are formulated more intuitively in different forms than (GDP). Two particular 
cases are embedded disjunctions[41] and inclusive OR arguments. 
 
Embedded Disjunctions 
Embedded disjunctions may arise in PSE problems (see for example (P6) for discontinuous cost 
functions). An embedded disjunction is illustrated in (P14.1): 
 

(P14.1): 

�

𝑌1
𝑟1(𝑥) ≤ 0

�
𝑌11

𝑟11(𝑥) ≤ 0� ⊻ �
𝑌12

𝑟12(𝑥) ≤ 0�
� ⊻ �

𝑌2
𝑟2(𝑥) ≤ 0� 

which implies that if 𝑌1 = 𝑇𝑅𝑈𝐸, then 𝑟1(𝑥) ≤ 0 must be satisfied, and there is an additional 
disjunction 𝑌11 XOR 𝑌21. If 𝑌2 = 𝑇𝑅𝑈𝐸 then 𝑟2(𝑥) ≤ 0 must be satisfied. To achieve (GDP) 
form, (P14.1) can be transformed as follows: 
 
(P14.2): 

�
𝑌1

𝑟1(𝑥) ≤ 0� ⊻ �
𝑌2

𝑟2(𝑥) ≤ 0� 

�
𝑌11

𝑟11(𝑥) ≤ 0� ⊻ �
𝑌12

𝑟12(𝑥) ≤ 0� ⊻ [𝑌13] 

𝑌1 ⟺ 𝑌11 ⊻ 𝑌12 

It is easy to see that (P14.1) and (P14.2) are logically equivalent. 
 
Inclusive OR 
Another common logic proposition appears when the disjunctions are not necessarily exclusive 
(i.e. OR vs. XOR; ˅ vs. ⊻). (P15.1) illustrates an inclusive OR disjunction: 
 
(P15.1): 

�
𝑌1

𝑟1(𝑥) ≤ 0� ˅ �
𝑌2

𝑟2(𝑥) ≤ 0� 

Note that 𝑌1 and 𝑌2 cannot both be false (i.e. 𝑌1 can be TRUE and 𝑌2 FALSE; or 𝑌1 FALSE and 
𝑌2 TRUE, or 𝑌1 TRUE and 𝑌2 TRUE). This means that it is possible to enforce both 𝑟1(𝑥) ≤ 0 
and 𝑟2(𝑥) ≤ 0. To achieve (GDP) form, (P15.1) can be formulated as follows: 
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(P15.2): 

�
𝑌1

𝑟1(𝑥) ≤ 0� ⊻ [¬𝑌1] 

�
𝑌2

𝑟2(𝑥) ≤ 0� ⊻ [¬𝑌2] 

𝑌1˅𝑌2 

(P15.1) and (P15.2) are logically equivalent. 
 
 
Appendix 2. Review of GDP methods 
Two solution methods have been proposed for direct solution convex nonlinear GDP, namely, 
the Branch and Bound method by Lee and Grossmann[25], which builds on the concept of 
disjunctive Branch and Bound method by Beaumont[3], and the Logic Based Outer-
Approximation method by Turkay and Grossmann[40]. 
 
The basic idea in the B&B method is to directly branch on the constraints corresponding to 
particular terms in the disjunctions, while considering the convex hull of the remaining 
disjunctions. Although the tightness of the relaxation at each node is comparable with the one 
obtained when solving the HR reformulation with a MINLP solver, the size of the problems 
solved are smaller and the numerical robustness is improved. 
 
For the case of Logic Based Outer-Approximation methods, similar to the case of OA for 
MINLP, the main idea is to solve iteratively a master problem given by a linear GDP, which will 
provide a lower bound of the solution, and an NLP subproblem that will yield an upper bound. 
As described in Turkay and Grossmann[40], for fixed values of the Boolean Variables, trueY ik =ˆ , 

falseYki =  with ii ≠ˆ , the corresponding NLP subproblem (SNLP) is as follows: 
   

 
 

s.t.    0)( ≤xg     

kkiki DiKktrueYforxr ∈∈=≤ ,0)(     (SNLP) 
 
 
 

 
It is important to note that only the constraints that belong to the active terms in the disjunction 
(i.e. associated Boolean variable Yik = true) are imposed. Constraints involved in the inactive 
disjunctive terms are disregarded. This leads to a substantial reduction in the size of the problem 
compared to the direct application of the traditional OA method on the MINLP reformulation (as 
described in section 2). Assuming that L subproblems are solved in which sets of linearizations 

L....2,1=  are generated for subsets of disjunction terms }|{ TrueYL kiki ==  , one can define the 
following disjunctive OA master problem (MLGDP): 

Error! Bookmark not defined. 

)(xfZMin =

uplo xxx ≤≤
},{,, 1 FalseTrueYRcRx kik

n ∈∈∈

α=ZMin
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s.t. 
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   k ∈ K  (MLGDP)    

 
 
 
 

It should be noted that before applying the above master problem it is necessary to solve various 
subproblems (SNLP) for different values of the Boolean Variables Yik so as to produce one linear 
approximation of each of the terms i∈Dk in the disjunctions k∈K. As shown by Turkay and 
Grossmann[40] selecting the smallest number of subproblems amounts to solving a set covering 
problem, which is of small size and easy to solve. It is important to note that the number of 
subproblems solved in the initialization is often small since the combinatorial explosion that one 
might expect is in general limited by the propositional logic. Moreover, terms in the disjunctions 
that contain only linear functions need not be considered for generating the subproblems. This 
frequently arises in process networks since they are often modeled by using two terms 
disjunctions where one of the terms is always linear (see remark below). Also, it should be noted 
that the master problem can be reformulated as an MILP by using the big-M or Convex Hull 
reformulation, or else solved directly with a disjunctive branch and bound method. 
 

TrueY =Ω )(
uplo xxx ≤≤

},{,,, 11 FalseTrueYRcRxR kik
n ∈∈∈∈α


