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Abstract

Use of commodity platforms for embedded systems makes it difficult to authenticate remote

devices in the presence of malware and to obtain confirmationof malware-free device states in a

verifiable manner. We propose a scheme for achieving these properties by installing and main-

taining a pool of secrets in device memory that cannot be leaked by malware in its entirety via a

bandwidth-limited (e.g., wireless) channel during a specified time epoch. Correct device operation

limits malware leakage of pool content by updating the pool with fresh secrets. It is computationally

infeasible for the adversary to compute the new pool given the limited information he was able to

leak about the old pool within the specified time epoch. Verifier detection of a device’s failure to

update the pool in a timely manner indicates the presence of active device malware and triggers

remedial action (e.g., automated pool-content update, or manual device cleanup). Verified timely

pool updates provide device authenticity, since all devices are initialized with independent pool se-

crets (i.e., pseudorandom values), and enable bringing theremote device to a malware-free state by

removing malware from device memory. In this paper, we elaborate on these ideas and illustrate

how our system complements the goals of cryptographic schemes that are resilient to continual but

bounded secret-key leakage via side channels.



Chapter 1

Introduction

Large-scale embedded systems (e.g., power distribution and industrial control applications) make

pervasive use of commodity platforms and devices, wirelesscommunication infrastructures, and

remote system management – all for strong economic reasons.For example, remote management

avoids the need for frequent local embedded-device access during normal operation, while wireless

network connectivity lowers the cost of device deployment in scalable configurations. Use of com-

modity platforms reduces development costs to those of system integration and drastically lowers

maintenance costs. However, pervasive use of commodity platforms and devices, wireless commu-

nication infrastructures, and remote device management pose significant security challenges.

Cost pressure on embedded systems frequently leads to the use of low-cost devices, which lack

specialized security hardware (e.g., TPM, random number generator support), and low-assurance

software, which often leaves the system vulnerable to untraceable malware attacks. Furthermore,

hardware-based cryptographic support for device securityrequires sophisticated key management

and revocation strategies, which are expensive to deploy and maintain, and highly prone to human

error. However, remote device management requires “over-the-air” device authentication before

administrative commands can be executed in a secure manner.To date, neither remote authentication

of low-costcommodity devices in the presence of malware norremoteo attestation of a device’s
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malware-free state has been achieved in practice.1 Achieving both of these properties on commodity

platforms and low-cost devices without specialized security hardware in a demonstrable manner is

the goal of this paper.

We consider a network setting where a trusted verifier communicates with a remote, commodity

device via a bandwidth-limited (e.g., wireless) channel. More concretely, the verifier could be a

utility company and the device could be a “smart meter” deployed in the field [9]. The verifier can

be trusted since it is under close administrative control and can leverage specialized secure hardware

on a central server [12, 29]. In contrast, the remote device may only be assumed to be in a malware-

free state at the time of deployment. Past that point, the device may become infested with malware.

Nevertheless, at a minimum, the verifier wants to obtain (1) assurance of device authenticity despite

the presence of malware, and (2) attestation of malware-free device state at various times during

device operation; e.g., during remote software updates anddevice reboot. With these properties,

we envision an architecture that prevents malware-based device cloning and impersonation, enables

secure management of remote devices, and achieves verifiable application secrecy and integrity,

despite the absence of any specialized hardware or long-term secrets.

However, achieving the two properties mentioned above is challenging. For example, establish-

ing remote device authenticity requires that device secrets be protected from exfiltration by malware

and potential reuse on foreign devices – a tall order on commodity platforms that lack specialized

hardware protection. Remote attestation of malware-free device state requires demonstrable re-

moval of potentially active malware from a device’s memory –a challenging task even via prior

approaches such as local software-based attestation and device reset [6, 21, 25].

The basic idea that underlies our approach to remote device authentication and attestation of

malware-free state is to install and maintain a pool of secrets in device memory, that cannot be

leaked by malware in its entirety via a limited-bandwidth (e.g., wireless) channel during a specified

time epoch. Thus, the only hardware requirement for our scheme is the availability of sufficient

1These properties can be achieved only on devices equipped with special security hardware, often requiring consider-
able engineering effort to integrate with existing software and systems [12, 29].

ii



device memory – our security mechanisms are entirely software-based. In addition, attestation of

malware-free device state requires a small read-only-memory to store the protocol code itself. Once

per epoch, the device updates the secret pool and obtains a fresh pool. Epochs are sized such that it is

computationally infeasible for an external adversary to compute the fresh pool given the limitations

on what information he was able to obtain about the previous pool. The remote device attests to

having updated its pool in a timely fashion. For the pool updates, we use a non-invertible, pseudo-

random function that has strong, non-circumventable, time-space tradeoffs. Thus, malware cannot

enlarge memory leakage and still perform timely pool updates. If the verifier detects a device failing

to update the pool within a time epoch, this indicates the presence of active malware on the device

and triggers remedial action (e.g., a remote pool reset attempt, or manual device cleanup).

Verified timely pool updates provide device authenticity, since all devices are initialized with

independent secrets (i.e., pseudo-random values), and canenable bringing the remote device to

a malware-free state by removal of certain classes of malware from device memory. Note that

malware with total control over the device can refuse to participate in our protocols, resulting in

a denial of service attack on the remote device. However, this is readily detected by the verifier.

Malware wishing to remain stealthy will be forced to relinquish its position on the device.

The idea of bounding continual leakage of secrets is reminiscent of a somewhat similar notion

used in constructing leakage-resilient cryptographic schemes [11, 15, 22, 14]; viz., Section 2.2

(Related Work). That is, secret keys corresponding to the same public key can change in well defined

time epochs before they become vulnerable to side-channel attacks. However, all these schemes

assume that the key update process can leak only a limited number of key bits and that the adversary

(i.e., malware, in our case) cannot interfere with that process; e.g., cannot corrupt the source of local

randomness or leak local random values; cannot hide old keysin obscure memory locations for the

purpose of future leakage and circumvent the old-key-deletion requirement. Exclusive use of these

schemes cannot be made to achieve our desired properties. However, achieving our properties can,

in fact, support the assumptions made by these schemes and enable them to achieve their goal

(i.e., protection from side-channel attacks) in the presence of malware on low-cost devices and
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commodity platforms.

In short, the main contributions of this work as as follows: (1) we verify remote-device authen-

ticity despite the presence of malware (e.g., detect attempted device cloning and impersonation),

and provide for the remote attestation that device state is malware-free; (2) we support secure up-

dates of remote devices offering code and data integrity; and (3) we enable secure invocation of

commands on remote devices. All these desirable system feature are provided on low-cost devices

that lack specialized secure hardware.
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Chapter 2

Background

We provide background on related work. We will briefly describe how the previous schemes work

and the differences between our work and the previous approaches.

2.1 Attestation

We provide background on code attestation and related cryptographic work. Code attestation is a

technique for verifying what code runs on a system. There areboth hardware and software methods

for code attestation.

2.1.1 Software attestation

We examine previous software attestation schemes that use challenge response protocols to verify

the memory of a external device. The challenge of designing such protocols is that the adversary

has control of the device during the verification computation.

SWATT [26] is a method that uses tight timing constraints to identify malware. SWATT tra-

verses memory pseudo-randomly by using a seed sent by the verifier. In order for the malware to

pass verification, it needs to redirect memory accesses awayfrom memory regions where malware

resides. The insight is that the check to perform a memory redirection will happen every single
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memory access regardless if the memory is actually redirected. SWATT makes enough pseudo-

random memory accesses such that the malware’s check will induce a externally measurable timing

gap between malware-free code and malware infected code. ICE [23] extends the concept by using

additional CPU state to provide stronger properties. Also,ICE only needs to verify the checksum

versus verifying all of memory. The difference between our scheme and SWATT/ICE is that our

scheme also enables secrecy to be a verified in addition to code integrity. Our scheme also does not

rely on tight timing measurements to distinguish between malware and benign code.

Secure Code Update for Embedded Devices via Proofs of SecureErasure [21] is a method to

locally attest to malware free state. This software attestation scheme attests to a malware free state

locally by filling all writable memory with pseudo-random values. Their scheme also not rely on

tight timing constraints. Their scheme does not allow the prover to communicate to other devices

during verification. Our scheme has lower bandwidth costs because during verification our verifier

only sends small nonce versus sending enough pseudo-randomvalues to fill all writable memory.

Our scheme also considers the harder problem of verifying malware free states remotely.

Remote Software-Based Attestation for Wireless Sensors [27] uses a different software attesta-

tion routine every time. The verifier sends a different attestation routine for each attestation. Each

attestation routine the verifier sends is protected by code obfuscation and self modification to pre-

vent modification by the attacker. The protection techniques combined with limited time to perform

the attestation make it hard for the attacker to reverse engineer the routine and forge a correct re-

sponse to the attestation. The security of this approach relies on the hardness of code obfuscation

which may be hard to prove secure. Our approach relies on properties which may be easier to prove

secure.

2.1.2 Hardware Attestation

Hardware support for trustworthy computing (i.e., the Trusted Platform Module (TPM) [28] and

ARM TrustZone [3]) is currently the preferred approach protecting device secrets on commodity
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platforms. While these secrets can be used in remote device authentication and attest to malware-

free device states, they can be leaked via side-channel attacks [18, 17]. Hence, the resilient cryp-

tographic approaches described above become necessary. (However, additional mechanisms may

become necessary to remove the unrealistic assumptions made by these approaches; e.g., regarding

the bounded leakage of secret key material during key updates.) Hardware support for physical

authentication has also been provided by Physically Unclonable Functions (PUFs) [16, 20]. While

PUFs are very basic authentication primitives, they are notdesigned to offer malware-free device

states.

2.2 Limited Leakage Cryptography

Cryptographic constructs that allow limited leakage of secret material (e.g., secret keys) have been

extensively explored recently. Most leakage-resilient cryptographic schemes follow three distinct

approaches, namely (1) the bounded retrieval model, (2) theleakage-resilient cryptography, and (3)

the continual-leakage-resistant cryptography. In this section, we point out the specific differences

between our work and these approaches. To provide further perspective, we also discuss related

work in the area of trustworthy computing in general, and software-based attestation in particular.

2.2.1 Bounded Retrieval Model

The bounded retrieval model [8, 13, 5, 1, 2] assumes that an adversary can recover some functionf

of a large secretS. The adversary may choose to leakS over multiple rounds either non-adaptively,

using the same functionf per round, or adaptively, by picking different a differentf in each round.

This model restricts the adversary leakage over all rounds to |S|. Our adversary model is more

general in the sense that the total amount of leakage may exceed|S|; i.e., malware may leakr ·L >

|S| bits, adaptively or not, wherer is the number of rounds andL is the maximum number of bits

leaked per round (viz., Figure 1).
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2.2.2 Leakage-Resilient Cryptography

Leakage-resilient cryptography [11, 15, 22, 14] assumes that an adversary can adaptively recover

a secretS over multiple rounds by picking different functionsf in each round. The adversary is

restricted in two ways, namely (1) in every roundr, no more thanL bits of the secretSr may be

leaked, and (2) the bits ofSr can be leaked only by the computation at roundr, and cannot be

memory bits. (This model makes the “only computation leaks information” assumption originally

proposed by Micali and Reyzin [19]). Our adversary model is more general, since it does not restrict

which secret bits malware may leak in a given round. As mentioned above, we only assume that no

more thanL bits of the secretSr may leak in any roundr.

2.2.3 Continual-Leakage Resistant Cryptography

Continual leakage resistant cryptography [10, 4] also assumes that an adversary can may adaptively

leak secretS over multiple rounds by picking different functionsf per round. Similar to our ap-

proach, this model updates the secret in each roundr to ensure that no more thanL bits of the secret

Sr may leak. However, this model is less general than ours sinceit assumes that the adversary is

only able to probe the device but does not have full control over it; e.g., over the update function for

Sr. That is, the update function (1) uses local randomness unavailable to the adversary and leaks

only a limited number of bits during its operation, and 2) is protected from adversary interference;

e.g., the adversary may not corrupt or stop the update of secretSr by modifying the local, per-round

random bits used, nor it allowed to copy, save and reuse old secrets (i.e., old secret keys). In con-

trast, we let our adversary havefull control over the device software, including the update function

and secret poolS. If the adversary updates the secret pool in a corrupt manner(e.g., incompletely,

or not at all) or the update exceeds the allowed time limit, the device cannot respond (correctly) to

the verifier’s challenge and is reset.
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2.2.4 Trustworthy Computing Hardware and Software-Based Attestation

Hardware support for trustworthy computing (i.e., the Trusted Platform Module (TPM) [28] and

ARM TrustZone [3]) is currently the preferred approach protecting device secrets on commodity

platforms. While these secrets can be used in remote device authentication and attest to malware-

free device states, they can be leaked via side-channel attacks [18, 17]. Hence, the resilient cryp-

tographic approaches described above become necessary. (However, additional mechanisms may

become necessary to remove the unrealistic assumptions made by these approaches; e.g., regarding

the bounded leakage of secret key material during key updates.) Hardware support for physical

authentication has also been provided by Physically Unclonable Functions (PUFs) [16, 20]. While

PUFs are very basic authentication primitives, they are notdesigned to offer malware-free device

states.

Software-based attestation has been proposed to achieve code and execution integrity on com-

modity platforms without special hardware support [26, 24,30, 7, 27]. These approaches can lever-

age our mechanisms to protect remote attestation against proxy-attacks. Moreover, we greatly relax

their timing and hardware architecture assumptions, whichhave been exploited by recent attacks [6].

Our approach is immune to these attacks since we do not rely onmicro-architectural details of the

hardware platform (e.g., timing of instruction execution).

Another notion related to attestation of malware-free device states was proposed by Perito and

Tsudik [21]. Their approach enables a safe local device reset by filling the device memory with a

pseudo-random pattern. Subsequent local verification of the pattern ensures secure memory erasure.

Secureremoteoperation is not a relevant goal of this work. In contrast, our approach is intended to

address the more challenging case of secureremotedevice authentication and reset to malware-free

states.
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Chapter 3

Design

3.1 Assumptions and Attacker Model

3.1.1 Assumptions

We make hardware assumptions about the embedded device our system runs on.

Physical Security Assumption. We assume that the device is physically secure, i.e., it is in

a safe location, or else it is constructed using sufficient physical anti-tamper mechanisms. Such

mechanisms are orthogonal to our scheme and outside the scope of this paper.

Fixed Bandwidth Assumption. We assume that the target deviceD has a fixed maximum

uplinkbandwidthDban on its network connectivity with the outside world. It is physically infeasible

for an adversary to exfiltrate data at a greater rate than the device’s maximum bandwidth. We assume

that the adversary cannot alter the hardware (e.g., by adding additional interfaces or replacing an

existing interface with one capable of higher bandwidth).

Complete Channel Assumption.We assume the the network interface referenced in the Fixed

Bandwidth Assumption is the device’s only network interface. If the device has additional in-

terfaces, then without loss of generality we can consider them in aggregate, and apply the Fixed

Bandwidth Assumption to the aggregate network interfaces.I.e.,Dban is unchanged.
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Fixed Memory Assumption. We assume that the target deviceD is deployed with a fixed

amount of memoryDmem , and that the adversary is incapable of adding additional memory to the

device. I.e., the maximum amount of memory in the device is fixed.

Lmem

Si

L bitsS0

L bitsS1

L bitsSi−1

Internal External Verifier

Lnet

No Limit

Si

Adversary

Ain

(malware)

No Limit

Adversary

Aout

V

on device

D

Expected

Figure 3.1: DABLS state during epochi.

3.1.2 Attacker Model

Our attacker model includes both an internal adversary,Ain , and an external adversary,Aout . Both

are probabilistic, polynomially-bounded adversaries and, as such, cannot break any of the standard

cryptographic primitives that is proved secure for such adversaries.Ain has compromised the target

deviceD, and is capable of running arbitrary code (i.e., malware) onD. Ain can communicate

with external adversaryAout via deviceD’s network interface and can cooperate withAout at all

times. The resources available toAin are the deviceD’s maximum outbound network bandwidth,

Dban
1, and maximum memoryDmem . In particular,Ain has unrestricted access to the code and

1We donot constrain the inbound bandwidth toD.
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workspace (e.g., stack) of our remote-device authentication protocol inDmem , and thus can leak

and modify their content. Furthermore,Ain has unrestricted access to allDmem workspace of our

protocol for achieving malware-free device states, but notto its instructions, which execute in a

device read-only memory (ROM). By the physical-access assumptions made above, the adversary

cannot modify deviceD’s hardware to increaseDban or Dmem , and thus it must develop an attack

strategy that makes efficient use of these resources.

To illustrate the adversary’s operation, we break time intoepochs of durationT . Thus, the

maximum amount of data that can be exfiltrated byAin toAout during an epoch, which we call the

network leakage, isLnet = T ·Dban . Additionally, we divideDmem into two areas: one that stores

a large pool of secrets that is refreshed during every epochi, which we denote bySi, and the other,

which we call thememory leakage, Lmem = Dmem − |Si|. The adversary can make full use of

Lmem , and hence it can use it to save pool data to be leaked during one or more future epochs.Ain

can also perform arbitrary (polynomially bounded) computations on anySi and can communicate

the results of those computations toAout . Over time,Aout may accumulate data that is leaked from

D, at a maximum rate ofLnet bits per epoch subject. Thus, the maximum amount of data thatAin

can ever leak from a given epoch’s pool toAout is L ≤ Lnet + Lmem . Figure 3.1 summarizes the

state of the system at epochi.

3.1.3 Taxonomy of Attacks

We explain several attacksAin andAout can perform on our scheme. The goal for all of the attacks

is for Aout to learn more thanL bits of any secret poolSi used by the deviceD. The attack will

explain are the rolling pool attack, the split computation attack, the split computation attack and the

time space trade-off attack.

Rolling Pool Attack

We give a brief overview of the rolling pool attack. The rolling poll attack is where the internal

adversaryAin rolls a secret poolSi to past or future pools to leak those pool states during epoch

xii



i. The internal adversaryAin by leaking past or future pools can leak more thanL bits of a past or

future pool to the external adversaryAout , therefore external adversaryAout will be able to learn

more thanL bits of a past or future pool.

Split Computation Attack

We give a brief overview of the split computation attack. At epoch i, the internal adversaryAin

leaksl blocks of pooli to the external adversaryAout . Then during the pool update from pooli to

pool i+ 1 the internal adversaryAin leaks special information to the external adversaryAout . The

special information is defined by anything the internal adversaryAin knows that would allow the the

external adversaryAout to update the leaked blocks of pooli to pooli+1. The special information

could be intermediate values used in the update computation. Finally, external adversary uses the

special information thatAin leaked to update its pooli blocks. The external adversaryAout By

updating blocks of pooli in its possession, the external adversaryAout could learn more thanL

blocks of a secret pooli. The adversary’s advantage in performing the split computation attack

against the update fromi to i + 1 is the number of blocks the external adversaryAout was able to

update from pooli to i+ 1.

Time Space Trade-off Attack

We give a brief overview of the time-space trade-off attack.In the time space trade-off attack, the

internal adversaryAin re-implements the pool update functionf to store less than|S| blocks in

memory for both computation and output. One might think the hash verification would be able to

detect if the output off occupied less than|S| blocks of memory. However, internal adversary

Ain can compute the inputs to the hash verificationon demandwithout simultaneously storing|S|

blocks in memory. The advantageAin gains by performing this attack is the ability to store more

blocks of a pool to leak during later epochs.
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3.2 An Unleakable Secret Pool

In this section we first provide an overview of DABLS, and thenprovide a more detailed and formal

treatment.

3.2.1 DABLS Overview

In DABLS, a remote device is associated with a pool of secrets, which defines the identity of that de-

vice. The pool can be used as the key to a message authentication code computation to authenticate

the device to the remorte verifier. Hence, a basic goal of DABLS is to prevent an external adversary

Aout from learning enough of a device’s secret pool from an internal adversary (malware)Ain so

that it could discover the entire pool in a computationally feasible time. In other words, we say that

a secret pool is unleakable during the lifetime of the device, if the maximum pool leakage from any

epochi, namelyL, is sufficiently smaller than the size of the pool,|Si|, so thatAout would find it

computationally infeasible to recover the entire secretSi. We denote this relationship betweenL

andSi asL << Si.

We achieve this property through periodic protocol interactions by a remote verifier, which

require that the device attest that it updates its secret pool in a verifiably correct and timely manner.

This ensures that the secret pool changes its secret pseudo-random contents faster thanAin could

leak more thanL bits of poolSi for all epochsi of the device’s lifetime. We parameterize the

protocol invocation and verification frequency based on thepool size|S| and the device’s available

bandwidthDban , so that we can assure that a maximum ofL bits can possibly be leaked even if

malware is present on the device.

Pool Size Requirements A secret poolSi must be large with respect to the device’s network

bandwidthDban over a defined time epoch,T . Even with this requirement, a patient adversary

Ain may eventually leak the entire secret pool. This gives rise to the dual requirements that (1) the

pool’s contents must change over time to comprise pseudo-random values, and (2) the amount of
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the device’s memory that the pool occupies must be specified as a function ofLnet andLmem . That

is,Ain must not be able to exfiltrate any single epoch’s complete pool via Lmem andLnet . Thus, in

a particular epochi, we require thatLnet + Lmem < |Si|. Substituing the definition ofLmem , we

haveLnet + (Dmem − |S|) < |S|, which simplifies to:

|Si| > (Lnet +Dmem)/2

If Aout receives precisely(Lnet +Dmem )/2 bits ofSi from Ain , it will still find it to be com-

putationally infeasible to recover the remainder ofSi.

Pool Update Requirements. To maintain the unleakable properties of poolSi beyond a single

epoch, any of its bits thatAout may have accumulated during an epochi should become useless

to Aout following the pool update by apool update functionf . To achieve this, we invokef

periodically, in response to a verifier’s fresh request. We divide time intoepochsof durationT , and

require that the pool update fromSi to Si+1 once per epoch. A delinquent pool update constitutes

a misbehaving device. The inital pool,S0, is injected by a trusted party under controlled conditions

before malware has the opportunity to infect the device.

Protocol Requirements The verifier challenges the device to update its secret pool correctly and

timely within an epoch, and verifies the response received from the device. As our attacker model

givesAout complete access to the network,Aout can oberve any messages used in the challenge-

response and pool-update protocols. Thus, if the external adversaryAout would eventually be able

to constructanycomplete instance of a poolSi, thenAout can use its log of messages and compute

the pool at a later epochk > i.

We seek to ensure that anyL pool bits or fewer of an older epochi that an adversary has

captured are of no value to the adversary in trying to computethe current-epoch poolSk, where

k > i. Thus, the output of the pool update functionf must be indistinguishable from random to the

(polynomially bounded) adversary, and be of the same size asthe existing secret pool, i.e.,|Si| =
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|Si+1|. Otherwise, the adversary may find ways to compress the representation ofSi, effectively

increasingDban .
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Figure 3.2: Initailzation at Epoch0 Timeline

Timing Requirements An unleakable secret only lives for a single time epoch of duration T .

We define the time at the start of theith epoch asiTs. By the end of the epoch, the pool must
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Figure 3.3: Steady State at all subsequent Epochsi.

be updated.D has a limited amount of timeTup to compute the pool update to preventAin from

leaking arbitrarily large amounts of data. The verifier enforces the time limits by releasing the nonce

ni only at time(i+ 1)Ts.

Figure 3.2 the shows a timeline of the update process from epoch 0 to epoch1. Epoch0 starts

at time0. After Ts time, the verifier sends the nonceni toD starting the update process from epoch

0 to 1. D now computesS1 = f(S0, n0). ThenD computesR0 = y(S1, constant). D sendsR0 to

V by timeTe = TS +Tup. V checks ifR0 is correct and received by timeTe, if so, then the verifier

is confident thatD correctly updatedS0 to S1 in a timely manner thus both epoch0 and the update

from epoch0 to 1 are finished, otherwise the verifier has detected malware on the system.

Figure 3.3 shows how epochs overlap. Epochi starts at timeiTs and does not end until the

end of theith update at time(i + 1)Te. Epochi + 1 starts when theith update beginsi at time
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(i + 1)Ts < (i + 1)Te. Therefore, epochsi andi + 1 overlap during theith update process. The

epochsi andi+1 overlap during theith update process because during theith updateD has access

to portions of bothSi andSi+1.

DABLS Protocol In DABLS verifier V initializes deviceD with the first unleakable secretS0

beforeD is connected to the network and exposed to attack. The pool update during each epoch

consists of two functions:f andy. f rolls foward the pool fromSi to Si+1. f takes as input the

current pool and a verifier-supplied nonceni and outputs the next pool:Si+1 = f(Si, ni). The

primary responsibility off is to ensure that the pool changes over time.y computes a message

authentication code on the output off that enables the verifierV to ascertain the integrity of the

current pool:Ri = y(Si+1, constant) whereconstantis a block containing a constant string using

Si+1 as the secret key. To summarize, during each epochi the verifierV sends challengesni and

mi to D (allowing D time to computef in between), and confirms that the responseRi equals

y(f(Si, ni), constant). If Ri is not as expected, the verifier is considered to have detected an attack.

3.2.2 Pool Update Requirements

Ain has incentive to cheat by finding ways to compute the update function functionf and verifi-

cation functiony (thereby obtaining the correct responseRi) while consuming as few resources as

possible. For example, sincey is implemented in software and cannot be atomic,Ain may search

for ways to pipeline the computation off andy so as to reduce the amount of memory required

to produceRi. This would have the effect of increasing the attacker’sLmem , potentially allowing

the attacker to gain more bits ofSi. To preventAin from cheating,f andy need several properties,

specified below.

Requirement 3.2.1. Non-circumventable Time-Space Tradeoff for f. Any implementation off

concurrently storing less than|S| bits of data not invertible toSi for computation and output causes

the update process to take longer thanTup.
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L Max number of bits that leak about anyS
Lnet Bits malware can leak in one epoch
Lmem Bits freely usable by malware
|S| The set of unleakable secrets
Si The unleakable secret at theith epoch
|S| The size ofS
D The device
Dmem The size of the device memory
Dban The device bandwidth
T Duration of an epoch
Ts The time at the start of an epoch
Te The time at the end of an epoch
Tup Total time limit to compute the update
f Pool roll forward function
y Message Authentication Code Function
Ri y’s output at theith epoch
ni Nonce at epochi used byf
w Function overS, n
Ain The internal adversary
Aout The external adversary
V The Verifier

Figure 3.4: Summary of Notation Used

Requirement 3.2.2.f is Non-Invertible. Given, for allk < i,L bits ofSk, noncesnk, and responses

Rk and anySi, it is computationally infeasible to compute additional bits of anySk.

Requirement 3.2.3. f Needs Complete Pool. Given, for allk < i, L bits ofSk, noncesnk, and

responsesRk andni, it is computationally infeasible to compute any bits off(Si, ni) without all of

Si.

Requirement 3.2.4. f Cannot Compute Early. Given, for allk < i, L bits ofSk, noncesnk, and

responsesRk andSi−1, It is computationally infeasible to compute any bits off(Si, ni) withoutni

Requirement 3.2.5. Leakage Equality for f. Given, for allk < i, L bits ofSk, noncesnk, and

responsesRk andL − Z bits ofSi, Z bits of outputs from any functionw(Si, ni) computable by

Ain cannot be used to compute more thanZ bits ofSi or Si+1 whereSi+1 = f(Si, ni).

Requirement 3.2.6.y is Preimage Resistant. GivenL bits ofS, aconstant , andR = y(S, constant ),
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it is computationally infeasible for the attacker to find anyadditional bits ofS.

Requirement 3.2.7. y Needs Complete Pool. Givenconstant , for anySi it is computationally

infeasible to compute any bits ofy(Si, constant ) without all ofSi.

3.2.3 Formal Protocol Properties

We prove a statement that limitsAout’s knowledge for secretsSk, k ≤ i up to time(k+1)Te, given

thatAout has received allRk on by time(k + 1)Te.

Theorem 3.2.1.For all k ≤ i, if the verifier receives the correctRk by time(k + 1)Te, Aout will

never know more thanLnet + Lmem ≤ L << |S| bits of anySk.

To show thatAout has limited knowledge of secret pool valuesSk for all k ≤ i, we prove that

our protocol limitsAout’s knowledge to at mostL bits ofSi if V has received the correct and timely

responseRk for k ≤ i.

Theorem 3.2.2. Given the verifier received the correctRk by time (k + 1)Te for k < i, and

if the verifier receives the correctRi by time(i + 1)Te, thenAout will never know more than

Lnet + Lmem ≤ L << |S| bits ofSi.

The next three lemmas show that our protocol constrainsAin to leak at mostL bits ofSi before

the start of epochi, during epochi, and after epochi.

Lemma 3.2.1. For time t < iTS , it is computationally infeasible forAin to leak any bits ofSi or

w(Si, ni) or w(Si−1, ni−1), for any functionw.

Proof. The verifier only releases the nonceni−1 at timeiTs. For timet < iTs, Ain cannot posses

ni−1. Using Requirement 3.2.4, for timet < iTs, Ain cannot computeSi or w(Si−1, ni−1) or

w(Si, ni). Therefore, for timet < iTs, Ain cannot leak any bits ofSi orw(Si−1, ni−1).

Lemma 3.2.2.Given thatV receives the correctRi by time(i+1)Te, for timeiTs < t < (i+1)Te,

Ain can leak at mostLnet bits ofSi toAout , whereLnet << Si.
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Proof. By definition of the DABLS protocol, ifV receives the correctRi by time (i + 1)Te, then

(i + 1)Te − iTs = T . By the Fixed Bandwidth AssumptionandComplete Channel Assumption

the maximal number of bitsAin can send toAout during timeiTs < t < (i + 1)Te is Lnet =

T ·Dban. Ain can only leakLnet bits ofSi orw(Si, ni) orw(Si−1, ni−1). By Requirement 3.2.5, the

advantages conferred toAin by leakingSi, w(Si, ni), or w(Si−1, ni−1) are equivalent. Therefore,

given thatV receives the correctRi by time(i+ 1)Te, for time iTs < t < (i+ 1)Te, Ain can leak

at mostLnet bits ofSi.

Lemma 3.2.3. Given thatV receives the correctRi by time(i+ 1)Te, for timet > (i+ 1)Te, it is

computationally infeasible forAin to leak more thanL = Lmem + Lnet << S bits ofSi.

Proof. By Requirements 3.2.3 and 3.2.7,Ri can only be computed by the attacker computing

y(f(Si, ni), constant ). If V receives the correctRi, thenf must have computedSi+1. Given that

the earliest time whenV sends the nonceni is (i+ 1)Ts, and thatV receivesRi by time(i+ 1)Te,

thenAin can take at mostTup time to compute the update fromSi to Si+1, becauseAin could not

have computed the update early (by Requirement 3.2.4). Given thatAin took at mostTup time to

compute the update fromSi toSi+1, then we know that the computation off concurrently stored at

least|S| bits for computation and output. Given that computation off concurrently stored at least

|S| bits for computation and output, and thatf computedSi+1, then we have thatf concurrently

stored|S| bits ofSi+1.

We know thatf concurrently stored|S| bits of Si+1, but we do not know whetherAin has

chosen to store some of the|S| bits ofSi+1. There are only two cases:Ain can choose to store the

S bits inDmem, orAin can collude withAout to store up toL of the |S| bits onAout.

SupposeAin andAout concurrently store|S| bits ofSi+1 only inDmem, then we have for time

t > (i + 1)Te, |S| bits of Dmem cannot be used to compute any bits ofSi or w(Si−1, ni−1) or

w(Si, ni) except forSi+1 = f(Si, ni) by Requirement 3.2.2. For timet > (i + 1)Te, givenAout

only knowsL bits ofSi−1, Ain andAout cannot recoverSi orw(Si−1, ni−1) orw(Si, ni) except for

Si+1 = f(Si, ni) by Requirements 3.2.2 and 3.2.6. We have established for timet > (i+1)Te, Si or
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w(Si−1, ni−1) orw(Si, ni) are effectively “deleted” from|S| bits ofDmem, andSi orw(Si−1, ni−1)

orw(Si, ni) can never be recovered byAin andAout.

For time t > (i + 1)Te, Si) or w(Si−1, ni−1) or w(Si, ni) can still persist inDmem if Ain

stores a copy of a portion ofSi or w(Si−1, ni−1) or w(Si, ni) in memory not occupied bySi+1.

For timet > (i + 1)Te, by theFixed Memory Assumption, the maximum number of bits available

to Ain to store a portion ofSi or w(Si−1, ni−1) or w(Si, ni) is Lmem = Dmem − |S| For time

t > (i+1)Te, onlyLmem bits ofAin exist inDmem andSi orw(Si−1, ni−1) orw(Si, ni) can never

be regenerated, therefore we have for timet > (i + 1)Te, Ain can never leak more thanLmem bits

of Si or w(Si−1, ni−1) or w(Si, ni) excluding whatAin leaked during epochi. By concurrently

storing all |S| bits of Si+1 only on Dmem, Ain did not need to store any bits ofSi+1 on Aout.

Therefore, during epochi, Ain could have leakedLnet = T ·Dban bits ofSi to Aout. We have for

time t > (i+ 1)Te, Ain cannot leak more thanL = Lnet + Lmem = Dmem − |S|+ T ·Dban < S

bits ofSi.

The intuition of this case is ifAin chooses to store bitsSi+1 to increaseLmem thenAin will have

to decreaseLnet becauseAin can only accessAout through the communication channels. Givenf

concurrently stored|S| bits of Si+1 in bothDmem andAout, we have several constraints on the

system. We enumerate those constraints:

1. Cin + Cout = S,

2. Lmem = Dmem − Cin,

3. T ·Dban > Ce + Lnet,

4. T ·Dban < 2 |S| −Dmem.

We now justify each constraint. Givenf concurrently stored|S| bits ofSi+1 in bothDmem and

Aout, we haveCin + Cout whereCin is the number of bitsAin concurrently stores onD andCout

is the number of number of bits concurrently stored onAout by definition. GivenCin bits ofSi+1

are stored inDmem, then the maximum number of bits to availableAin to store portion ofSi or

w(Si−1, ni−1 or w(Si, ni) is Lmem = Dmem − |S| by theFixed Memory Assumption. GivenCout

bits of Si+1 bits of Si+1 are stored inAout, thenT · Dban > Cout + Lnet. Ain can only access

xxii



Aout through the communication channels, therefore ifAin wants to storeCout bitsAin must send

Cout bits toAout. The constraintT ·Dban < 2 |S| −Dmem is a requirement of the DABLS system

explained in Section 3.1.

We use the constraints to show that the amount of memoryAin can use to leakSi orw(Si−1, ni−1

orw(Si, ni) isL =. We have for timet > (i+1)Te,Ain cannot leak more thanL = Lnet+Lmem =

Dmem − Cin + T ·Dban − Cout = Dmem − |S|+ T ·Dban << S bits ofSi.

We have proved both cases, therefore we have givenV receives the correctRi by time(i+1)Te,

for timet > (i+1)Te, it is computationally infeasible forAin to leak more thanL = Lnet+Lmem =

Dmem − |S|+ T ·Dban << S bits ofSi orw(Si−1, ni−1 orw(Si, ni). By Requirement 3.2.5,Ain

leakingSi orw(Si, ni) orw(Si−1, ni−1) is equivalent, therefore givenV receives the correctRi by

time (i+ 1)Te, for time t > (i+ 1)Te, Ain can leak at mostLmem bits ofSi.

We finish the proof of theorem 3.2.2. By Requirement 3.2.3,Aout cannot independently com-

pute bits ofSi.Aout learns bits ofSi only if Ain leaked those bits. Lemmas 3.2.1, 3.2.2, 3.2.3

encompass all timet, thereforeAin can never leak more thanL = Lmem +Lnet << S bits ofSi if

V receives the correctRi by time(i+1)Te. We have shown bothAout only knows bits ofSi if Ain

those bits toAout andAin cannot leak more thanL bits ofSi if V receives the correctRi by time

(i+ 1)Te. Therefore we completed theorem 3.2.2.

The proof of theorem 3.2.1 follows from theorem 3.2.2.

3.3 The Pool Update Functionf

We present our realization of a concrete implementation off . Our implementation off consists

of two parts a pseudo-random function and a block selection mechanism. First, we will give an

overview of our pseudo-random function. Second, we describe what a block selection mechanism

does. Third, we will propose several block selection mechanisms. Fourth, we will perform detailed

analysis on some of the block selection methods. Figure 3.3 summarizes the notation used in section.
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|b| block size in bits
S [i] block i of poolS
E A block cipher’s encryption function
f(n, Si) Return poolSi+1

g(n, S, i) Recursive function family used to definef
gnS(i) g instantiated withn andS
λ how many times to computegnS
N Number of blocks inS: |S|

|b|

P (n, bs) Non-invertible PRF
Pn(bs) P keyed withn

Figure 3.5: Notation for definingf

3.3.1 Pseudo-random function

We describe our pseudo-random function. We suppose we have afamily of non-invertible PRF’sP .

We use a noncen to select which particular PRFPn from that family (Equation (3.1a)). An instance

of Pn takes as inputk blocks of size|b| bits, and produces one block of output (Equation (3.1b)).

P : {0, 1}|n| → Pn (3.1a)

Pn : {0, 1}k·|b| → {0, 1}|b| (3.1b)

We say thatPn is non-invertible in that knowledge ofn, the output, and part of the input does

not reveal any more of the input.

One concrete way of implementing a suitableP is similar to the CBC-MAC algorithm. As with

CBC-MAC, we use a block-cipher encryption functionE in CBC mode with initialization-vector

0, and then output only the last block. Normally, this block could be decrypted to recover the last

block of input; we make the function non-invertible by xor-ing the output block with the last block

of the input: We propose instantiatingP using a CBC-MAC based on a block-cipherE (e.g., AES).

Recall that CBC-MAC xors each block of input with the preceding block of cipher text (starting

with an IV of 0), and then encrypts it with the block cipher. The output is the last encrypted block.

Normally, knowledge of the key would allow the output to be decrypted to recover the last block of
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plain text. To avoid this, we xor the final output with the lastplain text block.

3.3.2 Generic Block Update

We present a update function using a generic block selectionmechanism. We define our pool update

functionf in terms of a recursive functiongn,s.

We realize genericf as follows:

S [i] = block i of S (3.2a)

gnS(i) =































S [i] if i < N

Pn(gnS(i−N)||gnS(BLOCK(k, i)) . . .

. . . gnS(BLOCK(1, i)))

if i ≥ N
(3.2b)

f(n, S) = gnS(λ) . . . gnS(λ+N − 1) (3.2c)

We break the poolS into N blocks of size|b| bits, referring to blocki of the poolS asS [i]

(Equation (3.2a)). The update function can useK dependencies in the update computation. The

function BLOCK takes in a pool state, a dependency index and ablock index and outputs a function

index in the range ofi−N + 1 : i− 1. The dependency indexk has the range of1 : K. The

recursive functiongnS (Equation (3.2b)) takes an indexi as input and produces a single block as

output. We definegnS(0) to gnS(N − 1) to be the input blocksS [0] to S [N − 1]. Finally, f itself

is defined as the lastN blocks after computingλ blocks ofgnS (Equation (3.2c)). Clearlyλ must

be at leastN so that the output off is distinct from its input. We further examine the choice of the

design parameterλ in Section 3.3.4.

Security of Generic Function

We show that the generic function satisfies most of the requirements present in section 3.2.2
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We now show thatf satisfies Requirement 3.2.2:

f is Non-Invertible . Given, for allk < i, L bits of Sk, noncesnk, and responsesRk

and anySi, it is computationally infeasible to compute additional bits of anySk.

All of f(S, n)’s output is the output of a non-invertiblePRF that depends, directly or indirectly,

on every bit of the input poolS. Given that fewer thanL bits ofS, it is computationally infeasible

to compute any additional bits ofS.

We now show thatf satisfies Requirement 3.2.3:

f Needs Complete Pool. Given, for allk < i, L bits ofSk, noncesnk, and responses

Rk andni, it is computationally infeasible to compute any bits off(Si, ni) without all

of Si.

Each output block off(Si, ni) can be expressed as a recursion tree ofgnS . This recursion tree

incorporates every input block ofSi as an input to the non-invertiblePRF . Therefore, there is no

way to compute any output block off(Si, ni) without knowing the entire inputSi. We now show

thatf satisfies Requirement 3.2.4:

f Cannot Compute Early. Given, for allk < i, L bits ofSk, noncesnk, and responses

Rk andSi−1, It is computationally infeasible to compute any bits off(Si, ni) without

ni

Each output block off(Si, ni) is the output of aPRF from the familyP . ni is needed to know

whichPRF Pn is to be used. Hence it is infeasible to compute any partf(Si, ni) withoutni.

3.3.3 Block Selection Mechanisms

The block selection mechanism selects chooses which recursive dependencies agnS computation

will depend on. Designing the block selection mechanism is interesting because the recursive de-

pendency structure can significantly impact the update function’s resilience to the split computation

attack and the time space trade-off attack.
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CBC-Like

gnS0 gnS1 gnS2 gnS3

gnS4

gnS5

Figure 3.6: Recursion Tree for CBC-like Scheme

We give an overview of the CBC-like block selection mechanism. The CBC-like block selec-

tion mechanism selects thek most recentgnS computations as dependencies. Therefore, CBC-like

selection mechanism is realized asBLOCK(k, i) = i − k. The advantage of the CBC-like block

selection mechanism is its easy to analyze. The disadvantage of the CBC-like selection scheme is

a update function using the CBC-like selection scheme may need to use more dependencies to be

secure.

Figure 3.6 shows a partial example recursion tree that wouldbe generated by the update function

using the CBC-like block selection mechanism. In this example the update function uses the CBC-

like block selection mechanism to select one dependency perblock update. The main purpose of the

figure to give a visual representation on how thegnS computations depend on each other when the

CBC-like scheme is used as the block selection mechanism. Inthis figure we see thatgnS4 depends

on gnS0 andgnS3. gnS4 depends ongnS0 by definition of our update function.gnS4 depends on

gnS3 by selection by the CBC-like block selection mechanism becauseBLOCK(4, 1) = 4−1 = 3.

We show thatgnS5 depends ongnS1 andgnS4 to illustrate how the recursion tree would continue.
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gnS0 gnS1 gnS2 gnS3

gnS4

gnS5

Figure 3.7: Recursion Tree for Pseudo-Random Scheme

Pseudo-Random Scheme

We give a brief description of our pseudo-random block selection mechanism. The pseudo-random

scheme selectk dependencies by using each value of the lastk gnS computations modulo the pool-

size. We realize the pseudo-random block selection mechanism asBLOCK(k, i) = (gnS(i − k)

mod |S|) + i−N where|S| is the size of the pool in blocks.

Figure 3.7 shows a partial example recursion tree that wouldbe generated by a update function

using the pseudo-random block selection mechanism. In thisexample the update function uses the

pseudo-random block selection mechanism to select one dependency per block update. In this figure

we see thatgnS4 depends ongnS0 andgnS1. gnS4 depends ongnS0 by definition of our update

function. gnS4 depends ongnS1 by selection from the pseudo-random block selection scheme. We

gnS5 and its dependencies to give a sense on how the recursion tree would continue.

Public Permutation Scheme

We give a brief description of the public permutation scheme. The public permutation scheme uses

a linear congruential generator to select whichgnS computations to use as a dependency. We realize

the public permutation scheme as follow asBLOCK(k, i) = a(k + i) mod |S| + i − |S| where

a = i+ (i + 1 mod 2) mod |S|. In the public permutation scheme we assume that the pool size

is a power of 2.

Figure 3.8 shows a partial example recursion tree that wouldbe generated by the update function
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gnS0 gnS1 gnS2 gnS3

gnS4

gnS5

Figure 3.8: Recursion Tree for Public Permutation Scheme

using the public permutation block selection mechanism. Inthis example the update function uses

the public permutation block selection mechanism to selectone dependency per block update. In

this figure we see thatgnS4 depends ongnS0 andgnS1. gnS4 depends ongnS0 by definition of

our update function.gnS4 depends ongnS1 by random selection from the public permutation block

selection scheme. WegnS5 and it’s dependencies to give a sense on how the recursion tree would

continue.

Hoppy Scheme

We give a brief description of the hoppy scheme. The hoppy scheme has two modes. The modes

are selected by computingMODE = ⌊i/|S|⌋ mod 2. OnMODE = 0 the hoppy scheme uses

the CBC-like function to select dependencies. OnMODE = 1 the hoppy scheme select blocks by

computing the index plus the pool size over 2 modulo the pool size. We realize the hoppy scheme as

BLOCK(k, i) = BLOCKMODE(k, i) whereBLOCK0(k, i) = i − k andBLOCK1(k − i) =

i− (|S|/2).

Figure 3.9 and Figure 3.10 shows a partial example recursiontree that would be generated by the

update function using the hoppy block selection scheme. Figure 3.9 shows that the hoppy scheme

whereMODE = 0 selects dependencies in the same fashion as the CBC-like scheme. Figure 3.10

shows how the recursion structure is different whenMODE = 1.
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gnS0 gnS1 gnS2 gnS3

gnS4

gnS5

Figure 3.9: HoppyMODE = 0 Recursion Tree

gnS4 gnS5 gnS6 gnS7

gnS8

gnS9

Figure 3.10: HoppyMODE = 1 Recursion Tree

3.3.4 Detailed Analysis

Use Every Block

A common design characteristic of each block selection variant is that every block is a guaranteed

to be selected once every|S| block updates We now explain why it would be bad if this was not

the case. Suppose the device has just finished computing block updatei and the block selection

mechanism does not use the block as a dependency during the next |S| block updates, then the

device does not need to store the result of block updatei because block updatei will never ever

be used as a dependency. This is due to the fact that an efficient implementation that concurrently

stores|S| blocks simultaneously will overwrite the result of block updatei with block updatei+ |S|

after |S| block updates. If a device does not need to store the result ofa block updatei then update

will be more vulnerable to the time space trade-off attack. If a block updatei does not need to be
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stored, then for|S| pool updates afteri the pool state is compressible by one block. This would give

the attacker one block of extra space to use for memoization for the time space tradeoff attack.

Detailed Security Analysis of CBC-like

We analyze how the security of an update using the CBC-like block selection mechanism changes as

the number of dependencies change. We show that when the CBC-like block selection mechanism

selects only one additional dependency then the update function is vulnerable to a split computation

attack. Then we show that when the update function uses the CBC-like function to selectn depen-

dencies then the update function is secure against against both the split computation attack and time

space trade off attack.

CBC-like with two dependencies is insecure to the split computation attack. We present the

basic idea of the attack. Ain leaksl contiguous blocks inSi. Then during the update fromSi to

Si+1 the internal adversary continually leak the dependency of the first block of the contiguous

blocks. This would allow the external adversary to update the contiguous blocks fromSi to Si+1.

We present the attack algorithm. We consider a pool update from S to S′. Before the pool

update, we assume the attacker starts with a contiguous region of memory leaked starting at indexi

of l length. During the pool update, the attacker does the following. for (j = 0 : j < λ/|S| : j++)

The internal adversaryAin leaksgnS(i+j(|S|+1). After the pool update, external attacker compute

the update using the blocks leaked during the update and the blocks leaked before the update.

We give a step by step example of the split computation attackon the CBC-like scheme. We use

the example pool 2 of size 8. We setLBAN = 4. We set the pool update parameters toλ = 8 and

k = 2. With these parametersS0[0] = gnS(0) andS1[0] = gnS [8]. The attacker’s goal is for the

external attacker to learn 7 blocks ofS1 despiteLBAN = 4. During epoch 0, the internal adversary

Ain leaks blocks 1,2,3 ofS0. During epoch 1, the internal adversaryAin leaks blocks 0,4,5,6 ofS1.

After epoch 1, the external adversaryAout uses block0 of S1 and block1 of S0 to compute block

1 of S1, because by definitionS1[1] = gnS(9) = Pn(gnS(1)||gnS(8)) = Pn(S0[1]||S1[0]). The

external adversary also computesS1[2] = gnS(10) = Pn(gnS(2)||gnS(9)) = Pn(S0[2]||S1[1]) and
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c blocks of memory used for memorization
CPn cost to computePn on each input block
C(i) cost to recomputeith memorization miss

Figure 3.11: Notation for computation cost analysis off
S

gnS (0) = S [0]
gnS (1) = S [1]
. . . . . .
gnS (N − 1) = S [N − 1]

gnS (N) = Pn(gnS(0) . . . gnS(N − 1))
gnS (N + 1) = Pn(gnS(1) . . . gnS(N))
. . . . . .

f
(n
,S

) gnS (λ) = Pn(gnS(λ−N) . . . gnS(λ− 1))
gnS (λ+ 1) = Pn(gnS(λ+ 1−N) . . . gnS(λ))
. . . . . .
gnS (λ+N − 1) = Pn(gnS(λ− 1) . . . gnS(λ+N − 2))

Figure 3.12: Computation off via gnS

S1[3] = gnS(11) = Pn(gnS(3)||gnS(9)) = Pn(S0[3]||S1[2]). At this point the external adversary

Aout has learned 7 blocks ofS1. The attack is successful.

We give a proof on how the CBC-like function is secure againstboth the time space trade-off

attack and the split computation attack when the CBC-like function usesn dependencies.

We first demonstrate that the CBC-like function usingn dependencies is secure against the time

space trade-off attack. We will do this by analyzing the computation cost of computingf using the

CBC-like block selection withn dependencies. Our unit of computation in terms of the underlying

PRFPn. We analyze two cases. The first case is where the implementation of f uses less than|S|

blocks of memory to memoize results ofgnS . We show that for the computation cost whenc < N

growsexponentiallywith the parameterλ, while the computation cost whenc ≥ N grows only

linearly with λ. Hence, the cost to computef with fewer thanN blocks of memoization cache

can be made arbitrarily more expensive than for computationwith N blocks of memoization cache.

Because all blocks in the memoization cache are output of thenon-invertible PRFPn, this data is

not invertible to any part of the inputSi.

Figure 3.3.4 summarizes new terms introduced in this analysis.
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Figure 3.3.4 illustrates a computation off andgnS . An efficient implementation off begins

computinggnS at i = N , incrementally computingforward the nextgnS . To avoid recomputing

previous values ofgnS , the lastN blocks must be stored. WhengnS(i) is computed,gnS(i − N)

may be overwritten, since it will never be used directly again to computegnS(j) for j > i. This

includes overwriting the original inputS = gnS(0) . . . gnS(N − 1).

Computation ofgnS(i) requires theN preceding blocks. An efficient implementation that uses

c blocks of memoization cache avoids recomputation by alwaysstoring the most recentN blocks.

The cost to computef in this manner, using|S| = N · |b| bits of memory to store intermediate

blocks, is the number ofgnS(i) to compute, times the cost to computePn overN blocks, which we

define asN · CPn , giving a total cost ofλ ·N · CPn .

An implementation that usesc < N blocks of memoization cache is forced to recursively

recompute earlier blocks. Consider an implementation off that directly computesf(S, n) =

gnS(λ) . . . gnS(λ + N − 1) one block at a time by recursively computinggnS , usingc blocks of

memory to memoize results.

The recursion tree for computing the first output blockgnS (λ) eventually recurses back to

computinggnS(N), which can be computed directly at a cost ofN · CPn , and that block may be

memoized assuming thatc ≥ 1. The next block that will need to be computed in the recursiontree

is gnS(N+1). The memoized blockgnS(N) can be used, allowinggnS(N+1) to also be computed

for a cost ofN · CPn .

The recursion tree is such that eachgnS(i) will be computed sequentially in this manner, up until

gnS(N + c). That block may be computed for the same cost ofN · CPn , but no memory remains

to memoize it. We first consider the case that the firstc blocks to be computed and memoized are

never evicted from the cache. We later argue that no other caching strategy does any better than this

one givenc < N .

Let C(j) be the cost to compute thejth unmemoized block. The cost of computing missing

block 0,gnS(N + c), is C(0) = N · CPn , as noted above. To compute missing block 1, missing

block 0 must first be recomputed, giving a costC(1) = C(0)+N ·CPn = 2 ·N ·CPn . To compute
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missing block 2, first block 0 must be recomputed, then block 1must be recomputed. Note that to

recompute block 1, block 0 must be recomputedagain; there is no memory remaining to save that

block. HenceC(2) = C(0) + C(1) +N · CPn = 4 ·N · CPn .

In general, to computegnS(i) for i > (N + c), the recursion tree is structured such thatall

i−N − c unmemoized blocks must be sequentially (re)-computed. Thecost to computegnS(i) for

i > (N + c) isC(i−N − c). We initially defineC in Equation 3.3:

C(i) =











N · CPn if i = 0

N · CPn +
∑j=i−1

j=0
C(j) if i > 0

(3.3)

We can find the closed form by noting that fori ≥ 2, C(i − 1) = N · CPn +
∑j=i−2

j=0
C(j).

Therefore, fori ≥ 2:

C(i) = N · CPn +

j=i−1
∑

j=0

C(j)

= N · CPn +C(i− 1) +

j=i−2
∑

j=0

C(j)

= C(i− 1) + (N · CPn +

j=i−2
∑

j=0

C(j))

= C(i− 1) + C(i− 1)

= 2 · C(i− 1)

Combined with the base case thatC(0) = N · CPn , this gives us the closed form for C (Equa-

tion (3.4)):

C(i) = N · 2i · CPn (3.4)

Recall that this cost is based on the memoization strategy ofstoring the firstc computed blocks,
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and then never evicting those from the cache. Can the adversary do better with a cleverer memoiza-

tion strategy? We argue that he cannot. When computinggnS(i) for i > N + c, at leasti−N − c

previous blocks are not stored in the memoization cache. By the above analysis, it doesn’t matter

at all whichblocks are missing from the cache and must be recomputed, only how many. Further,

since computation ofgnS involves a unique prefix toPn, one partially computed block cannot be

used to help compute other blocks.

At last we explicitly prove the requirement. When at least|S| bits (N blocks) are used to store

results ofgnS , the cost to computef isλ ·N ·CPn . When|S|−1 bits are used, this leavesc = N−1

blocks to cache intermediate blocks. The total cost is equalto the cost to compute the firstc = N−1

blocks, plus the cost to compute the remaining of the finalN blocks. This cost is given below.2

N · (2λ−N+1 +N − 2−max(2λ−2N+1 − 1, 0)) · CPn

To satisfy the requirement thatf may be computed in less thanTup if and only if at least|S|

bits of memory are overwritten, we must satisfy the relation:

λ ·N · CPn

< Tup (3.5)

< N · (2λ−N+1 +N − 2

−max(2λ−2N+1 − 1), 0) · CPn

Since the cost to computef when using|N | bits to store output blocks ofPn is polynomial in

N andλ, and the cost to computef when using fewer bits isexponentialin λ, it is straightforward

to select parameters so that the sub-|S|-bit implementation is arbitrarily more expensive than the

2Note that there is no need to preemptively compute the blocksin between the last memoized block and the first output
block. Themax term accounts for when there are such “middle” blocks that donot need to be explicitly computed except
as part of the computation of later blocks.
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|S|-bit implementation. For example, settingλ = N + 128 whereN > 128 gives us:

(N2 + 128N) · CPn

< Tup (3.6)

< N · (2129 +N − 2) · CPn

The other part of the requirement is that the|S| stored bits must not be invertible to any part of

the input pool. Since the stored blocks are the output of the non-invertible PRFPn, this requirement

is trivially met.

We now show thatf satisfies Requirement 3.2.5:

Leakage Equality for f. Given, for allk < i, l bits of Sk, noncesnk, and responses

Rk andL−Z bits ofSi, Z bits of outputs from any functionw(Si, ni) computable by

Ain cannot be used to compute more thanZ bits ofSi orSi+1 whereSi+1 = f(Si, ni).

This property trivially holds whenL+ Z ≥ |S|, because there is then no unknown information

left to compute.

We therefore consider only the case whereL + Z < |S|. We show that no part off(Si, ni)

can be computed with less than|S| bits of knowledge. Since all parts of the output off(Si, ni)

are output blocks ofgnS , computation of some part of the output off implies computation of some

gnSi. We next show that computation of anygnSi is infeasible when less than|S| bits of information

has leaked.

gnS(i) for 0 ≤ i ≤ N − 1 are the input blocksS [0] to S [N − 1], by definition ofgnS (Equa-

tion (3.2c)). Computation of more of these input blocks thanthe size of the leaked information

L + Z would imply compression of that data. Since the input is pseudo random, no such function

w can exist.

Block gnS(N) is the first computed block. By the definition ofgnS , computation of this block

requires knowledge of all|S| bits of its input, which is exactlySi. Since we have shown that no
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more thanL+Z bits of that information can be leaked or computed, andL+Z < |S|, there is not

enough information to computegnS(N).

Block gnS(N + 1) is the next computed block. Computation of that block requires gnS(N)

(which is size|b|), and |S| − |b| blocks of the original input. The total size of that information

is again|S|. We have already shown that less than|S| bits of that information could have leaked

directly or been computed from other leaked information. Hence,gnS(N + 1) is also impossible to

compute.

This continues recursively for all blocks. Since nognS can be computed from less than|S| bits

of leaked information, then it is impossible for leakage of any Z bits of information to reveal more

thanZ bits of f(Si, ni).

Hoppy Vulnerable to Split Computation Attack

We present a split computation attack against the hoppy scheme. The idea of the attack is to update

two regions when the hoppy scheme inMODE = 0 such that whenMODE = 1 the internal

adversary does not have to leak anything for the external adversary to compute anything. We present

an algorithm for the attack. First the attacker leaks two regions of contiguous blocks at indexesi

andk such thati = k+ |S|/2 mod |S|. for (j = 0 : j < λ/|S| : j++) The internal adversaryAin

leaksgnS(i+ j(|S|+1) andgnS(k+ j(|S|+1)). After the pool update, external attacker compute

the update using the blocks leaked during the update and the blocks leaked before the update.

We give a step by step example of the split computation attackagainst the hoppy scheme. We

set the parameters to|S| = 8, λ = 16, andL = 4. The attackers goal is to learn 6 blocks ofS1

despite being able to leaks only 4 blocks per epoch. During epoch 0, the attacker leaksS0(3) and

S0(7). During the pool update, we computeMODE = ⌊8/4⌋ mod 2 = 0. By our attack algo-

rithm, the internal adversaryAin will leak gnS(10) andgnS(14). S0(6). The external adversary can

compute will usegnS(10), gnS(14), S0(3) andS0(7) to computegnS(11) andgnS(15), because

gnS(11) = Pn(gnS(3)||gnS(10)) andgnS(15) = Pn(gnS(7)||gnS(14). Next, the external adver-

sary will usegnS(10) andgnS(14) to computegnS(18). We compute blockBLOCK1(1, 18) =
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18 − (8/2) = 14. We havegnS(18) = Pn(gnS(10)||gnS(14)). Similarly, we havegnS(19) =

Pn(gnS(11)||gnS(15)). The external attack can also computegnS(22) = Pn(gnS(14)||gnS(18))

andgnS(23) = Pn(gnS(15)||gnS(19)). The external attacker now knows four blocks ofS1 because

S1[2] = gnS(18), S1[3] = gnS(19), S1[6] = gnS(22), andS1[7] = gnS(23). Due the epochs 0

and 1 overlapping during the update process, the internal adversary can leak 2 additional blocks of

S1. After S1 the external adversary has learned 6 blocks ofS1 despiteL being4. The attack is

successful.

Compressible Analysis

We present some analysis on how to adjust the scheme parameters if the pool is compressible. If

the pool isx percent compressible thenLmem + Lban ≤ L whereLmem = Dmem + (1 − x)|S|.

We need to adjust the safety parameter because a compressible pool gives the attacker space when

the attacker compresses the pool.

3.4 Verifiable Malware-Free State
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Figure 3.13: Achieving malware-free state at epochi+ 1.

In this section we describe a simple protocol that extends DABLS to attempt the removal of
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malware (the adversaryAin) from device memory, and the loading of intended application codeC.

Suppose that we would like deviceD to run some application code represented byC. We must

have|C| ≤ Lmem, otherwise there will not be enough space to store both the pool S and the code

C in Dmem. Malware is erased fromD if Dmem does not contain any bits ofAin.

Our protocol contains two stages: (1) verifiable remote erasure of malwareAin, and (2) loading

of the application code, and is implemented in deviceD’s ROM. A small amount ofDmem is also

required as a workspaceQ for the ROM code to execute, which we detail below. Figure 4.9shows

how the memory onD evolves during the protocol. In epochi:

1. Verifier V sends nonceni and entropyEi to deviceD, where|Ei| = Dmem − |S| − |Q|,

andQ represents the minimum scratch space necessary for the ROM code (functionsf and

y) to execute. For example,Q may contain the runtime context for a keyed MAC and a block

cipher (see Section 4.1).

2. DeviceD overwritesLmem with entropyEi and hence the malwareAin is overwritten in

Dmem . D then computesf(Ei||Si, ni) = S∗
i+1

. Note that|S∗
i+1

| is larger than a typicalS

(recall that|S| = |Dmem | − |Lmem |), since its domain and range include|S| + |E| bits. D

sendsRi = y(S∗
i+1) to V .

3. VerifierV checks thatD’s response is correct and timely and, if so, it sends application code

{C,HMAC Si+1
(C)} to deviceD, where|C| ≤ Lmem; otherwise,V initiatesD’s reset. Note

thatSi+1, as shown in Figure 4.9, is simplyS∗
i+1

with |C| bits overwritten withC, and that

this all takes place during a single epoch.

4. DeviceD authenticatesC using theHMAC andSi+1, and then overlaysLmem with applica-

tion codeC, and responds with{M,HMACSi+1
(M)} to V whereM is a message confirm-

ing D has receivedC. Verifier V checks thatD’s response is correct and timely, and, if so,

V considers codeC to be activated on deviceD in a malware-free environment; otherwiseV

attemptsD’s reset.
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The above extension of the DABLS protocol requires that enough ROM is available in device

D to enable the execution of the protocol.

Note that the verifier does not have to run the protocol for achieving a malware-free state on

deviceD in every epoch. During epochs where application codeC needs to receive and execute

management commands, verifierV uses the basic DABLS protocol presented in Section 3 to au-

thenticate deviceD.

Lemma 3.4.1. Given thatV receives correct and timely responseC,HMAC Si+1
(C) it is compu-

tationally infeasible forAin to prevent the complete loading of application codeC in Dmem , i.e.,

the deviceD’s memory contentDmem = C||Si+1

Proof. We outline our proof as follows. SupposeAin occupiesa > 0 bits in Dmem and yetV

receives the correct, timely response fromD, at epochi + 1. If Dmem contains bits of malware

Ain at statei+1, D’s response to verifierV ’s challenge could not have been correct and timely for

the new memory poolDmem = Ei||Si||Q. In this case verifierV would have attemptedD’s reset.

Similarly, the correct, timely response received after{C,HMAC Si+1
(C)} is sent implies thatC

was correctly loaded in a timely manner.

3.5 Device Initialization and Reset

3.5.1 Device Initialization

A device’s secret poolS comprises its identity. The initial pool,S0, must be injected before the

device can be deployed in a real network and become the subject of adversary attacks. For example,

initial pseudo-random poolS0 could be injected by the manufacturer, or may be “imprinting” on

the device by a technician, at installation time; e.g., a “smart meter” may haveS0 is injected before

it is initially connected to the power grid.

The verifier (e.g., a process run by an electric utility) requests and receives periodic heartbeat

messages from the device that confirm that the device’s pool is being updated in accordance with
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our protocols. If a response to a heartbeat request is ever incorrect or misses its deadline (e.g., fails

to arrive at all), then the state of the device software is considered suspect. Malware may be present

on the device.

3.5.2 Device Recovery and Reset

When a device’s heartbeat fails correct and timely verification, we initiate another protocol to at-

tempt to recover the device. It is always a possibility that malware refuses to respond to these

messages or perform the necessary actions. In this case, it is necessary to send a technician to repair

or replace the device. However, malware that behaves thuslywill be detected with overwhelming

probability. Further, an adversary may prefer to have his malware wiped from the device, instead of

attracting undue attention.

If malware is not in permanent control of the device, e.g., ithas only hooked an API or interrupt

service routine associated with billing, then our protocolfor reaching a malware-free device state

will be successful. If so, the device is considered to have had its application code and pseudo

random pool reinitialized to a known-good state (i.e.,Si+1 in Figure 4.9), and normal operations

can resume. Physical intervention becomes necessary only if this reset protocol fails.

3.5.3 Bootstrapping Additional Applications

If malware is successfully removed from the device, then we have the opportunity to bootstrap any

of a number of standard cryptographic libraries and protocols. The device’s current secret pool,Si,

represents a shared secret with the verifier. This is sufficient to derive keys for almost any standard

cryptographic protocol. Thus, we are able to build from device authentic identity and malware-

free state, to a known-good shared secret between devices, to arbitrary cryptographic protocols.

Furthermore, achieving a malware-free state complements new cryptographic constructs that are

intended to be resilient to continual key leakage via side-channel attacks; viz., the next section.

xli



Chapter 4

Evaluation

4.1 Parameter Exploration

Here we explore practical parameters of epoch duration (Figure 4.1), device memory and pool size

(Figure 4.2), and device bandwidth (Figure 4.3). To aid in intuition, we also offer some parameters

of real-world wireless network interfaces (Figure 4.4).

We letLmem = Dmem − |S| andLnet = T ·Dban .

T (seconds) |S| (MB) Lnet (MB) < Lmem (MB) <
1 0.52 0.03 0.48
2 0.53 0.06 0.47
3 0.55 0.09 0.45
4 0.56 0.12 0.44
5 0.58 0.15 0.42
6 0.59 0.18 0.41
7 0.61 0.21 0.39
8 0.62 0.24 0.38
9 0.64 0.27 0.36

10 0.65 0.3 0.35
20 0.8 0.6 0.2
30 0.95 0.9 0.05

Figure 4.1: Implications of varying epoch durationT . We fix the device memoryDmem at 1 MB,
Dban bandwidth per second as 0.03 MB/s. TheLnet andLmem values shown here are the upper
bounds on allowable leakage.

xlii



Dmem (MB) |S| (MB) Lnet (MB) < Lmem (MB) <
64 52 40 12

128 84 40 44
256 148 40 108
512 276 40 236

1024 532 40 492
2048 1044 40 1004
4096 2068 40 2028

Figure 4.2: Implications of varying device memoryDmem . T is fixed at 400 seconds.Dban is fixed
at 0.1 MB/s. TheLnet andLmem values shown here are the upper bounds on allowable leakage.

Dban (MB/s) |S| (MB) Lnet (MB) < Lmem (MB) <
0.002 8.1 0.2 7.9
0.004 8.2 0.5 7.8
0.040 10.4 4.8 5.6
0.100 14.0 12.0 2.0
0.130 15.5 15.0 0.5

Figure 4.3: Implications of varying device bandwidthDban . T is fixed at 200 seconds.Dmem is
fixed at 16 MB.Lnet is deterministically calculated fromDban . TheLnet andLmem values shown
here are the upper bounds on allowable leakage.

4.2 Implementation

We implemented a prototype of the pool update function. We first describe our system setup fol-

lowed by the pool update function’s implementation details.

Our testbed consists of two systems connected via a wirelessInternet connection: a server

operating as the pool update verifier, and a client as the poolupdate prover.

The server is a Intel Centrino system with a 2.4 GHz Dual-coreCPU, with 3 GB RAM and

Protocol Bandwidth (MB/s)
Bluetooth 1.2 0.09
Bluetooth 2.0 + EDR (practical) 0.26
Bluetooth 2.0 + EDR (nominal) 0.38
Bluetooth 3.0 HS 3.00
Zigbee 2.4 GHz 0.03
Zigbee 915 MHz 0.004
Zigbee 868 MHz 0.002

Figure 4.4: Maximum attainable bandwidth of common wireless data communication media.
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Program 1 generic-up
ReceiveNONCE From Server
generic-up(NONCE)
Send SHA-1(POOL) To Server

150 GB of hard disk running the server code and Ubuntu 9.10. Werun our client on 2 different

platforms. The first platform is a real time system model RTSMof a ARM 1176 in the ARM Real

View Debugger. The second platform is an ARM Versatile Express PB 1176 Development Board.

The ARM Development Board uses a ARM 1176 processor, 128 MB RAM, 8 MB PSRAM, 2 GB

sd card, and 2x64 NOR FLASH. Our current implementation is written in C. Our code uses the

polar-ssl library. Our code runs in user mode. Our code has three main components thesetup,

generic-up, andblock. Thesetup component is responsible for reading the nonce from

the server and communicating the final result to the server. Thegeneric-up component is re-

sponsible for computing the non-invertible PRF and updating the pool. Theblock function is

responsible for copyingk blocks from the pool to a buffer. How theblock function selects those

blocks depends on which block selection strategy it implements. We implemented the CBC-like,

pseudo-random, public permutation and hoppy block selection strategies.

We now describe the implementation of our pool update function. The first program we present

is setup. The second program we present isgeneric-up. The next set of programs, we present

are implementations of the different block selection strategies. Implementing several different block

selection strategies is useful because different block selection strategies may have significantly dif-

ferent performance and security characteristics.

Thesetup program (psuedo-code shown in Program 1 is triggered when the verifier sends a

nonce to begin the pool update process. First, the setup program calls thegeneric-up program to

update the pool. Then the setup program computes the SHA-1 hash of the pool and communicates

the result to the server.

Thegeneric-up program (pseudo-code shown in Program 2 is triggered when the setup
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Program 2 generic-up
Parameters: NONCE

for i = 0 → λ do
index= i mod |S|

for j = 0 → K do
DEPARRAY[j] =POOL[BLOCK(k, i)]

end for
ANS= AES −ENC − CBCNONCE(POOL[index]||DEPARRAY)
ANS= ANS⊕ POOL[BLOCK(1, i)
POOL[index] =ANS

end for

program calls it to update POOL using the nonceNONCE. The setup program computesλ block

updates. Each block update consists of four steps. The first step is that the pool computes the index

of the POOL block that is going to be updated. The second step is finding thek dependencies used

for i − th block update by calling theblock function k times. The third step is computing the

non-invertible PRF by calling AES-ENC-CBC on the pool blockat index index concatenated with

the k dependencies found in the second step. Then thegeneric-up function XORs the result

of the AES-ENC-CBC computation with the first dependency found by theblock function. The

fourth step is the pool block at indexindex is updated with the result of the computation described

in step three. The fourth step is important because it gives us the invariant that the|S| most recent

updates are stored in POOL. More specifically we a guaranteedthat if the current block update isi,

thenPOOL[x mod |S|] = gnS(x) for x ∈ i− n...i.

We now give pseudo code for each of the block selection schemes. The block selection scheme

we chose to implement are the CBC-like scheme, the hoppy scheme, the public permutation scheme

and the pseudo-random scheme. Each program is trigger when thegeneric-up programs want

to compute whichk dependencies to use for a specific block update.

The CBC-like function selects thek most recent results as thek dependencies. CBC-like func-

tion accomplishes this by returningi−k mod |S| as its block selection. The CBC-like function has

the simplest implementation of our block update mechanisms. The CBC-like block select algorithm
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Program 3 CBC-like
Parameters: k andi

returni− k mod |S|

S0[0] S0[1] S0[2] S0[3]

S0[1] S0[2] S0[3]

S0[2] S0[3]

S1[0]

S1[0] S1[1]

Figure 4.5: CBC-like Block Selection Implementation

shown assumes an efficient pool update implementation therefore it returns the index in memory of

which block to uses rather than thegnS index.

Figure 4.5 shows an example update in a efficient implementation of the update function using

the CBC-like function implementation. In this example, thepool size is four and number of updates

computed in this example is four. The update function is efficient because it will use four blocks

of memory for computation. The figure illustrates which blocks in memory are selected in block

updates and how memory changes after a block update. We see that to update index 0 from epoch

0 to epoch 1 it depends on block 0 and block 3. We also see that value at index 0 is changed from

S0[0] to S1[0] immediately, because an efficient implementation writes the results to memory as

soon as it computes them to reuse later. We also show the same process for updating index 1.

The pseudo-random block selection function choosesk pseudo-random dependencies. The

Program 4 Pseudo-random
Parameters: k andi

returnPOOL[i− k mod |S|] mod |S|
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S0[0] S0[1] S0[2] S0[3]

S0[1] S0[2] S0[3]

S0[2] S0[3]

S1[0]

S1[0] S1[1]

Figure 4.6: Pseudo-random Block Selection Implementation

Program 5 Public Permutation
Parameters: k andi

a = i+ (i+ 1 mod 2) mod |S|
returnak mod |S|

pseudo-random block selection function uses the value of the lastk blocks modulo the poolsize

to pseudo randomly pickk dependencies. This method chooses blocks pseudo-randomlybecause

value of the lastk blocks are the output of a pseudo-random function.

Figure 4.5 shows an example update in a efficient implementation of the update function using

the CBC-like function implementation. In this example, thepool size is four and number of updates

computed in this example is four. The update function is efficient because it will use four blocks

of memory for computation. The figure illustrates which blocks in memory are selected in block

updates and how memory changes after a block update. We see that to update index 0 from epoch

0 to epoch 1 it depends on block 0 and block 3. We also see that value at index 0 is changed from

S0[0] to S1[0] immediately, because an efficient implementation writes the results to memory as

soon as it computes them to reuse later. We also show the same process for updating index 1.

The public permutation scheme selectsk dependencies. The pseudo-random block selection

function uses a generator to generatek dependencies.

The hoppy scheme switches between two modes to select blocks. The hoppy scheme only
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S0[0] S0[1] S0[2] S0[3]

S0[1] S0[2] S0[3]

S0[2] S0[3]

S1[0]

S1[0] S1[1]

Figure 4.7: Public Permutation Block Selection Implementation

Program 6 Hoppy
Parameters: i

MODE = ⌊i/|S|⌋ mod 2

if MODE == 0 then
returni− 1 mod |S|

else
return(i− |S|/2)/mod|S|

end if

selects one dependency. WhenMODE == 0 the dependency returned is the most recent depen-

dency. WhenMODE == 1 the dependency returned is the dependency half away.

S0[0] S0[1] S0[2] S0[3]

S0[1] S0[2] S0[3]

S0[2] S0[3]

gnS4

gnS4 gnS5

Figure 4.8: HoppyMODE = 0 Block Selection Implementation
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gnS4 gnS5 gnS6 gnS7

gnS5 gnS6 gnS7

gnS6 gnS7

S1[0]

S1[0] S1[1]

Figure 4.9: HoppyMODE = 1 Block Selection Implementation

Program 7 generic-up
Parameters: BLOCK and FRESH

for i = 0 → λ do
cost = FRESH[i mod |S|]
for j = 0 → K do

rand=randint(0, |S| − 1)
cost=FRESH[rand]+cost

end for
cost= K−cost
if cost≤ BLOCK then

BLOCK = BLOCK - cost
else

FRESH[i mod |S|] = 0
numfresh = numfresh - 1
if numfresh == 0then

return [i, 0]
end if

end if
end for
return [i, numfresh]

4.3 Attack Simulation

4.3.1 Split Computation Attack

Program 7 shows the pseudo-code for a simulation of an split computation attack against the
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update function using the pseudo-random block selection scheme. The simulation uses an array

that signifies current set of fresh intermediate state that the external adversary has. For every block

update within the pool update the simulation picks random dependencies, if the external attacker

has all of the dependencies or can leak enough blocks then theexternal attacker maintains a fresh

block otherwise the block is marked as not fresh anymore.

We explain why we think this simulation represents a reasonable attack against the split compu-

tation attack scheme. We present several observations thatsupport our claim that our split computa-

tion attack is resonable. The first observation is that the attacker’s advantage in the split computation

attack against an update from epochi to epochi+1 is how many blocks the external attacker is able

to update fromi to i+ 1 using intermediate blocks. The second observation is that the attacker can

do no better than to break even on state that the attacker leaks during the pool update for example if

the attacker leaks three blocks of state in between epochi and epochi+1 then the attacker can learn

no more than three blocks ofi+1. The third observation, is if the attacker is unable to keep ablock

fresh during a block update, then the block is useless to the attacker. From these three observations

we see that a reasonable strategy is for the attacker to always keep blocks fresh if it can. A limitation

of this analysis is that some block may be much more valuable than other blocks due to the random

dependencies because blocks that are used as dependencies are more valuable.

We run two simulations to measure the effectiveness of the attack. One simulation measures

the performance of the attack as we increase the number of dependencies. The other simulation

changes how many blocks the attacker can leak versus how manyblocks the attacker can start out

with. We measure the effectiveness of the split computationattack by measuring the number of

block computations on average where the attacker has at least 1 fresh block. As the number of

blocks block computations where the attacker has at least 1 fresh block decreases the effectiveness

of the attack decreases because when the attacker has no fresh blocks then the attack is a failure.

We ran a simulation to test how our split computation attack performs as we increase the number

of depends. We expect that increasing the number of depends will drastically decrease the perfor-

mance of the attack. We set the pool size to 128 blocks. The attacker starts with 64 blocks and the
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Figure 4.10: Pool Size Scalability

attacker can leak an additional 40. We set the number of blockcomputations to 512. We change

the dependencies from 1 to 20. Figure 4.10 shows the result ofthe simulation. The results show

that as the dependencies increase the number of block updates where the attacker has at least one

fresh block decreases, therefore increasing the security against the split computation attack. This

was expected. This simulation shows that increasing the number of dependencies a good way to

increase the difficulty of performing our split computationattack.

We ran a simulation to test how our split computation attack changes as we change the number

of blocks the attacker starts with versus the number of blocks the attacker can leak. We set the pool
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Figure 4.11: Split Simulation Start Blocks

size to 32 blocks. The attacker has 24 blocks total that can beleaked for started with. The number of

dependencies is 2. We set the number of block computations to128. Figure 4.11 shows the result of

the simulation. The results show that changing the split between the starting blocks and how many

blocks can be leaked does not change the performance of the attack too much. The splits where

attacker has low starting blocks and high number blocks to leak during the update look better than

they are because the attacker is inefficiently spending block leaks to update a very small amount of

blocks.
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Program 8 generic-up
Parameters: COST

for i = 0 → λ do
index =i mod |S|
CURBLOCK = COST[index]
if CURBLOCK 6= 0 then

if CURBLOCK== 1 then
COST[index] = K + 1

else
COST[index] = K + 1 + CURBLOCK

end if
for k = 0 → K do

rand = randInt(0,n-1)
dep = COST[rand]
if dep == 0then

COST[rand] = 1
else

if dep≥ K+1 then
COST[index] = COST[index] + dep

end if
end if

end for
end if

end for
return COST

4.3.2 Time Space Trade-off Attack

Program 8 shows pseudo code for a simulation of the time spacetrade off attack against a pool

update using the psuedo random block selection mechanism. The simulation uses a cost array to

track the cost of computation changes during the attack. Thesimulation updates the cost array as it

simulates each block update.

We explain why our attack is a reasonable implementation of atime space trade-off attack. We

think that a good time space trade-off attack will uses only pool size space, because if there is extra

space on the device the attacker can just store old pools without having to perform the time-space

trade off attack. We make the observation that the attacker must keep at least 1 block from every
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index in memory, because if the attack does not keep blocks from a index then the attacker won’t

able to compute the correct result. The attacker must keep enough information to recompute all

blocks that depend on stale blocks it keeps in memory. This requirement is interesting because if an

attacker keeps a blockA at indexi back, then the blockB at indexk that is used to update block

A to A′ at indexi will also have to be frozen otherwise the attacker will not able to recomputeA′.

Therefore, the attacker has little choice in how it memoizesblocks. Therefore, we believe the best

time space trade-off attack is for the to memoize as much as possible while still operating under

these constraints. A limitation of this analysis is that some block may be much more valuable than

other blocks due to the random dependencies because blocks that are used as dependencies are more

valuable.

We ran simulations to test the effectiveness of the attack. In the first simulation we measure

the effectiveness of the time space trade off attack as we change the number of dependencies. In

the second simulation we measure the effectiveness of the attack as we change the number of block

computations. The metric for determining effectiveness isthe ratio between the attacker cost and

the normal cost. We expect that increasing the number of dependencies would make the time space

trade-off more expensive for the attacker than increasing the number of block computations.

We ran a simulation to test how our attack performs as we increase the number of dependencies.

We expect that increasing the number of dependencies will drastically increase the cost of the attack.

We set the pool size to 128 blocks. We set the number of block computations to 512. We set

the number of blocks the attacker tries to save to 1. We changethe dependencies from 1 to 20.

Figure 4.12 shows the result of the simulation. The results show that increasing dependencies is

effective at increase the cost of our time trade off attack implementation namely comparing 1 and

6 dependencies, it will take the normal computation six times longer with 6 dependencies however

the attacker will take 123844 times to time space trade off against 6 dependencies, versus only 2

times as long with one dependencies.

We ran a simulation to test how our attack performs as we increase the number of rounds. We

expect that increasing the number of rounds will drastically increase the cost of the attack. We set
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Figure 4.12: Time Space Attack Simulation Dependency

the pool size to 128 blocks. The attack tries to save 1 block. We set the number of dependencies at

4. We change the number of rounds from 1 to 20. Figure 4.13 shows the result of the simulation.

The result shows that increasing the number of block computations drastically increases the cost of

the time space trade off attack, however contrary to expectations the increasing number of block

computations is better than increasing the number of dependencies for making the time space trade-

off attack more expensive.
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Figure 4.13: Time Space Attack Simulation Rounds

4.4 Experiments

We run some experiments to evaluate the performance of our update function. We performed these

experiments on the ARM 1176 development board.

4.4.1 Pool Size Scalability

We describe the experiment to measure how the time it takes tocompute the function changes as we

change how much memory we use. We are measuring three different methods for performing the

pool update, the CBC-like scheme, the pseudo-random scheme, and the public permutation scheme.
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Figure 4.14: Pool Size Scalability

We fixed the number of rounds to compute the update at 1 and the number of dependencies at 2.

We measure pool sizes ranging from 1 to 64 megabytes. We expect that the performance will not

change too much across different block selection strategies, and we expect a linear increase in pool

size to generate a linear increase in cost. Figure 4.14 showsthe results of the experiment. The

results match expectation.
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Figure 4.15: Round Scalability

4.4.2 Round Scalability

We describe the experiment to measure how the time it takes tocompute the function changes as we

change how many rounds we use to compute the function. We are measuring three different meth-

ods for preforming the pool update, the CBC-like scheme, thepseudo-random scheme, and public

permutation scheme. We fixed the number of dependencies at 2 and the pool size at 1 megabyte.

We vary the number of rounds from 1 to 20. We expect that the performance will not change too

much across different block selection strategies, and we expect a linear increase in rounds to gen-

erate a linear increase in cost. Figure 4.15 shows the resultof the experiment. The results match
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expectation.

4.4.3 Dependency Scalability
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Figure 4.16: Dependency Scalability

We investigate our the performance of the pool update changes as we changes the number of

dependencies in the computation of the pool update. We are measuring three different methods for

preforming the pool update, the CBC-like scheme, the pseudo-random scheme, and public permu-

tation scheme. We fixed the pool size at 64 megabytes and the number of rounds at 1. We vary

the number of dependencies from 1 to 20. We expect that the performance will not change too
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much across different block selection strategies, and we expect a linear increase in rounds to gen-

erate a linear increase in cost. Figure 4.16 shows the resultof the experiment. The results match

expectation.

Overall the results show that the pool update is efficient to compute.
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Chapter 5

Conclusions

Cost pressure on the development, deployment and operationof large-scale embedded systems will

continue to lead to the use of low-cost devices, which lack specialized security hardware, and often

include low-assurance software and insecure management tools, for the foreseeable future. This

suggests that (1) malware infestation of remote, embedded devices will continue to be a significant

threat, and (2) secure operation and management of these devices has to be achieved despite this

threat – a significant challenge for any system today. The mechanisms proposed in this paper address

this challenge for remote-device authentication and establishment of malware-free device states.

Our mechanisms remove the dependencies on precise timing and micro-architectural details (e.g.,

instruction timings) that have plagued traditional software-based attestation mechanisms, and form

a sound basis for developing other robust primitives (e.g.,cryptographic primitives resilient to side-

channel attacks) for secure application development.
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