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Abstract

Network attacks often employ scanning to locate vulnerlbkts and services. Unimpeded scanning can lead to the
subversion of an entire vulnerable population in a mattenioiutes. Fast and accurate detection of local scanners
is key to contain a spreading epidemic in its early stagestixj scan detection schemes can detect fast scanners
whose behavior can be clearly delineated from that of Iegite traffic. Detecting slow scanners, however, is more
difficult. The difficulty arises partially from the fact thtttese detection schemes use statically determined detecti
criteria, and as a result do not respond well to traffic pestions. In this paper, we present two adaptive scan
detection schemeSuccess Based (SB) andFailure Based (FB), both of which change detection criteria dynamically
based on traffic statistics. FB is designed for fast detediud is particularly well suited for controlled computing
environments with well-understood traffic characteristi&B is more versatile and able to perform well in a wide
range of traffic scenarios. We evaluate the proposed schamadgically as well as empirically using real traffic and
attack traces. Our results show that against fast scarthergdaptive schemes are able to render similar detection
precision as the traditional static schemes. For slow sranhowever, the adaptive schemes are much more effective,
both in terms of detection precision and speed. Specifidadiyy SB and FB have non-linear properties not present in
other schemes. These properties permit a Idsustained Scanning Threshold and a robustness against perturbations
in the background traffic.
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1 Introduction

Modern network attacks commonly employ port scans to localieerable machines and services. A large amount of
scan activity is therefore a strong indicator of malicioesannaissance activities, often to be followed by explmits
infections. As such, an important piece in a network defém$ast and accurate detection of local scanners. With
few exceptions, existing scan detectors are exclusivelgtwie callstatic rate schemes. Such a scheme relies on

a statically determined arrival rate of suspicious evemtddlineate the behaviors of legitimate hosts from those of
scanners. For instance, NSM [1] permits a host to contactxamuan number of distinct addresses in a given time
window. Any host that exceeds this rate is flagged as a patest@nner. These schemes work well for fast scanners
whose behaviors are distinctively different from legitimaosts. Detecting slow scanners, however, is more difficul
because slow scans tend to blend in with the backgroundctréffffou set the rate too low, false positives can occur
whilst a large rate will permit a liberal amount of scans.

In this paper, we investigatmlaptive rate schemes concerning the detection of slow scanners in tisemee of
background traffic. We show that by adaptively changing #reitted rate of suspicious events, we achieve interesting
and powerful “non-linear” properties that are not presarthie static schemes, and that these properties lead to more
effective and robust detection against various forms ofisitey malware. We introduce two adaptive schemes in this
paper, one changes the permitted rate (of suspicious g\egsd on the host’s connection success statistics (we call
it SB for success based) and the other one based on the failustictafwe call this oné&B). We show that both SB
and FB are able to catch slow scanners while remaining justfestive against fast scanners as static-rate schemes.

Throughout this paper, we uset@ken-based framework to describe and analyze each scan detection scheme.
More specifically, in this framework a scan detector allesaa number of tokens to each host in the beginning.
Each ensued suspicious event constitutes the removal of somber of tokens, and tokens are rewarded back in
an algorithm-specific fashion. The net rate at which tokemesrawarded determines the permitted arrival rate of



suspicious events—a host that exceeds this rate for somgthlefitime is labeled as a scanner. In a static-rate scheme,
the permitted arrival rate of suspicious events is constargn adaptive scheme, this rate is dynamically determined
based on traffic charactersitics.

It is easily seen how some of the existing scan detectorstéitthis framework. For instance, we can use the
token balance to represent the state of the random walk in TRVé step in the walk toward the scanner hypothesis
represents the consumption of tokens, and a step in the ibpmlrection constitutes the accumulation of tokens.
Similarly, an NSM scheme that enforces 15 distinct addsegee minute can be translated into a token-based scheme
that consumes four tokens per distinct-destination coatad accrues tokens at a rate of 1 per second. The use of this
framework simplifies the representation of specific schesmsmetimes a family of algorithms can be described with
a single token-based represenation (e.g., TRW and RHT)sttacts away superfulous details and permits the direct
comparison of core design choices.

To contrast and compare the adaptive schemes with otheif@ows on these aspects of detection performance;
error rates, detection speed, and Sustained Scanning Threshold(SST). Error rates are specifically false positive and
false negative rates. We use the meBiecaped Count to measure detection speekcaped Count is defined as
the number of scans permitted from a scanning host befoeetilmt occurs. The Sustained Scanning Threshold (SST)
is the maximum failure rate a host can maintain without béabgled as a scanerSST is an especially important
metric concerning slow scanners—the lower the SST, the efteetive it is against slow scanners.

To investigate these aspects, we tested each scheme dganstal and synthetic network and scan traces. Our
analysis shows that both SB and FB give rise to a lower Swesléitanning Threshold, while maintaining comparable
false positive levels to the other detectors. More spediificaB and FB are equally as effective against fast scanners
as the static-rate schemes, but are substantially moreasiosagtealth scanners, both in terms of precision and speed
A sensitivity analysis shows that, even though the adaplitectors do not strictly render better detection prexijsio
it is robust, in the sense that their performances are oightt} affected by perturbations in the background traffic.

The remainder of the paper is organized as follows. Sectidis@isses related work. In Section 3, we describe
the token-based framework. Section 4 covers the statishbtd scheme we use as a baseline comparison case. We
present the adaptive scan detection schemes in Section ravide an analytical and empirical comparison of the
static vs. adaptive schemes in Section 6. We conclude indbett

2 Related Work

Many scan detection schemes have been proposed in théuierahe earlier ones, such as NSM [1], Snort [3], and
Bro [4], are all static rate schemes which simply count thmber of distinct destinations or failures of each host
within a given window of time, and label the host as a scanineipre-determined rate is exceeded. These schemes
tend to adopt generous permitted rates for fear of falsetipesi As a result, they are not as effective when slow
scanners are concerned.

Jung et al. [5] developed a scheme that uses a thresholdmametk (TRW) to detect scanners. In this scheme, a
connection success results in a step in one direction, walidaure is a step in the opposite direction. A pre-deteadin
distance traveled in a direction labels the host either aaarer or a safe host. Reverse Hypothesis Testing (RHT) [6]
and the Approximate TRW [2] are variations of TRW. Ganeshlef7d developed another scheme where optimal
detection is possible if traffic characteristics are knolmrthis scheme, the time between failures dictates the numbe
of tokens removed or rewarded. These algorithms are clésestr schemes and also belong in the class of adaptive
algorithms. We present an analytic treatment of worm dietedh a generic token based framework and show that
our adaptive algorithms are less susceptible to inteltigaming, more robust to background perturbations, and more
effective against slow scanning worms.

Other defenses against worms include automatic containemehsignature generation. Rate limiting such as
Williamson’s [8], Chen et al's [9], and Wong et al.'s DNS-kdsscheme [10] are examples of containment schemes.
This class of mechanisms focuses on containing potenaakmalous traffic and has different goals and constraints
than detection schemes. Signature generation technigabksas Earlybird [11], Autograph [12], and Polygraph [13]
have great potential but thus far proved to be difficult aglaa@ro-day worms, in particular against slow spreading

1This concept was originally defined by Weaver et al. in [2].



Symbol Meaning

a token reward rate

~ token consumed per failure

n initial token balance (also maximum)
n(t) background traffic (non-scan) rate at time

1 expected background traffic rate|)])

T rate of scan connections

Dn background traffic success probability
Ds scan traffic success probability

Table 1: Token Equation Parameters

worms.

3 A Token Based Framework

To facilitate analysis, throughout this paper we use a tddased framework to represent the different detection

schemes. In this framework, each host has a bank of tokerkeen$aare removed when suspicious events happen
(e.g., connection failures), and accrued either at a peeied rate or in the absence of suspicious events. As such,
the consumption of tokens models the occurrence of sug@@wvents, and an increase in the token balance is indica-
tive of benign/good behavior. The scan detector regulétestbtraction and addition of tokens and reports that the
host is a scanner if the token balance reaches a pre-detatiaivel.

We map the logic of each detection scheme into this framewkarkiormalize the discussion, token consumption
occurs only when outbound connectionsZaifxactly how many tokens are removed and the conditionsrumiieh
tokens are rewarded are algorithm-specific. As we discuss ia the paper, the ways in which each algorithm
regulates these two parameters are often the main souregfofqmance differences.

In this study, we represent the connection rate of legitntedffic with a random variable;, that follows a
probability density functionf, (-) with an expected value gi. We assume that both legitimate and scan traffic
exhibit a consistent success probability over time. Wehferassume that scans are emitted at a constant rate. These
assumptions permit us to represent the scan traffic using@lesiscan rate;,, and a scan success probability, We
assume that the success probability of normal traffig,isTable 1 summarizes the different parameters used in the
paper. Equation 1 gives the token balance of a host atfin@ssuming the token reward ratge and tokens consumed
per failure,y, are both constant.

T
Tokens(T) = min(n,n + aT — v(rs(1 — ps) — /0 n(t)(1 — p,)dt)) Q)

Equation 2 shows the condition for no false positive at tifp¢hat is, the tokens consumed withihmust be less
than the tokens rewarded.

T
'y/ n(t)(1 —pp)dt < n+aT (2)
0

Equation 3 shows the detection condition—only when the ali/&ilure rate (both scan and non-scan) is greater
than the token reward rate, will the scanner be detectecer@ibe a false negative can occur.

T
r(1— po)T + / D(t)(1 - pa)dt > aT/~ 3)

The maximum scan rate that a scanner can sustain withoug detected is th&ustained Scanning Threshold,

2The exact conditions for which a connection is consideradel” can vary for each algorithm



or SST [2]. The SST of a detector is an important quantity becauskeritotes the optimal worm scan rate against
the detector. Clearly, a detection mechanism that givestois low SST while maintaining acceptable error rates is
desirable. The expected value for SST is shown in Equation 4.

— u(l =
1- Ps
As previously stated, another metric we us&€ssaped_Count, which measures the timeliness of the detector.
Escaped_ Count is defined as the number of scans permitted before deteckon.instance, a scanner that suc-
cessfully evades detection (a false negative) would haviefarite Escaped_Count. Equation 5 gives the expected

Escaped_Count.
E[Tokens]

Y(rs(l —ps) + (1 —pa)) — 2

Given theEscaped Count, we can calculate the “basic reproduction number”; the ayemumber of hosts
infected by an instance of the spreading malware beforecti@beoccurs. If the basic reproduction number of an
infectious spread is greater than one, the infection whi@ee an exponential growth. Therefore, the condition unde
which an epidemic can be contained is,

E|Escaped_Count| ~

*Ts (5)

E[Tokens]
Y —pa) i —pa) —a (6)

Setting Equation 6 equal to one and solvingfggives another important quantity, tieitical Scan Threshold,
or CST, such that,

E[Escaped _Count] - ps = rsps

a/y — p(1 = pn)
BICST) = 1= ps(E[Tokens]/y+ 1) 0
CST was originally defined by Ganesh et al. [7]; it is the expémaximum scan rate for which the basic reproduction
number is one. Scans emitted at a rate higher than the CSbeviletected and stopped before infecting one other
host, hence successfully contained. WheandE[T okens]/~ are relatively small, the Sustained Scanning Threshold
(SST) approximately equals the Critical Scanning Thre$t@ET). Therefore in this work we focus on SST and leave
the analysis of CST for future work.

4 Static Rate Schemes

In this section we explore a generic token-based reprets@mfar static rate schemes. A static rate detector stipala
that the permitted rate of suspicious events remains contsteoughout time. In a token-based form, this translates
to as follows—each connection failure results in the rerhofia constant number of tokens, and tokens are accrued
at a constant rate, independent of the state of the syst@mumber of scan detection schemes fall in this category,
including NSM [1], Snort [3], Bro [4] and Chen’s [9].

To give the best performance, our token-based formulatipnlates that tokens are consumed only when first-
contact failures occur. A first-contact failure is the vemrgtficonnection to a particular destination that resulted in
a failure [6]. A connection is considerddiled when the outgoing SYN elicits a TCRST or a timeout without a
SYN_ACK. The concept of first contact was first used in TRW [5]. Tdedmine whether a connection is a first-
contact connection, the host must maintain statistics @fipusly contacted addresses. While we do not specify how
these statistics should be maintained at the host level tipelate that there exist many efficient mechanisms (e.g,
hash tables, bloom filters) which will allow a host to storel émok up a list of previously seen destination addresses
without incurring a high performance overhead. Prior risdi@, 10] suggest that a list of 64 or more addresses render
sufficiently accurate results.

The algorithm works as follows: Every time the host sendswagaing SYN packet, the destination IP is checked
against the list of maintained addresses. If the destin#figs in the list, the SYN packet is permitted through withou
further ado. Otherwise the connection is monitored; if thereection generates a failure, a token is removed from the

SThere is usually a maximum token balance.



host’s token pool and the destination IP is added to the fisbatacted addresses. Detection occurs when the host
exhausts its token pool.

If we model the timing of packets transmitted by the backgrbmaffic as a Poisson process with rate parameter
then the arrival of non-scan failures is also a Poisson powith rate parametes(1 — p,,) (notep,, is the background
traffic success probability). The probability for false e for a period of timer is therefore

e P (1~ o))"

Prp =34 x] S.t. k>mnog+ar (8)
whereny is the token balance at the beginning of the intervalThe false negative probability is,
1
— e—r(1-pPn)T (1 _ =
PFN € ( +M(1 pn)T) S.t. T a—rs(l _ps) (9)

If T < 0, the scan will consume all the tokens independent of thedrvackd traffic andPrn = 0.

The expected values of the SST axtaped Count for the static rate scheme can be found using Equations 4
and 5 respectively. To put things in perspective, assummalatraffic success probability, = 0.7, scan success
probabilityps, = 0.02%, and the expected rate of non-scan traffi¢ 0.4 (4 connections in 10 seconds). A token
reward rate: = 1, which translates to one first-contact failure per secormilgigive rise to an expected value of SST
asE[SSTstatic] = 0.8802. This means that any worm that performs at least 9 scans &0esgconds will be detected.

In the remainder of the paper we will use this static rate swhas a baseline for comparison and contrast it with
the adaptive schemes.

5 Adaptive Rate Scan Detection

The main problem with the static rate scheme is that the pdniate of suspicious events, is statically determined,

which leaves little freedom for legitimate traffic pertutioa. If one sets the token reward rate (hence the detection
threshold) too low, it will result in false positives whilehégh rate permits a liberal amount of scans to escape the
network. In this section, we investigate adaptive rate s In the parlance of the token-based framework, an
adaptive rate detector gives rise to a dynamically changiteyof permitted suspicious events. This is in contrast to

the constant rate in a static rate scheme. As we shall seérldhes section, making this rate dynamic in the manners

detailed below has significant consequences to scan detecti

We propose two adaptive scan detect@s;cess Based (SB) and Failure Based (FB). SB changes the token
reward rate based on the connection success charactedstie host, while FB changes the token penalhased
on the failure statistics. Both give rise to a dynamicallgieing permitted failure rate. We analyze and contrast them
with the static rate scheme described in Section 4 and oyfmerdic schemes such as RHT [6] and the recent CUSUM
based detector by Ganesh et al.[7] in Section 6.

5.1 Success Based (SB)

The fundamental observation behind SB is that a legitimat fone that is not a scanner) will exhibit a greater
percentage of connection successes than a scanning hosuci\sSB attempts to adjust the token reward rate based
on the connection success statistics of the host. The leigdl-btrategy of SB is simple: more successful hosts are
rewarded with a larger token reward rate. This approactifisrdnt from RHT [6] and the modified CUSUM detector
by Ganesh et al. [7]; RHT uses only the ratio of success tariilwhile the CUSUM detector uses only the rate of
failures. SB attempts to use both, and as a result, SB gisedaia better overall performance than both RHT and
CUSUM.

To keep track of success statistics, we use the conceptadss index. The success index of a host after itie
first-contact connection, we callt, is defined as follows,

pi = connectionResult; - o+ p;—1(1 — «) (10)

« is a smoothing factor, which we set to 0.4, is initialized as the percentage of successful connectiotign an
initialization period (we use ten connections for the aliiation period). Note that Equation 10 renders a weighted



Host Success Indexy) Token Reward Rate]
0<p<0.1 a = Desired SSTd)
0.(1 _ p)e(IOIH(w a)p)/9
0.1< 0.9 ~
=p< “ l/n — 0.146
09<p<1 a = Maximum-to-be-tolerated failure rate)

Table 2: Success Index to Token Reward Rate Mapping forcS@eisired false positive rate)

index that slightly favors recent connection results, Wwh&more sensitive to short-term traffic pattern changes tha
a straightforward success ratio. However, the succesx iodleulation is also robust against short traffic bursts,
assuming reasonable values for the smoothing faetdtypically 0.05 to 0.2). This robustness provides a more
accurate overall success index, and prevents false passftiv hosts that experience failure bursts.

To put things in perspective, a normal desktop client (wibwurfing and email activities) typically has a success
index greater than 0.6. We observed, however, hosts indaiMe2P applications tend to exhibit a wide range of values
for success index, sometimes as low as 0.2. The scan traficded in our traces has a success index less than 0.1.

Once we have the success index, the token reward tigtdetermined in a fashion detailed in Table 2. As shown,
hosts whose success indices are below 0.1 receive the ltokest reward rate, which is set to be the desired SST.
For instanceqg = 0.01 (1 token every 100 seconds) to match an SST of 1 scan per 1600d&cSimilarly, we set the
largest token reward rate to the maximum, to-be-toleraggitiinate failure rate, and allocate this rate to hosts whos
success indices are above 0.9. For the mid-range succésssnthe token reward rate is determined by the formula
shown in Table 2 whereis the desired false positive rate, amés the maximum token balance.

Table 2 reflects SB’s design philosophy that benign hostsesrarded for good behavior while the failure behavior
of potentially malicious hosts are progressively restdctlt is intuitive that for hosts whose success indices @re |
(and therefore likely scanners), its token reward rate kshapproximate the Sustained Scanning Threshold. Similarl
when a host’s success index is above 0.9 (and thereforg liketla scanner), its token reward rate reflects the largest,
to-be-tolerated failure rate for the host, since anythawgdr could result in false positives. The mid-range ind®ex-t
reward-rate mapping in Table 2 was selected with the goaladfitaining a low sustained scanning threshold and low
false positives. Appendix A shows the formulation of theatpn in Table 2.

Table 2 provides a general guideline for setting token rdwates based on the success index. In practice,
however, to avoid adjusting the token reward rate for evittg thange in the success index, one can set incremental
values for the token reward rate based on the relationslidetjue laid out in Table 2. An example is shown in Table 3
(the desired SST is 0.01, the max tolerated failure rateQisathd the desired false positive rate is 2%).

Excluding the calculation of the success index and the dym#oken reward rate, SB operates exactly the same
as the static rate scheme; one token is removed for eacltdinssct failure and only first-contact connections are
considered in the calculation of the token reward rate.

Again, if we model the background traffic as a Poisson proaéhsrate ., the probability for false positive with
SB is as follows,
e P71 — po)7)*
k!
where f(p) represents the mapping betweeand the token reward rate as defined by Table 2. The falseinegat
probability for SB is,

Prp =% s.t. k>ng+ f(p)T (12)

Ppy = e #0PIOT(14 y(1—p,)T) st T = flp) — 7“1(1 —Ds) (12)

The Sustained Scan Threshold with SB is as follows.

f(p) — (1 —pn)
1- Ds

If the background traffic has a rate parameten.of= 4/10, probability of succesg,, = 0.7, and scan success

probabilityp, = 0.02%, the expected SST is 0.3 scans per second.

E[SSTsp] = (13)



Host Success Index Token Reward Rate Host Success Index Token Reward Rate
0<p<01 0.01 05<p<0.6 0.75
0.1<p<0.2 0.10 06<p<0.7 1.0
02<p<0.3 0.25 0.7<p<0.8 2.0
0.3<p<04 0.40 0.8<p<0.9 3.0
04<p<05 0.50 09<p<10 4.0

Table 3: Example Reward Rates for SB

The expected number of scans permitted before detectiafadlaws.

E|Tok
FE[Escaped_Countgy| ~ [Tokens] “Ts (14)

rs(1 —ps) + 1(1 — pa) — £(p)
Note that a scanner can purposely inflatey generating successful first-contact connections. Thigtive host
will receive a greater token reward rate, thereby achieaiggeater SST. Unlike RHT, however, the Sustained Scanning
Threshold of SB increases at a substantially lower rate tithrate of successful connections. A detailed comparison
and analysis of SB vs. other schemes appears in Section 6.

5.2 FailureBased (FB)

Instead of changing the token reward rate, FB adjusts thebeuwf tokens consumed for each failure, based on the
host’s failure behavior. FB is an alternative way to achigyeamic rates and has a decidedly different focus than SB;
by manipulating;y, the number of tokens removed per failure, FB is more rdstei@and achieves faster detection of
scanners. This, however, necessitates an increase irpfad#tézes, but the success test here is a lower false pesitiv
rate than that of a static-rate scheme with a similar Susta8tanning Threshold (SST).

At a high level, FB’s strategy is simple: FB heightens thestokenalty—number of tokens removed per failure—
as the host’s failure rate increases and reduces it as tlhieefaate decreases. The token reward rategemains
constant in FB. We will detail how is determined below. To determine the token penalty, FBopérally estimates
the host's failure rate as follows: after each interyahe failure rateg;, is calculated as

¢; = current_failure_rate - @ + ¢;—1 - (1 — @) (15)

wherecurrent_failure_rate is the average failure rate for the current perigdahdca is the smoothing factor. We use
ana of 0.25 here. ¢ is the average failure rate for the first interval. We noté thaeduce the computation overhead,
one can use a sampling method to estintateent_failure_rate. We consider sampling an optimization and do not
address this issue further in the paper.

In addition to the failure rate, FB uses a number of other tjties. They are: a), the constant token reward rate,
is set to the maximum, to-be-tolerated failure raten@y reflect a legitimate bursty failure rate),£)the maximum
length of legitimate failure bursts, also the length ofrestiion interval for failure rates. Both and 5 are system
configurable parameters. We observed that for our netwaillay& bursts for legitimate hosts typically last fewerrtha
5 seconds, and therefore a five-second interval window sepprepriate.

FB adjusts the token penalty per failurg, based on the failure raté, in a fashion detailed in Table 4. In
Table 4, for each range of failure rate, the interval-udépletion number specifies the desired number of intervals
until the complete depletion of tokens, assuming the faitate remains in the same range. These numbers should be
system-specific parameters, which are set based on traffiacteristics and the target false negative and falseiymsit
probability. More specifically,

e Ifthe failure rate of the host, is less thari).2a, the host is considered normal and FB sets the token penalty,
to 1 to allow the maximum permitted failure rat€note that the permitted failure rate for the hostjs/). For
these values, the interval-until-depletion is infinite.

e Hosts whose failure rates are withih}a, 0.4a] should primarily be legitimate hosts. However, we inceste
penalty to 2 to allow only 50% of the maximum permitted fadluate. This would shorten the detection time
should the failure rate continues to increase (due to a scan)



Estimated Failure Rate] | Desired intervals until token depletionPenaltyy(# tokens)
0<¢<0.2a 0 1
0.2a < ¢ < 0.4a 00 2
0.4a < ¢ < 0.6a 1 (z"—ﬁ + a) 1/¢
0.6a < ¢ < 0.8a 5 (ﬁ + a) 1/¢
é > 0.8a 1 ap

Table 4: Penalties for FB Detection

e If ¢ is close tau (¢ > 0.8a), the host has been generating failures close to the maxiratenfor more than one
interval (see Equation 15). Continuned failures at this eae well outside what is considered acceptable. The
token penalty is therefore setd@ to ensure that all tokens will be depleted before the endeoh#xt interval.

e For hosts whose failure rate is withifi.{la, 0.8a], one should first set the desired number of intervals until
depletion; they are system-specific parameters. In Tahie denotes the interval-until-depletion for the range
of [0.4a < ¢ < 0.6a] andxs for [0.6a < ¢ < 0.8a]. x; andz, should be progressively smaller. The token
penalty,y, can be calculated subsequently using the formula in TabiButh a penalty will give rise to the
desired number of interval-until-depletion, if the faduate remains within the same range . In our network, for
instance, we set; andz, to 4 and 2, respectively. The corresponding token penaltiesherefore 3 and 4.

When implementing FB in practice, one can adjust the desimedvals-until-depletion value for each failure range
and even adjust the granularity of the failure range baseti@desired properties of the detector.

Assuming the background traffic as a Poisson process witte pesiameter, we can calculate the false positive
probability for FB as,

7:“‘(1fpn)7' — J
Pep =3, <e (ﬁi(l Dn)T) > st j> no + at (16)
J! 9(®)

whereng is the token balance at the beginning of time perigd: is the token reward rate (in this case remains
constant)g(-) is the function defined by Table 4 such that- g(¢).

The probability of false negative is,

1
Pey = e P=PI)T(1 4 (1 —p,)T) st T= 17
wherer, is the scan rate angl, is the scan success probability.
The SST for FB is,
a
E[SSTrB] = — (1 —py 1—ps 18

wherey «— g(u(1 — p,) + rs(1 — ps)). For any scan with a rate greater than the SST, the expecteberwof scans
that occur before detection is
E[Tokens]

9(@)(rs(1 —ps) + (1 —pn)) —a

To put things in context, let’s consider again the exampiteafbich the background traffic rate of the host is 4
connections every ten seconds= 0.4) and its success probability js, = 70%. If the scan success probability is
ps = 0.02% and the token reward rate, is 1, then the SST for the host is 0.28 scans per second. Adipgeworm
that exhibits a connection rate as low as this will see areexdty slow propagation. In contrast, random scanning
worms to date typically have scan rates in the neighborhétehs of scans per second.

FB has an added benefit in that it is difficult, from the scalsngoint of view, to game the detector; the only
way to evade detection with FB is to reduce the failure ratthefhost. Hit-list worms can possibly evade FB. For
scanning worms, however, reducing the failure rate nete¢gsia reduction in the scan rate, which leads to a slower
propagation. A more in-depth analysis of FB and comparisitin @ther schemes can be found in Section 6.

Ty (29)

FE[Escaped Count 5| =



5.3 Probability of Error
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Figure 1: Error Probabilities for SB, FB and Static Schemes

Figures 1(a) and (b) show the probability of false positises false negatives for SB, FB and the static rate
scheme discussed in Section 4. Figure 1(a) shows spegiftbalifalse positive probability against 5-second traffic
bursts. The parameters of the schemes plotted here aréesedech that static and FB would have the same SST's.

A number of observations are significant here. First, whenSBT’s are similar, in Figure 1(a) the static rate
scheme exhibits a sharper curve than the others as the ailust frate increases. In other words, the static scheme is
less robust against background failure bursts and therefiore likely to generate false positives. Second, SB et¢éhibi
the least chance of false positive. This is not surprisingesione of the design goals for SB was the accommodation
of such bursts for hosts with a large success index. In oueripce, legitimate hosts can generate short bursts with
up to 3 or 4 failures/second. The parameter setting plotteeigure 1(a) stipulates that the static-rate scheme will
likely generate false positives with at least 40% probgbduring such bursts. To remedy this, we can increase the
token reward rate, but doing so would increase the Sust&oadning Threshold (SST). SB, on the other hand, has a
visibly lower false positive rate and is in general less &mesto changes in the background traffic rate.

The false negative plot in Figure 1(b) shows the detectigabdities of the various schemes with respect to scan
rates and two different background traffic rafes= 0.38, andu = 0.5. We opt for low background traffic rates to
better respresent average long term traffic charactevidtithenu = 0.38, the three detectors have approximately the
same SST (0.3scans/second). Not surprisingly, both SB Britblve a sharper decreasing false negative probability
than the static scheme. This is intentional, since both aimfelst detection of scanners beyond their SSTs. When the
background traffic ratey, increases, SB’s SST pulls away from the others since itsessandex will likely be higher
due to more background successes. We will address the S&fianfissue of SB in Section 6.2.

Overall, FB provides fast detection of scanners but is qigde to false positives when bursty failures occur,
and hence is more appropriate for a controlled environmétht well-understood traffic characteristics. SB, on the
other hand, is the most robust against background pertarband is also likely to detect scanners quickly. It would
work well in the context of an open network with a wide variefdifferent applications that may have diverse traffic
characteristics.

6 Analysis

In this section we present a detailed analysis of SB and FBpening against the static scheme and other adaptive
detectors. We show that, both analytically and empiric@B and FB are capable of rendering lower SSTs than the
others while maintaining comparable or better detecti@tigions.



6.1 Other adaptive detectors

Two scan detector&everse Hypothesis Test (RHT) [6] and the CUSUM detector [7], are of particular irgst to this
work because both fall in the category of adaptive scan tletecdn this section, we contrast the performance of FB
and SB with these two schemes. Due to space constraints,weegly a brief description of RHT and CUSUM.
Interested readers should refer to the original papers twemetails [6, 7].

RHT is a random walk based detector that operates in the raihgeal numbers. The position of the walk is
increased by a pre-determined factor for each first-coriéélore and decreased also by a pre-determined factor for
a first-contact success. If the random walk reaches a statgegrthan a certain threshold, the algorithm terminates
and reports that the host is a scanner. Translating RHT itdken-based form entails takirgg of the step function
values as the subtraction and addition operation of tokéhaste specifically, if we use the original parameter setting
as defined in [6], the token representation of RHT calls feridémoval of one token for every first-contact failure
and the addition of 1.77 tokens for each first-contact siucc&be expected value of token reward rate for RHT is
therefore,Ela] = 1.77(rsps + 1pn), and the expected SST aBdcaped Count for RHT are as follows, using the
expected token reward rate.

w(2.77p, — 1)
E[SST =— 20
55T rur] = =15 70, (20)
E[Escaped_Countyy| = E[Tokens] Ty (21)

rs(1—2.77ps) + p(1 — 2.77py)

Again, let's use the same example for which the non-scafidnafte, 11, is 4 connections every ten seconds, success
probability,p,,, is 70%, and scan success probability, is 0.02%. For RHT, one can expect that a scanner can perform
at most 0.375 scans/second without being detected. Asrieskearlier in the paper, this SST is smaller than that of
the static-rate but larger than those of SB and FB, underaimedraffic conditions.

RHT is susceptible to gaming in that a scanner can generaetessful cover traffic to accrue more tokens. If the
cover traffic is able to generate more tokens than the scHit tansumes, detection will not occur. Because in RHT
each successful first-contact connection adds 1.77 toksheach failure only consumes one token, the permitted
number of failures grows linearly with the amount of backgrd traffic, assuming a constant failure probability for
background traffic.

The CUSUM detector by Ganesh et al. [7] is analogous to FB &b Bioth are only concerned with failure
characteristics. CUSUM assumes that the detector knowfaithee rate of both non-scan and scan traffic, which they
call \p and )y, respectively. One can also estimate the scan failure xatas follows,

)\1 = )\0 exp ( pst ) (22)
1- 2ps

wherep, is the scan success probability amds the initial and also maximum token balance of a host. Eztimy

the scan failure rate in such a manner is calledstimptimal method. When failure patterns of both legitimate and

scan traffic are known and remain constant, CUSUM provide®fitimal detector [7], where optimality means the

shortest detection time, given a certain false positivesdpgpund.

Central to CUSUM is the concept of inter-failure time; the &IUM detector rewards more tokens when the inter-
failure time is large, and the opposite occurs when the-fatiérre time is small. Equation 23 describes the net change
of tokens per failure for a given inter-failure time,

Atokens - ()\1 - )\O)T - ln()\l/AO) (23)
Equations 24 and 25 provide the expected SSTEa@dped Count respectively.
A1 — o >
E[SST, = ————pu(l—p, 1—ps 24
[ cusuM] <1Og(/\l//\0) w( pn) ) /( Ps) (24)

B E[Tokens]
~ log(A1/Xo)(rs(1 = ps) + (1 = pa)) = (A1 = Xo)

E[Escaped_Count gy (25)
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If we assume the non-scan failure ratgis 1 failure/second and we estimate the scan xatesing Equation 22
such that\; = 1.003. The same example whepe= 0.4, p,, = 70%, andp, = 0.02% renders an SST of 0.882 scans
per second. Note that Equation 23 dictates that the largedifference betweehk; and )\, the larger the number of
tokens removed per failure, which results in faster dedectHowever, raising\; will lead to a higher SST. As such,
there is a trade-off between SST and detection speed for GU&SA; varies.

6.2 Sustained Scanning Threshold Analysis

The Sustained Scanning Threshold (SST) is an importanferadtsuccess for a scan detector. Figure 2(a) shows the
expected SST for all the schemes discussed thus far withngabackground traffic ratey. In this plot, we use a
non-scan success probability = 70% and a token reward rate af= 1 for both static-rate and FB. For CUSUM,
we plotted two configuration settings: in one we estimatestten failure rate\; using the suboptimal method of
Equation 22. In the other setting, is set to 3. For both configurations the expected backgraaihaé rate )\, is set

to match the background failure rate. These settings arertdstrate the tradeoff between SST and detection time
for the CUSUM detector.

Sustained Scanning Threshold w/ Background Traffic p,=70% p¢s=0.02% Escaped Count vs. Scan Rate p,=70% p =1/3
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Figure 2: Sustained Scanning Thresholds and Escaped Counts

As shown in Figure 2, compared to the other schemes, both 8B-Brrender a substantially lower Sustained
Scanning Threshold (SST) for a wide range of backgrounfidrates. The CUSUM suboptimal configuration yielded
a near zero SST. However, it's correspondiizgaped Count in Figure 2(b) is substantially larger than the others;
in fact, theEscaped Count for the suboptimal CUSUM was magnitudes larger, and is adfdbale and therefore
not visible in Figure 2(b). It is important to note that withetscan probability of success,, used in calculation the
basic reproduction number for the infected hosts would igltsy less than one. On average another host would not
be infected. However, this long delay still permits a largeniver of scans to escape the network before the host is
detected. As such, the CUSUM suboptimal detector is not a gboice in practice. The other CUSUM detector,
when )\, is 3, a value larger than the suboptimal calculation, farettiel in that itSEscaped _Count is comparable
to the other schemes once the scan rate surpasses the S8 Mfger difference betweexy andA; the number of
tokens consumed per failurg, is larger and less scans are permitted before detection.

RHT yields a SST that is low for hosts whose traffic rates atevib8.5 connections/second, but goes up signifi-
cantly when the background traffic rate increases. In oueeepce, normal desktop machines that run web and email
clients tend to initiate connections in the neighborhoo@.6fconnections/second. These hosts are well suited for SB,
FB, or RHT. For more active hosts whose traffic rates are odec@nnections/second, SB and FB are a better choice
if slow scanners are concerned. Note that SB has consistemtISSTs across the different valuesigfas such, SB
is better suited for hosts with diverse traffic patterns.

Assuming a constant background success probabilityand a constant scan success probabilitythe static rate
and FB schemes give rise to an expected SST value that iselygroportional to the background traffic rate. This
is because as the background traffic rate grows, the badkdrfailure rate also increases, which leaves less tokens
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for scan traffic, thereby reducing the SST. For the CUSUMaletavith a constank,, as the background failure rate,
Ao, increases, the number of tokens rewarded first increaskthan decreases as the difference between the\wo
change. For RHT the expected value of SST grows linearly thighrate of the background traffic (as indicated by
Equation 20). For SB, this increase is slower and it tapdrasothe background traffic rate hits 1 connection/second.
This disparity of behavior between RHT and SB is importanot. RHT, it would require a significant amount of time
to detect a scanner on a host with a near 100% success ratey lit drive down the ratio of success to failure). With
SB, however, the way success indices are calculated allomsecutive failures to quickly reduce the token balance
towards detection.

Figure 2(b) shows the expect&dcaped Count for each scheme with varying scan rates. For this plot, we
assume a constant background traffic rate of 1/3 connestioahd and success probability of 70%. For each scheme,
when the scan rate surpasses its SST (wherBghgped Count approaches infinity), the number of permitted scans
decreases exponentially. Note that SB and FB exhibit arfdsterease ifscaped Count than the other schemes.
This fact is significant; one of the fundamental differenoesveen our schemes and the others is that the former (both
SB and FB) has a non-linear relationship between the tradfiore rate and the token balance; In SB and FB, the
token balance decreases near exponentially to the incogédise connection failure rate when the failure rate is near
the SSTs. As such, these schemes provide faster detecionthers.

A graphical depiction of the epidemic growth of worms at thus of SST is shown in Figure 3(a). This plot
includes the estimated, “untampered” growth of Blaster haseline comparison to the epidemic growth when scan
detectors are in place. The points in this graph are gertbuatag a constant of 0.4 connection/secong, of 70%,
and the scheme configurations mentioned in the individwimes. As shown, compared with other detectors, SB and
FB can deter worm growth significantly—reaching 15% of thsceyptible population with SB or FB requires more
than twice the amount of time as with CUSUM or the static ratector.

Infected Hosts versus Time Intelligent Sustained Scanning Threshold p,,=100% ps=0.02%
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Figure 3: Permitted Worm Spread and Effect of Cover TraffittanSchemes

Gaming of SST. A scanner can game RHT and SB by adding successful covectrdfii be effective, the cover
traffic needs to have a high success probability. Figure 3fiiy the SSTs for SB and RHT versus the rate of cover
traffic. For simplicity, we assume that all non-scan trafficover traffic that succeeds with 100% probability (i.e.,
pn=1). As shown, SB’s SST increases at a much slower rate thbabtiRHT’s.

According to Equation 20, RHT's SST increases linearly ®d¢bver traffic ratey, assuming,, andp, are con-
stants. In contrast, SB's SST is upperboundeesy- wherew is the max to-be-tolerated failure rate (see Equation 13
whenp,, is 1). As a result, the growth rate of SST for RHT is faster ttrat of SB. We note that it is possible to
change the configuration of RHT such that its SST would irs@es a lesser rate than that is plotted in Figure 3(b),
but we reiterate that this will not change the fundamentailyar relationship between its SST to the traffic rate.
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6.3 Error Rates

In this section, we present an empirical analysis of theouartetectors, using both real and simulated network traffic

Trace Data. The real traffic traces used in this study are collected abthendary of a 1200-host network,
primarily used for academic computing purposes. The nétwerves approximately 1500 users and has a variety of
operating systems and applications. The traces includedaders of all inbound and outbound TCP packets entering
and exiting the network. During the course of tracing, weordedBlaster [14] and Welchia [15], both scanning
worms that infected local hosts in our network.

For each attack recorded, we conducted post-mortem asatysdentify the set of infected hosts within the
network. We further identified port-135 TC®YNs as outbound blaster or welchia scans from these inféuists.
It is important to note that hosts within our network werelagively Windows clients that rarely (if ever) made any
outbound port-135 connections. Once infected, howeverhtists made tens of thousands of port-135 connections.
As such, the task of identifying Blaster and Welchia scaffigiity straightforward.

We use four traffic traces in this study. Trace | is a 25-dapound trace, from August 6th to August 30th, 2003.
This period contains the onset of Blaster infection in ouwaek, which occurred on August 11th. We identified 103
Blaster infected hosts internally. We performed due-aglap to the best of our ability to ensure that in Trace | there
is no outbound scans originated from our network other thasd due to Blaster. Trace Il is a 10-day outbound trace,
from August 9th to the 18th, 2005, which contains no intemalm infection in so far as we can tell. We use Trace Il
to study false positives.

Traces lll and IV are synthetic traffic that include simuthsdow scans and traffic bursts. In both traces there are
1100 hosts, 100 of which perform scans at a rate of 1 everyéworgls. 75% of the hosts generate background traffic
that succeeds 70% of the time and follows a Poisson distoibuwtith a rate of 0.1. The other 25% generate traffic
that succeeds with a 30% probability and follows a Poissstridution with a mean of 0.05. This mix of traffic is
a simplification of the real traffic seen in our network; thejonidy of hosts make mostly successful connections at a
higher rate while the other hosts tend to generate a sloarstod failures when contacting new destinations (recall we
only account for first-contact failures). In both Trace IticalV the more active hosts (75% of hosts) have five-second
traffic bursts. These bursts occur uniformly with 1% probgbfor each interval (the same interval for failure rate
estimation) Trace Il has relatively slow bursts at the @ft6.5 connections/second while Trace IV has faster bursts
at the rate of 2 connections/second to simulate traffic dusirsiness hours.

Simulation Results. The implementation of the various algorithms, in their tofmsed form, is straightfor-
ward; each host is allocatedtokens originally and our implementation keeps track ot-fientact failures using a
Previously-Contacted-History, much like what is done inTRH]. For the static-rate detector, we set the token reward
rate,a, to 1 token per second, and each first-contact failure coaswamoken. For SBy is set based on the success
index (see Table 2). For FB, we estimate the failure rate@htbst periodically and use the value in Table 4 to deter-
mine the token penalties for each first-contact failure késrth. For RHT and CUSUM, several configurations were
simulated. In particular, one of the major sources of fatsstves for RHT is the somewhat archaident protocol.
Sincei dent is rarely used and the servers runnirdent can be easily whitelisted, we present two sets of results
for RHT, one includes dent servers and the other has them white-listed.

The CUSUM detector requires the detector to estimate thesoan failure rate)o, and the scan failure rate; .
In our experiments, we sy, to match the permitted failure rate/token reward rate efstatic-rate scheme. We used
two values for the scan failure rat&;. The first one was 10 failures/second to match the observastddlfailure
rate!. This approximates the optimal situation when the worm siaprate was known. The second one is using the
“suboptimal” estimate (see Equation 22) when the scan sat@known. We used a scan success probablityof
0.02% for the suboptimal estimate.

Table 5 shows the results of our experiments on Trace | amilditemind the readers that the false negative rate
is defined as the portion of scanners that elude detectioife thie false positive rate is the portion of legitimate Isost
incorrectly labeled as scanners. The mBasaped Count is the average number of scans from infected hosts before
the scanner is detected (averaged over all hosts infectbdBlaster). The last column of the table lists the number
of hosts running P2P clients identified as scanners by edelstde Peer-to-peer applications tend to fall outside the

4Qur traces of Blaster and Welchia indicate that infectedshgsnerated failures at approximately 10 scans per seadthch success probability
of 0.02%.
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Detection Parameter False Negativg Mean Escaped False Positive P2P Clients
Scheme Settings Rate Count Rate Detected
Trace | | | Il | Il

Static Rate a=1 0% 13.09 0.35% | 0.71% | 17 5

RHT normal 0% 10.194 27.216%| 4.876%| 36 6

no ldent 0% 10.194 2.216% | 4.876%| 36 6

CUSUM | A; = 10 (near optimal) 0% 13.356 0.62% | 0.17% | 9 5

=1 suboptimal\, 26.2% 8366.578 0% 0% 0 0

SB c=001l,w=4 0% 10.35 0.798% | 0.355% | 32 7

FB a=1,6=5 0% 10.12 0.62% | 1.24% | 32 9
I = 4, To = 2

Table 5: Experimental Results for Traces | & Il

Detection Parameter False Positive | Mean Escaped
Scheme Settings Rate Count
Trace 11 v 11 v
Static Rate a=04 0% 48.5%| 34.0 | 32.3
RHT no ident 21.17%| 23.1%| 8.98 | 8.93
CUSUM | \g=0.4,\; =05 0% 0% 423 | 375.6
optimal 15% | 71.7%| 8.21 | 8.07
SB c=0.01,w=4 1.4% | 8.8% | 13.53| 13.39
FB a=1,6=5 0.2% | 29.6% | 15.11| 14.67
xr, = 4, T = 2

Table 6: Simulation Results for Traces Il & IV with an insedtScanning Wormr{, = 0.5)

critical network operation, and are therefore often cozi®d non-desirable activities. For this reason, we singte o
P2P hosts as a separate category.

As the results show, all but the “suboptimal” CUSUM were dbldetect all the scanners. Most schemes rendered
a similar detection efficiency, as indicated by the mBataped Count . This is primarily due to the fact that Blaster
is a fast scanning worm whose behavior is clearly differssrifnormal traffic. In fact, in our experiments the Blaster
traffic managed to deplete all the tokens before a single okentwas awarded. For this reason, the Blaster trace is not
ideal for studying detection efficiency. Rather, the experits with Trace IIl and IV which include slower scanners
have more descriptive results.

Note that CUSUM performs well when their estimated faillates)\y and \; are close to the real failure rates
but otherwise gives poor results. CUSUM'’s “suboptimal’etdor missed over 25% of the scanners in Trace |. The
suboptimal estimation method, shown in Equation 22, rendey that is far from the real scan rate of Blaster. This
also contributed to the exceptionally larBecaped Count . The CUSUM work is of theoretical interest because it
shows that there exist an optimal detector if scan and tnaffees are known. In practice, however, these assumptions
often do not hold.

Overall SB and FB performed well with Trace | and Il. In adalitj they yielded a lower false positive rate than
RHT (even when thé dent hosts are white-listed). This is because RHT only takesaetmunt the accumulative
number of failures rather than the failure rate. ConsedueRHT can’'t handle legitimate hosts that experience
persistent but slow failures. In contrast, SB and FB comdidéh failure numbers and rates.

Table 6 shows the simulation results for Trace IIl and IV. &kihat these two traces include the simulated slow
scanners that scan at a rate of 1 per every 2 seconds. To ¢hatitke scan rate is above the Sustained Scanning
Thresholds (SSTs)—so that scans can be detected—a fewgtararhave to be tweaked. The new parameter settings
are listed in Table 6. In particular, the token reward ratestatic and suboptimal CUSUM is changed so that they
render approximately the same SST's as the other schemesls@@cluded an optimal configuration of CUSUM
where the background failure rateigl — p,,) and the mean scan failure raterig1 — ps).
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For this set of simulations, all scanners are detected s&ipédte false negative column. Trace Il and IV include
traffic bursts the purpose of which is to show the impact okbagund traffic perturbation . Recall that Trace Il has
near constant traffic with slower bursts, while Trace IV ud#s larger bursts which are representative of work day
network traffic.

As shown, the static-rate scheme performed poorly when #odround traffic becomes bursty—yielding a
48.5% false positive rate for the burstier traffic. This iasigtent with our assessment in Section 5.3 where a sétysitiv
analysis showed that static-rate schemes are more sertsitivaffic perturbation. In addition, the optimal CUSUM
detector also fared badly with Trace 1V; it detected manystyuyet benign hosts (71.7% false positive rate). This
is because the CUSUM detector relies on the assumptiontbdatlure rates (both background and scan) remain
constant, and therefore cannot accommodate changes daéfitogerturbations.

SB and FB performed well in the presence of bursty traffic. SPBarticular maintained a low false positive
rate and a low escaped count throughout. FB showed a largesaise in the false positive rate when traffic becomes
burstier, but is still on par with RHT. When traffic is predibte (Trace Ill in Table 6), SB and FB’s detection speed
is only slightly worse than optimal (as indicated by the oy CUSUM detector), and their false positive rates are
extremely low. These results are consistent with the aicalyiodels in Section 5.3.

7 Summary

In this paper, we presented two adaptive scan detectorsn@BR, for the detection of local scanners. In the token-
based framework, the success based scheme, SB, regutatekeh reward rate in an effort to differentiate legitimate
and malicious behaviors. FB, on the other hand, adjustoitentpenalty based on the failure behavior of the host.

We demonstrate that SB and FB can quickly detect slow scamvihrout incurring notably more detection errors
than other detectors. More importantly, we show that SB d@®die less susceptible to intelligent gaming and robust
against traffic variations, which is particularly signifitavhen slow scanners are concerned. We show that previously
proposed scan detection schemes failed to achieve sinoidds;ghe static rate scheme and the CUSUM detector have
low error rates, but can only guarantee detection of reditifast scanners. RHT can detect slow scanners, but is
vulnerable to traffic manipulation.

The interesting properties of the adaptive detectors drig®a their non-linear nature. This is in contrast to
the previously proposed, largely linear detectors. Onectliconsequence of the non-linearity is that it permits the
detector to correct its course continuously with respetiiéaletection hypothesis, in ways that have not been explore
previously. Traditionally, detectors label a host scariftre rate or the number of suspicious events exceeds a pre-
determined threshold. The adaptive algorithms, in coftadbws the detector to change its state based on both
long-term and short-term statistics. This gives rise toefadetection and decreased sensitivity to short-ternfigraf
perturbation. Another interesting property is the susbéjpy to traffic manipulation. Although SB utilizes conation
success statistics in ways that are similar to RHT, the drafits SST is however sub-linear and consequently less
susceptible to intelligent gaming.

The schemes discussed thus far utilize exclusively coioretdilure patterns to differentiate scanners from le-
gitimate hosts. This is a reasonable assumption for scgrimms. Hit-list and topological worms, however, have
different traffic patterns. Modern IDSes that acknowledg€®_SYNs regardless if the destination address is allo-
cated can also hamper the effectiveness of failure-bagedtdes. To detect spreading malware that do not necessaril
embody similar failure patterns, a different class of deéewould be needed. This would necessitate the use of a
different type of suspicious event, would not however, gelit limit the efficacy of the adaptive schemes presented
here.
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A Success Based Reward Rate Calculation

The index-to-reward-rate mapping for the Success Basehsekvas designed such that a fixed error rate was achieved
for a given token balance, success index, and connectien rat

If we assume that the background failures of the host foll®®izson distribution with a rate parametét —p,, ),
Equation 26 provides the approximate calculation of thesfglositive probability; (this equation gives the probability
that the token balance decreasesfaonnsecutive intervals, whergis the initial and maximum token balance.)

(1 — e #(1=pn)/a <1 + @))n = (26)

We make a further assumption that the connection rate of dltkdvound traffic for a legitimate host follows an
exponential growth curve with respect to its success indek shatu = ¢;e°2?, wherec; andes are constants (this
assumption stipulates that any host whose connection xdibits a faster than exponential growth relative to its
success index is likely a scanner). Using the lower and uppend of the token reward rate, we can calculate the
expression of: with respect to the success indexWe can then use linear approximation to solve Equation 26 fo

in terms ofp, o, andw, the solution is,
o(1 —p e(101n(u.)/cv)p)/9
a = ( 1/)n (27)
el/m —0.146
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This provides the formula in Table 2.
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