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Abstract

Network attacks often employ scanning to locate vulnerablehosts and services. Unimpeded scanning can lead to the
subversion of an entire vulnerable population in a matter ofminutes. Fast and accurate detection of local scanners
is key to contain a spreading epidemic in its early stage. Existing scan detection schemes can detect fast scanners
whose behavior can be clearly delineated from that of legitimate traffic. Detecting slow scanners, however, is more
difficult. The difficulty arises partially from the fact thatthese detection schemes use statically determined detection
criteria, and as a result do not respond well to traffic perturbations. In this paper, we present two adaptive scan
detection schemes,Success Based (SB) andFailure Based (FB), both of which change detection criteria dynamically
based on traffic statistics. FB is designed for fast detection and is particularly well suited for controlled computing
environments with well-understood traffic characteristics. SB is more versatile and able to perform well in a wide
range of traffic scenarios. We evaluate the proposed schemesanalytically as well as empirically using real traffic and
attack traces. Our results show that against fast scanners,the adaptive schemes are able to render similar detection
precision as the traditional static schemes. For slow scanners, however, the adaptive schemes are much more effective,
both in terms of detection precision and speed. Specifically, both SB and FB have non-linear properties not present in
other schemes. These properties permit a lowerSustained Scanning Threshold and a robustness against perturbations
in the background traffic.

Keywords: Scan Detection, Internet Worms, Security

1 Introduction

Modern network attacks commonly employ port scans to locatevulnerable machines and services. A large amount of
scan activity is therefore a strong indicator of malicious reconnaissance activities, often to be followed by exploitsor
infections. As such, an important piece in a network defenseis fast and accurate detection of local scanners. With
few exceptions, existing scan detectors are exclusively what we callstatic rate schemes. Such a scheme relies on
a statically determined arrival rate of suspicious events to delineate the behaviors of legitimate hosts from those of
scanners. For instance, NSM [1] permits a host to contact a maximum number of distinct addresses in a given time
window. Any host that exceeds this rate is flagged as a potential scanner. These schemes work well for fast scanners
whose behaviors are distinctively different from legitimate hosts. Detecting slow scanners, however, is more difficult
because slow scans tend to blend in with the background traffic. If you set the rate too low, false positives can occur
whilst a large rate will permit a liberal amount of scans.

In this paper, we investigateadaptive rate schemes concerning the detection of slow scanners in the presence of
background traffic. We show that by adaptively changing the permitted rate of suspicious events, we achieve interesting
and powerful “non-linear” properties that are not present in the static schemes, and that these properties lead to more
effective and robust detection against various forms of scanning malware. We introduce two adaptive schemes in this
paper, one changes the permitted rate (of suspicious events) based on the host’s connection success statistics (we call
it SB for success based) and the other one based on the failure statistics (we call this oneFB). We show that both SB
and FB are able to catch slow scanners while remaining just aseffective against fast scanners as static-rate schemes.

Throughout this paper, we use atoken-based framework to describe and analyze each scan detection scheme.
More specifically, in this framework a scan detector allocates a number of tokens to each host in the beginning.
Each ensued suspicious event constitutes the removal of some number of tokens, and tokens are rewarded back in
an algorithm-specific fashion. The net rate at which tokens are rewarded determines the permitted arrival rate of
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suspicious events—a host that exceeds this rate for some length of time is labeled as a scanner. In a static-rate scheme,
the permitted arrival rate of suspicious events is constant. In an adaptive scheme, this rate is dynamically determined,
based on traffic charactersitics.

It is easily seen how some of the existing scan detectors fit into this framework. For instance, we can use the
token balance to represent the state of the random walk in TRW[2]; a step in the walk toward the scanner hypothesis
represents the consumption of tokens, and a step in the opposite direction constitutes the accumulation of tokens.
Similarly, an NSM scheme that enforces 15 distinct addresses per minute can be translated into a token-based scheme
that consumes four tokens per distinct-destination contact and accrues tokens at a rate of 1 per second. The use of this
framework simplifies the representation of specific schemes; sometimes a family of algorithms can be described with
a single token-based represenation (e.g., TRW and RHT). It abstracts away superfulous details and permits the direct
comparison of core design choices.

To contrast and compare the adaptive schemes with others, wefocus on these aspects of detection performance;
error rates, detection speed, andSustained Scanning Threshold(SST). Error rates are specifically false positive and
false negative rates. We use the metricEscaped Count to measure detection speed.Escaped Count is defined as
the number of scans permitted from a scanning host before detection occurs. The Sustained Scanning Threshold (SST)
is the maximum failure rate a host can maintain without beinglabeled as a scanner1. SST is an especially important
metric concerning slow scanners—the lower the SST, the moreeffective it is against slow scanners.

To investigate these aspects, we tested each scheme againstboth real and synthetic network and scan traces. Our
analysis shows that both SB and FB give rise to a lower Sustained Scanning Threshold, while maintaining comparable
false positive levels to the other detectors. More specifically, SB and FB are equally as effective against fast scanners
as the static-rate schemes, but are substantially more so against stealth scanners, both in terms of precision and speed.
A sensitivity analysis shows that, even though the adaptivedetectors do not strictly render better detection precision,
it is robust, in the sense that their performances are only slightly affected by perturbations in the background traffic.

The remainder of the paper is organized as follows. Section 2discusses related work. In Section 3, we describe
the token-based framework. Section 4 covers the static threshold scheme we use as a baseline comparison case. We
present the adaptive scan detection schemes in Section 5 andprovide an analytical and empirical comparison of the
static vs. adaptive schemes in Section 6. We conclude in Section 7.

2 Related Work

Many scan detection schemes have been proposed in the literature. The earlier ones, such as NSM [1], Snort [3], and
Bro [4], are all static rate schemes which simply count the number of distinct destinations or failures of each host
within a given window of time, and label the host as a scanner if a pre-determined rate is exceeded. These schemes
tend to adopt generous permitted rates for fear of false positives. As a result, they are not as effective when slow
scanners are concerned.

Jung et al. [5] developed a scheme that uses a threshold random walk (TRW) to detect scanners. In this scheme, a
connection success results in a step in one direction, whilea failure is a step in the opposite direction. A pre-determined
distance traveled in a direction labels the host either as a scanner or a safe host. Reverse Hypothesis Testing (RHT) [6]
and the Approximate TRW [2] are variations of TRW. Ganesh et al. [7] developed another scheme where optimal
detection is possible if traffic characteristics are known.In this scheme, the time between failures dictates the number
of tokens removed or rewarded. These algorithms are closestto our schemes and also belong in the class of adaptive
algorithms. We present an analytic treatment of worm detection in a generic token based framework and show that
our adaptive algorithms are less susceptible to intelligent gaming, more robust to background perturbations, and more
effective against slow scanning worms.

Other defenses against worms include automatic containment and signature generation. Rate limiting such as
Williamson’s [8], Chen et al’s [9], and Wong et al.’s DNS-based scheme [10] are examples of containment schemes.
This class of mechanisms focuses on containing potentiallyanomalous traffic and has different goals and constraints
than detection schemes. Signature generation techniques such as Earlybird [11], Autograph [12], and Polygraph [13]
have great potential but thus far proved to be difficult against zero-day worms, in particular against slow spreading

1This concept was originally defined by Weaver et al. in [2].
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Symbol Meaning
a token reward rate
γ token consumed per failure
n initial token balance (also maximum)

η(t) background traffic (non-scan) rate at timet
µ expected background traffic rate (E[η])
rs rate of scan connections
pn background traffic success probability
ps scan traffic success probability

Table 1: Token Equation Parameters

worms.

3 A Token Based Framework

To facilitate analysis, throughout this paper we use a token-based framework to represent the different detection
schemes. In this framework, each host has a bank of tokens. Tokens are removed when suspicious events happen
(e.g., connection failures), and accrued either at a pre-specified rate or in the absence of suspicious events. As such,
the consumption of tokens models the occurrence of suspicious events, and an increase in the token balance is indica-
tive of benign/good behavior. The scan detector regulates the subtraction and addition of tokens and reports that the
host is a scanner if the token balance reaches a pre-determined level.

We map the logic of each detection scheme into this framework. To normalize the discussion, token consumption
occurs only when outbound connections fail2. Exactly how many tokens are removed and the conditions under which
tokens are rewarded are algorithm-specific. As we discuss later in the paper, the ways in which each algorithm
regulates these two parameters are often the main source of performance differences.

In this study, we represent the connection rate of legitimate traffic with a random variable,η, that follows a
probability density functionfη(·) with an expected value ofµ. We assume that both legitimate and scan traffic
exhibit a consistent success probability over time. We further assume that scans are emitted at a constant rate. These
assumptions permit us to represent the scan traffic using a simple scan rate,rs, and a scan success probability,ps. We
assume that the success probability of normal traffic ispn. Table 1 summarizes the different parameters used in the
paper. Equation 1 gives the token balance of a host at timeT , assuming the token reward rate,a, and tokens consumed
per failure,γ, are both constant.

Tokens(T ) = min(n, n + aT − γ(rs(1− ps)−

∫ T

0

η(t)(1 − pn)dt)) (1)

Equation 2 shows the condition for no false positive at timeT ; that is, the tokens consumed withinT must be less
than the tokens rewarded.

γ

∫ T

0

η(t)(1 − pn)dt ≤ n + aT (2)

Equation 3 shows the detection condition—only when the overall failure rate (both scan and non-scan) is greater
than the token reward rate, will the scanner be detected. Otherwise a false negative can occur.

rs(1− ps)T +

∫ T

0

η(t)(1 − pn)dt > aT/γ (3)

The maximum scan rate that a scanner can sustain without being detected is theSustained Scanning Threshold,

2The exact conditions for which a connection is considered “failed” can vary for each algorithm
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or SST [2]. The SST of a detector is an important quantity because itdenotes the optimal worm scan rate against
the detector. Clearly, a detection mechanism that gives rise to a low SST while maintaining acceptable error rates is
desirable. The expected value for SST is shown in Equation 4.

E[SST ] =
a/γ − µ(1− pn)

1− ps
(4)

As previously stated, another metric we use isEscaped Count, which measures the timeliness of the detector.
Escaped Count is defined as the number of scans permitted before detection.For instance, a scanner that suc-
cessfully evades detection (a false negative) would have aninfinite Escaped Count. Equation 5 gives the expected
Escaped Count.

E[Escaped Count] ≈
E[Tokens]

γ(rs(1 − ps) + µ(1− pn))− a
· rs (5)

Given theEscaped Count, we can calculate the “basic reproduction number”; the average number of hosts
infected by an instance of the spreading malware before detection occurs. If the basic reproduction number of an
infectious spread is greater than one, the infection will achieve an exponential growth. Therefore, the condition under
which an epidemic can be contained is,

E[Escaped Count] · ps = rsps
E[Tokens]

γ(rs(1 − ps) + µ(1− pn))− a
≤ 1 (6)

Setting Equation 6 equal to one and solving forrs gives another important quantity, theCritical Scan Threshold,
or CST, such that,

E[CST ] =
a/γ − µ(1− pn)

1− ps(E[Tokens]/γ + 1)
(7)

CST was originally defined by Ganesh et al. [7]; it is the expectedmaximum scan rate for which the basic reproduction
number is one. Scans emitted at a rate higher than the CST willbe detected and stopped before infecting one other
host, hence successfully contained. Whenps andE[Tokens]/γ are relatively small, the Sustained Scanning Threshold
(SST) approximately equals the Critical Scanning Threshold (CST). Therefore in this work we focus on SST and leave
the analysis of CST for future work.

4 Static Rate Schemes

In this section we explore a generic token-based representation for static rate schemes. A static rate detector stipulates
that the permitted rate of suspicious events remains constant throughout time. In a token-based form, this translates
to as follows—each connection failure results in the removal of a constant number of tokens, and tokens are accrued
at a constant rate, independent of the state of the system3. A number of scan detection schemes fall in this category,
including NSM [1], Snort [3], Bro [4] and Chen’s [9].

To give the best performance, our token-based formulation stipulates that tokens are consumed only when first-
contact failures occur. A first-contact failure is the very first connection to a particular destination that resulted in
a failure [6]. A connection is consideredfailed when the outgoing SYN elicits a TCPRST or a timeout without a
SYN ACK. The concept of first contact was first used in TRW [5]. To determine whether a connection is a first-
contact connection, the host must maintain statistics of previously contacted addresses. While we do not specify how
these statistics should be maintained at the host level, we stipulate that there exist many efficient mechanisms (e.g,
hash tables, bloom filters) which will allow a host to store and look up a list of previously seen destination addresses
without incurring a high performance overhead. Prior results [6, 10] suggest that a list of 64 or more addresses render
sufficiently accurate results.

The algorithm works as follows: Every time the host sends an outgoing SYN packet, the destination IP is checked
against the list of maintained addresses. If the destination IP is in the list, the SYN packet is permitted through without
further ado. Otherwise the connection is monitored; if the connection generates a failure, a token is removed from the

3There is usually a maximum token balance.
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host’s token pool and the destination IP is added to the list of contacted addresses. Detection occurs when the host
exhausts its token pool.

If we model the timing of packets transmitted by the background traffic as a Poisson process with rate parameterµ,
then the arrival of non-scan failures is also a Poisson process with rate parameterµ(1−pn) (notepn is the background
traffic success probability). The probability for false positive for a period of timeτ is therefore

PFP = Σk
e−µ(1−pn)τ (µ(1 − pn)τ)k

k!
s.t. k > n0 + aτ (8)

wheren0 is the token balance at the beginning of the intervalτ . The false negative probability is,

PFN = e−µ(1−pn)T (1 + µ(1 − pn)T ) s.t. T =
1

a− rs(1− ps)
(9)

If T < 0, the scan will consume all the tokens independent of the background traffic andPFN = 0.

The expected values of the SST andEscaped Count for the static rate scheme can be found using Equations 4
and 5 respectively. To put things in perspective, assume normal traffic success probabilitypn = 0.7, scan success
probabilityps = 0.02%, and the expected rate of non-scan trafficµ = 0.4 (4 connections in 10 seconds). A token
reward ratea = 1, which translates to one first-contact failure per second, would give rise to an expected value of SST
asE[SSTstatic] = 0.8802. This means that any worm that performs at least 9 scans every10 seconds will be detected.

In the remainder of the paper we will use this static rate scheme as a baseline for comparison and contrast it with
the adaptive schemes.

5 Adaptive Rate Scan Detection

The main problem with the static rate scheme is that the permitted rate of suspicious events, is statically determined,
which leaves little freedom for legitimate traffic perturbation. If one sets the token reward rate (hence the detection
threshold) too low, it will result in false positives while ahigh rate permits a liberal amount of scans to escape the
network. In this section, we investigate adaptive rate schemes. In the parlance of the token-based framework, an
adaptive rate detector gives rise to a dynamically changingrate of permitted suspicious events. This is in contrast to
the constant rate in a static rate scheme. As we shall see later in this section, making this rate dynamic in the manners
detailed below has significant consequences to scan detection.

We propose two adaptive scan detectors,Success Based (SB) and Failure Based (FB). SB changes the token
reward rate based on the connection success characteristics of the host, while FB changes the token penalty,γ, based
on the failure statistics. Both give rise to a dynamically changing permitted failure rate. We analyze and contrast them
with the static rate scheme described in Section 4 and other dynamic schemes such as RHT [6] and the recent CUSUM
based detector by Ganesh et al.[7] in Section 6.

5.1 Success Based (SB)

The fundamental observation behind SB is that a legitimate host (one that is not a scanner) will exhibit a greater
percentage of connection successes than a scanning host. Assuch, SB attempts to adjust the token reward rate based
on the connection success statistics of the host. The high-level strategy of SB is simple: more successful hosts are
rewarded with a larger token reward rate. This approach is different from RHT [6] and the modified CUSUM detector
by Ganesh et al. [7]; RHT uses only the ratio of success to failure while the CUSUM detector uses only the rate of
failures. SB attempts to use both, and as a result, SB gives rise to a better overall performance than both RHT and
CUSUM.

To keep track of success statistics, we use the concept ofsuccess index. The success index of a host after theith
first-contact connection, we call itρi, is defined as follows,

ρi = connectionResulti · α + ρi−1(1− α) (10)

α is a smoothing factor, which we set to 0.1.ρ0 is initialized as the percentage of successful connectionswithin an
initialization period (we use ten connections for the initialization period). Note that Equation 10 renders a weighted
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Host Success Index (ρ) Token Reward Rate (a)
0≤ ρ < 0.1 a = Desired SST (σ)

0.1≤ ρ < 0.9 a ≈
σ(1 − ρ)e(10 ln(ω/σ)ρ)/9

ǫ1/n − 0.146
0.9≤ ρ ≤ 1 a = Maximum-to-be-tolerated failure rate (ω)

Table 2: Success Index to Token Reward Rate Mapping for SB (ǫ: desired false positive rate)

index that slightly favors recent connection results, which is more sensitive to short-term traffic pattern changes than
a straightforward success ratio. However, the success index calculation is also robust against short traffic bursts,
assuming reasonable values for the smoothing factor,α (typically 0.05 to 0.2). This robustness provides a more
accurate overall success index, and prevents false positives for hosts that experience failure bursts.

To put things in perspective, a normal desktop client (with web surfing and email activities) typically has a success
index greater than 0.6. We observed, however, hosts involved in P2P applications tend to exhibit a wide range of values
for success index, sometimes as low as 0.2. The scan traffic recorded in our traces has a success index less than 0.1.

Once we have the success index, the token reward ratea is determined in a fashion detailed in Table 2. As shown,
hosts whose success indices are below 0.1 receive the lowesttoken reward rate, which is set to be the desired SST.
For instance,a = 0.01 (1 token every 100 seconds) to match an SST of 1 scan per 100 seconds. Similarly, we set the
largest token reward rate to the maximum, to-be-tolerated legitimate failure rate, and allocate this rate to hosts whose
success indices are above 0.9. For the mid-range success indices, the token reward rate is determined by the formula
shown in Table 2 whereǫ is the desired false positive rate, andn is the maximum token balance.

Table 2 reflects SB’s design philosophy that benign hosts arerewarded for good behavior while the failure behavior
of potentially malicious hosts are progressively restricted. It is intuitive that for hosts whose success indices are low
(and therefore likely scanners), its token reward rate should approximate the Sustained Scanning Threshold. Similarly,
when a host’s success index is above 0.9 (and therefore likely not a scanner), its token reward rate reflects the largest,
to-be-tolerated failure rate for the host, since anything lower could result in false positives. The mid-range index-to-
reward-rate mapping in Table 2 was selected with the goal of maintaining a low sustained scanning threshold and low
false positives. Appendix A shows the formulation of the equation in Table 2.

Table 2 provides a general guideline for setting token reward rates based on the success index. In practice,
however, to avoid adjusting the token reward rate for every little change in the success index, one can set incremental
values for the token reward rate based on the relationship guideline laid out in Table 2. An example is shown in Table 3
(the desired SST is 0.01, the max tolerated failure rate is 4.0, and the desired false positive rate is 2%).

Excluding the calculation of the success index and the dynamic token reward rate, SB operates exactly the same
as the static rate scheme; one token is removed for each first-contact failure and only first-contact connections are
considered in the calculation of the token reward rate.

Again, if we model the background traffic as a Poisson processwith rateµ, the probability for false positive with
SB is as follows,

PFP = Σk
e−µ(1−pn)τ (µ(1− pn)τ)k

k!
s.t. k > n0 + f(ρ)τ (11)

where f(ρ) represents the mapping betweenρ and the token reward rate as defined by Table 2. The false negative
probability for SB is,

PFN = e−µ(1−pn)T (1 + µ(1− pn)T ) s.t. T =
1

f(ρ)− rs(1− ps)
(12)

The Sustained Scan Threshold with SB is as follows.

E[SSTSB] =
f(ρ)− µ(1− pn)

1− ps
(13)

If the background traffic has a rate parameter ofµ = 4/10, probability of successpn = 0.7, and scan success
probabilityps = 0.02%, the expected SST is 0.3 scans per second.
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Host Success Index Token Reward Rate Host Success Index Token Reward Rate
0≤ ρ < 0.1 0.01 0.5≤ ρ < 0.6 0.75

0.1≤ ρ < 0.2 0.10 0.6≤ ρ < 0.7 1.0
0.2≤ ρ < 0.3 0.25 0.7≤ ρ < 0.8 2.0
0.3≤ ρ < 0.4 0.40 0.8≤ ρ < 0.9 3.0
0.4≤ ρ < 0.5 0.50 0.9≤ ρ ≤ 1.0 4.0

Table 3: Example Reward Rates for SB

The expected number of scans permitted before detection is as follows.

E[Escaped Count
SB

] ≈
E[Tokens]

rs(1− ps) + µ(1 − pn)− f(ρ)
· rs (14)

Note that a scanner can purposely inflateρ by generating successful first-contact connections. This way the host
will receive a greater token reward rate, thereby achievinga greater SST. Unlike RHT, however, the Sustained Scanning
Threshold of SB increases at a substantially lower rate withthe rate of successful connections. A detailed comparison
and analysis of SB vs. other schemes appears in Section 6.

5.2 Failure Based (FB)

Instead of changing the token reward rate, FB adjusts the number of tokens consumed for each failure, based on the
host’s failure behavior. FB is an alternative way to achievedynamic rates and has a decidedly different focus than SB;
by manipulating,γ, the number of tokens removed per failure, FB is more restrictive and achieves faster detection of
scanners. This, however, necessitates an increase in falsepositives, but the success test here is a lower false positive
rate than that of a static-rate scheme with a similar Sustained Scanning Threshold (SST).

At a high level, FB’s strategy is simple: FB heightens the token penalty—number of tokens removed per failure—
as the host’s failure rate increases and reduces it as the failure rate decreases. The token reward rate,a, remains
constant in FB. We will detail howa is determined below. To determine the token penalty, FB periodically estimates
the host’s failure rate as follows: after each intervali, the failure rate,φi, is calculated as

φi = current failure rate · α + φi−1 · (1− α) (15)

wherecurrent failure rate is the average failure rate for the current period (i) andα is the smoothing factor. We use
anα of 0.25 here.φ0 is the average failure rate for the first interval. We note that to reduce the computation overhead,
one can use a sampling method to estimatecurrent failure rate. We consider sampling an optimization and do not
address this issue further in the paper.

In addition to the failure rate, FB uses a number of other quantities. They are: a)a, the constant token reward rate,
is set to the maximum, to-be-tolerated failure rate (a may reflect a legitimate bursty failure rate), b)β, the maximum
length of legitimate failure bursts, also the length of estimation interval for failure rates. Botha andβ are system
configurable parameters. We observed that for our network, failure bursts for legitimate hosts typically last fewer than
5 seconds, and therefore a five-second interval window seemsappropriate.

FB adjusts the token penalty per failure,γ, based on the failure rate,φ, in a fashion detailed in Table 4. In
Table 4, for each range of failure rate, the interval-until-depletion number specifies the desired number of intervals
until the complete depletion of tokens, assuming the failure rate remains in the same range. These numbers should be
system-specific parameters, which are set based on traffic characteristics and the target false negative and false positive
probability. More specifically,

• If the failure rate of the host,φ, is less than0.2a, the host is considered normal and FB sets the token penalty,γ,
to 1 to allow the maximum permitted failure ratea (note that the permitted failure rate for the host isa/γ). For
these values, the interval-until-depletion is infinite.

• Hosts whose failure rates are within [0.2a, 0.4a] should primarily be legitimate hosts. However, we increase the
penalty to 2 to allow only 50% of the maximum permitted failure rate. This would shorten the detection time
should the failure rate continues to increase (due to a scan).
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Estimated Failure Rate (φ) Desired intervals until token depletionPenaltyγ(# tokens)
0 ≤ φ < 0.2a ∞ 1

0.2a ≤ φ < 0.4a ∞ 2

0.4a ≤ φ < 0.6a x1

(

n
x1β + a

)

1/φ

0.6a ≤ φ < 0.8a x2

(

n
x2β + a

)

1/φ

φ ≥ 0.8a 1 aβ

Table 4: Penalties for FB Detection

• If φ is close toa (φ ≥ 0.8a), the host has been generating failures close to the maximumrate for more than one
interval (see Equation 15). Continuned failures at this rate are well outside what is considered acceptable. The
token penalty is therefore set toaβ to ensure that all tokens will be depleted before the end of the next interval.

• For hosts whose failure rate is within [0.4a, 0.8a], one should first set the desired number of intervals until
depletion; they are system-specific parameters. In Table 4,x1 denotes the interval-until-depletion for the range
of [0.4a ≤ φ ≤ 0.6a] andx2 for [0.6a ≤ φ ≤ 0.8a]. x1 andx2 should be progressively smaller. The token
penalty,γ, can be calculated subsequently using the formula in Table 4. Such a penalty will give rise to the
desired number of interval-until-depletion, if the failure rate remains within the same range . In our network, for
instance, we setx1 andx2 to 4 and 2, respectively. The corresponding token penaltiesare therefore 3 and 4.

When implementing FB in practice, one can adjust the desiredintervals-until-depletion value for each failure range
and even adjust the granularity of the failure range based onthe desired properties of the detector.

Assuming the background traffic as a Poisson process with a rate parameterµ, we can calculate the false positive
probability for FB as,

PFP = Σj

(

e−µ(1−pn)τ (µ(1− pn)τ)j

j!

)

s.t. j ≥
n0 + aτ

g(φ)
(16)

wheren0 is the token balance at the beginning of time periodτ , a is the token reward rate (in this case remains
constant),g(·) is the function defined by Table 4 such thatγ ← g(φ).

The probability of false negative is,

PFN = e−µ(1−pn)T (1 + µ(1 − pn)T ) s.t. T =
1

a/g(φ)− rs(1− ps)
(17)

wherers is the scan rate andps is the scan success probability.

The SST for FB is,

E[SSTFB] =

(

a

g(µ(1− Pn) + rs(1− ps))
− µ(1− pn)

)

/(1− ps) (18)

whereγ ← g(µ(1 − pn) + rs(1 − ps)). For any scan with a rate greater than the SST, the expected number of scans
that occur before detection is

E[Escaped CountFB ] =
E[Tokens]

g(φ)(rs(1− ps) + µ(1− pn))− a
· rs (19)

To put things in context, let’s consider again the example for which the background traffic rate of the host is 4
connections every ten seconds (µ = 0.4) and its success probability ispn = 70%. If the scan success probability is
ps = 0.02% and the token reward rate,a, is 1, then the SST for the host is 0.28 scans per second. A spreading worm
that exhibits a connection rate as low as this will see an extremely slow propagation. In contrast, random scanning
worms to date typically have scan rates in the neighborhood of tens of scans per second.

FB has an added benefit in that it is difficult, from the scanner’s point of view, to game the detector; the only
way to evade detection with FB is to reduce the failure rate ofthe host. Hit-list worms can possibly evade FB. For
scanning worms, however, reducing the failure rate necessitates a reduction in the scan rate, which leads to a slower
propagation. A more in-depth analysis of FB and comparison with other schemes can be found in Section 6.
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Figure 1: Error Probabilities for SB, FB and Static Schemes

Figures 1(a) and (b) show the probability of false positivesand false negatives for SB, FB and the static rate
scheme discussed in Section 4. Figure 1(a) shows specifically the false positive probability against 5-second traffic
bursts. The parameters of the schemes plotted here are selected such that static and FB would have the same SST’s.

A number of observations are significant here. First, when the SST’s are similar, in Figure 1(a) the static rate
scheme exhibits a sharper curve than the others as the burst failure rate increases. In other words, the static scheme is
less robust against background failure bursts and therefore more likely to generate false positives. Second, SB exhibits
the least chance of false positive. This is not surprising since one of the design goals for SB was the accommodation
of such bursts for hosts with a large success index. In our experience, legitimate hosts can generate short bursts with
up to 3 or 4 failures/second. The parameter setting plotted in Figure 1(a) stipulates that the static-rate scheme will
likely generate false positives with at least 40% probability during such bursts. To remedy this, we can increase the
token reward rate, but doing so would increase the SustainedScanning Threshold (SST). SB, on the other hand, has a
visibly lower false positive rate and is in general less sensitive to changes in the background traffic rate.

The false negative plot in Figure 1(b) shows the detection capabilities of the various schemes with respect to scan
rates and two different background traffic ratesµ = 0.38, andµ = 0.5. We opt for low background traffic rates to
better respresent average long term traffic characteristics. Whenµ = 0.38, the three detectors have approximately the
same SST (0.3scans/second). Not surprisingly, both SB and FB have a sharper decreasing false negative probability
than the static scheme. This is intentional, since both aim for fast detection of scanners beyond their SSTs. When the
background traffic rate,µ, increases, SB’s SST pulls away from the others since its success index will likely be higher
due to more background successes. We will address the SST inflation issue of SB in Section 6.2.

Overall, FB provides fast detection of scanners but is susceptible to false positives when bursty failures occur,
and hence is more appropriate for a controlled environment with well-understood traffic characteristics. SB, on the
other hand, is the most robust against background perturbation and is also likely to detect scanners quickly. It would
work well in the context of an open network with a wide varietyof different applications that may have diverse traffic
characteristics.

6 Analysis

In this section we present a detailed analysis of SB and FB, comparing against the static scheme and other adaptive
detectors. We show that, both analytically and empirically, SB and FB are capable of rendering lower SSTs than the
others while maintaining comparable or better detection precisions.
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6.1 Other adaptive detectors

Two scan detectors,Reverse Hypothesis Test (RHT) [6] and the CUSUM detector [7], are of particular interest to this
work because both fall in the category of adaptive scan detection. In this section, we contrast the performance of FB
and SB with these two schemes. Due to space constraints, we give only a brief description of RHT and CUSUM.
Interested readers should refer to the original papers for more details [6, 7].

RHT is a random walk based detector that operates in the rangeof real numbers. The position of the walk is
increased by a pre-determined factor for each first-contactfailure and decreased also by a pre-determined factor for
a first-contact success. If the random walk reaches a state greater than a certain threshold, the algorithm terminates
and reports that the host is a scanner. Translating RHT into atoken-based form entails takinglog of the step function
values as the subtraction and addition operation of tokens.More specifically, if we use the original parameter setting
as defined in [6], the token representation of RHT calls for the removal of one token for every first-contact failure
and the addition of 1.77 tokens for each first-contact success. The expected value of token reward rate for RHT is
therefore,E[a] = 1.77(rsps + µpn), and the expected SST andEscaped Count for RHT are as follows, using the
expected token reward rate.

E[SSTRHT ] =
µ(2.77pn − 1)

1− 2.77ps
(20)

E[Escaped Count
RHT

] =
E[Tokens]

rs(1− 2.77ps) + µ(1− 2.77pn)
· rs (21)

Again, let’s use the same example for which the non-scan traffic rate,µ, is 4 connections every ten seconds, success
probability,pn, is70%, and scan success probability,ps, is0.02%. For RHT, one can expect that a scanner can perform
at most 0.375 scans/second without being detected. As presented earlier in the paper, this SST is smaller than that of
the static-rate but larger than those of SB and FB, under the same traffic conditions.

RHT is susceptible to gaming in that a scanner can generate successful cover traffic to accrue more tokens. If the
cover traffic is able to generate more tokens than the scan traffic consumes, detection will not occur. Because in RHT
each successful first-contact connection adds 1.77 tokens and each failure only consumes one token, the permitted
number of failures grows linearly with the amount of background traffic, assuming a constant failure probability for
background traffic.

The CUSUM detector by Ganesh et al. [7] is analogous to FB in that both are only concerned with failure
characteristics. CUSUM assumes that the detector knows thefailure rate of both non-scan and scan traffic, which they
call λ0 andλ1, respectively. One can also estimate the scan failure rate,λ1, as follows,

λ1 = λ0 exp

(

psn

1− 2ps

)

(22)

whereps is the scan success probability andn is the initial and also maximum token balance of a host. Estimating
the scan failure rate in such a manner is called thesuboptimal method. When failure patterns of both legitimate and
scan traffic are known and remain constant, CUSUM provides the optimal detector [7], where optimality means the
shortest detection time, given a certain false positive upperbound.

Central to CUSUM is the concept of inter-failure time; the CUSUM detector rewards more tokens when the inter-
failure time is large, and the opposite occurs when the inter-failure time is small. Equation 23 describes the net change
of tokens per failure for a given inter-failure time,τ .

∆tokens = (λ1 − λ0)τ − ln(λ1/λ0) (23)

Equations 24 and 25 provide the expected SST andEscaped Count respectively.

E[SSTCUSUM ] =

(

λ1 − λ0

log(λ1/λ0)
− µ(1− pn)

)

/(1− ps) (24)

E[Escaped Count
CUSUM

] =
E[Tokens]

log(λ1/λ0)(rs(1− ps) + µ(1− pn))− (λ1 − λ0)
(25)
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If we assume the non-scan failure rateλ0 is 1 failure/second and we estimate the scan rateλ1 using Equation 22
such thatλ1 = 1.003. The same example whereµ = 0.4, pn = 70%, andps = 0.02% renders an SST of 0.882 scans
per second. Note that Equation 23 dictates that the larger the difference betweenλ1 andλ0, the larger the number of
tokens removed per failure, which results in faster detection. However, raisingλ1 will lead to a higher SST. As such,
there is a trade-off between SST and detection speed for CUSUM asλ1 varies.

6.2 Sustained Scanning Threshold Analysis

The Sustained Scanning Threshold (SST) is an important metric of success for a scan detector. Figure 2(a) shows the
expected SST for all the schemes discussed thus far with varying background traffic rate,µ. In this plot, we use a
non-scan success probabilitypn = 70% and a token reward rate ofa = 1 for both static-rate and FB. For CUSUM,
we plotted two configuration settings: in one we estimate thescan failure rateλ1 using the suboptimal method of
Equation 22. In the other setting,λ1 is set to 3. For both configurations the expected background failure rate,λ0, is set
to match the background failure rate. These settings are to demonstrate the tradeoff between SST and detection time
for the CUSUM detector.
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Figure 2: Sustained Scanning Thresholds and Escaped Counts

As shown in Figure 2, compared to the other schemes, both SB and FB render a substantially lower Sustained
Scanning Threshold (SST) for a wide range of background traffic rates. The CUSUM suboptimal configuration yielded
a near zero SST. However, it’s correspondingEscaped Count in Figure 2(b) is substantially larger than the others;
in fact, theEscaped Count for the suboptimal CUSUM was magnitudes larger, and is off the scale and therefore
not visible in Figure 2(b). It is important to note that with the scan probability of success,ps, used in calculation the
basic reproduction number for the infected hosts would be slightly less than one. On average another host would not
be infected. However, this long delay still permits a large number of scans to escape the network before the host is
detected. As such, the CUSUM suboptimal detector is not a good choice in practice. The other CUSUM detector,
whenλ1 is 3, a value larger than the suboptimal calculation, fared better in that itsEscaped Count is comparable
to the other schemes once the scan rate surpasses the SST. With a larger difference betweenλ0 andλ1 the number of
tokens consumed per failure,γ, is larger and less scans are permitted before detection.

RHT yields a SST that is low for hosts whose traffic rates are below 0.5 connections/second, but goes up signifi-
cantly when the background traffic rate increases. In our experience, normal desktop machines that run web and email
clients tend to initiate connections in the neighborhood of0.5 connections/second. These hosts are well suited for SB,
FB, or RHT. For more active hosts whose traffic rates are over 0.5 connections/second, SB and FB are a better choice
if slow scanners are concerned. Note that SB has consistently low SSTs across the different values ofµ; as such, SB
is better suited for hosts with diverse traffic patterns.

Assuming a constant background success probability,pn, and a constant scan success probability,ps, the static rate
and FB schemes give rise to an expected SST value that is inversely proportional to the background traffic rate. This
is because as the background traffic rate grows, the background failure rate also increases, which leaves less tokens
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for scan traffic, thereby reducing the SST. For the CUSUM detector with a constantλ1, as the background failure rate,
λ0, increases, the number of tokens rewarded first increases and then decreases as the difference between the twoλs
change. For RHT the expected value of SST grows linearly withthe rate of the background traffic (as indicated by
Equation 20). For SB, this increase is slower and it tapers off as the background traffic rate hits 1 connection/second.
This disparity of behavior between RHT and SB is important. For RHT, it would require a significant amount of time
to detect a scanner on a host with a near 100% success rate history ( to drive down the ratio of success to failure). With
SB, however, the way success indices are calculated allows consecutive failures to quickly reduce the token balance
towards detection.

Figure 2(b) shows the expectedEscaped Count for each scheme with varying scan rates. For this plot, we
assume a constant background traffic rate of 1/3 connection/second and success probability of 70%. For each scheme,
when the scan rate surpasses its SST (where theEscaped Count approaches infinity), the number of permitted scans
decreases exponentially. Note that SB and FB exhibit a faster decrease inEscaped Count than the other schemes.
This fact is significant; one of the fundamental differencesbetween our schemes and the others is that the former (both
SB and FB) has a non-linear relationship between the traffic failure rate and the token balance; In SB and FB, the
token balance decreases near exponentially to the increaseof the connection failure rate when the failure rate is near
the SSTs. As such, these schemes provide faster detection than others.

A graphical depiction of the epidemic growth of worms at the cusp of SST is shown in Figure 3(a). This plot
includes the estimated, “untampered” growth of Blaster as abaseline comparison to the epidemic growth when scan
detectors are in place. The points in this graph are generated using a constantµ of 0.4 connection/second,pn of 70%,
and the scheme configurations mentioned in the individual sections. As shown, compared with other detectors, SB and
FB can deter worm growth significantly—reaching 15% of the susceptible population with SB or FB requires more
than twice the amount of time as with CUSUM or the static rate detector.
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Figure 3: Permitted Worm Spread and Effect of Cover Traffic onthe Schemes

Gaming of SST. A scanner can game RHT and SB by adding successful cover traffic. To be effective, the cover
traffic needs to have a high success probability. Figure 3(b)plots the SSTs for SB and RHT versus the rate of cover
traffic. For simplicity, we assume that all non-scan traffic is cover traffic that succeeds with 100% probability (i.e.,
pn=1). As shown, SB’s SST increases at a much slower rate that that of RHT’s.

According to Equation 20, RHT’s SST increases linearly to the cover traffic rate,µ, assumingpn andps are con-
stants. In contrast, SB’s SST is upperbounded byω

1−ps

whereω is the max to-be-tolerated failure rate (see Equation 13
whenpn is 1). As a result, the growth rate of SST for RHT is faster thanthat of SB. We note that it is possible to
change the configuration of RHT such that its SST would increase at a lesser rate than that is plotted in Figure 3(b),
but we reiterate that this will not change the fundamentallylinear relationship between its SST to the traffic rate.
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6.3 Error Rates

In this section, we present an empirical analysis of the various detectors, using both real and simulated network traffic.

Trace Data. The real traffic traces used in this study are collected at theboundary of a 1200-host network,
primarily used for academic computing purposes. The network serves approximately 1500 users and has a variety of
operating systems and applications. The traces include theheaders of all inbound and outbound TCP packets entering
and exiting the network. During the course of tracing, we recordedBlaster [14] andWelchia [15], both scanning
worms that infected local hosts in our network.

For each attack recorded, we conducted post-mortem analysis to identify the set of infected hosts within the
network. We further identified port-135 TCPSYNs as outbound blaster or welchia scans from these infected hosts.
It is important to note that hosts within our network were exclusively Windows clients that rarely (if ever) made any
outbound port-135 connections. Once infected, however, the hosts made tens of thousands of port-135 connections.
As such, the task of identifying Blaster and Welchia scans isfairly straightforward.

We use four traffic traces in this study. Trace I is a 25-day outbound trace, from August 6th to August 30th, 2003.
This period contains the onset of Blaster infection in our network, which occurred on August 11th. We identified 103
Blaster infected hosts internally. We performed due-deligence to the best of our ability to ensure that in Trace I there
is no outbound scans originated from our network other than those due to Blaster. Trace II is a 10-day outbound trace,
from August 9th to the 18th, 2005, which contains no internalworm infection in so far as we can tell. We use Trace II
to study false positives.

Traces III and IV are synthetic traffic that include simulated slow scans and traffic bursts. In both traces there are
1100 hosts, 100 of which perform scans at a rate of 1 every two seconds. 75% of the hosts generate background traffic
that succeeds 70% of the time and follows a Poisson distribution with a rate of 0.1. The other 25% generate traffic
that succeeds with a 30% probability and follows a Poisson distribution with a mean of 0.05. This mix of traffic is
a simplification of the real traffic seen in our network; the majority of hosts make mostly successful connections at a
higher rate while the other hosts tend to generate a slow stream of failures when contacting new destinations (recall we
only account for first-contact failures). In both Trace III and IV the more active hosts (75% of hosts) have five-second
traffic bursts. These bursts occur uniformly with 1% probability for each interval (the same interval for failure rate
estimation) Trace III has relatively slow bursts at the rateof 0.5 connections/second while Trace IV has faster bursts
at the rate of 2 connections/second to simulate traffic during business hours.

Simulation Results. The implementation of the various algorithms, in their token-based form, is straightfor-
ward; each host is allocatedn tokens originally and our implementation keeps track of first-contact failures using a
Previously-Contacted-History, much like what is done in RHT [6]. For the static-rate detector, we set the token reward
rate,a, to 1 token per second, and each first-contact failure consumes a token. For SB,a is set based on the success
index (see Table 2). For FB, we estimate the failure rate of the host periodically and use the value in Table 4 to deter-
mine the token penalties for each first-contact failure henceforth. For RHT and CUSUM, several configurations were
simulated. In particular, one of the major sources of false positives for RHT is the somewhat archaicident protocol.
Sinceident is rarely used and the servers runningident can be easily whitelisted, we present two sets of results
for RHT, one includesident servers and the other has them white-listed.

The CUSUM detector requires the detector to estimate the non-scan failure rate,λ0, and the scan failure rate,λ1.
In our experiments, we setλ0, to match the permitted failure rate/token reward rate of the static-rate scheme. We used
two values for the scan failure rate,λ1. The first one was 10 failures/second to match the observed Blaster failure
rate4. This approximates the optimal situation when the worm scanning rate was known. The second one is using the
“suboptimal” estimate (see Equation 22) when the scan rate is unknown. We used a scan success probability,ps, of
0.02% for the suboptimal estimate.

Table 5 shows the results of our experiments on Trace I and II.We remind the readers that the false negative rate
is defined as the portion of scanners that elude detection, while the false positive rate is the portion of legitimate hosts
incorrectly labeled as scanners. The meanEscaped Count is the average number of scans from infected hosts before
the scanner is detected (averaged over all hosts infected with Blaster). The last column of the table lists the number
of hosts running P2P clients identified as scanners by each detector. Peer-to-peer applications tend to fall outside the

4Our traces of Blaster and Welchia indicate that infected hosts generated failures at approximately 10 scans per second,with a success probability
of 0.02%.
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Detection Parameter False Negative Mean Escaped False Positive P2P Clients
Scheme Settings Rate Count Rate Detected
Trace I I I II I II

Static Rate a = 1 0% 13.09 0.35% 0.71% 17 5
RHT normal 0% 10.194 27.216% 4.876% 36 6

no Ident 0% 10.194 2.216% 4.876% 36 6
CUSUM λ1 = 10 (near optimal) 0% 13.356 0.62% 0.17% 9 5
λ0 = 1 suboptimalλ1 26.2% 8366.578 0% 0% 0 0

SB σ = 0.01, ω = 4 0% 10.35 0.798% 0.355% 32 7
FB a = 1, β = 5 0% 10.12 0.62% 1.24% 32 9

x1 = 4, x2 = 2

Table 5: Experimental Results for Traces I & II

Detection Parameter False Positive Mean Escaped
Scheme Settings Rate Count
Trace III IV III IV

Static Rate a = 0.4 0% 48.5% 34.0 32.3
RHT no ident 21.17% 23.1% 8.98 8.93

CUSUM λ0 = 0.4, λ1 = 0.5 0% 0% 423 375.6
optimal 1.5% 71.7% 8.21 8.07

SB σ = 0.01, ω = 4 1.4% 8.8% 13.53 13.39
FB a = 1, β = 5 0.2% 29.6% 15.11 14.67

x1 = 4, x2 = 2

Table 6: Simulation Results for Traces III & IV with an inserted Scanning Worm (rs = 0.5)

critical network operation, and are therefore often considered non-desirable activities. For this reason, we single out
P2P hosts as a separate category.

As the results show, all but the “suboptimal” CUSUM were ableto detect all the scanners. Most schemes rendered
a similar detection efficiency, as indicated by the meanEscaped Count . This is primarily due to the fact that Blaster
is a fast scanning worm whose behavior is clearly different from normal traffic. In fact, in our experiments the Blaster
traffic managed to deplete all the tokens before a single new token was awarded. For this reason, the Blaster trace is not
ideal for studying detection efficiency. Rather, the experiments with Trace III and IV which include slower scanners
have more descriptive results.

Note that CUSUM performs well when their estimated failure ratesλ0 andλ1 are close to the real failure rates
but otherwise gives poor results. CUSUM’s “suboptimal” detector missed over 25% of the scanners in Trace I. The
suboptimal estimation method, shown in Equation 22, renders aλ1 that is far from the real scan rate of Blaster. This
also contributed to the exceptionally largeEscaped Count . The CUSUM work is of theoretical interest because it
shows that there exist an optimal detector if scan and trafficrates are known. In practice, however, these assumptions
often do not hold.

Overall SB and FB performed well with Trace I and II. In addition, they yielded a lower false positive rate than
RHT (even when theident hosts are white-listed). This is because RHT only takes intoaccount the accumulative
number of failures rather than the failure rate. Consequently, RHT can’t handle legitimate hosts that experience
persistent but slow failures. In contrast, SB and FB consider both failure numbers and rates.

Table 6 shows the simulation results for Trace III and IV. Recall that these two traces include the simulated slow
scanners that scan at a rate of 1 per every 2 seconds. To ensurethat the scan rate is above the Sustained Scanning
Thresholds (SSTs)—so that scans can be detected—a few parameters have to be tweaked. The new parameter settings
are listed in Table 6. In particular, the token reward rate for static and suboptimal CUSUM is changed so that they
render approximately the same SST’s as the other schemes. Wealso included an optimal configuration of CUSUM
where the background failure rate isµ(1 − pn) and the mean scan failure rate isrs(1 − ps).
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For this set of simulations, all scanners are detected so we skip the false negative column. Trace III and IV include
traffic bursts the purpose of which is to show the impact of background traffic perturbation . Recall that Trace III has
near constant traffic with slower bursts, while Trace IV includes larger bursts which are representative of work day
network traffic.

As shown, the static-rate scheme performed poorly when the background traffic becomes bursty—yielding a
48.5% false positive rate for the burstier traffic. This is consistent with our assessment in Section 5.3 where a sensitivity
analysis showed that static-rate schemes are more sensitive to traffic perturbation. In addition, the optimal CUSUM
detector also fared badly with Trace IV; it detected many bursty yet benign hosts (71.7% false positive rate). This
is because the CUSUM detector relies on the assumption that the failure rates (both background and scan) remain
constant, and therefore cannot accommodate changes due to traffic perturbations.

SB and FB performed well in the presence of bursty traffic. SB in particular maintained a low false positive
rate and a low escaped count throughout. FB showed a larger increase in the false positive rate when traffic becomes
burstier, but is still on par with RHT. When traffic is predictable (Trace III in Table 6), SB and FB’s detection speed
is only slightly worse than optimal (as indicated by the optimal CUSUM detector), and their false positive rates are
extremely low. These results are consistent with the analytical models in Section 5.3.

7 Summary

In this paper, we presented two adaptive scan detectors, SB and FB, for the detection of local scanners. In the token-
based framework, the success based scheme, SB, regulates the token reward rate in an effort to differentiate legitimate
and malicious behaviors. FB, on the other hand, adjusts the token penalty based on the failure behavior of the host.

We demonstrate that SB and FB can quickly detect slow scanners without incurring notably more detection errors
than other detectors. More importantly, we show that SB and FB are less susceptible to intelligent gaming and robust
against traffic variations, which is particularly significant when slow scanners are concerned. We show that previously
proposed scan detection schemes failed to achieve similar goals; the static rate scheme and the CUSUM detector have
low error rates, but can only guarantee detection of relatively fast scanners. RHT can detect slow scanners, but is
vulnerable to traffic manipulation.

The interesting properties of the adaptive detectors arisefrom their non-linear nature. This is in contrast to
the previously proposed, largely linear detectors. One direct consequence of the non-linearity is that it permits the
detector to correct its course continuously with respect tothe detection hypothesis, in ways that have not been explored
previously. Traditionally, detectors label a host scannerif the rate or the number of suspicious events exceeds a pre-
determined threshold. The adaptive algorithms, in contrast, allows the detector to change its state based on both
long-term and short-term statistics. This gives rise to faster detection and decreased sensitivity to short-term traffic
perturbation. Another interesting property is the susceptibility to traffic manipulation. Although SB utilizes connection
success statistics in ways that are similar to RHT, the growth of its SST is however sub-linear and consequently less
susceptible to intelligent gaming.

The schemes discussed thus far utilize exclusively connection failure patterns to differentiate scanners from le-
gitimate hosts. This is a reasonable assumption for scanning worms. Hit-list and topological worms, however, have
different traffic patterns. Modern IDSes that acknowledgesTCP SYNs regardless if the destination address is allo-
cated can also hamper the effectiveness of failure-based detectors. To detect spreading malware that do not necessarily
embody similar failure patterns, a different class of defense would be needed. This would necessitate the use of a
different type of suspicious event, would not however, in itself limit the efficacy of the adaptive schemes presented
here.
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A Success Based Reward Rate Calculation

The index-to-reward-ratemapping for the Success Based scheme was designed such that a fixed error rate was achieved
for a given token balance, success index, and connection rate.

If we assume that the background failures of the host follow aPoisson distribution with a rate parameterµ(1−pn),
Equation 26 provides the approximate calculation of the false positive probability,ǫ (this equation gives the probability
that the token balance decreases forn connsecutive intervals, wheren is the initial and maximum token balance.)

(

1− e−µ(1−pn)/a

(

1 +
µ(1 − pn)

a

))n

= ǫ (26)

We make a further assumption that the connection rate of the background traffic for a legitimate host follows an
exponential growth curve with respect to its success index such thatµ = c1e

c2ρ, wherec1 andc2 are constants (this
assumption stipulates that any host whose connection rate exhibits a faster than exponential growth relative to its
success index is likely a scanner). Using the lower and upperbound of the token reward rate, we can calculate the
expression ofµ with respect to the success indexρ. We can then use linear approximation to solve Equation 26 for a
in terms ofρ, σ, andω, the solution is,

a ≈
σ(1 − ρ)e(10 ln(ω/σ)ρ)/9

ǫ1/n − 0.146
(27)
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This provides the formula in Table 2.
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