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Abstract

Network operators spend significant effort in ensuring
that the network meets their intended policies. While re-
cent work on checking reachability and isolation policies
have taken giant strides in this regard, they do not handle
context-dependent policies that operators implement via
stateful data plane elements. To address this challenge,
we present the design and implementation of Buzz, a
testing framework to ensure that a network with stateful
data plane elements meets complex context-dependent
policies. In designing Buzz, we address significant chal-
lenges in: (1) modeling stateful data plane elements, and
(2) tackling the state-space explosion problem in gener-
ating test scenarios. We also implement practical heuris-
tics to resolve interference from background traffic and
to localize sources of policy violations. We demonstrate
the scalability of BUzz in localizing policy violations on
networks with more than 100 nodes.

1 Introduction

Many studies highlight the difficulty network adminis-
trators face in correctly implementing policies. For in-
stance, one recent survey found that 35% of networks
generate more than 100 problem tickets per month and
nearly one-fourth of these problem tickets take multi-
ple engineer-hours to resolve [14]. Anecdotal evidence
suggests that operators go to great lengths to debug net-
works; e.g., creating “shadow” configurations of entire
infrastructures for testing [25].

This challenge has inspired several projects, including
work on statically checking networks [34,35,36], formal
foundations of networks [17, 31, 41], creating correct-
by-construction controllers [19], verifying software data
planes [26], automatic test packet generation [55], and
debugging control plane software [24, 49]. However,
these efforts largely focus on forwarding-centric prop-
erties (e.g., loops, black holes) and layer 2/3 data plane
functions (i.e., simple switches, routers, ACLs).

While checking reachability properties involving
switch configurations is clearly useful, real networks are
more complex on two dimensions:

o Stateful and higher-layer network functions: Net-
works rely on a variety of data plane middleboxes
and switches [50]. We use the term DPFs to collec-
tively refer to such data plane functions, including:
(i) stateless L2/1.3 elements; and (ii) stateful middle-
boxes (henceforth called stateful DPFs) that operate
at a higher-layer beyond L2/L.3 and whose actions de-
pend on the history of traffic; e.g., a proxy operates

over HTTP requests and may send cached responses.
e Context-dependent policies: Operators use stateful
DPFs to implement advanced policies beyond sim-
ple forwarding and access control rules. A simple
policy is service chaining, i.e., HTTP traffic going
through a sequence of a firewall, IPS, and proxy be-
fore exiting the network. Complex policies involve
context-dependent information; e.g., a host generat-
ing too many failed connections may be flagged as
anomalous and rerouted for detailed analysis [10, 18].

Unfortunately, such stateful operations and their at-
tendant context-dependent policies fall outside the scope
of the aforementioned network verification and testing
tools. Our goal is to address this key missing piece to
take us closer to the “CAD-for-networks” vision [39].

In this paper, we present the design and implementa-
tion of Buzz,! a framework for testing if a network with
stateful DPFs meets specified context-dependent poli-
cies. At a high level, BUZZ is a model-based tester [52].
Specifically, given an intended behavioral specification
of the network (i.e., all stateful and stateless DPFs and
their interconnections) BUZZ generates test traces that
exercise specific policies, and then injects them into the
real network to see if the observed behavior matches the
intended policy. We make key contributions in address-
ing two related challenges to make this vision practical:

e Data plane modeling (§5): While, conceptually, a
stateful DPF is a “giant” finite state machine operat-
ing on raw IP packets, it is intractable to enumerate all
possible states for all possible input packet sequences.
To make DPF models tractable, BuzZ uses two key
ideas. First, instead of modeling a DPF’s operations as
a “giant FSM”, we model each DPF as a FSM ensem-
ble that mirrors the conceptual separation across func-
tions inside the actual DPF’s implementation; e.g., a
proxy keeps a separate TCP state machine for each
client and server. Second, rather than viewing DPFs as
operating on low-level packets, we model their input-
output behaviors in terms of a new notion of BDUs
(Buzz Data Units), which are abstract data units
that succinctly capture higher-layer semantics span-
ning multiple low-level IP packets and also explic-
itly model the impact of stateful/context-dependent
DPF actions. For instance, a full HTTP response can
be represented by a single BDU “packet”, instead of
many low-level packets. Similarly, BDUs allows our
DPF models to expose hidden behaviors [29].

1BUZzz “explores space™; e.g., “Buzz” Aldrin and Buzz Lightyear.



o Test traffic generation (§6): For reasonably interac-
tive testing, new test cases must be generated in sec-
onds. Unfortunately, even if we address the above
modeling challenge, we run into scalability issues
while trying to exercise a policy-specific sequence of
effects due to the well-known state-space explosion
problem [21]. To this end, we use a combination of
three key ideas. First, we replace exhaustive state-
space search with a more efficient symbolic execution
based approach. Second, we leverage our BDU ab-
straction to first generate a high-level plan in terms
of BDUs and then translate it into raw test traces.
Finally, we engineer domain-specific optimizations
(e.g., restricting number of symbolic variables) that
allow symbolic execution to scale to large networks.

We implement models for various DPFs as FSM en-
sembles written in C. Our choice of C over a domain-
specific language [19, 31, 41] immediately lends Buzz
to a body of tools optimized for symbolic execution
of C such as KLEE [22]. We implement our domain-
specific optimizations on top of KLEE. We developed
a custom translation from BDU sequences generated by
KLEE to “raw” request traces used to test the real net-
work. We prototype the overall test orchestration capa-
bilities atop OpenDaylight [8]. Finally, given that we
are performing tests on the actual network, we engineer
heuristics leveraging SDN-based monitoring capabilities
to rule out side effects from background traffic. We also
implement practical heuristics to help localize diagnostic
efforts when policy violations are detected (§7).

Our evaluations on a real testbed, shows that Buzz:

e can test hundreds of policy scenarios on networks with
> 100 nodes in tens of seconds;

e dramatically improves scalability, providing nearly
three orders of magnitude reduction in time for test
case generation;

o cffectively localizes intentional data/control plane
bugs within tens of seconds; and

e imposes less than 1% overhead in terms of additional
traffic even with adversarially interfering traffic.

2 Motivating Scenarios

In this section, we use small but realistic network sce-
narios to: (i) highlight stateful data plane functions and
context-dependent policies used by administrators; (ii)
motivate challenges in implementing these policies cor-
rectly; and (iii) present limitations of existing work (on
L2/3 reachability) in addressing these challenges.
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Figure 1: Dynamic cache actions.

Stateful firewalling: Today’s firewalls go beyond the
traditional match-then-drop paradigm. A common pol-
icy is reflexive firewalling; i.e., the firewall tracks out-
going connections from internal hosts and allows incom-
ing packets for previously established connections. Un-
fortunately, even this basic stateful processing cannot be
handled by existing “memoryless” static checkers. For
instance, ATPG [55] and HSA [35] can only check for
single packet effects and cannot model connection estab-
lishment logic and reflexive rules.
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Figure 2: Blocking policy is difficult due to NATs.

Dynamic policy violations: In Figure 1, we want to
monitor outgoing web traffic. The problem here is subtle,
as the proxy may send cached responses bypassing the
monitor, defeating our goal. Potential fixes to this prob-
lem include placing the monitor before the proxy or us-
ing FlowTags to explicitly steer cached responses [29].
The key challenge is in identifying such potential pol-
icy violations and ensuring that the solution (e.g., using
FlowTags) is implemented correctly?. Specifically, to
identify this policy violation, we need to model the state-
ful behavior of the proxy across connections.

Firewalling with Cascaded NATs: Figure 2 shows a
scenario where hosts are doubly NAT-ed — at the depart-
ment and the enterprise border. Prior work shows cas-
caded NATs are notoriously error-prone [20, 42]. Sup-
pose the remote web server’s firewall needs to to block
host H; but allow H,. Even this seemingly easy access
control policy is difficult to check with existing L2/L.3
reachability tools because the hosts are hidden behind
NATs; e.g., HSA/ATPG models them as “black-boxes’.
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Figure 3: Dynamic “triggers”.

Multi-stage triggers: Figure 3 shows two intrusion pre-
vention systems (IPS) used in sequence. The intended
policy is to use the light-weight IPS (L-IPS) in the com-
mon case and only subject suspicious hosts flagged by
the L-IPS (e.g., when a host generates scans) to the

2Buzz was partly motivated by the failure of existing tools to vali-
date that our FlowTags implementation fixes the problem.



more expensive H-IPS. Such multi-stage detection is use-
ful; e.g., to minimize latency and/or reduce H-IPS load.
Again, it is difficult to check that this multi-stage oper-
ation works correctly using existing static checkers and
reachability verifiers [35,55], because they ignore hidden
state inside the IPSes and triggered sequence of intended
actions (i.e., the context).

Stateful Contextual | Active
data planes | policies testing
Test packet generation | No No Yes
(e.g. [55])
Static verification | No No No
(e.g., [34,35,36,38])
Verifying data plane | Yes No No
software (e.g., [26])

Table 1: Strawman solutions (rows) vs. requirements
from the motivating scenarios (columns).

Strawman solutions: The above scenarios imply three
key requirements: (1) capturing stateful data plane be-
haviors (e.g., stateful firewalls); (2) capturing contextual
policies (e.g., LIPS-HIPS); and (3) active testing to re-
veal subtle traffic-dependent bugs that may not be di-
rectly visible from just looking at the network configu-
ration (e.g., dynamic cache actions or cascaded NATS).
Table 1 summarizes if/how some existing solutions ad-
dress the scenarios described earlier. Across all moti-
vating scenarios, we find that existing tools for check-
ing network policies are inadequate. At a high level, the
problem is that many existing tools for network reach-
ability testing explicitly acknowledge these challenges
and treat them as being out-of-scope to make their work
tractable. While there is some recent work on testing
software data planes, the focus is on different types of
errors (e.g., crash or CPU cycles/packet) rather than the
network-wide policy violations we consider here. Our
overarching goal is to bring the benefits that these afore-
mentioned efforts have provided for reachability correct-
ness to the types of stateful network processing and con-
textual policies introduced by the above scenarios.

3 Problem Formulation

Our high-level goal is to help network administrators fest
that the data plane implements the intended policies. In
this section, we begin by formally defining our intended
data plane semantics, and what we mean by a policy.
In addition to helping us precisely define our goals, the
formalism sheds light on the key technical components
and challenges underlying any solution for testing state-
ful data planes for the given context-dependent policies.

3.1 Preliminaries

First, we define the semantics of a DPF and the network.
DPF: Let 22 denote the set of packets.> Formally, a

3Packets are “located” [35,46], so that the DPF can identify and use

DPF is a 4-tuple (S,I,E,8) where: (i) S is a finite set of
states; (ii) I € S is the initial state; (iii) E is the set of
network edges; and (iv) § : SX £ — Sx P X EX X is
the transition relation.

Here, X is a set of effects that capture the response
of a DPF to a packet. Each o € X provides contextual
information that the administrator cares about. Each «
is annotated with the specific DPF generating the effect
and its relevant states; e.g., in Figure 3 we can have
oy = (LIPS : Hy,Alarm,SendToHIPS) when the LIPS
raises an alarm and redirects traffic from H; to the H-
IPS, and o = (LIPS : Hy, OK, SendTolnternet) when the
LIPS decides that the traffic from H; was OK to send
to the Internet. Using effects, administrators can define
high level policy intents rather than worry about low-
level DPF states. Note that this DPF definition is gen-
eral and it encompasses stateful DPFs from the previous
section and stateless L2-L3 devices.

Network: Formally, a network data plane net is a pair
(N,7) where N = {DPFy,...,DPFy} is a set of DPFs
and 7 is the topology map. Informally, if 7(e) = DPF;
then packets sent out on edge e are received by DPF;.*
We assume that the graph has well-defined sources (with
no incoming edges), and one more sinks (with no out-
going edges). The data plane state of net is a tuple
o = (s1,...,8v), Where s; is a state of DPF;.

3.2 Processing semantics

To simplify the semantics of packet processing, we as-
sume packets are processed in a lock-step (i.e., one-
packet-per-DPF-at-time) fashion and do not model (a)
batching or queuing effects inside the network (hence no
re-ordering and packet loss); (b) parallel processing ef-
fects inside DPFs; and (c) the simultaneous processing
of different packets across DPFs.

Let 6 = (s1,...,Si,...,5v) and 6" = (s1,...,5},...,5n)
be two states of net. First, we define a single-hop net-
work state transition from (o,i,7) to (¢’,i,n’) labeled
by effect o, denoted (0, i, ) —= (¢’ ,i', 7' if &(s;, 1) =
(s;, 7' e, a), with DPFy = t(e). A single-hop network
state transition represents processing of one packet by
DPF; while the state of all DPFs other than DPF; remains
unchanged. For example, when the L-IPS rejects a con-
nection from a user, it increments a variable tracking the
number of failed connections. Similarly, when the state-
ful firewall sees a new three-way handshake completed,
it updates the state for this session to connected.

Next, we define the end-to-end state transitions that
a packet 7" entering the network induces. Suppose
m" traverses a path of length n through the sequence
of DPFs DPF; ,...,DPF;, and ends up in DPF; , (note

the incoming network interface information in its processing logic.
4We assume each edge is mapped to unique incoming/outgoing
physical network ports on two different DPFs.



that the sequence of traversed DPFs may be different for
different packets). Then the end-to-end transition is a

4-tuple (01,7, (Qu, ..., 0),0,11) such that there ex-
ists a sequence of packets 7p,..., T, with 7 = n",
and a sequence of network states 0, ...,0,_1 such that

V1 <k<n: (Gk,ik,ﬂk) &> (Gk+17ik-ﬁ'-177tk+l)-

That is, the injection of packet 7" into DPF;, when
the network is in state o7 causes the sequence of ef-
fects (i, ..., &) and the network to move to state 0,1,
through the above intermediate states, while the packet
ends up in DPF;, . For instance, when the L-IPS is
already in the toomanyconn-1 state for a particular
user and the user sends another connection attempt, then
the L-IPS will transition to the t oomanyconn state and
then the packet will be redirected to the H-IPS.

Let E2ESem(net) denote the end-to-end “network se-
mantics” or the set of feasible transitions on the network
net for a single input packet.

Trace semantics: Next, we define the semantics of
processing of an input packet trace I1 = mi",... 7.
We use @& to denote the vector of DPF effects associ-
ated with this trace; i.e., the set of effects across all
DPFs in the network. The network semantics on a
trace II is a sequence of effect vectors: TraceSemp =
(Q,...,0,) where V1 <k <m: 7" € P Ny € L.
This is an acceptable sequence of events iff there ex-
ists a sequence Oj,..., 0+ Of states of ner such that:
V1 <k <m: (Ok, 7", Gy, Ok+1) € E2ESem(net).

3.3 Problem Definition

Given the notion of trace semantics defined above, we
can now formally specify our goal in developing BUzz.
At a high-level, we want to test a policy. Formally, a
policy is a pair (TraceSpec; TraceSem), where TraceSpec
captures a class of traffic of interest, and TraceSem is the
vector of effects of the form (¢ ... &,) that we want to
observe from a correct network when injected with traffic
from that class. Concretely, consider two policies:

1. In Figure 1, we want: “Cached web responses to
Deptl should go to the monitor”. Then, TraceSpec
captures web traffic to/from Deptl and TraceSem =
(ay, o), with o = Proxy : Deptl,CachedObject and
0 = Proxy : Deptl,SendToMon.

2. In Figure 3 we want: “If host H; contacts more
than 10 distinct destinations, then its traffic is
sent to H—IPS”. Then, TraceSpec captures traf-
fic from H;, and TraceSem = (a;,0p) where o) =
L—IPS :H|,MorethanlOScan, and o, = L—IPS :
Hy,SendtoHIPS.

Our goal is to check that such a policy is satisfied by
the actual network. More specifically, if we have a con-
crete test trace I1 that satisfies TraceSpecr; and should
ideally induce the effects TraceSemyy, then the network
should exhibit TraceSemy when I1 is injected into it.

-
Admin [ check L-IPS>H-IPS triggers correctly

|
u Intended Behavior ‘
‘ Test planner (Sec 6)

‘ Validation Engine (Sec 7) ‘

Data plane
model (Sec 5)

‘Trace injector ‘

Regular traffic

Figure 4: High-level overview of Buzz.

In practice, generating these concrete test traces is te-
dious as it requires understanding and dealing with the
complex low-level behaviors of DPFs. The goal of Buzz
is to automate this test trace generation. That is, the ad-
ministrator gives a high-level specification of TraceSpec
(e.g., Web traffic from/to Deptl) and TraceSem, and
BUZzz generates a concrete test trace, injects it into the
network, and checks if it satisfies the policy. Next, we
discuss how BUZZ achieves this goal.

4 Buzz System Overview

Figure 4 shows the main components of BUZz. The input
to Buzz is the administrator’s policies (S1). In practice,
we envision that administrators will define these policies
in a higher-layer language that can then be translated to
more formal (TraceSpec; TraceSem) entries. As such, the
design of this policy language is outside the scope of
this paper. These input policies refer to physical DPFs
(e.g., a NAT followed by a firewall), which can be ob-
tained from policies in terms of corresponding logical
DPFs [45]. We envision operators populating a set of
such policies.’ Given these, BUZZ processes these one
policy a time as we describe next.

As we saw in the previous section, the effects depend
on the processing semantics of the individual DPFs and
the data plane as a whole. Thus, BUZZ needs a model
of the entire data plane (i.e., DPFs and the interconnec-
tions). Writing the DPF models is a one-time task for
each type of DPF and we envision this can be provided
by DPF vendors and other domain experts working to-
gether. Note that our simplifying assumption on packet
processing semantics (§3.2) only apply to the data plane
model not the physical data plane.

Given the data plane model and one policy, BUZZ gen-
erates a test plan (S2). In essence, the test plan satisfies
the TraceSpec and causes the model data plane to exer-
cise the specific TraceSem. In practice, we decouple this
into two stages: (i) generating a high-level plan in terms
of abstract entities called BDUs; and (ii) generating a

SBuzz cannot discover violations of behaviors that cannot be ex-
pressed as policies. Thus, BUZZ is not a tool to discover new bugs;
rather it tests if the behavior of the real data plane matches the policies.
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Figure 5: Illustrating challenges in choosing a suit-

able option of I/O and FSM state granularity in bal-
ancing model tractability, fidelity, and composability.

concrete test manifest (i.e., scripts that create test traffic)
to feed into the injectors. The injectors are regular hosts
or servers running test traffic generators or other trace
injection software that execute the test manifest (S3).

Then, BUZZ monitors the network and determines
whether this test passed/failed (S4). That is, while we
know that the generated test trace will cause the effect
TraceSem on the model data plane, this phase determines
if the physical data plane also shows TraceSem. Finally,
we also envision additional test cases for further diagnos-
tics to localize the causes for the policy violation (e.g.,
broken link, middlebox misbehavior) (S5).

Given this high-level view, in the following sections
we highlight the key challenges in making this vision
practical and our solutions to address these challenges.

5 Data Plane Modeling

We begin by highlighting the challenges in balancing fi-
delity vs. tractability and composability of DPF models.
Then, we describe the two key modeling ideas we intro-
duce in Buzz— BDU and FSM ensembles— that achieve
a good balance across these requirements.

5.1 Strawman solutions

Modeling a DPF requires us to fix the granularity of in-

put/output and FSM operations. Figure 5a depicts the

space of modeling strategies along these two dimensions.

To understand the challenges in deciding these two gran-

ularities, we consider three strawman solutions.

1. Use the “giant” FSM formalism from §3 (i.e., the 4-
tuple (S,1,E,d)): However, writing down this FSM
at a packet granularity is tedious and error-prone. For
instance, to model state transitions involving a single
HTTP request/reply in a proxy, we need to model the
sub-transitions for tens of packets. Furthermore, it is
infeasible to explicitly write down all states, as it re-
quires enumerating all input packet sequences.

2. Use the code as the “model”: This makes test traffic
generation challenging because of the code complex-
ity. For instance, Squid has > 200K lines of code
and introduces other sources of complexity that are ir-
relevant to the policies being checked. Also, we may
not have the source code, or the code may not match
the policy due to bugs.

3. Write DPFs at a very high-level and focus on “rel-

evant” states and inputs: This is labeled as “High-
level” in Figure 5a); e.g., write the proxy in terms
of HTTP object requests/responses as shown in Fig-
ure 5b.° Given the diversity of DPF operations that
act on different layers, such models are fundamentally
non-composable as the input-output granularity of dif-
ferent DPFs will not match; e.g., we cannot simply
“chain” the output of a proxy operating at this level to
a packet-level firewall as we did in §3.

Next, we describe our solution to the granularity prob-
lem. We retain the lock-step processing semantics from
§3 and introduce two key ideas to address the shortcom-
ings of the above strawman solutions: (1) the BDU ab-
straction for input-output behaviors and (2) FSM ensem-
bles for FSM operations.

5.2 BDU abstraction

First, we tackle the issue of the input-output granularity.
Our observation is to ensure composability of DPF mod-
els, we want a located packet-like abstraction [35] since
it is a natural “lowest common denominator” across di-
verse DPFs. A located packet is simply a packet along
with a specific network interface denoting its location.
However, a packet (even a located packet) is too low-
level to express the desired DPF semantics. To this end,
we introduce the BDU or Buzz Data Unit, that extends
the notion of a located packet in three main ways.

First, we allow each BDU to represent a sequence of
packets rather than an individual packet. The reason is
that many “relevant” effects inside a DPFs occur on sets
of packets rather than a single IP packet. For example,
the proxy’s cache state transitions to an “relevant state”
(i.e., cached state w.r.t. an object) only after the entire
payload has been reassembled. Second, the BDUs cap-
ture relevant features that might be relevant for the test
scenarios; e.g., the notion of a HTTP request/response.
Third, BDUs effectively encode the effect semantics of
the DPFs along its path in the form of alphaTags.
Conceptually, we can view an alphaTag as an encod-
ing of a specific effect o € ¥ from our formalism. This
ensures that the BDU carry its “policy-related processing
history” as it goes through the network. Note that in the
base case, a BDU is a simple IP packet, but BDUs give us
the flexibility to define higher-layer operations as well.

Intuitively, BDUs reduce modeling complexity by
consolidating different protocol semantics (e.g., HTTP,
TCP) and effects involving multiple IP packets (e.g., all
packets corresponding to a HTTP reply are represented
by one BDU with the httpRespObj field indicating the re-
trieved object id). Concretely, a BDU is simply a struct
as shown in Listing 1. Note that the struct fields are a

®Tn fact, this was the approach in our early workshop paper [28].



Listing 1: BDU structure.

struct BDU{

// IP fields

int srcIP, dstIP, proto;

// transport

int srcPort, dstPort;

// TCP specific

int tcpSYN, tcpACK, tcpFIN, tcpRST;
// HTTP specific

R =N S ST R SR

9 int httpGetObj, httpRespObij;

10 // BUZzZ-specific

11 int dropped, networkPort, BDUid;

12 // Each DPF conceptually records its effect

13 int alphaTag[MAXTAG];
14 ..
15 }i

superset of required fields of the DPFs. Each DPF pro-
cesses only fields relevant to its function (e.g., the switch
function ignores HTTP layer fields of input BDUs).

While we do not claim to have a BDU definition that
can encompass all possible network contexts and policy
requirements, we suggest a high-level roadmap that has
served us well. Specifically, the key to determining the
fields of a BDU is to consider all DPFs of interest and
identify policy-related state transitions in DPFs of inter-
est. For example, each of TCP SYN, TCP SYN+ACK,
etc. make important state transitions in a stateful firewall
and thus should be captured as BDU fields.

5.3 Modeling DPFs as FSM ensembles

We now address the issue of FSM granularity. Here our
insight is to borrow from the design of actual DPFs. In
practice, DPF programs (e.g., a firewall) do not explicitly
enumerate the full-blown FSM. Rather, they have an im-
plicit model; e.g., the state machines are created for the
subset of observed packets and the different functional
components of the DPF are naturally segmented.

To understand this better, consider a proxy. A proxy is
instructive because it is quite complex — it operates on a
higher layer of sessions, terminates sessions, and it can
respond directly with objects in its cache. The code of
a proxy, e.g., Squid, effectively has three independent
modules: TCP connections with the client, TCP connec-
tion with the server, and cache. While the proxy is ef-
fectively the “product” of these modules, modeling it by
computing the product explicitly is not practical as this
leads to state-space explosion.

Listing 2 shows a partial code snippet of the proxy
model, focusing on the actions when a client is request-
ing a non-cached HTTP object and the proxy does not
currently have a TCP connection established with the
server. Here the id allows us to identify the specific
proxy instance. The specific state variables of different
proxy instances are inherently partitioned per DPF in-
stance (not shown). These track the relevant DPF states,
and are updated by the DPF-specific functions such as
srvConnEstablished.’

7This choice of passing “id”’s and modeling the state in per-id global

Listing 2: Proxy as an FSM ensemble.

BDU Proxy (DPFId id, BDU inBDU) {

if ((frmClnt (inBDU)) && (isHttpRg(inBDU))) {
if (!cached(id, inBDU)) {
if (srvConnEstablished (id, inBDU))
outBDU=rgstFrmSrv (id, outBDU);
else
outBDU=tcpSYNtoSrv (id, inBDU);

® 9 U AW —

9 }

10 }

11 /+set alphaTags based on context (e.g.,
12 | cache hit/miss, client ip)x*/

13 | outBDU.alphaTags = ...

15 return outBDU;
16 }

If the input inBDU is a client HTTP request (Line 3),
and if the requested object is not cached (Line 4), the
proxy checks the status of TCP connection with the
server. If there is an existing TCP connection with the
server (Line 5), the output BDU will be a HTTP request
(Line 6). Otherwise, the proxy will initiate a TCP con-
nection with the server (Line 8).

This example shows that by decoupling the three state-
ful aspects of the proxy (i.e., client/server-side TCP con-
nections and cache contents) we can move away from an
FSM model of a proxy with each state being of the form
(client _TCP_state, server TCP _state, cache_content)
to a simpler ensemble of three smaller FSMs each
with a single type of state, i.e., (client_TCP_ state),
(server TCP_state), and (cache_content). In other
words, we represent the product implicitly, and thereby
avoid state space explosion.

Each DPF encodes the relevant effect in the
alphaTag field of the outgoing BDU as shown in
Line 13. There is a natural correspondence between
alphaTags and FlowTags we used previously to
track packet modifications and dynamic middlebox ac-
tions [29]. For instance, if a DPF modifies headers, then
the BDU to carries the context so that the true origins
of the packet is not lost, and can be used to check if
the relevant policy at some downstream DPF is imple-
mented correctly; e.g., if a NAT modifies the srcIP, then
the downstream firewall may not be able to apply its
rules consistently. In the next section we explain how
these ideas are used to generate a concrete test trace.
Note that BUZZ does not require that the actual DPFs be
FlowTags-enabled; it merely uses these FlowTags-
like constructs internally to model DPF operations.

5.4 Putting it together

Combining the above ideas, each DPF is thus modeled as
an FSM ensemble that receives an input BDU and gen-
erates an output BDU. The output BDU encodes the rel-
evant contextual information associated with the effect

variables is an implementation artifact of using C/KLEE, and is not fun-
damental to our design.



Listing 3: Network pseudocode for Figure 1.

1 // Symbolic BDUs to be instantiated (see §6).
2 |BDU A[20];

3 | int httpObjId = httpObjIdToMonitor;
4 | // Global state variables

5 |bool Cache[2][100]; // 2 proxies, 100 objects
6 | // Switch

7 BDU Switch(DPFId id, BDU inBDU) {

8 outBDU=1lookUp (id, inBDU) ;

9 | return outBDU;

10 }

11 | // Monitoring DPF

12 BDU Mon (DPFId id, BDU inBDU) {

14 |if (isHttp(id, inBDU)) {
15 updateHttpStats (id, inBDU);
16 }

18 | outBDU = inBDU; //a passive monitoring device
19 | return outBDU;

20 }

21 | // Proxy DPF; See Listing 2

22 BDU Proxy (DPFId id, BDU inBDU) {

24 }
25 | // Network sequential processing (§3)
26 for each injected A[i]{

27 while (!DONE(A[i])){

28 Forward A[i] on current link;

29 A[i] = Next_DPF(A[i]);

30 assert ((! (A[i].alphaTags[l]==CachedHttpObjId
31 || (!'A[i].port=MonitorPort));

that the DPF performed on the input BDU. We assume
that each DPF instance has a unique id that allows us to
identify the “type” of the DPF and thus index into the
relevant global state variables.

The generality of BDUs and the fact that they also
capture the locations (note networkPort in Listing 1,
which species the current network port at which the BDU
is located) allow DPFs to be easily composed. Con-
cretely, consider the network of Figurel and see how
we compose models of proxies, switches, and the mon-
itoring device as shown in Listing 3. Lines 7-10 model
the stateless switch. Function 1o0okUp takes the input
BDU, looks up its forwarding table, and creates a new
outADU with its port value set based on the forward-
ing table. (Following prior work [35], we consider each
switch DPF as a static data store lookup updating located
packets.) Lines 12-20 capture the monitoring DPF.

We model the data plane as a simple loop (Line 26)
following the sequential lock-step semantics from §3. In
each iteration, a BDU is processed (Line 27) in two steps:
(1) the BDU is forwarded to the other end of the current
link, (2) the BDU is passed as an argument to the DPF
connected to this end (e.g., a switch or firewall). The
BDU output by the DPF is processed in the next iteration
until the BDU is “DONE”; i.e., it either reaches its des-
tination or gets dropped by a DPF. The role of assert
will become clear in the next section when we use sym-
bolic execution to exercise a specific policy behavior.

6 Test Traffic Generation

Given the data plane model (as described in the last sec-
tion) and a policy (TraceSpec; TraceSem), our next goal
is to generate a test plan that explores the states of the
data plane to induce the intended TraceSem. We break
this into two logical steps: (1) generating a plan at the
granularity of BDUs using symbolic execution, and (2)
translate it into a concrete test manifest (test scripts that
create test traffic). The key practical requirement is that
we want this to be fast (seconds) for interactiveness.

6.1 Symbolic Execution using BDUs

While BDUs address the challenges of modeling data
planes, they do not address state space explosion due to
composition of DPF models. To see why, suppose a BDU
(e.g., a TCP SYN+ACK) sequentially traverses DPF] (a
proxy) and DPF; (firewall). Suppose DPF| and DPF,
can reach K; and K, possible states w.r.t. this BDU, re-
spectively (e.g., the proxy waiting for a TCP  SYN+ACK
from a web server, and the firewall watching for un-
solicited connection requests). The composition of the
DPFs can reach K; x K5 states w.r.t. this BDU. This com-
binatorial growth with the number of DPFs and possible
BDUs makes it difficult to find a test trace.

We tried several approaches to tackle state-space ex-
plosion using Al planning, model checking, and custom
search techniques. However, these techniques did not
scale beyond networks with 5-10 DPFs.

To address this scalability challenge, we turn to sym-
bolic execution, which is a well known approach in for-
mal verification to address state-space explosion [21]. At
a high-level, a symbolic execution engine explores pos-
sible behaviors of a given program by considering differ-
ent values of symbolic variables [23]. One well-known
concern is that symbolic execution can sacrifice cover-
age. In our specific application context, this tradeoff to
enable interactive testing is worthwhile. First, adminis-
trators may already have very specific testing goals in
mind. Second, configuration problems affecting many
users will naturally manifest even with one test trace. Fi-
nally, if we have a fast solution, we can run several tests
changing the values to improve coverage.

Thus, to generate a high-level plan, we use symbolic
execution in BUzz at the granularity of BDUs to pro-
duce a ITgpy or a sequence of BDUs. To this end, we
define test BDUs as symbolic variables. The symbolic
execution engine assigns values to these test BDUs such
that “interesting states” of the data plane representing
TraceSem are triggered. Specifically, given the policy
(TraceSpec; TraceSem), we use symbolic execution as
follows. First, we constrain the symbolic BDUs to satisfy
the TraceSpec condition. Second, we introduce the nega-
tion of TraceSem or —TraceSem as an assertion in the
model code. In practice, the —~TraceSem assertion will be



Listing 4: Assertion pseudocode for Figure 3 to
trigger alarms at both IPSes.

// Global state variables
int L_IPS_Alarm[noOfHosts];//alarm per host
int H_IPS_Alarm[noOfHosts];//alarm per host

assert ((!L_IPS_Alarm[A[i].srcIP]) ||
('H_IPS_Alarm[A[i].srcIP]));

o L B W —

expressed in terms of BDU fields (e.g., networkPort,
alphaTags) and the global state variables. Then, we
let the symbolic execution engine find an assignment to
the symbolic BDU variables that causes this assertion to
be violated. Because we use the negation in the asser-
tion, the end result is that we will get a BDU-level trace
that induces the effects in TraceSem.

To see this more concretely, we revisit the example
from Figure 1 in Listing 3. Suppose we want a test
plan to observe cached responses from the proxy to Dept.
Lines 30-31 shows the assertion so that symbolic execu-
tion will instantiate a trace of BDUs that causes a cached
response to be returned by the proxy (where being a
cached response here is encoded in alphaTags[1]
part of BDUs) to arrive at the monitor’s incoming port.
For instance, suppose currently there is TCP connection
between a host in the Dept. the symbolic execution en-
gine might give us a test plan with 5 BDUs: three BDUs
between a host in the Dept. and the proxy to establish
a TCP connection (the 3-way handshake), a fourth BDU
has httpGetObj = httpObjId from the hostto the
proxy (which will results in a cache miss at the proxy
and triggers fetching the object by the proxy from the
remote server), followed by another BDU with the field
httpGetObj set to httpObjId to induce a cached
response. Note we set the number of symbolic BDUs
conservatively high (i.e., 20 in this example) without fac-
ing any slowdown. The reason behind this is that as soon
as the assertion is violated (e.g., after 5 BDUs), test plan-
ning terminates and the extra symbolic BDUs do not af-
fect the symbolic execution.

Listing 4 shows another example of an assertion en-
suring that an alarm is triggered at both L-IPS and H-IPS
of Figure 3. The assertion in Lines 5-6 creates a trace of
BDUs capturing a sequence of connection attempts that
triggers both L-IPS and H-IPS to raise alarms.

6.2 Optimizing Symbolic Execution

While symbolic execution is orders of magnitude faster
than other options, it does not provide the speed needed
for interactive testing. Even after a broad sweep of con-
figuration parameters and command line arguments to
customize KLEE, it took several hours even for a small
topology (§9). To make it scale to larger topologies, we
implemented a suite of domain-specific optimizations:
e Minimizing symbolic variables: Making the entire
BDU symbolic will force KLEE to find values for ev-

ery field. To avoid this, we use policy-specific insights
to have a small subset of symbolic fields; e.g., when
are testing the stateful firewall without a proxy, we can
set the HTTP-relevant fields to concrete values.

e Scoping values of symbolic variables: The TraceSpec
already scopes the range of values each BDU can take.
We can further narrow this range and still find good
test traces. To this end, we use protocol-specific in-
sights to assign concrete values to as many BDU fields
as possible. For example, we set a client’s TCP port
number to a unique value (as opposed to making the
srcPort field symbolic). This value is only used in
the model for test planning and the actual client TCP
port is chosen by the host at run time (§6.3).

e Other optimizations: We applied other optimization
to further speed up the traffic planning process. This
includes “memorizing” BDU traces to trigger previ-
ously explored states as well as utilizing overlaps be-
tween TraceSem components of different policies.

6.3 Generating Concrete Test Traffic

We cannot directly inject BDUs into a physical data
plane since these are abstract entities; we need to test
the data plane using a set of real IP-layer packets. To this
end, we design a custom translation layer that takes as
input a high-level test plan (i.e., sequence of BDUs) and
generates a concrete fest manifest that we can feed into
the BUzz traffic injectors. This insight in designing this
translation layer is two fold. First, we need to consider
the protocol semantics of traffic to which the intended
policies apply (we have considered IP, TCP, UDP, and
HTTP so far). For example, a sequence of three BDUs
that correspond to TCP SYN from host A to server B,
TCP SYN+ACK from B to A, and TCP ACK from A to
B collectively indicate a TCP connection establishment.
Second, we cannot create the concrete test traffic at a
packet level (e.g., as opposed to ATPG [55]). This is be-
cause many values are determined by the OS at run time;
e.g., we cannot predict TCP sequence numbers. Thus,
we translate the BDUs to a sequence of traffic generation
functions into a script that will be run at a given injec-
tion point. For example, the above three TCP BDUs are
translated to a function estalb1ishTCP (A, B) runs at
host A to connect to TCP server B. We currently use 10
such traffic generation primitive functions that support
IP, TCP, UDP, and HTTP. We plan to extend this to ac-
commodate other protocols.

7 Test Monitoring and Validation

After the test traffic is injected into the data plane, the
outcome should be monitored and validated. First, we
need to disambiguate true policy violations from those
caused by background interference. Second, we need
mechanisms to help localize the misbehaving DPFs.



Orig = Obs Orig # Obs
No interference or re- | Success Fail. Repeat on
solvable interference Orig — Obs using
MonitorAll

Unresolvable interfer-

ence

Unknown; Repeat Orig using MonitorAll

Table 2: Validation and test refinement workflow.

While a full solution to fault diagnosis and localization is
outside the scope of this paper, we discuss the practical
heuristics we implement.

Monitoring: Intuitively, if we can monitor the status of
the network in conjunction with the test injection, we can
check if any of the background or non-test traffic can po-
tentially induce false policy violations. Rather than mon-
itor all traffic (we refer to this as MonitorAll), we can use
the intended policy to capture a smaller relevant traffic
trace; e.g., if the policy is involves only traffic to/from
the proxy, then we can focus on the traffic on the proxy’s
port. To further minimize this monitoring overhead, as an
initial step we capture relevant traffic only at the switch
ports that are connected to the stateful DPFs rather than
collect traffic traces from all network ports. However, if
this provides limited visibility and we need a follow-up
trial (see below), then we revert to logging traffic at all
ports for the follow-up exercise.

Validation and localization: Next, we describe our cur-
rent workflow to validate if the test meets our policy in-
tent, and (if the test fails) to help us localize the sources
of failure otherwise. The workflow naturally depends on
whether the test was a success/failure and whether we
observed interfering traffic as shown in Table 2.

Given the specific policy we are testing and the rel-
evant traffic logs, we determine if the network satisfies
the intended behavior; e.g., do packets follow the policy-
mandated paths? In the easiest case, if the observed path
Obs matches our intended behavior Orig and we have no
interfering traffic, this step is trivial and we declare a suc-
cess. Similarly, if the two paths match, even if we have
potentially interfering traffic, but our monitoring reveals
that it does not directly impact the test (e.g., it was target-
ing other applications or servers), we declare a success.

Clearly, the more interesting case is when we have a
test failure; i.e., Obs # Orig. 1If we identify that there
was no truly interfering traffic, then there was some po-
tential source of policy violation. Then we identify the
largest common path prefix between Obs and Orig; i.e.,
the point until which the observed and intended behav-
ior match and to localize the source of failure, we zoom
in on the “logical diff” between the paths. However, we
might have some logical gaps because of our choice to
only monitor the stateful DPF-connected ports; e.g., if
the proxy response is not observed by the monitoring
device, this can be because of a problem on any link
or switch between the proxy and the monitoring device.

Thus, when we run these follow up tests, we enable Mon-
itorAll to obtain full visibility.

Finally, for the cases where there was indeed some
truly interfering traffic, then we cannot have any confi-
dence if the test failed/succeeded even if Obs = Orig.
Thus, in this case the only course of action is a fall back
procedure to repeat the test but with MonitorAll enabled.
In this case, we use an exponential backoff to wait for the
interfering flows to die.

8 Implementation

DPF models: We wrote C models for switches, ACL de-
vices, stateful firewalls (capable of monitoring TCP con-
nections and blocking based L3/4 semantics), NATs, L4
load balancers, proxies, passive monitoring, and simple
intrusion prevention systems. In writing DPF models, we
reuse common building blocks across DPFs (e.g., TCP
connection sequence).

DPF Model validation: We implemented several mea-
sures to validate our DPF models. First, we use a
bounded model checker, CMBC, on individual DPF mod-
els and the network model to ensure they do not contain
software bugs (e.g., pointer violations, overflow). While
this was time consuming, it was a one-time task. Second,
we used call graphs [4, 15] to check that the model be-
haves as expected. Third, we compared the input-output
behavior of the model with open source DPFs.

Test traffic generation and injection: We use KLEE
with the optimizations discussed earlier to produce the
BDU-level plan, and then translate it to test scripts that
are deployed at the injection points. Test traffic packets
are marked by setting a specific (otherwise unused) bit.

Traffic monitoring and validation: We currently use
offline monitoring via t cpdump (with suitable filters);
we plan to integrate more real-time solutions like Net-
Sight [32]. We use OpenFlow [40] to poll/configure
switch state. We use an OpenDaylight-based implemen-
tation of FlowTags [29] to gain better visibility into
middlebox actions.

9 Evaluation

In this section we evaluate the effectiveness and perfor-
mance of Buzz and show that: (1) BUZZ successfully
helps diagnose a broad spectrum of data plane prob-
lems (§9.1); (2) BUZZ’s optimizations provide more than
three orders of magnitude speedup and enable close-
to-interactive running times even for large topologies
(§9.2); and (3) Buzz is also useful for incremental test-
ing, testing DPF implementations, and testing reachabil-
ity (§9.3). We begin with our setup and approach.

Testbed: In order to run realistic large-scale experi-

ments with topologies of 100+ nodes, we use a testbed
of 13 server-grade machines (20-core 2.8GHz servers



with 128GB RAM) connected via a combination of di-
rect 1GbE links and a 10GbE Pica8 OpenFlow-enabled
switch. On each server with KVM installed, we run each
injectors and middleboxes as separate VMs. The VMs
are interconnected via OpenvSwitch on each server. The
middleboxes we use are iptables [3] as a NAT and a
stateful firewall, Squid [12] as proxy, Snort [11] as IP-
S/IDS, Balance [1] as the load balancer, and PRADS [9]
as a passive monitor. These were instrumented with
FlowTags to handle dynamic middlebox actions [29].

Topologies and policies: In addition to the example sce-
narios from §2, we use 8 recent (>2010) topologies from
the Internet Topology Zoo [13]. We use these as switch-
level topologies and extend them with middleboxes and
use various service chaining policies; e.g., a policy chain
of length 3 made of a NAT, IPS, and load balancer.

Background traffic: We generate background traffic
intended to interfere with the specific behaviors we want
to test; i.e., it induces state transitions that can affect our
tests. For example, in Figure 3, we use background TCP
port scanning traffic as it affects the suspicious connec-
tion count per host at the L-IPS. Given the intended poli-
cies and data plane model, we modify our trace genera-
tion tool for this purpose.

9.1 Validation

Finding hidden errors: We validate the effectiveness
of BUZZ using a red team—blue team exercise. Here, the
blue team (Student 1) has a pre-defined set of policies
for each network; i.e., these are the expected behaviors
and there is no “overfitting” or additional instrumenta-
tion necessary for each run. Then, the red team (Student
2) picks one of the intended behaviors (at random) and
creates a failure mode that causes the network to violate
this policy; e.g., misconfiguring the L-IPS count thresh-
old or disabling some control module. The blue team
used BUZz to (a) identify that a violation occurred and
(b) localize the source of the policy violation. We also
repeated these experiments reversing the student roles;
but do not show these results for brevity.

Table 3 highlights the results for a subset of these sce-
narios and also shows the specific traces that blue-team
used. Three of the scenarios use the motivating examples
from §2. In the last scenario (Conn. limit.), two hosts are
connected to a server through an authentication server to
prevent brute-force password guessing attacks. The au-
thentication server is expected to halt a host’s access after
3 consecutive failed log in attempts. In all scenarios the
blue-team successfully localized the failure (i.e., which
DPF, switch, or link is the root cause) within 10 seconds.
Note that these bugs could not be exposed with existing
debugging tools such as ATPG [55], ping, or traceroute.’

8They can detect obvious failure modes such a link/switch be-

10

“Red Team” scenario

BuUzz test trace that revealed
the failure to “Blue Team”

Proxy/Mon (Fig. 1); S;-S5 link
is down

Non-cached rqst from inside
the Dept, followed by request
for the same object from by an-
other source host in the Dept

Proxy/Mon (Fig. 1); The port
of S§; (Pica8) connected to
proxy is (mis)configured to not
support OpenFlow

HTTP rgst from Dept

Cascaded NATs (Fig.
FlowTags controller
down

2);
shut

H; attempts to access to the
server

Multi-stage triggers (Fig. 3);
L-IPS miscounts by summing
three hosts

H; makes 9 scan attempts fol-
lowed by 9 scans by H,

Conn. limit.; Login counter re-
sets

H; makes 3 continuous log in
attempts with a wrong pass-
word

Conn. limit.; S} missing switch
forwarding rules from Auth-
Server to the protected server

H, makes a log in attempt with
the correct password

Table 3: Some example red-blue team scenarios.

Finding real bugs: BuZzz also helped us identify an ac-
tual bug in our FlowTags re-implementation in Open-
Daylight.” Essentially, the controller code in charge of
decoding FlowTags (e.g., to distinguish sources hidden
behind a NAT or proxy) was assigning the same tag value
to traffic from different sources. By using test traffic in
network of Figure 1, we observed that proxy hit replies
bypass the monitoring device, which is a violation of the
intended behaviors. BUzz validation also localized the
policy violation (i.e., at the proxy). It also provided the
traffic trace indicating that the tag values of cache miss
and hit cases are identical, that gave us a hint to focus on
the proxy tag assignment code of FlowTags controller.

9.2 Performance and Scalability

One of our goals is that operators should be able to use
BUZzz in a reasonably interactive fashion; i.e., the time
for an end-to-end test should be a few seconds or less.

Test traffic generation: We measure the time for BUuzZz
to generate a test trace across different topologies and
service chain sizes. We evaluate the utility of the opti-
mizations we introduced in §6.

Figure 6 shows the average time to generate test traffic
for a given intended behavior for a fixed logical policy
chain of length 3 (composed of a NAT, a firewall, and a
proxy) across different topologies. The smallest topol-
ogy has one instance of this logical policy chain (with 8
individual policies), and we increase the number of in-
stances in other topologies linearly with the number of
switches; i.e., number of policies and hence tests grows

ing down but cannot capture subtle bugs w.r.t. stateful/contextual
behaviors.

9Our original implementation was in POX; the bug arose during the
(non-trivial) process of porting it to OpenDaylight; OpenDaylight is a
significant codebase with a lot of complexity.



linearly (this is done for other experiments of this sub-
section too). Since all values are close to the average,
we do not show error bars. To put our numbers in per-
spective, using KLEE without any of our optimizations
even on a network of six switches and one policy chain
instance with three middleboxes took over /9 hours to
complete. The graph also shows the (projected) value of
the unoptimized setup using this baseline result.

The first optimization (minimizing the number of sym-
bolic variables) dropped the latency of the baseline ex-
ample to less than 12 seconds (more than three orders of
magnitude reduction). Constraining the values of sym-
bolic variables yields another > 9x latency reduction.
Finally, other minor optimizations reduce the time for
test traffic generation by about 6%.

Bdseline eth[l)\l/[q (nd optimizdtions) oo
in. # sym. variables &zzs
Min. # sym. variables w/ scoped values e

e+7
e+6 5
100,000
10,000
1,000
100

10

Test traffic gen. latency (s)

Heanet  HtInt
6 15

UniC
25

Cwix  Tinet OTEGlobe TATA Cogent

35 52 92 144 196
Topology (# of switches)

Figure 6: Traffic generation latency with a fixed logi-
cal policy chain of length 3 across different topologies.

Figure 7 shows the average traffic generation latency
with a fixed topology with 52 switches (Tinet) and vari-
able policy chain length (all values were close to the av-
erage in different runs). The effect of optimizations are
consistent with Figure 6.

100,000
10,000
1,000
100

10

1

Min. # sym. variables -
BUZZ —

Test traffic gen. latency (s)

2 4 6 8 10
Policy chain length

12 14 16

Figure 7: Test generation times for a fixed topology

(Tinet + 53 switches) and variable policy chain length.
Recall that test generation in BUZZ has two logical

stages: (1) high-level test planning and (2) concrete test
manifest generation. In general, we find that the test
manifest generation times are between 4—6% of the time
to generate the test plan and are largely independent of
topology size and policy chain length (not shown).
Overall these results confirm that with our optimiza-
tions, BUZZ is practical and generates tests for even large
topologies with 100+ nodes in less than 30 seconds.

Monitoring overhead: Across different topologies us-

ing the monitoring strategy of monitoring only stateful
DPF ports outperforms MonitorAll of §7 by at least %30
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Topo.(# of | Heanet | UniC Cwix OTEGlobg Cogent
switches) (6) (25) (35) (92) (196)
Time(s) | 1.7 [ 104 [ 152 | 280 | 5838

Table 4: Validation times for different topologies.

for the smallest topology and over x2 for the largest
topology. The total size of the monitoring logs did not
exceed 1% of the total traffic volume across different
topologies. Furthermore, the fraction of the test traffic
to the total network traffic (using background traffic gen-
erated based on the gravity model traffic matrix) is ex-
tremely small (<0.01%). This is not surprising because
the duration of test is very short (less than 10 seconds)
and the test sequences we generate are targeted to trig-
ger certain network conditions (as opposed to large data
transfers).

Validation: The latency of validation is composed of two
components: analysis of monitoring logs and follow-up
test traffic generation (if necessary). Table 4 shows the
average validation latency across different topologies.
The policy chain in this case is fixed (of length of three),
and one randomly selected data plane element fails. In
another experiment (not shown) we varied the length of
the logical policy chain on fixed topologies. The valida-
tion latency in this case increases linearly with the length
of the logical policy chain. We also measured the contri-
bution of each of the validation stages (analysis of mon-
itoring and generating to the validation latency). Across
different topologies and policy chain lengths, generating
follow up test takes between between 26% to 29% of the
total validation latency. In the largest topology (Cogent)
with 196 switches and 33 stateful DPFs, validation and
follow up test took ~=42 and ~17 seconds, respectively.

9.3 Other use cases

Testing F1owt ags-enhanced DPFs: One of the origi-
nal motivations for BUZZ was that existing tools were in-
adequate to test our F1lowTags implementation [29]. To
this end, we define intended behaviors for single DPFs
and exhaustively test externally observable middlebox
actions; e.g., the tagging behavior of the IPS to ensure
it tags according to the intended alarm thresholds.

Incremental Testing: : One natural question is if we
can incrementally test the network; e.g., when policies
change. While a full discussion is outside the scope of
this work, we have early evidence to show that Buzz
is amenable to incremental testing. We update the set
of policies that are affected by the policy change rather
than rerun the full suite of behaviors. In general, incre-
mental testing requires time proportional to the fraction
of affected policies (not shown).

Loops and reachability: While reachability checking
in stateless data planes is a “solved” problem [35], it
is unclear if this is true for stateful data planes. reach-



ability properties via new types of assertions. For in-
stance, to detect loops we add assertions of the form:
assert (seen[ADU.id] [port]<K), where ADU is
symbolic BDU, port is a switch port, and K reflects
a simplified definition of a loop that the same BDU is
observed at the same port > K times. Similarly, to
check if some traffic can reach PortB from PortA
in the network, we initialize a BDU with the port
field to be PortA and use an assertion of the form
assert (BDU.port != PortB). Using this tech-
nique we were able to detect synthetically induced switch
forwarding loops (not shown).

10 Related Work

Network verification: There is a rich literature in
static reachability checking; i.e., a set of Can-A-talk-to-
B properties [27, 53, 54]. Recent work provides a ge-
ometric header space abstraction (e.g., HSA [35]) and
extends this for real-time checking [34]. Other work
uses SAT solvers for checking reachability [38]. At a
high level, these focus on L2/L.3 reachability (e.g., black
holes, loops) and do not capture networks with middle-
boxes. NICE combines model checking and symbolic
execution to find bugs in control plane software [24].
BUZz is complementary in that it generates test cases
for data plane behaviors. Similarly, SOFT generates
tests to check switch implementations against a speci-
fication [37]. Again, this cannot be extended to middle-
boxes.

Test packet generation: The work closest in spirit to
Buzz is ATPG [55]. ATPG builds on HSA to generate
test packets that exercise the intended reachability prop-
erties. Unfortunately, ATPG cannot be applied to our
scenarios on two fronts. First, middlebox behaviors are
not stateless “transfer functions” which is critical for the
scalability of ATPG. Second, the behaviors we want to
test require us to look beyond single-packet test cases.

Programming languages: Recent work attempts to
formalize network semantics to generate “correct-by-
construction” programs [17,19,31]. However, to the best
of our knowledge, these do not currently capture stateful
data planes and context-dependent behaviors. Further-
more, many of the DPFs we consider may actually be
black boxes and thus active testing may be our only op-
tion to check if the network behaves as intended.

Network debugging: There is a rich literature for fault
localization in networks and systems (e.g., [30, 43, 47,
48]). These algorithms can be used in the inference en-
gine of BUuzz. Since this is not the primary focus of our
work, we used simpler heuristics in §7.

Modeling middleboxes: Joseph and Stoica formalized
middlebox forwarding behaviors but do not model state-
ful behaviors [33]. In terms of modeling stateful behav-
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iors, the only work we are aware of are FlowTest [28],
Symnet [51], and concurrent work by Panda et al [44].
While our preliminary work on FlowTest highlighted the
challenges we addressed here, there were three funda-
mental shortcomings: (1) the Al planning techniques do
not scale; (2) the high-level DPF models generated there
are not composable as discussed in §5; and (3) the ap-
proach is inflexible as it tightly couples the data plane
model and intended policies. Symnet [51] writes high-
level middlebox models in Haskell to capture flow affini-
ties in NATs/firewalls; we do not have details on their
models or verification procedures. Panda et al also in-
dependently model the stateful behaviors, but their work
is different both w.r.t goals (reachability and isolation)
and solution techniques (verification and making model
checking tractable).

Simulation and shadow configurations:  Simula-
tion [6, 7], emulation [2, 5], and shadow configura-
tions [16] are the common techniques used today to mod-
el/test networks. BUZZ is orthogonal in that it focuses on
generating test scenarios. While our current focus is on
active testing, Buzz’s applies to these platforms as well.
We also posit that there are other avenues where our tech-
niques can be used to validate these efforts.

11 Conclusions

In this work, we presented the design and implemen-
tation of BUZZ, a practical testing framework to test
complex and contextual policies in realistic network set-
tings with stateful middleboxes. We addressed key chal-
lenges in developing tractable-yet-useful models of mid-
dleboxes and in making symbolic execution tractable in
this domain. We believe that the ideas that were critical
to make the BUZz vision practical—BDUSs as the unit of
input-output operations, modeling DPFs as FSM ensem-
bles, use of symbolic execution at BDU granularity, and
the optimizations we implement in KLEE—will be more
broadly applicable for other network verification tasks.
By demonstrating the scalabilty and viability of Buzz,
this work takes the “CAD for networks” vision one giant
step closer to reality.
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