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Abstract. We present a method that combines software model checking
with a standard protocol security model to provide meaningful security
analysis of protocol implementations in a completely automated man-
ner. Our approach incorporates a standard symbolic attacker model and
provides analogous guarantees about protocol implementations as pre-
vious work does for protocol specifications. We have implemented our
approach and verified authentication and secrecy properties of an indus-
trial strength protocol implementation – OpenSSL – for configurations
consisting of up to 3 servers and 3 clients. We have also implemented
two distinct methods for reasoning about attacker message derivations
and present their comparison in the context of OpenSSL verification.

1 Introduction

Protocols that enable secure communication over an untrusted network consti-
tute a critical part of the current computing infrastructure. Common examples
of such protocols are SSL [18], TLS [16], Kerberos [23], and the IPSec [22] and
IEEE 802.11i [1] protocol suites. The design and security analysis of such net-
work protocols presents a difficult problem. In several instances, serious secu-
rity vulnerabilities were uncovered in protocols many years after they were first
published or deployed [25, 27, 21, 28, 11]. Over the last three decades, a variety
of highly successful methods and tools have been developed for analyzing the
security guarantees provided by network protocol specifications [10, 15, 4, 3, 24,
26, 35, 32, 25, 29, 34]. All of these approaches use a standard symbolic model of
protocol execution and attack, developed from positions taken by Needham-
Schroeder [30], Dolev-Yao [17], and subsequent work by others. The use of a
formal attacker model is critical for providing meaningful security guarantees
about a protocol in realistic operating environments.

Independently, in recent years, there has been tremendous progress in au-
tomatically verifying non-trivial properties of software implementations. In this
context, one of the most successful techniques is software model checking – a
combination of predicate abstraction [20] and model checking [14] with auto-
mated abstraction refinement [13, 6]. In this paper, we present, to the best of
our knowledge, the first method that weds software model checking with a stan-
dard protocol security model to provide meaningful security analysis of proto-
col implementations in a completely automated manner. Our method provides



void client(int i,int r)

{

int s = 0;

while(1) {

if(s == 0) {

send_chall(i,r); ++s;

} else if(s == 1) {

recv_resp(i,r); ++s

} else return;

}

}

void server(int r)

{

int i,s = 0;

while(1) {

if(s == 0) {

recv_chall(r,&i); ++s;

} else if(s == 1) {

send_resp(r,i); ++s

} else return;

}

}

Fig. 1. An implementation of a two-party signature-based challenge-response protocol.

analogous guarantees about protocol implementations as previous work does for
protocol specifications.

A key distinguishing feature of our method is that the process of constructing
models from implementations involves the use of both predicate abstraction and
protocol security models. We observe that, in practice, protocol implementa-
tions involve two kinds of operations – non-cryptographic control flow steps and
cryptographic computation and communication. Furthermore, the cryptographic
operations are delegated to standard library routines. Control flow operations
are naturally modeled via predicate abstraction, while cryptographic operations
are modeled via actions such as send, receive, encryption and decryption. Our
language for protocol actions is based on earlier work on verifying protocol spec-
ifications [15]. In addition, our abstraction includes the standard attacker model
for protocol analysis. Last, but not the least, we define the security properties of
interest—authentication and secrecy–in the context of our modeling formalism.
Our modeling technique is described in full detail in Section 2.

As mentioned before, an important aspect of our approach is that the at-

tacker model corresponds directly to the attacker model used in analyzing pro-
tocol specifications. We assume that the attacker controls the network: it can
intercept and modify messages as well as inject messages that it can compute.
The attacker’s capabilities to compute messages based on previously observed
messages is captured by a set of axioms modeling the standard symbolic at-

tacker [30, 17] (e.g. if the attacker can compute an encrypted message and the
corresponding decryption key, it can recover the plaintext message). We use auto-
mated theorem proving techniques to reason about this logical theory of attacker
computations. Consequently, our tool supports analysis of protocol implemen-
tations with a bounded number of concurrent sessions and unbounded message
depth in attacker computations. This is exactly the same model that is used in
current state-of-the-art model-checking tools for protocol specifications, such as
the AVISPA suite of tools [5]. Further details about our analysis framework are
presented in Section 3.

An example of the kind of protocol implementations we want to verify is given
in Figure 1. The example implements a two-party encryption-based challenge-
response protocol. The client function implements the role of a protocol initia-



tor with two parameters: (a) i is the identity of the thread executing the client
role, and (b) r is the identity of server with which the client wishes to communi-
cate. Similarly, the server function implements the role of a protocol responder
with one parameters: r is the identity of the thread executing the server role.
The routines invoked implement well-defined cryptographic actions. For exam-
ple, send_chall creates a nonce and sends it encrypted with the server’s public
key over the network. Similarly, send_resp decrypts the message received and
sends the result back over the network. We use this as a running example to
explain our technique in the rest of this paper.

We have implemented a tool based on our method and applied it successfully
to establish authentication and secrecy properties of the OpenSSL [31] implemen-
tation of the SSL protocol. Our tool takes the following inputs: (a) the protocol
code in C, (b) the number of concurrent sessions, (c) the attacker model, and
(d) a specification of a security (secrecy or authentication) property ϕ. The tool
has two possible outputs: (i) the protocol code satisfies ϕ, even in the face of
an attack, or (ii) the protocol code violates ϕ along with a counterexample ex-
hibiting a possible violation of ϕ. The tool incorporates several optimizations
that enable it to scale to industrial strength security protocols. In particular, we
were able to verify both authentication and secrecy properties of OpenSSL for
configurations comprising of up to 3 servers and 3 clients. Further details about
our experimental results are presented in Section 4.

Related Work. In [36], the authors check that implementations of protocols such
as SSH conform to rule-based specifications capturing the protocol description in
the RFC. However, they do not model the attacker. Bhargavan et al [8] develop
a method and tool for establishing meaningful security properties of protocols
written in F# by translating it into the π-calculus and using an automated tool
for verifying the resulting translation. However, their method does not apply
directly to a C-style imperative language. In [19], the authors use program anal-
ysis techniques to extract an abstract representation of the protocol using Horn
clauses; secrecy properties are then cast in terms of a satisfiability problem for
a set of Horn clauses. The authors apply their method to a small example. The
method as presented there does not extend immediately to trace properties such
as authentication. In addition, the use of Horn clauses leads to a loss of precision
in abstracting programs involving loops.

2 Security Protocol Model and Properties

In this section, we describe the abstract model for security protocols and
the attacker. We also precisely define the security properties of interest—
authentication and secrecy.

2.1 Protocol Syntax

Messages. Messages are defined by a free term algebra. We assume the following
denumerable and mutually disjoint sets: (a) Var : variables, (b) SId : session ids,



(c) Name: principal names, (d) Nonce: nonces (globally unique numbers), and
(e) K : symmetric keys. The set Key of keys is defined in BNF format as follows:

Key = K | privkey(Name) | pubkey(Name)

The set Term of terms in our term algebra is defined as follows:

Term = Var | SId | Nonce | Key | {Term}Key

| Sig(privkey(Name),Term) | HashK (Term) | (Term,Term)

where {t}k denotes the encryption and decryption of t with k, Sig(privkey(N), t)
denotes N ’s signature over the message t, and Hashk(t) denotes the keyed hash
over message t using key k. For any key k ∈ Key , we use the notation k−1 to
refer to its (unique) reverse key. Also, (t1, t2) denotes a pair of messages t1 and
t2. A message is a ground term (i.e., a term without any variables). The set of
all messages is denoted by Msg . We assume that terms are implicitly typed (so
that a signature is not confused with a nonce, for example).

Actions. Protocol actions include sending and receiving messages, generating
nonces, creating messages, decryption, and pattern matching. The set Act of
actions is defined as follows:

Act = new Var | send Term | recv Var | match Var/Term

| Var := Msg | Var := dec(Var ,Var) | Act ;Act

where: (a) new v denotes creating a fresh nonce and storing it in v, (b) send t
denotes sending a message, (c) recv v denotes receiving a message and storing it
in v, (d) match t1/t2 denotes matching the term t1 with the term t2, (e) v := m
denotes assigning the m to v, (f) v := dec(v′, v′′) denotes decrypting v′ with v′′

and storing the result in v, and α1;α2 denotes α1 followed by α2.

Statements. Let Expr be a set of expressions defined over Var using the stan-
dard set of numeric (+, -, * etc.), relational (<,>,= etc.), and boolean (∧,∨,¬
etc.) operators. The set Stmt of statements is defined as follows:

Stmt = Var := Expr | assume Expr | skip

The weakest precondition of an expression e with respect to a statement St ,
denoted by WP{e}[St ] is defined as follows: (a) WP{e}[v := e′] is obtained by
replacing every occurrence of v in e with e′, (b) WP{e}[assume e′] = e∧ e′, and
(c) WP{e}[skip] = e.

Context. A term reduces to a message in a specific context. Formally, a context
ν : Var →֒ Msg is a partial mapping from variables to messages. For any context
ν, and any term t, we write ν[t] to mean the message obtained by replacing each
variable v in t with ν(v). If t contains a variable v such that ν(v) is undefined,
then ν[t] is also undefined (written as ν[t] = ⊥). The set of all contexts is denoted



8

 send (C,S,{v} )

assume(s==0)

s := 0

assume(s!=0)

assume (s==1)

assume (s!= 1)

where K = pubkey(S)

new v;

recv v’; match v’ / (S,C,v)s := s+1

s := s+1

1

2

3

4

5

6

7

K

Fig. 2. The role corresponding to client in Figure 1.

by Context . We write {v = m} to denote the singleton context that maps v to
m. For any contexts ν1 and ν2, we write ν1 ⊲⊳ ν2 to mean the context ν such
that:

(Dom(ν) = Dom(ν1)∪Dom(ν2))
∧

(∀v ∈ Dom(ν1) \Dom(ν2) � ν(v) = ν1(v))
∧

(∀v ∈ Dom(ν2) � ν(v) = ν2(v))

Protocol. A role is a 4-tuple (S, I, P, T ) where: (i) S is a finite set of nodes,
(ii) I ∈ S is an initial node, (iii) P ⊆ Var is a set of input parameters, and (iv)
T ⊆ S× (Act ∪Stmt)×S is a transition relation where each transition is labeled
with an action or a statement. A protocol is a set of roles.

A thread is an instance of a role executed by a principal. Each thread is iden-
tified by a principal name and a unique thread id, and an assignment of values
to the role parameters. Formally, a thread is a quadruple (Id , ν, S, I, T ) where:
(i) Id = (η,N) is the thread identifier comprising of a session id η and a name
N , (ii) ν is a context, and (iii) (S, I,Dom(ν), T ) is the role being instantiated
by the thread.

Example 1. Recall that our example protocol (see Figure 1) consists of two roles:
client and server. A thread instantiating the client role is shown pictorially in
Figure 2. The nodes of the role are derived from the control flow graph of the
client procedure, and the transitions are labeled accordingly. The transitions
corresponding to cryptographic routines are labeled by actions abstracting the
behavior of these routines. The mapping between cryptographic routines and
actions is supplied externally. The input parameters i and r are instantiated
with names C and S respectively. The name C appears as part of the thread
identifier as well. In summary the thread is (Id , ν, S, I, T ) where: (i) Id = (η, C),
(ii) ν = {i = C, r = S}, (iii) S = {1, 2, . . . , 8}, (iv) I = 1, and (v) T is as shown
in Figure 2.



2.2 Protocol Semantics

Attacker Model. We use the standard symbolic (Dolev-Yao) attacker
model [17, 30]. The attacker capabilities are represented via the following in-
ference rules (where S ⊢ m means that the attacker can compute message m
from the set S of messages):

S ⊢ m ∧ S ⊢ k =⇒ S ⊢ {m}k S ⊢ {m}k ∧ S ⊢ k−1 =⇒ S ⊢ m

S ⊢ m ∧ S ⊢ k′ =⇒ S ⊢ Sig(k′,m) S ⊢ m ∧ S ⊢ k =⇒ S ⊢ Hashk(m)

S ⊢ m1 ∧ S ⊢ m2 =⇒ S ⊢ (m1,m2) S ⊢ (m1,m2) =⇒ S ⊢ m1 ∧ S ⊢ m2

In the above, k′ is of the form privkey(N) for some name N . In addition, the at-
tacker can generate nonces. The attacker has complete control over the network:
it can intercept every message sent on the network and send messages that it
can construct (using the above inference rules) to honest parties.

Environment. An environment for a thread T is a pair (ν, Γ )T such that
ν ∈ Context and Γ ⊆ Msg . The set Context × 2Msg of all environments is
denoted by Env . For any environment E = (ν, Γ )T , we write Eν and EΓ to mean
ν and Γ respectively. Environments model information available to the thread
and the attacker during the thread’s execution. Specifically, an environment
(ν, Γ )T means that the thread T ’s variable binding is ν, while Γ is the set of all
messages sent out on the network (and thus available to the attacker). We omit
the superscript when the thread T is clear from the context.

Environment Transformer. Let Decrypt : Msg × Msg →֒ Msg be a func-
tion such that Decrypt(m1,m2) is the result of successful decryption of message
m1 with m2. If decryption of m1 with m2 fails, then Decrypt(m1,m2) is unde-
fined (written as Decrypt(m1,m2) = ⊥). The function match : Msg × Term →֒
Context) takes a message m and a term t and returns a context ν such that
m = ν[t] and the domain of ν is equal to the set of variables in t. If no such
context exists, then match(m, t) is undefined and is denoted by ⊥.

We view an action as an environment transformer. For any action α, the
transformer relation Rα ⊆ Env × Env is defined as follows:

Rnew v = {(E,E′) | E′
ν = Eν ⊲⊳ {v = n} ∧ E′

Γ = EΓ } where n is a fresh nonce

Rsend t = {(E,E′) | (Eν [t] 6= ⊥) ∧ (E′
ν = Eν) ∧ (E′

Γ = EΓ ∪ {Eν [t]})}

Rrecv v = {(E,E′) | E′
ν = Eν ⊲⊳ {v = m} ∧ EΓ ⊢ m ∧ E′

Γ = EΓ }

Rmatch v/t = {(E,E′) | E′
ν = Eν ⊲⊳ match(Eν(v), t) ∧ E′

Γ = EΓ }

Rv:=m = {(E,E′) | E′
ν = Eν ⊲⊳ {v = m} ∧ E′

Γ = EΓ }

Rv:=dec(v′,v′′) =

{(E,E′) | E′
ν = Eν ⊲⊳ {v = m}∧m = Decrypt(Eν(v′), Eν(v′′)) 6= ⊥∧E′

Γ = EΓ }

Rα1;α2
= Rα1

◦ Rα2



Predicate Abstraction. A predicate is an expression. Let P be a set of pred-
icates. A valuation V of P is a function from P to {true, false}. The con-
cretization of V , denoted by γ(V ), is the expression defined as follows:

γ(V ) =
∧

p∈P

γV (p)

where γV (p) = p if V (p) = true and γV (p) = ¬p if V (p) = false. The set of all
valuations of P is denoted by VP . In predicate abstraction [20], every statement
is viewed as a predicate valuation transformer. Specifically, for any statement St

and set of predicates P, the transformer relation RSt,P ⊆ VP ×VP is defined as
follows:

RSt,P = {(V, V ′) | γ(V ) ∧WP{γ(V ′)}[St ] is satisfiable}

Labeled Transition System (LTS). An LTS is a 4-tuple M = (S, I, Σ,T)
such that: (i) S is a set of states, (ii) I ⊆ S is the set of initial states, (iii) Σ is
an alphabet of events, and (iv) T ⊆ S×Σ × S is the transition relation. A state
s ∈ S is reachable in M iff there exists a sequence 〈s1, α1, . . . , sn−1, αn−1, sn〉
such that: (i) s1 ∈ I, (ii) sn = s and (iii) for 1 ≤ i < n � (si, αi, si+1) ∈ T.

We now define a notion of a sequence of events being in order at a state.
For any LTS M = (S, I, Σ,T), the predicate InOrderM ⊆ S × Σ∗ is defined
recursively as follows: (i) ∀s ∈ S � InOrderM (s, 〈〉), and (ii) for any state s and
any t = 〈α1, . . . αn〉 ∈ Σ∗, InOrderM (s, t) iff the following holds for every s′ ∈ S

and α ∈ Σ such that (s′, α, s) ∈ T:

(α = αn ∧ InOrderM (s′, 〈α1, . . . αn−1〉))
∨

(α 6∈ {α1, . . . , αn} ∧ InOrderM (s′, t))

Thread Model. Let P be a set of predicates and T = (Id , ν, S, I, T ) be a
thread. Then the model of T over P is the LTS M(T ,P) = (S, I, Σ,T) such that
(i) S = S×VP ×Env , (ii) I = {I}×VP ×{(ν, InitA)} with InitA denoting the
attacker’s initial knowledge, (iii) Σ = (Act ∪ Stmt)×{Id}, and (iv) T is defined
as follows:

T = {((s, V,E), (α, Id), (s′, V, E′)) | (s, α, s′) ∈ T ∧ (E,E′) ∈ Rα}
⋃

{((s, V,E), (St , Id), (s′, V ′, E)) | (s,St , s′) ∈ T ∧ (V, V ′) ∈ RSt,P}

Example 2. Recall, from Figure 2, our example client thread T = (Id , ν, S, I, T )
where: (i) Id = (η, C), (ii) ν = {i = C, r = S}, (iii) S = {1, 2, . . . , 8}, (iv) I = 1,
and (v) T is as shown in Figure 2. Let P = {p0, p1} be a set of predicates such
that p0 ≡ (s == 0) and p1 ≡ (s == 1). Then the thread model M(T ,P) is the
LTS some of whose important transitions are:

(1, {¬p0,¬p1}, (ν, InitA))
(s:=0,Id)
−→ (2, {p0,¬p1}, (ν, InitA))

(2, {p0,¬p1}, (ν, InitA))
(assume(s==0),Id)

−→ (3, {p0,¬p1}, (ν, InitA))

(3, {p0,¬p1}, (ν, InitA))
(α1,Id)
−→ (4, {p0,¬p1}, (ν ⊲⊳ {v = n}, InitA∪{(C, S, {n}k)}))

In the above, n is a nonce, α1 = new v; send(C, S, {v}k) and k = pubkey(S).



Thread Composition. We assume that threads execute asynchronously and
have disjoint sets of variables. We now present the model of the composition
of threads. We use two threads for simplicity. Our model generalizes naturally
to an arbitrary but finite number of threads. Let T1 = (Id1, ν1, S1, I1, T1) and
T2 = (Id2, ν2, S2, I2, T2) be two threads and let M(T1,P1) = (S1, I1, Σ1,T1)
and M(T2,P2) = (S2, I2, Σ2,T2) be their models over two sets of predicates P1

and P2 respectively. Then the composed model of the two threads M(T1,P1) ‖
M(T2,P2) is the LTS (S, I, Σ,T) such that: (i) S = S1 × VP1

× S2 × VP2
× Env ,

(ii) I = {I1} × VP1
× {I2} × VP2

× {(ν1 ⊲⊳ ν2, InitA)}, (iii) Σ = Σ1 ∪ Σ2, and
(iv) T is defined as follows:

T = {((s1, V1, s2, V2, E),X, (s′1, V
′
1 , s

′
2, V

′
2 , E

′))}

such that for i ∈ {1, 2}, the following holds: if X ∈ Σi then
((si, Vi, E),X, (s′i, V

′
i , E

′)) ∈ Ti, otherwise (si = s′i) ∧ (Vi = V ′
i ).

We note that this model is similar to the abstract model used for protocol
analysis. The presentation of the model is different because we want to align our
model with those obtained by predicate abstraction for software model checking.
Section 3 describes concretely how we construct the abstract model starting from
C code.

2.3 Security Properties and Satisfaction

We deal with two types of security properties: authentication and secrecy. An
authentication property ϕ is specified by a finite sequence of events 〈α1, . . . , αn〉.
A model M = (S, I, Σ,T) satisfies ϕ iff whenever there exists two reachable
states s and s′ of M such that (s′, αn, s) ∈ T, InOrderM (s, 〈α1, . . . , αn〉) holds.
This formalization of authentication is based on the concept of matching con-

versations [7].
In our example, a possible authentication property is specified by the event

sequence 〈(α1, Id1), (α2, Id2), (α3, Id1), (α4, Id2)〉 where Id1 is the identifier of a
thread executing the client role, Id2 is the identifier of a thread executing the
server role, and α1, α2, α3 and α4 are actions abstracting the library routines
send_chall, recv_chall, send_resp and recv_resp.

A secrecy property ψ is specified by the inability of the attacker to com-
pute a message m. Thus, a model violates ψ iff there exists a reachable state
(s1, V1, s2, V2, E) of M such that EΓ ⊢ m. Note that both authentication and
secrecy as formulated here are safety properties.

Property Satisfaction. The composition of threads T1, . . . , Tn satisfies a prop-
erty ϕ iff there exists sets of predicates P1, . . . ,Pn such that M(T1,P1) ‖ · · · ‖
M(Tn,Pn) satisfies ϕ. Let Q be a protocol with n roles. A configuration C of
Q is a function from {1, . . . , n} to integers. Intuitively, C(i) is the number of
threads instantiating the ith role. Then Q satisfies a property ϕ under C iff every
composition (obtained by instantiating the input parameters) of

∑
i C(i) threads

(with the first C(1) threads instantiating the first role, the second C(2) threads
instantiating the second role, and so on) satisfies ϕ.



3 Protocol Analysis

In this section, we describe our framework for verifying security properties of
network protocol implementations. The input to our analysis engine consists of:
(i) the source code for the implementation of a protocol Q, (ii) the authentication
or secrecy property ϕ to be verified, (iii) a configuration C of Q, and (iv) a
mapping κ from cryptographic libraries to actions. The output of our analysis
is either true, indicating that the property holds for the specified number of
protocol threads, or false, indicating the existence of an attack. In the latter
case, our analysis also emits a counterexample trace that exhibits a possible
attack.

Our analysis considers each possible instantiation of the input parameters of
the roles separately. For each such instantiation, it follows the counterexample
guided abstraction refinement paradigm and proceeds as follows:

1. Abstraction: Create an abstract model M as defined in Section 2 for the
specified number of threads using predicate abstraction and abstractions of
cryptographic libraries. Proceed to Step 2.

2. Verification: Use model checking to verify that M satisfies ϕ. If model
checking succeeds, we return true. If model checking fails, we obtain a
counterexample CE and proceed to Step 3.

3. Validation: Check whether CE is a real counterexample, i.e., it exhibits a
valid attack. If so, return false along with CE . Otherwise, CE is spurious.
Proceed to Step 4.

4. Refinement: Use CE to update the set of predicates. Repeat from Step 1.

The focus of this paper is the abstraction step that lets us obtain abstract
protocol models from source code. In future work, we plan to investigate special-
ized methods for the other steps as well. In the rest of this section, we present
our abstraction methodology in more detail.

The threads are obtained from the source code by constructing the control
flow graph and instantiating the input parameters of the different roles. The
abstract model is then computed in accordance with the definitions specified
in Section 2. Automated theorem provers are used to compute the two kinds
of transformers involved in the abstract model: (a) predicate valuation trans-
formers, and (b) environment transformers. While step (a) is carried out using
standard predicate abstraction techniques, step (b) uses protocol-specific reason-
ing involving the theory of attacker message derivations. We have implemented
and experimented with two ways to achieve this. First, we formalize the attacker
model (presented earlier) as a logical theory and then reduce the problem of de-
ciding whether a message can be derived by the attacker to a validity problem.
The second approach involves a decision procedure embodying the idea that
the message derivation problem can be solved by a process of deconstruction
followed by construction [33].



Abstraction-related Issues. Our approach assumes that programs consist
logically of two types of independent operations – control flow and cryptographic
computation and communication. We use predicate abstraction to model the
control flow in a finite manner, while we use security concepts (actions, attacker
model etc.) to model the cryptographic operations. We assume that the control-
flow affects the cryptographic operations only by controlling which actions are
invoked, and has no bearing on the actual data sent, received and manipulated
by the cryptographic operations. Similarly, a cryptographic operation only in-
fluences whether control flows or not (for example an action involving a pattern-
matching “blocks” if the match fails), and not the direction of control flow. Thus,
our approach is unable to detect attacks that rely on cryptographic operations
affecting program control flow (such as key values affecting the number of times
a loop iterates [9], and hence the running time of a thread execution).

The soundness of our abstract model relies on three observations (assump-
tions): (a) control flow is soundly abstracted by predicate abstraction, a sound
and well-understood technique, (b) cryptographic operations are precisely cap-
tured by our model definition (see Section 2) using standard security and cryp-
tographic concepts, and (c) the control flow and cryptographic operations affect
each other only in a very restricted manner as described in the previous para-
graph.

In addition, we handle restricted C programs involving conditionals and as-
signments over integer variables. Detecting low-level security issues, such as
buffer overflow, require orthogonal verification methods [37]. More generally,
we assume that the control flow graph accurately represents the possible exe-
cutions of the program. Some preliminary work on discharging this assumption
using other techniques are being investigated [2].

Simulation conformance of OpenSSL code to the SSL RFC specification in
the absence of an attacker has been verified previously [12]. The key contribu-
tion of the present research is the inclusion of a formal and explicit attacker
in the abstract model extracted from the code, leading to a significantly more
meaningful security analysis.

4 Experimental Results

We implemented our approach on top of the copper tool and experimented
with the C source code of OpenSSL version 0.9.6c that implements the initial
handshake protocol between a server and a client. For each configuration, we ver-
ified the following three security properties: (i) AuthSrvr – the protocol ensures
that every server is always correctly authenticated to a client, (ii) AuthClnt
– the protocol ensures that every client is always correctly authenticated to a
server, and (iii) Secrecy – the protocol ensures that a client’s secret can never
be derived by the attacker. All our experiments were carried out on a 2.4 GHz
machine with 4 GB of RAM.

Due to symmetry, it sufficed to verify AuthSrvr only for the first server,
and AuthClnt and Secrecy only for the first client. Also, each property was
verified independently for every possible instantiation of the input parameters of



AuthSrvr AuthClnt Secrecy

Inst Time Mem Inst Time Mem Inst Time Mem

DeconsCons 15 14090 182 15 30797 273 15 33274 273

Simplify 15 19700 181 15 42854 272 15 45732 272

Fig. 3. Comparison between two types of attacker message derivations. DeconsCons

= deconstruction-construction; Simplify = using Simplify; Inst = no. of input pa-
rameter instantiations verified; Time = time in seconds; Mem = memory in MB.

C#,S# AuthSrvr AuthClnt Secrecy

Inst Time Mem Inst Time Mem Inst Time Mem

2,2 15 14090 182 15 30797 273 15 33274 273

3,3 150 322110 624 139* 334063 635 135* 313912 634

4,4 10* 292459 887 - - - - - -

5,5 2* 257945 812 - - - - - -

Fig. 4. Experimental results for different client and server configurations. C# = no.
of clients; S# = no. of servers; a * indicates that not all possible instantiations were
verified due to lack of time; a - indicates that no experiments were done.

the client roles. Since these parameters represented principal names, they needed
to be assigned a finite number of different values. Hence the total number of
possible instantiation of the input parameters was also finite.

First, we compared between the use of a general purpose theorem prover
(Simplify) and the decision procedure based on deconstruction followed by con-
struction to compute possible message derivations by the attacker. Our results,
for a 2-client-2-server configuration, are summarized in Figure 3. They indicate
the algorithm based on deconstruction and construction is about 40% faster than
using Simplify.

Next, we varied the number of server and client threads and verified the three
properties for each configuration. Figure 4 summarizes our results. Due to lack
of time not all possible parameter instantiations were verified for configurations
with more than 3 servers and 3 clients. However, memory requirements are quite
modest, indicating that our strategy of checking instantiations independently
is a sound space-time tradeoff. We believe that complete verification of large
configurations is possible on clusters or distributed computers with multi-core
CPUs.

5 Conclusion

In this paper, we presented a novel method that combines software model check-
ing with a standard protocol execution and attacker model to provide mean-
ingful security analysis of protocol implementations in a completely automated
manner. We have implemented our approach and verified authentication and



secrecy properties of OpenSSL for configurations consisting of up to 3 servers
and 3 clients. We have also implemented two distinct methods for reasoning
about attacker message derivations (based on general purpose theorem prover
and deconstruction followed by construction) and present their comparison in
the context of OpenSSL verification. While we focus on security protocol im-
plementations in this paper, we believe that our approach is quite general and
applies to other secure software systems as well.
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