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Abstract

Use of commodity platforms for embedded systems makesfitudlif to authenticate remote
devices in the presence of malware and to obtain confirmationalware-free device states in a
verifiable manner. We propose a scheme for achieving thegmepies by installing and main-
taining a pool of secrets in device memory that cannot beclddy malware in its entirety via a
bandwidth-limited (e.g., wireless) channel during a sieditime epoch. Correct device operation
limits malware leakage of pool content by updating the path Wesh secrets. Itis computationally
infeasible for the adversary to compute the new pool giverithited information he was able to
leak about the old pool within the specified time epoch. \erifietection of a device’s failure to
update the pool in a timely manner indicates the presencetvieadevice malware and triggers
remedial action (e.g., automated pool-content update,asmua device cleanup). Verified timely
pool updates provide device authenticity, since all devva initialized with independent pool se-
crets (i.e., pseudorandom values), and enable bringingethete device to a malware-free state by
removing malware from device memory. In this paper, we afatigoon these ideas and illustrate
how our system complements the goals of cryptographic sebéhat are resilient to continual but

bounded secret-key leakage via side channels.



Chapter 1

Introduction

Large-scale embedded systems (e.g., power distributidrirmtustrial control applications) make
pervasive use of commodity platforms and devices, wiretessmunication infrastructures, and
remote system management — all for strong economic reas@mmsexample, remote management
avoids the need for frequent local embedded-device accesgchormal operation, while wireless
network connectivity lowers the cost of device deploymergdalable configurations. Use of com-
modity platforms reduces development costs to those oésysttegration and drastically lowers
maintenance costs. However, pervasive use of commoditfppias and devices, wireless commu-
nication infrastructures, and remote device managemesd gignificant security challenges.

Cost pressure on embedded systems frequently leads todlw lasv-cost devices, which lack
specialized security hardware (e.g., TPM, random numbeemg¢or support), and low-assurance
software, which often leaves the system vulnerable to ce&dale malware attacks. Furthermore,
hardware-based cryptographic support for device sectedyires sophisticated key management
and revocation strategies, which are expensive to depldyraintain, and highly prone to human
error. However, remote device management requires “dvegir’ device authentication before
administrative commands can be executed in a secure maidate, neither remote authentication

of low-costcommaodity devices in the presence of malware monoteo attestation of a device’s



malware-free state has been achieved in praéti&ehieving both of these properties on commodity
platforms and low-cost devices without specialized séginardware in a demonstrable manner is
the goal of this paper.

We consider a network setting where a trusted verifier conmcates with a remote, commodity
device via a bandwidth-limited (e.g., wireless) channelor&iconcretely, the verifier could be a
utility company and the device could be a “smart meter” dggdbin the field [9]. The verifier can
be trusted since it is under close administrative contrdlcam leverage specialized secure hardware
on a central server [12, 29]. In contrast, the remote deviag omly be assumed to be in a malware-
free state at the time of deployment. Past that point, theedeaay become infested with malware.
Nevertheless, at a minimum, the verifier wants to obtain $syeance of device authenticity despite
the presence of malware, and (2) attestation of malwaeedavice state at various times during
device operation; e.g., during remote software updatesdamite reboot. With these properties,
we envision an architecture that prevents malware-basadedeloning and impersonation, enables
secure management of remote devices, and achieves verifigblication secrecy and integrity,
despite the absence of any specialized hardware or longdecrets.

However, achieving the two properties mentioned aboveafieninging. For example, establish-
ing remote device authenticity requires that device setrefprotected from exfiltration by malware
and potential reuse on foreign devices — a tall order on caditynplatforms that lack specialized
hardware protection. Remote attestation of malware-feecd state requires demonstrable re-
moval of potentially active malware from a device’s memorg €hallenging task even via prior
approaches such as local software-based attestation wice deset [6, 21, 25].

The basic idea that underlies our approach to remote devitemtication and attestation of
malware-free state is to install and maintain a pool of ¢sdredevice memory, that cannot be
leaked by malware in its entirety via a limited-bandwidtig(ewireless) channel during a specified

time epoch. Thus, the only hardware requirement for ourreehis the availability of sufficient

1These properties can be achieved only on devices equippkdpécial security hardware, often requiring consider-
able engineering effort to integrate with existing softevand systems [12, 29].



device memory — our security mechanisms are entirely sofilvased. In addition, attestation of
malware-free device state requires a small read-only-mgtocstore the protocol code itself. Once
per epoch, the device updates the secret pool and obtaiestefool. Epochs are sized such thatitis
computationally infeasible for an external adversary tmpote the fresh pool given the limitations
on what information he was able to obtain about the previama. pThe remote device attests to
having updated its pool in a timely fashion. For the pool ueslawe use a non-invertible, pseudo-
random function that has strong, non-circumventable, -Spece tradeoffs. Thus, malware cannot
enlarge memory leakage and still perform timely pool upslalfehe verifier detects a device failing
to update the pool within a time epoch, this indicates thequee of active malware on the device
and triggers remedial action (e.g., a remote pool resehatieor manual device cleanup).

Verified timely pool updates provide device authenticiipce all devices are initialized with
independent secrets (i.e., pseudo-random values), anérale bringing the remote device to
a malware-free state by removal of certain classes of malfram device memory. Note that
malware with total control over the device can refuse toigiggte in our protocols, resulting in
a denial of service attack on the remote device. Howeves,ishieadily detected by the verifier.
Malware wishing to remain stealthy will be forced to relimguits position on the device.

The idea of bounding continual leakage of secrets is reggnisof a somewhat similar notion
used in constructing leakage-resilient cryptographicesus [11, 15, 22, 14]; viz., Section 2.2
(Related Work). Thatis, secret keys corresponding to threegaublic key can change in well defined
time epochs before they become vulnerable to side-chartaeka. However, all these schemes
assume that the key update process can leak only a limitetenwhkey bits and that the adversary
(i.e., malware, in our case) cannot interfere with that pss¢e.g., cannot corrupt the source of local
randomness or leak local random values; cannot hide oldikeylsscure memory locations for the
purpose of future leakage and circumvent the old-key-a&legequirement. Exclusive use of these
schemes cannot be made to achieve our desired propertiagVvElp achieving our properties can,
in fact, support the assumptions made by these schemes abtk éghem to achieve their goal

(i.e., protection from side-channel attacks) in the preseof malware on low-cost devices and



commodity platforms.

In short, the main contributions of this work as as followk). We verify remote-device authen-
ticity despite the presence of malware (e.g., detect atiangevice cloning and impersonation),
and provide for the remote attestation that device statealsvare-free; (2) we support secure up-
dates of remote devices offering code and data integritg; (81 we enable secure invocation of
commands on remote devices. All these desirable systemréeate provided on low-cost devices

that lack specialized secure hardware.



Chapter 2

Background

We provide background on related work. We will briefly delserhow the previous schemes work

and the differences between our work and the previous appesa

2.1 Attestation

We provide background on code attestation and relatedagygphic work. Code attestation is a
technique for verifying what code runs on a system. Therdatie hardware and software methods

for code attestation.

2.1.1 Software attestation

We examine previous software attestation schemes thathadleroge response protocols to verify
the memory of a external device. The challenge of designiety protocols is that the adversary
has control of the device during the verification computatio

SWATT [26] is a method that uses tight timing constraintsdentify malware. SWATT tra-
verses memory pseudo-randomly by using a seed sent by tifierven order for the malware to
pass verification, it needs to redirect memory accesses fmamymemory regions where malware

resides. The insight is that the check to perform a memoryeeitbn will happen every single



memory access regardless if the memory is actually reédecSWATT makes enough pseudo-
random memory accesses such that the malware’s check duicéa externally measurable timing
gap between malware-free code and malware infected co@e[28) extends the concept by using
additional CPU state to provide stronger properties. AlS&, only needs to verify the checksum

versus verifying all of memory. The difference between atlresne and SWATT/ICE is that our

scheme also enables secrecy to be a verified in addition ®intehrity. Our scheme also does not
rely on tight timing measurements to distinguish betweelwar@ and benign code.

Secure Code Update for Embedded Devices via Proofs of Séraseire [21] is a method to
locally attest to malware free state. This software attiestascheme attests to a malware free state
locally by filling all writable memory with pseudo-randomlwes. Their scheme also not rely on
tight timing constraints. Their scheme does not allow thev@r to communicate to other devices
during verification. Our scheme has lower bandwidth costsiise during verification our verifier
only sends small nonce versus sending enough pseudo-ravalaes to fill all writable memory.
Our scheme also considers the harder problem of verifyinigvara free states remotely.

Remote Software-Based Attestation for Wireless Sensdisligs a different software attesta-
tion routine every time. The verifier sends a different &#sn routine for each attestation. Each
attestation routine the verifier sends is protected by cdfiescation and self modification to pre-
vent modification by the attacker. The protection techmnsgeembined with limited time to perform
the attestation make it hard for the attacker to reverseneegithe routine and forge a correct re-
sponse to the attestation. The security of this approadsreh the hardness of code obfuscation
which may be hard to prove secure. Our approach relies orefrep which may be easier to prove

Secure.

2.1.2 Hardware Attestation

Hardware support for trustworthy computing (i.e., the TedsPlatform Module (TPM) [28] and

ARM TrustZone [3]) is currently the preferred approach poting device secrets on commodity
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platforms. While these secrets can be used in remote dewutberatication and attest to malware-
free device states, they can be leaked via side-channeksitf48, 17]. Hence, the resilient cryp-
tographic approaches described above become necessanye\(et, additional mechanisms may
become necessary to remove the unrealistic assumptions loyatiese approaches; e.g., regarding
the bounded leakage of secret key material during key updatdardware support for physical
authentication has also been provided by Physically UrmditFunctions (PUFs) [16, 20]. While
PUFs are very basic authentication primitives, they aredesigned to offer malware-free device

states.

2.2 Limited Leakage Cryptography

Cryptographic constructs that allow limited leakage ofrsematerial (e.g., secret keys) have been
extensively explored recently. Most leakage-resilieyptwgraphic schemes follow three distinct
approaches, namely (1) the bounded retrieval model, (Aeti@ge-resilient cryptography, and (3)
the continual-leakage-resistant cryptography. In thigige, we point out the specific differences
between our work and these approaches. To provide furthspeetive, we also discuss related

work in the area of trustworthy computing in general, andvgafe-based attestation in particular.

2.2.1 Bounded Retrieval Model

The bounded retrieval model [8, 13, 5, 1, 2] assumes thateersary can recover some functign
of a large secref. The adversary may choose to leglover multiple rounds either non-adaptively,
using the same functiofi per round, or adaptively, by picking different a differgiin each round.
This model restricts the adversary leakage over all rouad$|t Our adversary model is more
general in the sense that the total amount of leakage mage@ksg i.e., malware may leak- L >
|S| bits, adaptively or not, whereis the number of rounds antlis the maximum number of bits

leaked per round (viz., Figure 1).
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2.2.2 Leakage-Resilient Cryptography

Leakage-resilient cryptography [11, 15, 22, 14] assumatah adversary can adaptively recover
a secretS over multiple rounds by picking different functiorfsin each round. The adversary is
restricted in two ways, namely (1) in every roundno more tharl. bits of the secref, may be
leaked, and (2) the bits df,. can be leaked only by the computation at roundand cannot be
memory bits. (This model makes the “only computation leasrmation” assumption originally
proposed by Micali and Reyzin [19]). Our adversary modelisergeneral, since it does not restrict
which secret bits malware may leak in a given round. As maeticabove, we only assume that no

more thanl bits of the secreb, may leak in any round.

2.2.3 Continual-Leakage Resistant Cryptography

Continual leakage resistant cryptography [10, 4] alsorassithat an adversary can may adaptively
leak secretS over multiple rounds by picking different functiorfsper round. Similar to our ap-
proach, this model updates the secret in each reunensure that no more thdnbits of the secret
S, may leak. However, this model is less general than ours sirassumes that the adversary is
only able to probe the device but does not have full contrel @y e.g., over the update function for
S,. That is, the update function (1) uses local randomnessailahle to the adversary and leaks
only a limited number of bits during its operation, and 2)iistpcted from adversary interference;
e.g., the adversary may not corrupt or stop the update oésgcby modifying the local, per-round
random bits used, nor it allowed to copy, save and reuse cl@tse(i.e., old secret keys). In con-
trast, we let our adversary hafdl control over the device software, including the update function
and secret poadb. If the adversary updates the secret pool in a corrupt mgengr, incompletely,

or not at all) or the update exceeds the allowed time limé,dbvice cannot respond (correctly) to

the verifier's challenge and is reset.
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2.2.4 Trustworthy Computing Hardware and Software-Based Atestation

Hardware support for trustworthy computing (i.e., the TedsPlatform Module (TPM) [28] and
ARM TrustZone [3]) is currently the preferred approach poting device secrets on commodity
platforms. While these secrets can be used in remote dewtbergtication and attest to malware-
free device states, they can be leaked via side-channeksatf48, 17]. Hence, the resilient cryp-
tographic approaches described above become necessanye\(et, additional mechanisms may
become necessary to remove the unrealistic assumptions loyatiese approaches; e.g., regarding
the bounded leakage of secret key material during key updatdardware support for physical
authentication has also been provided by Physically UrddtFunctions (PUFs) [16, 20]. While
PUFs are very basic authentication primitives, they aredesigned to offer malware-free device
states.

Software-based attestation has been proposed to achidgeaod execution integrity on com-
modity platforms without special hardware support [26,33,7, 27]. These approaches can lever-
age our mechanisms to protect remote attestation agamst-pttacks. Moreover, we greatly relax
their timing and hardware architecture assumptions, wiéste been exploited by recent attacks [6].
Our approach is immune to these attacks since we do not ratyicno-architectural details of the
hardware platform (e.g., timing of instruction execution)

Another notion related to attestation of malware-free dedtates was proposed by Perito and
Tsudik [21]. Their approach enables a safe local device ®sélling the device memory with a
pseudo-random pattern. Subsequent local verificatioregbétitern ensures secure memory erasure.
Securaemoteoperation is not a relevant goal of this work. In contrast, approach is intended to
address the more challenging case of semmetedevice authentication and reset to malware-free

states.



Chapter 3
Design

3.1 Assumptions and Attacker Model

3.1.1 Assumptions

We make hardware assumptions about the embedded devicgstemsruns on.

Physical Security Assumption. We assume that the device is physically secure, i.e., itis in
a safe location, or else it is constructed using sufficientsjgal anti-tamper mechanisms. Such
mechanisms are orthogonal to our scheme and outside the ettps paper.

Fixed Bandwidth Assumption. We assume that the target devitehas a fixed maximum
uplink bandwidthD,,,,, on its network connectivity with the outside world. It is igally infeasible
for an adversary to exfiltrate data at a greater rate tharnavieels maximum bandwidth. We assume
that the adversary cannot alter the hardware (e.g., by gddiditional interfaces or replacing an
existing interface with one capable of higher bandwidth).

Complete Channel AssumptionWe assume the the network interface referenced in the Fixed
Bandwidth Assumption is the device’s only network integfaclf the device has additional in-
terfaces, then without loss of generality we can considemtin aggregate, and apply the Fixed

Bandwidth Assumption to the aggregate network interfates.Dy,, is unchanged.



Fixed Memory Assumption. We assume that the target deviteis deployed with a fixed
amount of memonD,,...., and that the adversary is incapable of adding additionahong to the

device. l.e., the maximum amount of memory in the device edfix

Internal External Verifier

Adversary Adversary 4

Az‘n Aout
(malware)
on device L bits S,

D
L bits S
Lnet
—_—
Lmem
No Limit
- Expected
- L bits Si1
No Limit

Figure 3.1: DABLS state during epoch

3.1.2 Attacker Model

Our attacker model includes both an internal adverséyy, and an external adversary,,;. Both

are probabilistic, polynomially-bounded adversaries, @sdsuch, cannot break any of the standard
cryptographic primitives that is proved secure for sucheashries.A;, has compromised the target
device D, and is capable of running arbitrary code (i.e., malware)onA4;, can communicate
with external adversaryl,,; via deviceD’s network interface and can cooperate with,; at all
times. The resources available Ag, are the devicéD's maximum outbound network bandwidth,

Dpont, and maximum memorny,,..,. In particular, A;, has unrestricted access to the code and

\We donot constrain the inbound bandwidth fo.
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workspace (e.g., stack) of our remote-device authenicgirotocol inD,,.,,, and thus can leak
and modify their content. Furthermorg;,, has unrestricted access to Al},,..,, workspace of our
protocol for achieving malware-free device states, buttodts instructions, which execute in a
device read-only memory (ROM). By the physical-accessraptions made above, the adversary
cannot modify deviceD’s hardware to increasBy,,, or D.,..,, and thus it must develop an attack
strategy that makes efficient use of these resources.

To illustrate the adversary’s operation, we break time ippochs of duratiory’. Thus, the
maximum amount of data that can be exfiltrateddy to A,.; during an epoch, which we call the
network leakageis L,.; = T - Dy,,. Additionally, we divideD,,,..,, into two areas: one that stores
a large pool of secrets that is refreshed during every epaghich we denote by;, and the other,
which we call thememory leakageL,c;, = Dmem — |Si|. The adversary can make full use of
L...m, and hence it can use it to save pool data to be leaked durmgromore future epochs;,,
can also perform arbitrary (polynomially bounded) compates on anyS; and can communicate
the results of those computations4g,;. Over time, A, may accumulate data that is leaked from
D, at a maximum rate of.,.; bits per epoch subject. Thus, the maximum amount of data4hat
can ever leak from a given epoch’s poolAQ,; iS L < Lyet + Lmem- Figure 3.1 summarizes the

state of the system at epoth

3.1.3 Taxonomy of Attacks

We explain several attacks;,, and A,,; can perform on our scheme. The goal for all of the attacks
is for A,,; to learn more tharl, bits of any secret poab; used by the devicé). The attack will
explain are the rolling pool attack, the split computatittack, the split computation attack and the

time space trade-off attack.

Rolling Pool Attack

We give a brief overview of the rolling pool attack. The rodi poll attack is where the internal

adversaryA;, rolls a secret poob; to past or future pools to leak those pool states during epoch

Xii



i. The internal adversary;, by leaking past or future pools can leak more tliabits of a past or
future pool to the external adversady,,;, therefore external adversa#y,,; will be able to learn

more thanL bits of a past or future pool.

Split Computation Attack

We give a brief overview of the split computation attack. Abehi, the internal adversary;,
leaks! blocks of pooli to the external adversary,,;. Then during the pool update from paatio
pooli + 1 the internal adversary,,, leaks special information to the external adversary;. The
special information is defined by anything the internal aglaey A,,, knows that would allow the the
external adversaryl,,; to update the leaked blocks of padb pooli 4+ 1. The special information
could be intermediate values used in the update computafimrally, external adversary uses the
special information thatl;, leaked to update its poa@lblocks. The external adversad,,; By
updating blocks of pool in its possession, the external adversdry,; could learn more that
blocks of a secret poal. The adversary’s advantage in performing the split contfmrtaattack
against the update fromto ¢ + 1 is the number of blocks the external adversdry,, was able to

update from pool toi + 1.

Time Space Trade-off Attack

We give a brief overview of the time-space trade-off attdckthe time space trade-off attack, the
internal adversany,, re-implements the pool update functignto store less thanS| blocks in
memory for both computation and output. One might think tashhverification would be able to
detect if the output off occupied less thanS| blocks of memory. However, internal adversary
A;, can compute the inputs to the hash verificatondemandvithout simultaneously storingf|
blocks in memory. The advantagg,, gains by performing this attack is the ability to store more

blocks of a pool to leak during later epochs.
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3.2 An Unleakable Secret Pool

In this section we first provide an overview of DABLS, and tlpeavide a more detailed and formal

treatment.

3.2.1 DABLS Overview

In DABLS, aremote device is associated with a pool of secvetgch defines the identity of that de-
vice. The pool can be used as the key to a message authamticatie computation to authenticate
the device to the remorte verifier. Hence, a basic goal of D8E&Lto prevent an external adversary
A,y from learning enough of a device’s secret pool from an irgeadversary (malwarel;, so
that it could discover the entire pool in a computationafigdible time. In other words, we say that
a secret pool is unleakable during the lifetime of the devidhe maximum pool leakage from any
epochi, namelyL, is sufficiently smaller than the size of the pod;|, so thatA,,; would find it
computationally infeasible to recover the entire seéietWe denote this relationship betweén
ands; asL << S;.

We achieve this property through periodic protocol intéoas by a remote verifier, which
require that the device attest that it updates its secrdtip@overifiably correct and timely manner.
This ensures that the secret pool changes its secret psandom contents faster thaty,, could
leak more thanl bits of pool S; for all epochs: of the device’s lifetime. We parameterize the
protocol invocation and verification frequency based orpib@ size|S| and the device’s available
bandwidthD,,,,, so that we can assure that a maximumlLabits can possibly be leaked even if

malware is present on the device.

Pool Size Requirements A secret poolS; must be large with respect to the device’s network
bandwidth D,,, over a defined time epochi;. Even with this requirement, a patient adversary
A;, may eventually leak the entire secret pool. This gives ndbé dual requirements that (1) the

pool's contents must change over time to comprise pseutitsra values, and (2) the amount of

Xiv



the device’s memory that the pool occupies must be speci$iedanction ofL,.; and L ,.,,. That
is, A;, must not be able to exfiltrate any single epoch’s completéyiad., ..., andL,.;. Thus, in
a particular epoch, we require that,,.; + Lyem < |S;|. Substituing the definition of. ., we

haveL,.; + (Dpem — |S]) < |S], which simplifies to:

|Sz| > (Lnet + Dmem)/2

If A,y receives preciselyL,c; + Dyem)/2 bits of S; from A, it will still find it to be com-

putationally infeasible to recover the remainderSpf

Pool Update Requirements. To maintain the unleakable properties of péilbeyond a single
epoch, any of its bits thatl,,; may have accumulated during an epacthould become useless
to A, following the pool update by @ool update functionf. To achieve this, we invoke
periodically, in response to a verifier's fresh request. Wald time intoepochsof duration’’, and
require that the pool update frof) to S;.; once per epoch. A delinquent pool update constitutes
a misbehaving device. The inital pod, is injected by a trusted party under controlled conditions

before malware has the opportunity to infect the device.

Protocol Requirements The verifier challenges the device to update its secret pwobctly and
timely within an epoch, and verifies the response receivenh ihe device. As our attacker model
gives A,,; complete access to the netwotk,,; can oberve any messages used in the challenge-
response and pool-update protocols. Thus, if the extethadraaryA,,; would eventually be able
to constructany complete instance of a pofl, thenA,,; can use its log of messages and compute
the pool at a later epoch > i.

We seek to ensure that arly pool bits or fewer of an older epochthat an adversary has
captured are of no value to the adversary in trying to comgheecurrent-epoch pod;., where
k > i. Thus, the output of the pool update functiémust be indistinguishable from random to the

(polynomially bounded) adversary, and be of the same sitkeasxisting secret pool, i.6.5;| =

XV



|Si+1|. Otherwise, the adversary may find ways to compress thesemtaion ofS;, effectively

increasingD,, .

Epoch0

<

J(So,m0) y(St, constany
S1 Ry

2. L;p

S S,

S, %,
%, Y
0 2 \%

Tup

Figure 3.2: Initailzation at Epoch Timeline

Timing Requirements An unleakable secret only lives for a single time epoch ofatdan 7.

We define the time at the start of tli# epoch asT,. By the end of the epoch, the pool must

XVi



Epoch:

Tup ,Tup Tup
— — —
‘ Iy ‘ ‘ Iy ‘ ‘ Iy ‘
A x g x “x
2 2 4 " 2 2
Epochi + 1

Figure 3.3: Steady State at all subsequent Epachs

be updated.D has a limited amount of tim&,,, to compute the pool update to prevefy, from
leaking arbitrarily large amounts of data. The verifier eoés the time limits by releasing the nonce
n; only attime(i + 1)7.

Figure 3.2 the shows a timeline of the update process froratepto epochl. Epoch0 starts
at time0. After T time, the verifier sends the nonggto D starting the update process from epoch
0to1. D now computesS; = f(So, no). ThenD computesR, = y(.S1, constan}. D sendsR to
V by timeT, = Ts +T,,. V checks ifR, is correct and received by tinig, if so, then the verifier
is confident thaiD correctly updated, to S; in a timely manner thus both epo6hand the update
from epoch0 to 1 are finished, otherwise the verifier has detected malwarb®gystem.

Figure 3.3 shows how epochs overlap. Epoeditarts at time7l; and does not end until the

end of theith update at timé: + 1)7.. Epochi + 1 starts when théth update begins at time
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(1 4+ 1)Ts < (i + 1)T.. Therefore, epochsand: + 1 overlap during theth update process. The
epochs andi + 1 overlap during théth update process because duringitheupdateD has access

to portions of bothS; and.S;. 1.

DABLS Protocol In DABLS verifier V' initializes deviceD with the first unleakable secré&
before D is connected to the network and exposed to attack. The palaitemluring each epoch
consists of two functionsy andy. f rolls foward the pool fromS; to S;;1. f takes as input the
current pool and a verifier-supplied nonegand outputs the next pools;.1 = f(S;,n;). The
primary responsibility off is to ensure that the pool changes over tingecomputes a message
authentication code on the output pfthat enables the verifidr to ascertain the integrity of the
current pool:R; = y(S;+1, constanj whereconstantis a block containing a constant string using
Si+1 as the secret key. To summarize, during each epalh verifierlV sends challenges; and
m; to D (allowing D time to computef in between), and confirms that the respoiigeequals

y(f(S;, n;), constany. If R; is not as expected, the verifier is considered to have detectattack.

3.2.2 Pool Update Requirements

A;, has incentive to cheat by finding ways to compute the updatetifin functionf and verifi-
cation functiony (thereby obtaining the correct resporfsg while consuming as few resources as
possible. For example, singeis implemented in software and cannot be atordig, may search
for ways to pipeline the computation gfandy so as to reduce the amount of memory required
to produceR;. This would have the effect of increasing the attackérys.,,, potentially allowing
the attacker to gain more bits 8f. To prevent4;, from cheating,f andy need several properties,

specified below.

Requirement 3.2.1. Non-circumventable Time-Space Tradeoff for f. Any implementation of
concurrently storing less thay| bits of data not invertible t&; for computation and output causes

the update process to take longer thAy),.
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L Max number of bits that leak about asy
Lpet Bits malware can leak in one epoch
L., | Bits freely usable by malware

|S] The set of unleakable secrets

i The unleakable secret at tith epoch
|S] The size ofS

D The device

D e | The size of the device memory

Dy.nn | The device bandwidth

T Duration of an epoch

T The time at the start of an epoch

T, The time at the end of an epoch

Tup Total time limit to compute the update

I Pool roll forward function

Y Message Authentication Code Functior
R; y's output at theith epoch

n; Nonce at epoch used byf

w Function overs, n

A The internal adversary
Aout The external adversary
%4 The Verifier

Figure 3.4: Summary of Notation Used

Requirement 3.2.2.f isNon-Invertible. Given, for allk < i, L bits of Sy, nonces:;, and responses

Ry and anysS,, it is computationally infeasible to compute additionaktnf anysSy.

Requirement 3.2.3.f Needs Complete Pool. Given, for allk < 4, L bits of Si, noncesn, and
responses;, andn;, it is computationally infeasible to compute any bits 65, n;) without all of

Si.

Requirement 3.2.4.f Cannot Compute Early. Given, for allk < 4, L bits of S;, noncesn, and

responsesi;, and S;_1, Itis computationally infeasible to compute any bits 06;, n;) withoutn;

Requirement 3.2.5. Leakage Equality for f. Given, for allk < 4, L bits of S}, nhoncesn;, and
responsesR;, and L — Z bits of S;, Z bits of outputs from any functiom(S;, n;) computable by

A;, cannot be used to compute more thamits of S; or S; 1 whereS; 1 = f(S;,n;).
Requirement 3.2.6.yisPreimage Resistant. GivenL bits ofS, a constant, andR = y(S, constant),
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it is computationally infeasible for the attacker to find additional bits ofS.

Requirement 3.2.7.y Needs Complete Pool. Given constant, for any .S; it is computationally

infeasible to compute any bits 9fS;, constant) without all of S;.

3.2.3 Formal Protocol Properties

We prove a statement that limitk,,,;'s knowledge for secretS, k£ < i up to time(k + 1), given

that A,,; has received alR;, on by time(k + 1)7.

Theorem 3.2.1.For all k£ < i, if the verifier receives the corre@;, by time(k + 1)T¢, Ay Will

never know more thah,,.; + Lyem < L << |S| bits of anyS}.

To show that4,,; has limited knowledge of secret pool valugsfor all £ < ¢, we prove that
our protocol limitsA,,:'s knowledge to at most bits of S; if V' has received the correct and timely

responseRy, for k < i.

Theorem 3.2.2. Given the verifier received the correét; by time (k + 1)7, for £ < 4, and
if the verifier receives the corred®; by time (i + 1)T,, then A,,; will never know more than

Lyet + Lipem, < L << |S] bits of 5;.

The next three lemmas show that our protocol constrdingo leak at most. bits of S; before

the start of epoch, during epochi, and after epoch

Lemma 3.2.1. For timet < iTg, it is computationally infeasible fod;,, to leak any bits ofS; or

w(S;,n;) or w(S;—1,n;—1), for any functionw.

Proof. The verifier only releases the noneg | at timei7;. For timet < iTs, A;, cannot posses
n;—1. Using Requirement 3.2.4, for time < Ty, A;, cannot compute5; or w(S;_1,n;—1) Or

w(S;, n;). Therefore, for time < Ty, A;, cannot leak any bits of; or w(S;_1,n;-1). O

Lemma 3.2.2. Given thatV” receives the correck; by time(i +1)T,, for timeiTy < ¢t < (i+1)T,

A;, can leak at mosk,,.; bits of S; to A,,:, whereL,,.; << S;.
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Proof. By definition of the DABLS protocol, ifi” receives the corredk; by time (i + 1)7, then
(i + )T, — iTs = T. By the Fixed Bandwidth Assumpticend Complete Channel Assumption
the maximal number of bitsl;,, can send tad,,; during timei7Ty < t < (i + 1)Te IS Lyt =
T Dpan- Ain, can only leakl,,, bits of S; orw(S;, n;) orw(S;—1,n,—1). By Requirement 3.2.5, the
advantages conferred t,, by leakingsS;, w(S;,n;), or w(S;—1,n;—1) are equivalent. Therefore,
given thatV receives the corred®; by time (i + 1)T, for timeiT < t < (i + 1)T,, A;,, can leak

at mostL,,.; bits of S;. O

Lemma 3.2.3. Given thatV’ receives the correck; by time(i + 1)T, for timet > (i + 1)1, itis

computationally infeasible fad;,, to leak more tharl, = L, e, + Lpe: << S bits of S;.

Proof. By Requirements 3.2.3 and 3.2.R; can only be computed by the attacker computing
y(f(Si,m;), constant). If V receives the corred®;, then f must have computef; ;. Given that
the earliest time whel sends the nonce; is (i + 1)7%, and thatl” receivesR; by time (i + 1)T,
then A;,, can take at most,,, time to compute the update frof) to S;,1, becaused;,, could not
have computed the update early (by Requirement 3.2.4).nGhat 4;,, took at mostr;,, time to
compute the update frois}; to S;. 1, then we know that the computation ptoncurrently stored at
least|.S| bits for computation and output. Given that computatiorf @oncurrently stored at least
|S| bits for computation and output, and thatomputedsS;,, then we have thaf concurrently
stored|S| bits of S, .

We know thatf concurrently storedS| bits of S;;1, but we do not know whethed;,, has
chosen to store some of th§| bits of S; ;. There are only two casest;,, can choose to store the
S bits in Dyem, Or Aj, can collude withA,,; to store up ta. of the | S| bits onA,,;.

Supposed;,, and A,,,; concurrently storéS| bits of S; 1 only in D,,..,, then we have for time
t > (i + 1)T, |S| bits of D,,e,,, cannot be used to compute any bits%for w(S;—1,m,_1) or
w(S;, n;) except forS;11 = f(S;,n;) by Requirement 3.2.2. For time> (i + 1)T, given A,
only knowsL bits of S;_1, A;,, andA,,; cannot recoves; or w(S;_1,n;—1) orw(S;, n;) except for

Si+1 = f(S;, n;) by Requirements 3.2.2 and 3.2.6. We have established fer tim(i+1)7T., S; or
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w(Si—1,ni—1) orw(S;, n;) are effectively “deleted” fromS| bits of D,,,,, andS; orw(S;—1,m;—1)
or w(S;, n;) can never be recovered by, and A,,;.

For timet > (i + 1)T, S;) or w(S;—1,n;—1) or w(S;,n;) can still persist iND,,¢p, if A
stores a copy of a portion &f; or w(S;—1,n;—1) or w(S;,n;) in memory not occupied by, ;.
For timet > (i + 1)T, by theFixed Memory Assumptiotthe maximum number of bits available
to A;, to store a portion of5; or w(S;—1,n;—1) or w(S;,n;) IS Lynem, = Dmem — |S| For time
t > (i+1)Te, only Lyep, bits of A;y, existin Dy, andsS; or w(S;—1,n;—1) orw(S;, n;) can never
be regenerated, therefore we have for time (i + 1)T., A;, can never leak more thai,,.,, bits
of S; or w(S;_1,n;—1) or w(S;,n;) excluding what4;,, leaked during epoch. By concurrently
storing all|S| bits of S;11 only on D¢, Ain did not need to store any bits &1 on A,y.
Therefore, during epoch A;, could have leaked.,,.; = T - Dy, bits of S; to A,.:. We have for
timet > (i + 1)T., A;;, cannot leak more thah = L,ct + Lipem = Dmem — |S| + T - Dpan, < S
bits of .5;.

The intuition of this case is ifl;;, chooses to store bis , ; to increasd.,,.,, then A;,, will have
to decreasd.,,.; becaused,,, can only accessdl,,; through the communication channels. Givén
concurrently storedS| bits of S;1 in both D,,.,,, and A,,;, we have several constraints on the
system. We enumerate those constraints:

1. Cin+ Cour = S,

2. Lipemn = Dimem — Cin,

3.7 Dyyp > Ce + Lyer,

4.T - Dpan < 21S| — Dpmem.-

We now justify each constraint. Giveficoncurrently storedS| bits of S;; in both D,,,.,,, and
Aour, We haveC;,, + Cou WhereCy, is the number of bitsi;,, concurrently stores o andC,,;
is the number of number of bits concurrently stored4y), by definition. GivenC},, bits of S; 1
are stored inD,,.,,, then the maximum number of bits to availablg, to store portion ofS; or
w(S;—1,mi—1 Or w(S;,n;) IS Lipemn = Dmem — |S| by theFixed Memory AssumptiorsivenC,,,;

bits of S;1 bits of S;11 are stored iMd,,;, thenT - Dy, > Cour + Liper- Ain €an only access
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Aot through the communication channels, thereforg,if wants to store’,,,; bits A;, must send
Cout bits to A,,;. The constraint - Dy,,, < 2|S| — Dyem IS a requirement of the DABLS system
explained in Section 3.1.

We use the constraints to show that the amount of memgygan use to leas; or w(S;_1,n;—1
orw(S;,n;)is L =. We have for time > (i+1)T,, A;, cannot leak more thah = L¢;+ Lypem =
Diem — Cin + T - Dyany — Cout = Dimemn, — |S| + T - Dpap, << S bits of S;.

We have proved both cases, therefore we have divegceives the corredt; by time (i +1)7¢,
fortimet > (i+1)T., itis computationally infeasible fod;,, to leak more thal. = L1+ Lipen, =
Dipem — |S| 4+ T+ Dpap << S bits of S; or w(S;_1,n;—1 orw(S;, n;). By Requirement 3.2.54;,,
leaking.S; or w(.S;, n;) or w(S;—1,n;—1) is equivalent, therefore giveli receives the corredt; by

time (i + 1)T, for timet > (i + 1)T,, A;;, can leak at mosk,,.,, bits of S;. O

We finish the proof of theorem 3.2.2. By Requirement 3.23,; cannot independently com-
pute bits ofS;.A,,: learns bits ofS; only if A;, leaked those bits. Lemmas 3.2.1, 3.2.2, 3.2.3
encompass all timg thereforeA;,, can never leak more thah= L,,,c;,, + Lner << .S bits of S; if
V receives the corred®; by time (i + 1)7.. We have shown botH,,; only knows bits ofS; if A;,
those bits tad,,; and 4;,, cannot leak more thah bits of S; if V' receives the corred®; by time
(i + 1)T.. Therefore we completed theorem 3.2.2.

The proof of theorem 3.2.1 follows from theorem 3.2.2.

3.3 The Pool Update Functionf

We present our realization of a concrete implementatioif.oOur implementation off consists
of two parts a pseudo-random function and a block selectienhanism. First, we will give an
overview of our pseudo-random function. Second, we desaxibat a block selection mechanism
does. Third, we will propose several block selection meigmas. Fourth, we will perform detailed

analysis on some of the block selection methods. Figureur@rsarizes the notation used in section.
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|b] block size in bits

S [i] block of pool §

E A block cipher’s encryption function
f(n,S;) | Return poolS;;+,

g(n, S,i) | Recursive function family used to defirfe
9ns(7) g instantiated witm andS

A how many times to compuig, s

N Number of blocks ins: 121
P(n,bs) | Non-invertible PRF

(bs) P keyed withn

Figure 3.5: Notation for defining

3.3.1 Pseudo-random function

We describe our pseudo-random function. We suppose we Haweilg of non-invertible PRF'sP.
We use a nonce to select which particular PRE, from that family (Equation (3.1a)). An instance

of P, takes as inpuk blocks of sizelb| bits, and produces one block of output (Equation (3.1b)).

P:{0,1}" = p, (3.1a)

P, : {0,1}F1 — {0, 1} 1! (3.1b)

We say thatf, is non-invertible in that knowledge of, the output, and part of the input does
not reveal any more of the input.

One concrete way of implementing a suitablés similar to the CBC-MAC algorithm. As with
CBC-MAC, we use a block-cipher encryption functiéghin CBC mode with initialization-vector
0, and then output only the last block. Normally, this blockild be decrypted to recover the last
block of input; we make the function non-invertible by xagithe output block with the last block
of the input: We propose instantiatifgusing a CBC-MAC based on a block-ciph&r(e.g., AES).
Recall that CBC-MAC xors each block of input with the precgdblock of cipher text (starting
with an IV of 0), and then encrypts it with the block cipher.eTbutput is the last encrypted block.

Normally, knowledge of the key would allow the output to beygted to recover the last block of
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plain text. To avoid this, we xor the final output with the lpkiin text block.

3.3.2 Generic Block Update

We present a update function using a generic block selegterhanism. We define our pool update
function f in terms of a recursive functiog, ;.

We realize generi¢ as follows:

S [i] = blocki of S (3.2a)
S [i] ifi <N
9ns (i) = § Po(gns (i — N)||lgns(BLOCK (k,i)) ... (3.2b)
if i >N
... gns(BLOCK(1,1)))

f(n7 S) = gnS()‘) . 'gnS()‘ +N — 1) (32C)

We break the poob into N blocks of size|b| bits, referring to blocki of the poolS as S [i]
(Equation (3.2a)). The update function can uUselependencies in the update computation. The
function BLOCK takes in a pool state, a dependency index ddak index and outputs a function
index in the range of — N +1:7¢— 1. The dependency indek has the range of : K. The
recursive functiory,,s (Equation (3.2b)) takes an indéxas input and produces a single block as
output. We defing,,s(0) to g,s(N — 1) to be the input blocks' [0] to S [N — 1]. Finally, f itself
is defined as the lasY¥ blocks after computing\ blocks ofg, s (Equation (3.2c)). Clearlyx must
be at leastV so that the output of is distinct from its input. We further examine the choicelwd t

design parametex in Section 3.3.4.

Security of Generic Function

We show that the generic function satisfies most of the requents present in section 3.2.2
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We now show thaf satisfies Requirement 3.2.2:

fis Non-Invertible. Given, for allk < 4, L bits of Sy, noncesn,, and responsegy,

and anys;, it is computationally infeasible to compute additiondklaf anyS;.

Allof f(S,n)’s output is the output of a non-invertibleR F' that depends, directly or indirectly,
on every bit of the input poab. Given that fewer thar. bits of S, it is computationally infeasible
to compute any additional bits &f.

We now show thaf satisfies Requirement 3.2.3:

f Needs Complete Pool Given, for allk < ¢, L bits of S, noncesu;, and responses
Ry, andn;, it is computationally infeasible to compute any bitsfdf;, n;) without all

of S;.

Each output block of (S;,n;) can be expressed as a recursion treg,@f This recursion tree
incorporates every input block &f; as an input to the non-invertiblB RF'. Therefore, there is no
way to compute any output block ¢f(.S;, n;) without knowing the entire inpu$;. We now show

that f satisfies Requirement 3.2.4:

f Cannot Compute Early. Given, for allk < i, L bits of Si, nonces, and responses
Ry andS;_1, It is computationally infeasible to compute any bitsf@f;, n;) without

ng

Each output block of (.S;, n;) is the output of @& RF from the family P. n; is needed to know

which PRF P, is to be used. Hence it is infeasible to compute any p@st, n;) withoutn,;.

3.3.3 Block Selection Mechanisms

The block selection mechanism selects chooses which reewtependencies @, computation
will depend on. Designing the block selection mechanisnmtisrésting because the recursive de-
pendency structure can significantly impact the updatetimms resilience to the split computation

attack and the time space trade-off attack.
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CBC-Like

gnSo gnsl gnSZ gnSS

gnS4

gnS5

Figure 3.6: Recursion Tree for CBC-like Scheme

We give an overview of the CBC-like block selection mechamisShe CBC-like block selec-
tion mechanism selects thhemost receny,,s computations as dependencies. Therefore, CBC-like
selection mechanism is realized BOCK (k,i) = ¢ — k. The advantage of the CBC-like block
selection mechanism is its easy to analyze. The disadwaufadpe CBC-like selection scheme is
a update function using the CBC-like selection scheme may t@ use more dependencies to be
secure.

Figure 3.6 shows a partial example recursion tree that waeilgenerated by the update function
using the CBC-like block selection mechanism. In this exiantipe update function uses the CBC-
like block selection mechanism to select one dependendylpek update. The main purpose of the
figure to give a visual representation on how the computations depend on each other when the
CBC-like scheme is used as the block selection mechanisthislfigure we see thaj,s4 depends
on g,50 andg,s3. g,s4 depends om,,s0 by definition of our update functiory,,s4 depends on
gns3 by selection by the CBC-like block selection mechanismabeeBLOCK (4,1) = 4—1 = 3.

We show thay,,s5 depends 0g,,s1 andg,,s4 to illustrate how the recursion tree would continue.

XXVii



gnSo gnsl gnSZ gnSS

gnS4

gnS5
Figure 3.7: Recursion Tree for Pseudo-Random Scheme

Pseudo-Random Scheme

We give a brief description of our pseudo-random block seleanechanism. The pseudo-random
scheme seledt dependencies by using each value of the fagts computations modulo the pool-
size. We realize the pseudo-random block selection mestmeasBLOC K (k,i) = (gns(i — k)
mod |S|) + i — N where|S] is the size of the pool in blocks.

Figure 3.7 shows a partial example recursion tree that woelgenerated by a update function
using the pseudo-random block selection mechanism. Irei@mple the update function uses the
pseudo-random block selection mechanism to select onendepey per block update. In this figure
we see thay,s4 depends ow,s0 andg,sl. g,s4 depends om,,s0 by definition of our update
function. g,,s4 depends o, s1 by selection from the pseudo-random block selection sehéfe

gns5 and its dependencies to give a sense on how the recurseowartdd continue.

Public Permutation Scheme

We give a brief description of the public permutation schefifee public permutation scheme uses
a linear congruential generator to select whjgh computations to use as a dependency. We realize
the public permutation scheme as followB&8OCK (k,i) = a(k + i) mod |S| + i — |S| where
a=1i+(i+1 mod 2) mod |S|. Inthe public permutation scheme we assume that the pa®l siz
is a power of 2.

Figure 3.8 shows a partial example recursion tree that wellgenerated by the update function
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gnSo gnS]- gnSZ gnSS

gnS4

gnsd
Figure 3.8: Recursion Tree for Public Permutation Scheme
using the public permutation block selection mechanisnthithnexample the update function uses
the public permutation block selection mechanism to selaetdependency per block update. In
this figure we see thaf,s4 depends ow,s0 andg,sl. g,s4 depends om, 50 by definition of
our update functiong, s4 depends on,,s1 by random selection from the public permutation block
selection scheme. Wg,s5 and it's dependencies to give a sense on how the recurgierwiould

continue.

Hoppy Scheme

We give a brief description of the hoppy scheme. The hoppgreehhas two modes. The modes
are selected by computin ODE = |i/|S|] mod 2. OnMODE = 0 the hoppy scheme uses
the CBC-like function to select dependencies. @®DE = 1 the hoppy scheme select blocks by
computing the index plus the pool size over 2 modulo the piael Ve realize the hoppy scheme as
BLOCK (k,i) = BLOCK y;opp(k,i) whereBLOCKy(k,i) = i — k and BLOCK, (k — i) =
i (151/2).

Figure 3.9 and Figure 3.10 shows a partial example recutserthat would be generated by the
update function using the hoppy block selection schemeurgig.9 shows that the hoppy scheme
whereMODFE = 0 selects dependencies in the same fashion as the CBC-likesctrigure 3.10

shows how the recursion structure is different wWldd®wWDE = 1.
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gnSo gnS]- gnSZ gnSS

gnS4

gnS5
Figure 3.9: HoppyM ODE = 0 Recursion Tree

gnS4 gnSS gnSG gns7

gnSS

gnsg
Figure 3.10: HoppyW/ ODE = 1 Recursion Tree

3.3.4 Detailed Analysis
Use Every Block

A common design characteristic of each block selectiorawiis that every block is a guaranteed
to be selected once evely| block updates We now explain why it would be bad if this was not
the case. Suppose the device has just finished computing bfmtate; and the block selection
mechanism does not use the block as a dependency during xhéShélock updates, then the
device does not need to store the result of block updéiecause block updatewill never ever

be used as a dependency. This is due to the fact that an dfficiplementation that concurrently
storeg S| blocks simultaneously will overwrite the result of blockdape: with block update + | S|
after|S| block updates. If a device does not need to store the resalblafck updateé then update

will be more vulnerable to the time space trade-off attaka block update does not need to be
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stored, then fofS| pool updates afterthe pool state is compressible by one block. This would give

the attacker one block of extra space to use for memoizatiothé time space tradeoff attack.

Detailed Security Analysis of CBC-like

We analyze how the security of an update using the CBC-likedsbelection mechanism changes as
the number of dependencies change. We show that when theli€Bklock selection mechanism
selects only one additional dependency then the updatédaris vulnerable to a split computation
attack. Then we show that when the update function uses ti& B function to select depen-
dencies then the update function is secure against agaitistte split computation attack and time
space trade off attack.

CBC-like with two dependencies is insecure to the split cotagon attack. We present the
basic idea of the attack. Ain leaksontiguous blocks irb;. Then during the update froii; to
Si+1 the internal adversary continually leak the dependencyheffirst block of the contiguous
blocks. This would allow the external adversary to updagectintiguous blocks frorfy; to .S;, 1.

We present the attack algorithm. We consider a pool update ff to S’. Before the pool
update, we assume the attacker starts with a contiguousnregimemory leaked starting at indéx
of  length. During the pool update, the attacker does the fatigwfor (j =0: 5 < A/|S|: j++)
The internal adversary;,, leaksg,s(i+j(|S|+1). After the pool update, external attacker compute
the update using the blocks leaked during the update anddbksdeaked before the update.

We give a step by step example of the split computation attadcke CBC-like scheme. We use
the example pool 2 of size 8. We segan = 4. We set the pool update parameters\te- 8 and
k = 2. With these parameter$y[0] = ¢,5(0) and51[0] = g,s[8]. The attacker’s goal is for the
external attacker to learn 7 blocks ®f despiteL g4y = 4. During epoch 0, the internal adversary
A;, leaks blocks 1,2,3 of. During epoch 1, the internal adversaty, leaks blocks 0,4,5,6 df;.
After epoch 1, the external adversady,,; uses block) of Sy and blockl of Sy to compute block
1 of S, because by definitios;[1] = ¢,5(9) = P(9ns(1)||lgns(8)) = Pn(So[1]]|S1[0]). The
external adversary also comput®g2] = ¢,,5(10) = P,,(9ns(2)||gns(9)) = P, (S0[2]||S1[1]) and
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c blocks of memory used for memaorizatian
Cp, | costto computée’, on each input block
C'(i) | cost to recomputéth memorization miss

Figure 3.11: Notation for computation cost analysig of

"N 9nsS (1) = [1]
s (N-1)  =SIN-1]
9nsS (N) = Pn(gnS(O) gnS(N - 1))
gns (N +1) = Pu(gns(1) .. gns(N))
E,? gnS (>\) ;.Pn(gnS(A_N)'“gnS(/\_l))
£ 9ns (A+1) = Py(gnsA+1—=N)...gas(N))
gnS()\+N_1) :Pn(gnS()\_l)gnS()\+N—2))

Figure 3.12: Computation of via g, s
S1[3] = gns(11) = Pr(gns(3)|lgns(9)) = P.(So[3]|]S1[2]). At this point the external adversary
A, has learned 7 blocks ¢f;. The attack is successful.

We give a proof on how the CBC-like function is secure aganmh the time space trade-off
attack and the split computation attack when the CBC-likefion uses: dependencies.

We first demonstrate that the CBC-like function usindependencies is secure against the time
space trade-off attack. We will do this by analyzing the catapjon cost of computing using the
CBC-like block selection witm dependencies. Our unit of computation in terms of the ugioheyl
PRFP,. We analyze two cases. The first case is where the implernm@ntaft f uses less thab|
blocks of memory to memoize results gfs. We show that for the computation cost wheat N
grows exponentiallywith the parameten, while the computation cost when> N grows only
linearly with \. Hence, the cost to compugewith fewer than/NV blocks of memoization cache
can be made arbitrarily more expensive than for computatitim N blocks of memoization cache.
Because all blocks in the memoization cache are output ofidimeinvertible PR, this data is
not invertible to any part of the inpu;.

Figure 3.3.4 summarizes new terms introduced in this aisalys
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Figure 3.3.4 illustrates a computation pfandg,s. An efficient implementation of begins
computingg,s ati = N, incrementally computindgorward the nextg,,s. To avoid recomputing
previous values of,,s, the lastNV blocks must be stored. When (i) is computedg,,s(i — N)
may be overwritten, since it will never be used directly agai computey,,s(j) for j > 4. This
includes overwriting the original input = g,,5(0) ... gns(N — 1).

Computation ofy,,s (i) requires theV preceding blocks. An efficient implementation that uses
¢ blocks of memoization cache avoids recomputation by alveaysng the most recenY blocks.
The cost to computg in this manner, usingS| = N - |b| bits of memory to store intermediate
blocks, is the number of,,5(7) to compute, times the cost to computg over N blocks, which we
define asV - Cp,, giving a total cost of\ - N - Cp,.

An implementation that uses < N blocks of memoization cache is forced to recursively
recompute earlier blocks. Consider an implementatiory @hat directly computes(S,n) =
gns(A) ... gns(A+ N — 1) one block at a time by recursively computipgs, usingc blocks of
memory to memoize results.

The recursion tree for computing the first output blagk ()\) eventually recurses back to
computingg,s(N), which can be computed directly at a cost/éf Cp,, and that block may be
memoized assuming that> 1. The next block that will need to be computed in the recursiea
iS gns(N +1). The memoized block,,s(/N) can be used, allowing,s(N +1) to also be computed
fora cost ofN - Cp,.

The recursion tree is such that eagh () will be computed sequentially in this manner, up until
gns(N + ¢). That block may be computed for the same cosiNofC'p,, but no memory remains
to memoize it. We first consider the case that the ifskocks to be computed and memoized are
never evicted from the cache. We later argue that no othéircgstrategy does any better than this
one givenc < N.

Let C(j) be the cost to compute thi#h unmemoized block. The cost of computing missing
block 0, g,s(N + ¢), isC(0) = N - Cp,, as noted above. To compute missing block 1, missing

block 0 must first be recomputed, giving a c6§il) = C'(0)+ N -Cp, = 2- N - Cp,. To compute
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missing block 2, first block O must be recomputed, then blookukt be recomputed. Note that to
recompute block 1, block 0 must be recompudggin there is no memory remaining to save that
block. HenceC'(2) = C(0) + C(1) + N -Cp, =4- N - Cp,.

In general, to compute,,s(i) for i > (N + ¢), the recursion tree is structured such thtt
i — N — c unmemoized blocks must be sequentially (re)-computed.cbbeto compute,,s (i) for
i>(N+c¢)isC(i — N — ¢). We initially defineC' in Equation 3.3:

o) = N-Cp, . ifi=0 (3.3)
N-Cp,+ Y3271 C() ifi>0
We can find the closed form by noting that for> 2, C(i — 1) = N - Cp, + Z?ZE_Q C(j).

Therefore, fori > 2:

Combined with the base case tl@at0) = N - Cp,, this gives us the closed form for C (Equa-
tion (3.4)):

C(i)=N-2"-Cp, (3.4)

Recall that this cost is based on the memoization strategtodhg the first computed blocks,
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and then never evicting those from the cache. Can the adyetsdetter with a cleverer memoiza-
tion strategy? We argue that he cannot. When computingi) for i > N + ¢, atleasti — N — ¢
previous blocks are not stored in the memoization cache.hBybove analysis, it doesn’t matter
at allwhichblocks are missing from the cache and must be recomputeg hoal many. Further,
since computation of,,s involves a unique prefix td,, one partially computed block cannot be
used to help compute other blocks.

At last we explicitly prove the requirement. When at le@§tbits (V' blocks) are used to store
results ofg,,s, the cost to computgis A- N -Cp,. When|S|—1 bits are used, this leaves= N —1
blocks to cache intermediate blocks. The total cost is eguthk cost to compute the firs= NV —1

blocks, plus the cost to compute the remaining of the fividdlocks. This cost is given below.

NN LN -2 —maz(2) 2V - 1,0)) - Cp,

To satisfy the requirement thgtmay be computed in less thdh, if and only if at least.S|

bits of memory are overwritten, we must satisfy the relation

A-N-Cp,
< Ty (3.5)
< N-(QVNHL N2

—maz(2*72N —1),0) - Cp,

Since the cost to computéwhen using N| bits to store output blocks ad?, is polynomial in
N and ), and the cost to computéwhen using fewer bits isxponentialn A, it is straightforward

to select parameters so that the $68bbit implementation is arbitrarily more expensive than the

Note that there is no need to preemptively compute the bliodsstween the last memoized block and the first output
block. Themax term accounts for when there are such “middle” blocks thata@meed to be explicitly computed except
as part of the computation of later blocks.
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|S|-bit implementation. For example, setting= N + 128 whereN > 128 gives us:

(N% 4+ 128N) - Cp,
< Ty (3.6)

< N-(2%4+N-2)-Cp,

The other part of the requirement is that {l%¢ stored bits must not be invertible to any part of
the input pool. Since the stored blocks are the output of dimeinvertible PRF,, this requirement
is trivially met.

We now show thaf satisfies Requirement 3.2.5:

Leakage Equality for f. Given, for allk < 4, [ bits of Si, noncesn, and responses
Ry andL — Z bits of S;, Z bits of outputs from any function(.S;, n;) computable by

A;y, cannot be used to compute more thiahits of S; or S; 1 whereS; 1 = f(S;, n;).

This property trivially holds whetd. + Z > |S|, because there is then no unknown information
left to compute.

We therefore consider only the case whére- Z < |S|. We show that no part of (S;, n;)
can be computed with less thafi| bits of knowledge. Since all parts of the output f&fS;, n;)
are output blocks of,, s, computation of some part of the output ofmplies computation of some
gnst. We next show that computation of agysi is infeasible when less thaf| bits of information
has leaked.

gns(i) for 0 < i < N — 1 are the input blocks$ [0] to S [V — 1], by definition ofg,s (Equa-
tion (3.2c)). Computation of more of these input blocks than size of the leaked information
L + Z would imply compression of that data. Since the input is geaandom, no such function
w can exist.

Block ¢,,5(IV) is the first computed block. By the definition @fs, computation of this block

requires knowledge of allS| bits of its input, which is exactlys;. Since we have shown that no
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more thanZ + Z bits of that information can be leaked or computed, &nd Z < |S|, there is not
enough information to compuig,s(N).
Block g,s(N + 1) is the next computed block. Computation of that block rezgiir,s (V)

(which is size|b

), and|S| — |b| blocks of the original input. The total size of that informoat
is again|S|. We have already shown that less thaf bits of that information could have leaked
directly or been computed from other leaked informationné€gg,,s (N + 1) is also impossible to
compute.

This continues recursively for all blocks. Since g can be computed from less thg#] bits
of leaked information, then it is impossible for leakage 0§ & bits of information to reveal more

than Z bits of f(.S;, n;).

Hoppy Vulnerable to Split Computation Attack

We present a split computation attack against the hoppynseh&he idea of the attack is to update
two regions when the hoppy schemedODFE = 0 such that whem/ODFE = 1 the internal
adversary does not have to leak anything for the externaradvy to compute anything. We present
an algorithm for the attack. First the attacker leaks twaoareg of contiguous blocks at indexes
andk suchthat = £+|S|/2 mod |S|. for (j =0:j < A/|S|: j++) The internal adversary,,
leaksgns (i + j(|S| + 1) andg,s(k + j7(|S| + 1)). After the pool update, external attacker compute
the update using the blocks leaked during the update anddbksdeaked before the update.

We give a step by step example of the split computation atigelnst the hoppy scheme. We
set the parameters {6| = 8, A = 16, andL = 4. The attackers goal is to learn 6 blocks$f
despite being able to leaks only 4 blocks per epoch. Duringle, the attacker leaks(3) and
So(7). During the pool update, we computé ODE = [8/4] mod 2 = 0. By our attack algo-
rithm, the internal adversaty;,, will leak g,s(10) andg,s(14). So(6). The external adversary can
compute will useg,,s(10), gns(14), So(3) and Sy(7) to computeg,s(11) and g,,5(15), because
gns(11) = P (gns(3)||lgns(10)) and g,s5(15) = P,(9ns(7)||gns(14). Next, the external adver-

sary will useg,,s(10) andg,s(14) to computeg,s(18). We compute blockBLOCK/(1,18) =
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18 — (8/2) = 14. We haveg,s(18) = P,(gns(10)||gns(14)). Similarly, we haveg,s(19) =
P, (9ns(11)]lgns(15)). The external attack can also compuig;(22) = P, (gns(14)||gns(18))
andg,s(23) = P,(gns(15)||gns(19)). The external attacker now knows four blocksSyfbecause
S1[2] = gns(18), S1[3] = gns(19), S1[6] = gns(22), andS1[7] = gns(23). Due the epochs 0O
and 1 overlapping during the update process, the internadradry can leak 2 additional blocks of
S1. After S; the external adversary has learned 6 block$pHlespitel. being4. The attack is

successful.

Compressible Analysis

We present some analysis on how to adjust the scheme parariidtee pool is compressible. If

the pool isz percent compressible thdn,,c,, + Lpe, < L WhereL,er, = Dppem + (1 — 2)|S].

We need to adjust the safety parameter because a compegssdilgives the attacker space when

the attacker compresses the pool.

3.4 \erifiable Malware-Free State

DeviceD

Z | DABLS code 2 | DABLS code
o o

DABLS code

Sit1

DABLS code

ROM
ROM

Lmem
s
3
Lmem
H
Lmem

RAM
RAM
RAM
RAM

*
Si+1

Time

Figure 3.13: Achieving malware-free state at epoehl.

In this section we describe a simple protocol that extend8ICAto attempt the removal of
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malware (the adversary;,,) from device memory, and the loading of intended applicatodeC'.
Suppose that we would like devide to run some application code represented_byWe must
have|C| < L,,.m, otherwise there will not be enough space to store both tbé $@and the code
Cin Dy, Malware is erased from if D,,.,,, does not contain any bits of;,,.
Our protocol contains two stages: (1) verifiable remotewseasf malwared;,,, and (2) loading
of the application code, and is implemented in devie ROM. A small amount ofD,,,.,, is also
required as a workspacg for the ROM code to execute, which we detail below. Figuresh®ws

how the memory orD evolves during the protocol. In epoch

1. Verifier V sends nonce:; and entropyE; to deviceD, where|E;| = Dem — |S| — |@),
and( represents the minimum scratch space necessary for the RO&I(tunctionsf and
y) to execute. For exampl€) may contain the runtime context for a keyed MAC and a block

cipher (see Section 4.1).

2. Device D overwritesL,,.,, With entropy E; and hence the malwarg;, is overwritten in
Diem- D then computed (£;|5;,n;) = Sf,,. Note that|S};, | is larger than a typicab
(recall that|S| = |Dmem| — |Lmem|), Since its domain and range inclugef + | E| bits. D
sendsR; = y(S;,,)toV.

3. Verifier V checks thatD’s response is correct and timely and, if so, it sends apmicaode
{C,HMACg,,,(C)} to deviceD, where|C'| < Ly,cn; Otherwise,V initiates D’s reset. Note
that.S;, 1, as shown in Figure 4.9, is simply;, ; with |C| bits overwritten withC', and that

this all takes place during a single epoch.

4. DeviceD authenticate$’ using theHMAC andS; 1, and then overlay&,,.,, with applica-
tion codeC', and responds withM, HMACS,. (M)} to V wherelM is a message confirm-
ing D has received”. Verifier V checks thatD’s response is correct and timely, and, if so,
V' considers cod€’' to be activated on devicP in a malware-free environment; otherwige

attemptsD’s reset.
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The above extension of the DABLS protocol requires that ghdROM is available in device
D to enable the execution of the protocol.

Note that the verifier does not have to run the protocol foieatthg a malware-free state on
device D in every epoch. During epochs where application cédeeeds to receive and execute
management commands, verifiéruses the basic DABLS protocol presented in Section 3 to au-

thenticate devicd.

Lemma 3.4.1. Given thatV’ receives correct and timely respon§e HMAC's,,, (C) itis compu-
tationally infeasible forA;, to prevent the complete loading of application cadén D, i.e.,

the deviceD’s memory contenb,,,¢.,, = C||S;+1

Proof. We outline our proof as follows. Supposg,, occupiesa > 0 bits in D,,.,, and yetV
receives the correct, timely response frdm at epochi + 1. If D,,.,, contains bits of malware
A;, at statel 4+ 1, D’s response to verifiev”’s challenge could not have been correct and timely for
the new memory poaD,,.., = E;||S;||@. In this case verifie}” would have attempted’s reset.
Similarly, the correct, timely response received aftet, HMACs, ., (C)} is sent implies that

was correctly loaded in a timely manner. O

3.5 Device Initialization and Reset

3.5.1 Deuvice Initialization

A device’s secret poob comprises its identity. The initial pooky, must be injected before the
device can be deployed in a real network and become the sulbj@dversary attacks. For example,
initial pseudo-random pod¥, could be injected by the manufacturer, or may be “impriritiog
the device by a technician, at installation time; e.g., adgmmeter” may have, is injected before
it is initially connected to the power grid.

The verifier (e.g., a process run by an electric utility) resis and receives periodic heartbeat

messages from the device that confirm that the device’s gdmting updated in accordance with
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our protocols. If a response to a heartbeat request is eserétt or misses its deadline (e.g., fails
to arrive at all), then the state of the device software ismmred suspect. Malware may be present

on the device.

3.5.2 Device Recovery and Reset

When a device’s heartbeat fails correct and timely verificatwe initiate another protocol to at-
tempt to recover the device. It is always a possibility thatware refuses to respond to these
messages or perform the necessary actions. In this casegiteéssary to send a technician to repair
or replace the device. However, malware that behaves thuilpe detected with overwhelming
probability. Further, an adversary may prefer to have hisvai@ wiped from the device, instead of
attracting undue attention.

If malware is not in permanent control of the device, e.diai only hooked an API or interrupt
service routine associated with billing, then our protdoolreaching a malware-free device state
will be successful. If so, the device is considered to hawe iteapplication code and pseudo
random pool reinitialized to a known-good state (i%&.,1 in Figure 4.9), and normal operations

can resume. Physical intervention becomes necessaryfdhig reset protocol fails.

3.5.3 Bootstrapping Additional Applications

If malware is successfully removed from the device, then axeetthe opportunity to bootstrap any
of a number of standard cryptographic libraries and prdsocbhe device’s current secret pogl,
represents a shared secret with the verifier. This is suifittederive keys for almost any standard
cryptographic protocol. Thus, we are able to build from devauthentic identity and malware-
free state, to a known-good shared secret between deviesbitrary cryptographic protocols.
Furthermore, achieving a malware-free state complemeswsanyptographic constructs that are

intended to be resilient to continual key leakage via sitgeroel attacks; viz., the next section.
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Chapter 4

Evaluation

4.1 Parameter Exploration

Here we explore practical parameters of epoch duratioru(gig.1), device memory and pool size
(Figure 4.2), and device bandwidth (Figure 4.3). To aid taition, we also offer some parameters
of real-world wireless network interfaces (Figure 4.4).

We let L e = Dmem — |S| @nd Ly = T - Dpgp -

T (seconds) |S| (MB) | Lyet (MB) < | Lyem (MB) <
1 0.52 0.03 0.48
2 0.53 0.06 0.47
3 0.55 0.09 0.45
4 0.56 0.12 0.44
5 0.58 0.15 0.42
6 0.59 0.18 0.41
7 0.61 0.21 0.39
8 0.62 0.24 0.38
9 0.64 0.27 0.36

10 0.65 0.3 0.35
20 0.8 0.6 0.2
30 0.95 0.9 0.05

Figure 4.1: Implications of varying epoch durati@h We fix the device memory, .., at 1 MB,
Dy, bandwidth per second as 0.03 MB/s. Thg.; and L,,.,, values shown here are the upper
bounds on allowable leakage.
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Dmem (MB) |S| (MB) Lnet (MB) < Lmem (MB) <
64 52 40 12

128 84 40 44

256 148 40 108

512 276 40 236

1024 532 40 492

2048 1044 40 1004

4096 2068 40 2028

Figure 4.2: Implications of varying device memaby,.,,. 1" is fixed at 400 second€,,,,, is fixed
at 0.1 MB/s. ThelL,,.; andL,,.,, values shown here are the upper bounds on allowable leakage.

Dban (MB/S) ‘S‘ (MB) Lnet (MB) < Lmem (MB) <
0.002 8.1 0.2 7.9
0.004 8.2 0.5 7.8
0.040 104 4.8 5.6
0.100 14.0 12.0 2.0
0.130 15.5 15.0 0.5

Figure 4.3: Implications of varying device bandwidth,,,. 7' is fixed at 200 secondsD,,,c.,, IS
fixed at 16 MB.L,,.; is deterministically calculated from;,,,. The L,,.; andL,,..,, values shown
here are the upper bounds on allowable leakage.

4.2 Implementation

We implemented a prototype of the pool update function. W& flescribe our system setup fol-
lowed by the pool update function’s implementation details

Our testbed consists of two systems connected via a wirétéssiet connection: a server
operating as the pool update verifier, and a client as theygmate prover.

The server is a Intel Centrino system with a 2.4 GHz Dual-cortJ, with 3 GB RAM and

Protocol Bandwidth (MB/s)
Bluetooth 1.2 0.09

Bluetooth 2.0 + EDR (practical) 0.26

Bluetooth 2.0 + EDR (nominal) 0.38

Bluetooth 3.0 HS 3.00

Zigbee 2.4 GHz 0.03

Zigbee 915 MHz 0.004

Zigbee 868 MHz 0.002

Figure 4.4: Maximum attainable bandwidth of common wirgldata communication media.
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Program 1 generic-up
ReceiveNONC'E From Server
generic-up(NONCE)
Send SHA-1(POOL) To Server

150 GB of hard disk running the server code and Ubuntu 9.10.ruWeour client on 2 different
platforms. The first platform is a real time system model RT&N ARM 1176 in the ARM Real
View Debugger. The second platform is an ARM Versatile EgpreB 1176 Development Board.
The ARM Development Board uses a ARM 1176 processor, 128 MBIRAMB PSRAM, 2 GB
sd card, and 2x64 NOR FLASH. Our current implementation igtevr in C. Our code uses the
polar-ssl library. Our code runs in user mode. Our code hagtmain components theet up,
generi c-up, andbl ock. Theset up component is responsible for reading the nonce from
the server and communicating the final result to the servbe generi c- up component is re-
sponsible for computing the non-invertible PRF and updathre pool. Thebl ock function is
responsible for copying blocks from the pool to a buffer. How tHd ock function selects those
blocks depends on which block selection strategy it implasmeWe implemented the CBC-like,
pseudo-random, public permutation and hoppy block seledirategies.

We now describe the implementation of our pool update fonctThe first program we present
isset up. The second program we preseng@ner i c- up. The next set of programs, we present
are implementations of the different block selection sgas. Implementing several different block
selection strategies is useful because different blogctieh strategies may have significantly dif-
ferent performance and security characteristics.

Theset up program (psuedo-code shown in Program 1 is triggered wheendtifier sends a
nonce to begin the pool update process. First, the setupgmocglls thegener i c- up program to
update the pool. Then the setup program computes the SHAkH.dfdhe pool and communicates
the result to the server.

Thegeneri c- up program (pseudo-code shown in Program 2 is triggered wheadhup
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Program 2 generic-up
Parameters: NONCFE
fori=0— A\do
index=1¢ mod |95]

for j =0— K do
DEPARRAY[j] =POOLBLOCK(k, 7)]
end for
ANS = AES — ENC — CBCnonce(POOLindeX || DEPARRAY)
ANS = ANS © POOLBLOCK(1,7)
POOLindeX =ANS
end for

program calls it to update POOL using the nod¢® NCE. The setup program computadlock
updates. Each block update consists of four steps. Thetsisthat the pool computes the index
of the POOL block that is going to be updated. The second stépding thek dependencies used
for ¢ — th block update by calling thel ock function & times. The third step is computing the
non-invertible PRF by calling AES-ENC-CBC on the pool bl@ikndex index concatenated with
the k£ dependencies found in the second step. Thermg#mer i c- up function XORs the result
of the AES-ENC-CBC computation with the first dependencyntbby thebl ock function. The
fourth step is the pool block at indéxdex is updated with the result of the computation described
in step three. The fourth step is important because it gigethe invariant that theS| most recent
updates are stored in POOL. More specifically we a guararteddf the current block update is
thenPOOL[z mod |S|] = gns(x) forxz € i —n...i.

We now give pseudo code for each of the block selection schelie block selection scheme
we chose to implement are the CBC-like scheme, the hoppyrseghe public permutation scheme
and the pseudo-random scheme. Each program is trigger \uagebher i c- up programs want
to compute whichk dependencies to use for a specific block update.

The CBC-like function selects themost recent results as tlhedependencies. CBC-like func-
tion accomplishes this by returnig-k mod |S| as its block selection. The CBC-like function has

the simplest implementation of our block update mechanidhe CBC-like block select algorithm
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Program 3 CBC-like
Parameters: k andi
returni — k£ mod |S]

So[0] |So[1] |So[2] [So[3]

S1[0] [So[1] [So[2] |So[3]

S1[0] | S1[1] | So[2] | So[3]

Figure 4.5: CBC-like Block Selection Implementation
shown assumes an efficient pool update implementationftreri returns the index in memory of
which block to uses rather than thgs index.

Figure 4.5 shows an example update in a efficient implemientaf the update function using
the CBC-like function implementation. In this example, goml size is four and number of updates
computed in this example is four. The update function is iefficbecause it will use four blocks
of memory for computation. The figure illustrates which id®én memory are selected in block
updates and how memory changes after a block update. Weatde tipdate index 0 from epoch
0 to epoch 1 it depends on block 0 and block 3. We also see that ghindex 0 is changed from
So[0] to S1]0] immediately, because an efficient implementation writesrésults to memory as
soon as it computes them to reuse later. We also show the gacesp for updating index 1.

The pseudo-random block selection function chodsgsseudo-random dependencies. The

Program 4 Pseudo-random
Parameters: k andi
return POOL[i — k mod |S|] mod |S|
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So[0] |So[1] |So[2] [So[3]

S1[0] [So[1] [So[2] |So[3]

S1[0] | S1[1] | So[2] |So[3]

Figure 4.6: Pseudo-random Block Selection Implementation

Program 5 Public Permutation

Parameters: k andi
a=1i+(i+1 mod 2) mod |S|
returnak mod |S|

pseudo-random block selection function uses the valueefastk blocks modulo the poolsize
to pseudo randomly pick dependencies. This method chooses blocks pseudo-rand@odyise
value of the lask blocks are the output of a pseudo-random function.

Figure 4.5 shows an example update in a efficient implemientaf the update function using
the CBC-like function implementation. In this example, go®l size is four and number of updates
computed in this example is four. The update function is iefficbecause it will use four blocks
of memory for computation. The figure illustrates which lid®en memory are selected in block
updates and how memory changes after a block update. Weatde thpdate index 0 from epoch
0 to epoch 1 it depends on block 0 and block 3. We also see that ghindex 0 is changed from
So[0] to S1[0] immediately, because an efficient implementation writesrésults to memory as
soon as it computes them to reuse later. We also show the sagesp for updating index 1.

The public permutation scheme selektslependencies. The pseudo-random block selection
function uses a generator to generaigependencies.

The hoppy scheme switches between two modes to select bloidke hoppy scheme only
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So[0] |So[1] |So[2] [So[3]

S1[0] [So[1] [So[2] |So[3]

S1[0] | S1[1] | So[2] |So[3]

Figure 4.7: Public Permutation Block Selection Implemgata

Program 6 Hoppy
Parameters: 7
MODE = |i/|S|] mod 2

if MODE == 0 then
returni — 1 mod |5

else
return(i — |.S|/2)/mod|S]|

end if

selects one dependency. WhefD DE == 0 the dependency returned is the most recent depen-

dency. Whem\/ODFE == 1 the dependency returned is the dependency half away.

So[0] |So[1] |So[2] [So[3]

gns4 |So[l] |So[2] [So[3]

gnS4 gnS5 SO [2} SO [3]

Figure 4.8: HoppyV ODE = 0 Block Selection Implementation
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gnS4 gnS5 gnS6 gnS7

S1[0] |gns5 |gns6 |gnsT

S1[0] [S1[1] |gns6 |gnsT

Figure 4.9: HoppyW ODE = 1 Block Selection Implementation

Program 7 generic-up
Parameters: BLOCK and FRESH
fori=0— Ado
cost = FRESH mod |S]]
for j =0— K do
rand=randin(0, | S| — 1)
cost=FRESHrand+cost
end for
cost= K —cost
if cost< BLOCK then
BLOCK = BLOCK - cost
else
FRESH: mod |S|] =0
numfresh = numfresh - 1
if numfresh == Ghen
return [i, O]
end if
end if
end for
return [i, numfresh]

4.3 Attack Simulation

4.3.1 Split Computation Attack

Program 7 shows the pseudo-code for a simulation of an spiifpatation attack against the
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update function using the pseudo-random block selectiberee. The simulation uses an array
that signifies current set of fresh intermediate state tieekternal adversary has. For every block
update within the pool update the simulation picks randopeddencies, if the external attacker
has all of the dependencies or can leak enough blocks theextbeal attacker maintains a fresh
block otherwise the block is marked as not fresh anymore.

We explain why we think this simulation represents a redsienattack against the split compu-
tation attack scheme. We present several observationsupport our claim that our split computa-
tion attack is resonable. The first observation is that ttaekér's advantage in the split computation
attack against an update from epadb epochi + 1 is how many blocks the external attacker is able
to update from to i + 1 using intermediate blocks. The second observation is iesattacker can
do no better than to break even on state that the attackes thalng the pool update for example if
the attacker leaks three blocks of state in between epant epocti+ 1 then the attacker can learn
no more than three blocks of+ 1. The third observation, is if the attacker is unable to kebjpak
fresh during a block update, then the block is useless totthekar. From these three observations
we see that a reasonable strategy is for the attacker to sakesp blocks fresh if it can. A limitation
of this analysis is that some block may be much more valu&iale other blocks due to the random
dependencies because blocks that are used as dependeaciezavaluable.

We run two simulations to measure the effectiveness of ttazlat One simulation measures
the performance of the attack as we increase the number ehdepcies. The other simulation
changes how many blocks the attacker can leak versus how bhacks the attacker can start out
with. We measure the effectiveness of the split computaditbeck by measuring the number of
block computations on average where the attacker has atleassh block. As the number of
blocks block computations where the attacker has at leastsh block decreases the effectiveness
of the attack decreases because when the attacker hasmblfveks then the attack is a failure.

We ran a simulation to test how our split computation attaefqrms as we increase the number
of depends. We expect that increasing the number of depeitidfrastically decrease the perfor-

mance of the attack. We set the pool size to 128 blocks. Thekalt starts with 64 blocks and the
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Figure 4.10: Pool Size Scalability

attacker can leak an additional 40. We set the number of btookputations to 512. We change
the dependencies from 1 to 20. Figure 4.10 shows the restitteafimulation. The results show
that as the dependencies increase the number of block spahtre the attacker has at least one
fresh block decreases, therefore increasing the secuw#inst the split computation attack. This
was expected. This simulation shows that increasing thebeumf dependencies a good way to
increase the difficulty of performing our split computatiattack.

We ran a simulation to test how our split computation attdwknges as we change the number

of blocks the attacker starts with versus the number of lsldlok attacker can leak. We set the pool
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Figure 4.11: Split Simulation Start Blocks
size to 32 blocks. The attacker has 24 blocks total that céealbed for started with. The number of
dependencies is 2. We set the number of block computatich2&oFigure 4.11 shows the result of
the simulation. The results show that changing the splivbeh the starting blocks and how many
blocks can be leaked does not change the performance oftduk &o much. The splits where
attacker has low starting blocks and high number blocksah tiring the update look better than
they are because the attacker is inefficiently spending<b&aks to update a very small amount of

blocks.



Program 8 generic-up

Parameters: COST
fori=0— A\do
index =i mod |S|
CURBLOCK = COST[index]
if CURBLOCK # Othen
if CURBLOCK == 1then
COST[index] =K + 1
else
COST[index] =K + 1 + CURBLOCK
end if
for k=0— K do
rand = randint(0,n-1)
dep = COST[rand]

if dep == Othen
COST[rand] =1
else

if dep> K+1 then
COSTJindex] = COSTJ[index] + dep
end if
end if
end for
end if
end for
return COST

4.3.2 Time Space Trade-off Attack

Program 8 shows pseudo code for a simulation of the time dpade off attack against a pool

update using the psuedo random block selection mechani$m.simulation uses a cost array to

track the cost of computation changes during the attack.sirhelation updates the cost array as it

simulates each block update.

We explain why our attack is a reasonable implementationtioh@ space trade-off attack. We

think that a good time space trade-off attack will uses owlglgize space, because if there is extra

space on the device the attacker can just store old poolswtitiaving to perform the time-space

trade off attack. We make the observation that the attackest keep at least 1 block from every



index in memory, because if the attack does not keep blocks & index then the attacker won't
able to compute the correct result. The attacker must keepgeninformation to recompute all
blocks that depend on stale blocks it keeps in memory. Thisirement is interesting because if an
attacker keeps a blocKk at index: back, then the block3 at indexk that is used to update block
A to A’ atindex: will also have to be frozen otherwise the attacker will ndeab recomputed’.
Therefore, the attacker has little choice in how it memoladesks. Therefore, we believe the best
time space trade-off attack is for the to memoize as much ssile while still operating under
these constraints. A limitation of this analysis is that sdstock may be much more valuable than
other blocks due to the random dependencies because bhatles¢ used as dependencies are more
valuable.

We ran simulations to test the effectiveness of the attankthé first simulation we measure
the effectiveness of the time space trade off attack as wegehthe number of dependencies. In
the second simulation we measure the effectiveness ofthekats we change the number of block
computations. The metric for determining effectivenesthésratio between the attacker cost and
the normal cost. We expect that increasing the number ofrdkgresies would make the time space
trade-off more expensive for the attacker than increagieghimber of block computations.

We ran a simulation to test how our attack performs as we &ser¢he number of dependencies.
We expect that increasing the number of dependencies agtidally increase the cost of the attack.
We set the pool size to 128 blocks. We set the number of blookpatations to 512. We set
the number of blocks the attacker tries to save to 1. We chér@eependencies from 1 to 20.
Figure 4.12 shows the result of the simulation. The resttsvsthat increasing dependencies is
effective at increase the cost of our time trade off attacklé@mentation namely comparing 1 and
6 dependencies, it will take the normal computation six sifomger with 6 dependencies however
the attacker will take 123844 times to time space trade ddfresy 6 dependencies, versus only 2
times as long with one dependencies.

We ran a simulation to test how our attack performs as we aser¢he number of rounds. We

expect that increasing the number of rounds will drasticiaitrease the cost of the attack. We set

liv
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Figure 4.12: Time Space Attack Simulation Dependency
the pool size to 128 blocks. The attack tries to save 1 bloak s&t the number of dependencies at
4. We change the number of rounds from 1 to 20. Figure 4.13 shiogvresult of the simulation.
The result shows that increasing the number of block contiputadrastically increases the cost of
the time space trade off attack, however contrary to expengthe increasing number of block
computations is better than increasing the number of degremels for making the time space trade-

off attack more expensive.
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Figure 4.13: Time Space Attack Simulation Rounds

4.4 Experiments

We run some experiments to evaluate the performance of @ateunction. We performed these
experiments on the ARM 1176 development board.
4.4.1 Pool Size Scalability

We describe the experiment to measure how the time it takesmpute the function changes as we
change how much memory we use. We are measuring three differethods for performing the

pool update, the CBC-like scheme, the pseudo-random sclardéhe public permutation scheme.
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Figure 4.14: Pool Size Scalability
We fixed the number of rounds to compute the update at 1 andutider of dependencies at 2.
We measure pool sizes ranging from 1 to 64 megabytes. We etlia@dahe performance will not
change too much across different block selection stragegied we expect a linear increase in pool
size to generate a linear increase in cost. Figure 4.14 shwveesults of the experiment. The

results match expectation.
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Figure 4.15: Round Scalability

4.4.2 Round Scalability

We describe the experiment to measure how the time it takesmpute the function changes as we
change how many rounds we use to compute the function. We easuring three different meth-
ods for preforming the pool update, the CBC-like schemep#®ido-random scheme, and public
permutation scheme. We fixed the number of dependenciesrat tha pool size at 1 megabyte.
We vary the number of rounds from 1 to 20. We expect that thieopeance will not change too
much across different block selection strategies, and yweeba linear increase in rounds to gen-

erate a linear increase in cost. Figure 4.15 shows the reftlie experiment. The results match
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expectation.

4.4.3 Dependency Scalability
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Figure 4.16: Dependency Scalability

We investigate our the performance of the pool update clsaagave changes the number of
dependencies in the computation of the pool update. We aasuriag three different methods for
preforming the pool update, the CBC-like scheme, the pseaddom scheme, and public permu-
tation scheme. We fixed the pool size at 64 megabytes and theeruwf rounds at 1. We vary

the number of dependencies from 1 to 20. We expect that tHerpence will not change too
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much across different block selection strategies, and \pea»a linear increase in rounds to gen-
erate a linear increase in cost. Figure 4.16 shows the rekthie experiment. The results match
expectation.

Overall the results show that the pool update is efficienbtomute.



Chapter 5

Conclusions

Cost pressure on the development, deployment and operdtiarge-scale embedded systems will
continue to lead to the use of low-cost devices, which lagciized security hardware, and often
include low-assurance software and insecure managemast for the foreseeable future. This
suggests that (1) malware infestation of remote, embedédeidets will continue to be a significant
threat, and (2) secure operation and management of thegegldias to be achieved despite this
threat — a significant challenge for any system today. Thénar@sms proposed in this paper address
this challenge for remote-device authentication and #éstabent of malware-free device states.
Our mechanisms remove the dependencies on precise timthghano-architectural details (e.qg.,
instruction timings) that have plagued traditional sofevbased attestation mechanisms, and form
a sound basis for developing other robust primitives (ergptographic primitives resilient to side-

channel attacks) for secure application development.
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