

NetPiler: Reducing Network Configuration
Complexity through Policy Classification

Sihyung Lee Tina Wong Hyong S. Kim

June 29, 2007
CMU-CyLab-07-009

CyLab
Carnegie Mellon University

Pittsburgh, PA 15213

NetPiler: Reducing Network Configuration
Complexity through Policy Classification

Sihyung Lee Tina Wong Hyong S. Kim
ECE Department and CyLab
Carnegie Mellon University

Pittsburgh, USA
{sihyunglee, tinawong}@cmu.edu, kim@ece.cmu.edu

Abstract— As a network evolves over time, multiple operators
modify the network configuration, without fully considering
what has been done previously. Similar policies are defined more
than once, and policies that become obsolete after a transition are
left in the configuration. As a result, the network configuration
becomes complicated and disorganized, escalating maintenance
costs and operator faults. We present a method called NetPiler
that groups common policies by discovering a set of shared
features and that uses the groupings instead of using each
individual policy for the configuration. Such an approach
removes redundancies and simplifies the configuration while
preserving the intended behavior of the configuration. We apply
NetPiler to the routing policy configurations from four different
networks, and reduce more than 50% of BGP communities and
the related commands. In addition, we show that the reduced
community definitions are sufficient to satisfy the changes as the
network evolves over almost two years.

I. INTRODUCTION
Network configuration is a low-level, device-specific task. To configure a network,

one needs to configure each device in the network separately. There can be hundreds of
devices, thus hundreds of configuration files, each with thousands of commands. A
change in one file can potentially affect other devices, or even the whole network.
Often, multiple files need to be modified to make a relatively minor change in the
network. In general, network configuration is complex as there are subtle dependencies
in different parts of a single file. These dependencies are spread across files of multiple
devices, even in a small sized network.

As a network evolves, its configurations become difficult to understand and to
debug. Patches are sometimes put into configuration files to temporarily deal with a
problem, and they are forgotten and left in place afterwards. Old configurations often
remain to ensure the network operation works if the transition is incomplete.
Configurations are edited by multiple operators with different backgrounds and
working styles. Networks are also merged into a single network, complicating the
combined configurations. Also, because of the low-level nature of configuration
commands, the same high-level goal can be achieved in various ways in the
configurations. In other words, both technical and non-technical issues can degrade the
quality of a network’s configuration over time.

As a result, operator errors are common and can account for more than 50% of
failures in computer systems and networks [1,2,3]. Scheduled maintenance and

 2

upgrades can account for more than 30% of network outages in Tier-1 ISPs [4].
Companies are spending more resources on the daily management and operations of
their networks than on new IT services. In fact, one study has found that 80% of IT
budgets in enterprise networks are used just to maintain the current operating
environments [5].

There have been attempts to solve these problems. [8,9] identify potential errors in
configurations, by comparing to a list of rules that are either data-mined or hard-coded.
[10,11,12] propose configuration languages that are designed to be high-level, thus
allowing network operators to specify their intent and translating the high-level intent
into low-level implementation of configuration commands. Several researchers propose
manageable network architectures [13,14,15]. Such architectures simplify management
by having a central decision plane to avoid unnecessary division of configurations
across a network.

In our approach, we transform the network configuration, specified either in high-
level or low-level languages, into a more manageable, understandable, and evolvable
configuration. In this procedure, we extract the underlying functions and dependencies
from a network configuration and put it into a concise and system-independent format
by reducing any redundancy. From this format, we generate a new configuration that
illustrates complex inter-device and intra-device dependencies. Our approach is similar
to optimizations done by a compiler of a programming language. We remove
unnecessary parts that are not being used and reuse functionally equivalent parts. While
doing so, we take into account the dependencies among different parts and preserve the
function of the configuration. However, note that our main concern is not to optimize
the length of a configuration, but to make it more understandable and manageable.

Our contributions are summarized as follows.
• We propose NetPiler, a way to find unique clusters of elements that share

certain properties (or implement common functions) in a network configuration
(Section II.B). Description by element groups can simplify the network configuration,
independent of the description language. Even in the case where grouping is already
used to configure a particular element, NetPiler can remove redundancies and simplify
the grouping into unique sets. The grouping is based on our representation of elements
and their properties in a graph model that captures dependencies between elements in
the network configuration.

• We apply this technique on routing policy configurations to demonstrate
NetPiler (Section III). We evaluate the algorithm on four national/regional providers,
and we are able to reduce 90% of communities and 70% of the related commands for
the best cases. Reducing the number of communities and the configuration size does
not necessarily mean that the new set of communities is more meaningful and
understandable. Thus, we go over a few reduction types (Section IV.C) and show that
such simplification does improve the readability of the configuration. Furthermore, to
show how NetPiler can be used to evolve a network’s configuration in a more
meaningful and maintainable way, we perform a temporal analysis on network
configurations over two years to illustrate that the new set of communities can be
reused in future configurations. Finally, we present a few ways to improve the
algorithm (Section V).

We can apply NetPiler to any configuration language, but the configuration that
results from NetPiler needs a language that allows specification of groups and

 3

hierarchies as in object-oriented programming. This is partially supported in some
configuration languages (e.g., group command in JUNOS [22]). Although NetPiler can
be used in many different parts of a network configuration where their policies can be
grouped into distinct sets, we illustrate the use of the method in restructuring BGP
communities in routing policy configurations throughout the paper. This is partly
because the BGP community is a widely used feature to group routes that have
common properties. In addition, routing policy is one of the largest and the most
complex aspects of a network configuration that has a number of dependencies within
and between different components of a network. We believe the application in routing
policy would better illustrate the benefits of our method. We present applications to
other parts of a network configuration in Section II.C.

II. NETPILER
We first present an overview of NetPiler and show how we simplify a configuration

for inter-domain routing policies and BGP communities in Section A. We describe the
details of NetPiler in Section B and its applications in Section C.

A. Overview
We perform the following steps to transform a network configuration into another

form. We first select the element in the configuration that is subject to the
transformation. The element can be anything that can be grouped, ranging from an
interface to a packet-filter. We then parse the configuration with regard to the element
and construct a graph model. The model is a bipartite graph with two partite sets, the
set of instances I and the set of their properties P. An instance i∈I is joined by an edge
with a property p∈P iff i has p. We use a graph model instead of simple sets since each
instance can have multiple properties such that some of the properties are properties of
other instances as well. A graph is easier and more natural to represent the overlapping
nature of the relationships. From the model, we identify distinct groups of instances that
share common properties. Group A is comprised of a set of properties PA that
characterize the group, and a set of instances IA, each of which has all the properties in
PA. For example, we may identify a group of interfaces i1, i2, i3 that enable OSPF and
have OSPF area 3, and another group i4, i5, i6 that disable OSPF. If we denote the two
groups A and B, IA={i1, i2, i3}, PA={OSPF_enabled, OSPF_area_3}, IB={i4, i5, i6}, and
PB={OSPF_disabled}. The two property sets show two distinct policies associated with
interfaces. Finally, we generate a new configuration that uses the groups in the
specification. Note that the transformation is function-preserving in the sense that we
do not alter the intended behavior of the configuration although we simplify its
specification.

Before we go into more detail, we start with a fictional scenario to illustrate what
the scheme can do. The scenario includes routing policy configurations using the BGP
community. We first present the background of inter-domain routing policies and the
BGP community, and then the scenario.

1) Inter-domain Routing and BGP communities
The BGP is a de facto standard inter-domain routing protocol. BGP advertises

reachability to certain destinations between ASes. Such advertisement is selective in
that only a subset of route advertisements received from an AS is distributed to other
ASes. This is done mainly to implement a business relationship or to engineer traffic
between ASes [16]. The selection of routes works by applying a route filter on the BGP

 4

session to/from the AS. A route filter has a structure similar to the “if-then-else” chain
in programming languages. It has a set of conditions followed by actions. It has a set of
conditions followed by actions. Note that the exact syntax of the commands varies
across different vendors, but we use the vendor independent form of if-then-else. For
further details, we refer readers to [27], which gives an excellent overview of the BGP.

A BGP community refers to a group of routes that share certain properties and thus
the same action is applied to the community. A community is encoded as a 32-bit field.
A community influences the selection of routes by having its 32-bit string tagged to the
set of route advertisements that belong to the community. If the 32-bit string matches
the condition of a route filter, the required action is performed. A community
implements a routing policy, which is in general described by a 3-tuple, (description of
a set of routes, actions to be taken on the routes, a set of local/remote locations for the
actions). For example, (prefix 1.1.0.0/16 received from neighbor 1.1.1.1, re-advertise,
outbound session to neighbor 2.2.2.2) means that we want prefix 1.1.0.0/16 received
from an inbound BGP session with neighbor 1.1.1.1 to be re-announced to neighbor
2.2.2.2. To implement the policy using a community, a community C is added to the
prefix 1.1.0.0/16 by a route filter that is applied in the inbound direction of BGP
sessions with neighbor 1.1.1.1. The route filter has a condition “if prefix equals
1.1.1.0/16”, and an action “add C”. Another router filter in the outbound direction with
neighbor 2.2.2.2 will filter the routes by a condition “if there exists community C”, and
an action “then announce.” There is a variety of community usages and more details
can be found in [17,18,19].

2) Overview Example
In the scenario, we show how a network configuration becomes convoluted as

communities are added and replaced ad hoc, and how we reduce the complexity. In Fig.
1(a), the oval in the center represents the network that we administer. Smaller ovals,
each represents a neighboring network. Between each neighboring network and the
center oval, there is a line indicating that there exists a BGP session between the two
networks. A rectangle denotes a route filter applied to a BGP session and has the
following format: “neighbor id/direction/” followed by an if-then-else chain. A capital
letter is a community. Every if-then-else chain has an implicit deny action at the end.
For example, in Fig.1(a), the left top rectangle is the route filter applied in the inbound
direction of the BGP session with network 1. Any route received from network 1 is
configured to have community A attached. The right top rectangle is the route filter in
the outbound direction toward network 4. Routes with community A are to be
announced to network 4, and all other routes are not allowed by the default deny action.
P1 and P2 each in Fig. 1(c) and (d) represents a certain collection of prefixes from
network 2 and 3, respectively. The subfigures (a), (b), and (c) are in the order of
evolution. We show only the first two figures and the last figure in the evolution
because of space limitations.

• Initially, there are six neighboring networks and one community A is used to
re-advertise routes from network 1, 2, and 3 to network 4, 5, and 6. For example, routes
from network 6 do not have community A and thus are not advertised to network 4 and
5 (Fig.1(a)).

• The network establishes a peering relationship with three new networks, 7, 8,
and 9. Community B is defined to re-advertise routes from 7, 8, and 9 to network 4, 5
and 6 (Fig.1(b)).

 5

Network 1

Network 2

Network 3

Network 4

Network 5

Network 6

1/in/ if any, add A1/in/ if any, add A
4/out/ if A, permit4/out/ if A, permit

(a) The initial configuration

2/in/ if any, add A2/in/ if any, add A

3/in/ if any, add A3/in/ if any, add A

5/out/ if A, permit5/out/ if A, permit

6/out/ if A, permit6/out/ if A, permit

Our own network

Network 1

Network 2

Network 3

Network 4

Network 5

Network 6

1/in/ if any, add A1/in/ if any, add A
4/out/ if A or B, permit4/out/ if A or B, permit

(b) The configuration in the second step

2/in/ if any, add A2/in/ if any, add A

3/in/ if any, add A3/in/ if any, add A

5/out/ if A or B, permit5/out/ if A or B, permit

6/out/ if A or B, permit6/out/ if A or B, permit

Our own networkNetwork 7

Network 8

Network 9

7/in/ if any, add B7/in/ if any, add B

8/in/ if any, add B8/in/ if any, add B

9/in/ if any, add B9/in/ if any, add B

Network 1

Network 2

Network 3

Network 7

Network 8

Network 9

Network 4

Network 5

Network 6

Network 10

Network 11

Network 12Network 13

1/in/ if any, add A D E1/in/ if any, add A D E

2/in/ if P1, add ACDEF
else if any, add A D E

2/in/ if P1, add ACDEF
else if any, add A D E

3/in/ if P2, add ACDEF
else if any add A D E

3/in/ if P2, add ACDEF
else if any add A D E

7/in/ if any, add B D E7/in/ if any, add B D E

8/in/ if any, add B D E8/in/ if any, add B D E

9/in/ if any,
add B D E
9/in/ if any,
add B D E

4/out/ if C, deny
else if A or B or D, permit
4/out/ if C, deny
else if A or B or D, permit

5/out/ if F, deny
else if A or B or D, permit
5/out/ if F, deny
else if A or B or D, permit

10/out/ if E, permit10/out/ if E, permit

13/out/ if A or B,
permit
13/out/ if A or B,
permit

(c) The final configuration

6/out/ if F, deny
else if A or B or D, permit
6/out/ if F, deny
else if A or B or D, permit

11/out/ if E,
permit
11/out/ if E,
permit

12/out/ if E,
permit
12/out/ if E,
permit

Network 1

Network 2

Network 3

Network 7

Network 8

Network 9

Network 4

Network 5

Network 6

Network 10

Network 11

Network 12Network 13

(d) A simplified configuration

1/in/ if any, add B1/in/ if any, add B

2/in/ if P1, add A B
else if any, add B

2/in/ if P1, add A B
else if any, add B

3/in/ if P2, add A B
else if any, add B

3/in/ if P2, add A B
else if any, add B

7/in/ if any, add B7/in/ if any, add B

8/in/ if any, add B8/in/ if any, add B

9/in/ if any,
add B

9/in/ if any,
add B

13/out/ if B,
permit
13/out/ if B,
permit

4/out/ if A, deny
else if B, permit
4/out/ if A, deny
else if B, permit

5/out/ if A, deny
else if B, permit
5/out/ if A, deny
else if B, permit

6/out/ if A, deny
else if B, permit
6/out/ if A, deny
else if B, permit

10/out/ if B, permit10/out/ if B, permit

11/out/ if B,
permit

11/out/ if B,
permit

12/out/ if B,
permit

12/out/ if B,
permit

Figure 1. An example scenario on inter-domain routing and BGP community

• It is decided that IP prefix P1 from network 2 and prefix P2 from network 3 are
not re-advertised to network 4. Community C is set on the IP prefixes and matched by a
new outbound statement towards network 4 to deny the IP prefixes.

• There is a merger of networks and the operators decide to replace community A
and B by a new community D. In the procedure, As and Bs remain in the configuration
in order to prevent any malfunction while the migration is incomplete.

• Three new neighbors 10, 11 and 12 are added and a new community E is
defined so that the three new neighbors receive routes advertised from network 1, 2, 3,
7, 8, and 9.

• A new neighbor session to network 13 is negotiated by a new operator.
Without being aware of community D, the operator applies two old communities A and
B.

• IP prefixes P1 and P2 from network 2 and 3, respectively, are no longer re-
advertised to network 5 and 6 by a new community F (Fig.1(c)).

The resulting configuration in Fig.1(c) is much more complex than its initial form
with a single community A. There are six communities, each of which forms a certain
routing policy group (e.g., the group represented by community F is characterized by
PF={No advertise to network 5 and 6} and has two members in IF={prefix P1 from
network 2, prefix P2 from network 3}.). However, if we observe carefully, there exist
two distinct policy groups, each of which can be implemented by a single community:
i) I={P1 from network 2, P2 from network 3}, and P={No advertise to network 4, 5,
and 6}. ii) I={all other routes from network 1, 2, 3, 7, 8, and 9}, and P={Advertise to
network 4, 5, 6, 10, 11, 12 and 13}. The simplified configuration in Fig.1(d) is
functionally equivalent to the intended policies. In other words, any route received from
any neighbor will take the same action at any location as in Fig.1(c). Note that although

 6

we reduce the configuration, our aim is not to minimize the length of the configuration,
but to make it more meaningful and manageable.

B. Instance-Property Model and Decomposition
An element in a network configuration can be described with a set of properties

associated with it. A property of the element can be either internal – properties that does
not depend on other elements (e.g., interface type - Ethernet, Serial, tunnel, etc.), or
external – properties that depend upon other elements (e.g., dependency upon other
route filters at different locations). Our model captures such relationships between the
element’s instances and its properties in order to identify groups of instances sharing
common properties and to simplify the configuration through grouping. We call this
model instance-property model. In the model, a relation of an instance i having a
property p is represented by two vertices i and p having an edge between them. In other
words, our model is a bipartite graph with partite sets I, the set of instances, and P, the
set of properties associated with the instances such that instance i∈I is adjacent to a
property p∈P iff p characterizes i. Fig. 2(a) shows an instance-property model with
five instances and seven properties. At the bottom, there is a configuration of instances
i1 through i5. An instance is followed by “:” and its properties. Above the configuration,
we show the corresponding instance-property model G. Instance i1 has 4 properties, p1,
p3, p4, and p7. In G, i1 is incident with 4 edges that are joined with p1, p3, p4, and p7,
respectively.

It is clear that an instance-property model can be described by listing each relation
(i,p) represented by an edge (Fig. 2(a)). However, our goal is not to separate each single
edge. We partition the edges into sets, such that each set represents a distinct group of
instances that share certain properties as a unit. We call such a partition a
decomposition of the model. Grouping similar objects and representing the objects by
group improve the understandability and reusability. We define a group as follows.
Group A is a nonempty set of properties PA together with a set of instances IA
={i|∀p∈PA, (i,p)∈E(G)}. G denotes the instance-property model and E(G) its edge
set. Since in A, every instance in one partite set IA is adjacent to every property in the
other partite set PA, a group is equivalent to a complete bipartite graph. Thus,
partitioning G into groups is the same as decomposing G into complete bipartite
subgraphs. Fig. 2(b) presents a decomposition of G in Fig. 2(a) into 3 complete bipartite
graphs (groups), A, B, and C. Below the graphs is the corresponding configuration
using the 3 groups. If the instances are interfaces, then A, B, and C represent “external
interface class,” “interface class facing neighbor N1,” and “interface class facing
neighbor N2”. In that case, i2 belongs to both A and B. Such a membership is a single
new group that inherits the properties from A with the addition of the properties from B.
The decomposition of G is function-preserving: we do not add or delete any edges in G,
and thus the intended behavior of the configuration does not change although its
specification changes.

Note that there are many ways to decompose G into groups. For example, G is also
decomposable into three groups A′, B′, and C′ with their I and P sets as follows:
IA′={i1}, PA′={p1, p3, p4, p7}, IB′={i2, i4}, PB′={p1, p2, p3, p4, p5, p7}, IC′={i3, i5}, and
PC′={p1, p3, p4, p6, p7}. Of all possible decompositions, we look for the decomposition
where each group is meaningful and thus manageable. We refer to a decomposition as
being meaningful and manageable if a human operator can easily grasp the meaning of

 7

p1p1

p2p2

p3p3

p4p4

p5p5

p6p6

p7p7

i1i1

i2i2

i3i3

i4i4

i5i5

i1: p1, p3, p4, p7
i2: p1, p2, p3, p4, p5, p7
i3: p1, p3, p4, p6, p7
i4: p1, p2, p3, p4, p5, p7

i5: p1, p3, p4, p6, p7

p1p1

p3p3

p4p4

p7p7

i1i1

i2i2

i3i3

i4i4

i5i5

p2p2

p5p5

i2i2

i4i4

p6p6

i3i3

i5i5

i1: A
i2: A B
i3: A C
i4: A B
i5: A C

A: p1, p3, p4, p7
B: p2, p5
C: p6

(a) (b)

G

A

B

C

Figure 2. A decomposition of an instance-property model G (as shown in (a)) into complete bipartite
subgraphs A, B, and C (as shown in (b)). The corresponding configurations appear below the graphs.

the groups – I and P sets and their relationships – and if he can reuse the groups to
specify new instances or to modify existing instances with or without slight
modification in the group definitions.

A meaningful decomposition for one element may not be meaningful for another
element. Furthermore, one human operator may perceive a decomposition as
meaningful while another may not. Thus, identification of a meaningful decomposition
requires operator’s input as well as domain knowledge about the instance. In Section III,
we illustrate the way we find a meaningful decomposition, especially for inter-domain
routing policy and the BGP community.

C. Applications of NetPiler
In this section, we investigate what aspect of a network configuration can be

simplified by NetPiler. NetPiler is generally applicable to wherever there exists a notion
of grouping. Even when grouping is not explicitly used, a number of elements can be
grouped as in interfaces. Packet filters in a network can also be grouped into distinct
sets of policies. There are cases where grouping is explicitly used with group ID. These
cases include route tagging based on routing policies, packet marking/grouping based
on QoS policies, and MPLS labeling based on destination prefixes/packet treatments.
The instance set I could be a set of routes/packets, and the property set P could be a set
of actions on the routes/packets and locations of the actions. NetPiler restructures the
groups in a way that removes redundancies – equivalent groups or groups that are
defined but never used – and makes the specification simpler and meaningful. We see
an example of route tagging in Section III. However, identifying instances and
properties is not always obvious. We need to find the minimum unit that comprises a
group, and the properties that characterize the unit and a unique policy. In addition, this
method might not be efficient when there is no common policy and each element is
unique.

 8

III. DEMONSTRATION WITH COMMUNITIES

A. Construction of the Instance-Property Model
At a high level, we construct the instance-property model for routing policies that

are implemented by communities. We then decompose the model into groups such that
each group represents a distinct routing policy as a unit and therefore is assigned a
different community.

We identify an if-clause in a route filter as a vertex (both instance and property) of
the instance-property model. If we think of a community in terms of a group defined in
Section II.B, the members of the community (i.e. the instances of the community) are
the routes tagged with the community. In a configuration, the routes are represented by
sets of conditions in one or more route filters, possibly applied to different neighbors,
such that each set is matched as a unit. One such set of conditions is equivalent to an if-
clause. In Fig. 1(c), there are five if-clauses that represent instances of community A: i)
all the routes from network 1, ii) prefix P1 form network 2, iii) all other prefixes from
network 2, iv) prefix P2 from network 3, and v) all other prefixes from network 3. The
properties of the community are the dependencies on local/remote locations where the
routes are matched and actions take place. Similarly in a configuration, the local/remote
locations are represented by if-clauses that match the community. In Fig. 1(c), there are
three if-clauses that match community A, and they are applied outbound to network 4, 5,
and 6.

The edges of the instance-property model, relationships between instances and
properties, are identified as follows. There is an edge between an if-clause i and another
if-clause p if the routes represented by i are matched by p via communities (i.e. if the
communities attached by i match the condition in p). For example in Fig. 1(c), the
routes received from network 7 have community B, D, and E attached by the if-clause
“7/in/ if any, add B D E,” and match the if-clause “10/out/ if E, permit”. Therefore,
the two if-clauses are joined by an edge. For an edge (i,p), routes matched by i flow
through p and the actions specified in p are taken on the routes. Note that the meaning
of a relationship (i,p) can differ depending on the application. In the next section, we
identify distinct policy groups that are represented by the dependencies among if-
clauses and assign a community to each routing policy so that the community is used in
its associated if-clauses.

B. Identifying Distinct and Meaningful Policies
Once an instance-property model is obtained, there are many ways to decompose

the model. Naive decomposition may lead to groups whose meanings are not clear and
difficult to reuse. Thus we develop a condition for each group to be meaningful and
understandable.

This condition is based on the observation that a routing policy described by a
community generally involves a set of routes that require an action. For example, routes
from all customers might be re-advertised to all the peers and providers. A few prefixes
from some customers might be AS-prepended three times when re-advertised to other
peers so that those routes are not preferred. Such different sets of routes are represented
by instances in our model. Thus, in order to identify distinct sets of routes that cause
certain actions in concert, we identify such sets of instances.

We formalize the algorithm in Fig. 3 and present an example in Fig. 4. In a policy
model G, we go over each property pj and figure out the set of instances Aj that are

 9
ij : j-th instance, pj : j-th property
Cij : A set of communities that are added in ij
Mpj : Matching condition of property pj in Boolean logic.
Gj,k : Policy model. Gj,k = 1 if ij is adjacent to pk. Otherwise, Gj,k = 0.
N : Number of new communities
cj : j-th new community
Ij : A set of instances that adds cj
Pj : A set of properties that match cj
h() : Hash function associated with a hash table. If h(A) > 0, set A is present in the hash table and h(A)=j where Ij = A.
Otherwise, h(A) = 0.

Empty the hash table.
N = 0;
for each property pj
 A = φ;
 for each instance ik
 if Gk,j = 1 then A=A∪{ik};
 if h(A) = 0 then { // create a new community
 N = N + 1; h(A) = N;
 IN = A; PN = {pj};
 } else {Ph(A) = Ph(A)∪{pj};}

Figure 3. Algorithm that identifies distinct policies based on the come-from relationship.

p1p1

p2p2

p3p3

i1i1

i2i2

i3i3

(a)

(b)

G
A

B

p1p1i1 i1

p2p2

i1i1

i2i2

i3i3

p3p3

i1 if …, add B C i1 if …, add B C p1 if C or E, …p1 if C or E, …

(d)

(c)

i2 if …, add A D i2 if …, add A D

i3 if …, add A D i3 if …, add A D

p2 if B or C or D, …p2 if B or C or D, …

i1 if …, add A B i1 if …, add A B p1 if A, …p1 if A, …

i2 if …, add B i2 if …, add B

i3 if …, add B i3 if …, add B

p2 if B, …p2 if B, …

p3 if B, …p3 if B, …p3 if B or C or D, …p3 if B or C or D, …

Figure 4. An example of routing policies (as shown in (a)), the corresponding instance-property model (as
shown in (b)), decomposition by the come-from relationship (as shown in (c)), and the reproduced routing

policies (as shown in (d)).

adjacent to pj. Aj represents the routes that match the condition of pj and thus are subject
to the same action as described in pj. Among all such sets, we draw distinct sets, I1
through IN. These sets represent distinct sets of routes that take the same action. Each Ij
has its counterpart Pj, {pk: Ak=Ij}. For each pair (Ij, Pj), all the edges between (Ij, Pj)
belong to the same group and thus are assigned to the same community. In Fig. 4, there
are two distinct Ij’s, I1={i1} and I2={i1, i2, i3}. The corresponding Pj’s are P1={p1} and
P2={p2, p3}. The two routing policy groups use community A and B, respectively. The
edges in the original configuration (a) and the reproduced configuration (d) are the
same and thus the transformation is function-preserving. Note that each community
(group) in the reproduced configuration has a consistent meaning. In fact, a community
represents a “come-from” relationship: routes that come-from Ij take certain actions in
Pj as a unit.

Although we find that the majority of communities observe the come-from
relationship, this condition might not give the most meaningful decomposition for
every policy.

 10
TABLE I. SUMMARY OF ANALYSIS

Num. communities Num. LOC
Index

Before After Before After
1 293 (113) 8 9003 (8419) 2036
2 43 (4) 4 282 (184) 194
3 45 (14) 10 2756 (1443) 1409
4 11 (4) 4 227 (126) 126

Network 1 and 2 are regional providers, and Network 3 and 4 are national providers. The number of routers are (44, 6,
13, 11) and the number of peering relationships (distinct external neighboring ASs) are (133, 39, 414, 77). The numbers
in parentheses represent the numbers excluding dangling communities (as shown in Section IV.C) that do not create any
edge.

IV. EVALUATION
We implement and evaluate our algorithm for communities on configurations from

four different production networks. For each network, we analyze a particular snapshot
between March and April 2006. Additionally for network 1 and 2, we analyze monthly
snapshots for two years to see if communities generated by our algorithm for the first
snapshot could be reused over time. As shown in Table I,

• We reduce up to 90% of communities and 70% of community related
commands. If we do not consider communities that do not create any edge (Section C),
no reduction is possible for two networks because there is a simple set of policies, their
communities are well structured, or there have not been many changes.

• More than 70% of the communities are defined by the come-from policy. There
are a few exceptions and we address them in Section V.

• Most new communities are shown to be meaningful and reusable.
We describe implementation/experimental details in Section A and complexity

measures to evaluate the effectiveness of our method in Section B. We then present the
details of our results in Section C.

A. Experimental Setup and Implementation
First, we focus on simplification and restructuring of internal BGP communities

within one administrative domain. We do not consider communities that are intended
for use by external networks. However, this idea can be extended for multiple domains
in the same way. In addition, predefined standard communities such as no-export and
no-advertise are not subject to our simplification process.

Our implementation uses a configuration parser [6] developed for Cisco IOS and
Juniper JUNOS commands. We parse routing policies related to communities and
separate if-clauses into instances/properties in the format shown in Fig. 4(a). A property
has a condition in Boolean logic since communities are matched based on Boolean
operations (AND/OR/NOT). An instance has a list of communities attached by its
corresponding if-clause. Although a community can be deleted as well, for simplicity
we consider only the addition of communities. In the configurations from the four
networks, we find that deletion of communities, which is rarely used, is only used to
remove certain communities on routes received from/advertised to external networks.
Therefore, deletion of such communities does not influence the operations of
communities used within the administrative domain.

Fig. 5 shows an instance-property model representation for a configlet of Cisco IOS.
In line 1, neighbor 1.1.1.1 defines a BGP speaking neighbor with IP address 1.1.1.1.
route-map from_dora in applies a route-filter named from_dora in the inbound direction
of the BGP session with the neighbor. The route-filter from_dora is defined from line 4

 11

Configuration in Cisco IOS syntax:

1 neighbor 1.1.1.1 route-map from_dora in
2 neighbor 2.2.2.2 route-map to_toto out
3
4 route-map from_dora permit 10
5 match community LIST1
6 set community 1:200 1:300
7 !
8
9 route-map to_toto permit 10
10 match community LIST2
11 set community 3:500
12 !
13
14 ip community-list standard LIST1 deny 2:444
15 ip community-list standard LIST1 2:100
16 ip community-list standard LIST2 1:200 1:300
17 ip community-list standard LIST2 1:400

Instance-Property Model Representation:

i1 if …, add 1:200 1:300 i1 if …, add 1:200 1:300

i2 if …, add 3:500i2 if …, add 3:500

p1 if (not 2:444) and 2:100, …p1 if (not 2:444) and 2:100, …

p2 if (1:200 and 1:300) or 1:400, …p2 if (1:200 and 1:300) or 1:400, …
Figure 5. BGP configuration in instance-property model representation.

to line 7. The if-then clause is comprised of conditions followed by match and their
associated actions followed by set. If the conditions are met on a route, the actions take
place on the route and permit in line 4 allows the route to be redistributed. The number
10 after permit indicates the order of the if-then clause in a list of if-then clauses with
the same route-filter from_dora. In line 5, the match condition is a community list
named LIST1, defined in Line 14 and 15. The communities in LIST1 are compared with
the route in the order they appear. In line 14, deny 2:444 is a negation of community
2:444. Thus, LIST1 matches the route if the route does not contain community 2:444, but
contains 2:100. Similarly, there is another neighbor 2.2.2.2 with a route-filter to_toto
applied in the outbound direction. The route-filter matches a community list LIST2. Two
communities that appear on the same line means a logical AND. Thus, LIST2 matches a
route if the route contains both 1:200 and 1:300, or 1:400. Below the configlet, we show
its instance-property model. Instance i1 and property p1 represent the route-filter
from_dora, whereas i2 and p2 represent to_toto. The edge (i1, p2) indicates that routes
redistributed through from_dora will match to_toto. Juniper JUNOS configuration has a
similar condition-action structure. An if-then clause is comprised of from conditions and
then actions nested in one BGP policy term.

Note that an edge can also be created by other types of filters based on prefix or
AS-path attributes. In that sense, this model can be extended to a layered model with
edges that are made from communities, elaborated by conditions involving prefixes,
AS-path, and so forth. We do not consider such additional conditions in this paper.
However, we preserve the edges made from communities while we reassign
communities. Therefore, the edges will be correctly elaborated by other conditions that
are not considered in this process, and the underlying routing policies are left intact.

Although the example shows communities matched by their exact values,
communities can also be matched by regular expressions. We expand a regular
expression by listing communities that match the regular expression in logical OR. In
other words, if S is a set of communities that we consider for our clean-up process, and

 12
Set Match

Network 1/ in/ 1Network 1/ in/ 1

Network 2/ in/ 1

Network 2/ in/ 2Network 2/ in/ 2

Network 3/ in/ 1

Network 3/ in/ 2Network 3/ in/ 2

Network 7/ in/ 1Network 7/ in/ 1

Network 8/ in/ 1Network 8/ in/ 1

Network 9/ in/ 1Network 9/ in/ 1

Network 4/ out/ 1Network 4/ out/ 1

Network 4/ out/ 2Network 4/ out/ 2

Network 5/ out/ 1Network 5/ out/ 1

Network 5/ out/ 2Network 5/ out/ 2

Network 6/ out/ 1Network 6/ out/ 1

Network 6/ out/ 2Network 6/ out/ 2

Network 10/out/1Network 10/out/1

Network 11/out/1Network 11/out/1

Network 12/out/1Network 12/out/1

Network 13/out/1Network 13/out/1

(a) A diagram for the new community A

Set Match

Network 1/ in/ 1Network 1/ in/ 1

Network 2/ in/ 1

Network 2/ in/ 2Network 2/ in/ 2

Network 3/ in/ 1

Network 3/ in/ 2Network 3/ in/ 2

Network 7/ in/ 1Network 7/ in/ 1

Network 8/ in/ 1Network 8/ in/ 1

Network 9/ in/ 1Network 9/ in/ 1

Network 4/ out/ 1Network 4/ out/ 1

Network 4/ out/ 2Network 4/ out/ 2

Network 5/ out/ 1Network 5/ out/ 1

Network 5/ out/ 2Network 5/ out/ 2

Network 6/ out/ 1Network 6/ out/ 1

Network 6/ out/ 2Network 6/ out/ 2

Network 10/out/1Network 10/out/1

Network 11/out/1Network 11/out/1

Network 12/out/1Network 12/out/1

Network 13/out/1Network 13/out/1

Network 1/ in/ 1Network 1/ in/ 1

Network 2/ in/ 1Network 2/ in/ 1

Network 2/ in/ 2Network 2/ in/ 2

Network 3/ in/ 1Network 3/ in/ 1

Network 3/ in/ 2Network 3/ in/ 2

Network 7/ in/ 1Network 7/ in/ 1

Network 8/ in/ 1Network 8/ in/ 1

Network 9/ in/ 1Network 9/ in/ 1

Network 4/ out/ 1Network 4/ out/ 1

Network 4/ out/ 2Network 4/ out/ 2

Network 5/ out/ 1

Network 5/ out/ 2Network 5/ out/ 2

Network 6/ out/ 1

Network 6/ out/ 2Network 6/ out/ 2

Network 10/out/1Network 10/out/1

Network 11/out/1Network 11/out/1

Network 12/out/1Network 12/out/1

Network 13/out/1Network 13/out/1

(b) A diagram for the original community F

Network 1/ in/ 1Network 1/ in/ 1

Network 2/ in/ 1Network 2/ in/ 1

Network 2/ in/ 2Network 2/ in/ 2

Network 3/ in/ 1Network 3/ in/ 1

Network 3/ in/ 2Network 3/ in/ 2

Network 7/ in/ 1Network 7/ in/ 1

Network 8/ in/ 1Network 8/ in/ 1

Network 9/ in/ 1Network 9/ in/ 1

Network 4/ out/ 1

Network 4/ out/ 2Network 4/ out/ 2

Network 5/ out/ 1

Network 5/ out/ 2Network 5/ out/ 2

Network 6/ out/ 2Network 6/ out/ 2

Network 10/out/1Network 10/out/1

Network 11/out/1Network 11/out/1

Network 12/out/1Network 12/out/1

Network 13/out/1Network 13/out/1

Network 6/ out/ 1

Figure 6. Diagrams for new and original communities.

R is a regular expression, the matching condition is “if ∨(S∩R).” For example, if
S={1:100, 1:101, 1:200} and R=1:10(0|1), the matching condition is “if 1:100 or
1:101.”

There are ways to execute multiple if-clauses in series, such as continue in IOS,
and next term and next policy in JUNOS. However, we adhere to our representation of
one if-then clause. If multiple if-clauses are executed together at all times, our
algorithm will correctly identify them as belonging to the same group.

Finally, we use the following methods to see what a new community stands for. For
each new and old community, we display in which if-clause the community is set and
matched. In Fig. 6, a rectangle denotes an if-clause of the scenario in Fig.1. An if-clause
has the following format: “neighbor id (network name or AS number) / direction/
sequence number”. Below each of “Set” and “Match” are all 18 if-clauses. A bold-
faced if-clause below “Set” adds the community if the condition of the if-clause is
satisfied. A bold-faced if-clause below “Match” matches the community in the
condition of the if-clause. The position of each if-clause is fixed, and therefore it is easy
to compare two communities regarding which if-clause sets and matches the
communities. For example, Fig. 6(a) represents the new community A in Fig. 1(d), and
Fig. 6(b) the original community F in Fig. 1(c). The function of A subsumes that of F
since all the edges created by F is covered by A. When the number of if-clauses is large,
we can abstract the display. For example, we can merge if-clauses applied to the same
AS into one rectangle. In addition, we give information on whether we can apply any of
the methods in Section V to improve the understandability of communities based on the
come-from relationship.

B. Complexity Measures
We use two measures, the number of communities and the number of LOC (Lines

of Commands). The number of communities measures the total number of distinct
communities that are used internally within a network. This is analogous to the
vocabulary size [20], a software complexity measure that counts the number of unique
operators and operands. It reflects the size of search space when writing or reading a
command. As it becomes larger, the operator has to consider and compare more options
to configure a community, and the configuration becomes a more complex task. The
number of LOC is the sum of the number of individual communities used in
conditional/action clauses. This also has its counterpart, which counts the number of

 13

individual commands in software. The more places an operator needs to configure, the
more chance to make mistakes. This is especially true when we configure communities,
each of which can have dependencies and can impact tens to hundreds of BGP sessions.
Furthermore, our previous work [6,7] finds a number of community-related errors, such
as missing communities, using wrong communities and typos in a network where each
if-clause consists of more than five communities on average. Although different
communities might differ in terms of effort to configure and the number of mistakes,
we use these simple definitions because multiple studies validate their correlation with
the number of faults and development/maintenance time [20,21].

C. Results
Table I shows decreases in both the number of communities and the number of

LOC. The decrease is noticeable in Network 1 since it has been expanding as more
networks are added over the span of two years we studied and thus has gone through
many changes in the past. Reducing such measures means that the resulting
configuration files are shorter, but might not necessarily mean that the new set of
communities is meaningful and understandable. To answer this question, we examine
the configurations result of our scheme and identify how communities have changed in
the following subsections. Note that some redundancies are by design, and operators
can always keep certain original communities from being restructured. The operators
can either exclude the original communities from the analysis, or accept only a subset
of the new communities.

Each of the new communities either is equivalent to an original community, or
represents policies implemented by multiple communities in the original configuration.
Some of the new communities implement business relationships among transits, peers,
and customers, and others implement policies intended for traffic engineering. These
are common relationships found in a network, and configurations concerning
communities thus naturally can be reduced according to the unique units of these
relationships in a network.

Dangling Communities. The majority of communities that are removed by our
algorithm (180, 39, 31, and 7 communities from network 1, 2, 3, and 4, respectively)
are either added in some if-clause but never matched anywhere, or matched but never
added. We call these communities dangling communities since they refer to a certain
group, but do not form any edges in the instance-property model. These communities
are remains of old configurations when peering relationships end. Others are defined by
predicting later usage thus allowing operators to use the communities to deal with
modification in peering relationships or unforeseen problems in the future. However,
from our time-series analysis over a two-year period, we find that none of these
communities had been modified for actual usage. These communities should be used
only when they are needed. Lengthening the configuration with such communities
might make the configuration harder to understand, maintain, and more prone to errors.

Subset Communities. A few communities are removed since their functions are
subsumed by those of other communities. In other words, the edges created by each of
the removed communities are a subset of the edges created by another community. In
one network, particular routes are re-advertised to a peer based on the following
matching condition.

if (A and C1) or (A and C2) or (A and C3) or …

 14

Our algorithm detects that wherever A is attached, one of Ci’s is attached as well
and thus is able to simplify the condition as “if A.” Furthermore, we find that some of
the Ci’s is always ANDed with A in conditional clauses, but is never used separately
from A. Thus, not only the number of LOC is reduced, but the number of communities
as well.

There are possible reasons why such communities exist: i) when communities are
defined ad hoc, the dependencies created by communities and the policies implemented
previously are not fully considered, and ii) communities that are replaced by others are
not properly removed.

Combination of Communities. There are communities that can be combined
although none of them are functionally subsumed by one another. Such communities
either represent the same set of routes and match in different if-clauses, or involve
different routes and match in the same if-clauses. For example, three communities are
added by the same if-then clauses and thus represent the same set of routes. The
communities are used so that the routes are not re-advertised to three different networks
1, 2, and 3, respectively. Our algorithm combines the three communities as one by
matching and adding a single community instead of the three. Such combining does not
limit the flexibility of routing policies as long as we deal with the same set of routes. If
we no longer need to prevent the routes from being advertised to network 2, we can
simply remove the single community from the corresponding if-clause.

Equivalent Communities. Each of the other new communities (3, 4, 7, and 4
communities from network 1, 2, 3, and 4, respectively) is equivalent to an original
community. Although these communities do not contribute to the reduction, they do
present an important implication as the combined communities. This implication is that
the majority of routing policies comply with the come-from relationship. There are a
few exceptions, which we deal with in Section V.

Time-series Analysis. Finally, even though transforming a current configuration
into a concise form improves the readability, this does not guarantee that the number of
communities and LOC evolves in the same way as new configurations are added in the
future. Therefore, we perform an analysis on snapshots for two years (Network 1 and 2).
The result is encouraging, because it shows that configurations from a simple
transformation can still be evolvable over time. During the period, the networks add
and remove peering relationships periodically, and the overall number of relationships
grows by roughly 25%. We find that the reduced set of communities is sufficient for
this evolution. One or two communities are added and then deleted during the period to
accommodate temporary peering relationships that require unique routing policies.

V. DISCUSSION
In this section, we first go over a few cases where the number of communities/LOC

does not decrease when the new groupings reproduced by the come-from relationship
do not agree with the groupings in the original configurations. Since we believe that the
original groupings could be more meaningful, we present methods that restructure the
new groupings into the original groupings to improve the come-from relationship. We
then present other applications of our scheme.

 15

(b) A different partition with smaller sets(a) A come-from based grouping

i1 if …, add A B

i2 if …, add A B

in if …, add A B

p1 if A, …p1 if A, …

p2 if A, …p2 if A, …

pk if A, …pk if A, …

in+1 if …, add B

pk+1 if B, …

pk+2 if B, …

……

i1 if …, add A i1 if …, add A

i2 if …, add Ai2 if …, add A

in if …, add Ain if …, add A

p1 if A, …p1 if A, …

p2 if A, …p2 if A, …

pk if A, …pk if A, …

in+1 if …, add B

pk+1 if A or B, …

pk+2 if A or B, …

……

Figure 7. Specification with smllaer sets. The shaded instances and properties beong to community B. n, k ≫ 1.

(b) A different partition with smaller sets(a) A come-from based grouping

i1 if …, add A B

i2 if …, add A B

in if …, add A B

p1 if A, …p1 if A, …

p2 if A, …p2 if A, …

pk if A, …pk if A, …

in+1 if …, add A

pk+1 if B, …

pk+2 if B, …

……

i1 if …, add A i1 if …, add A

i2 if …, add Ai2 if …, add A

in if …, add Ain if …, add A

p1 if A, …p1 if A, …

p2 if A, …p2 if A, …

pk if A, …pk if A, …

in+1 if …, add A B

pk+1 if (not B) and A, …

……

pk+2 if (not B) and A, …

Figure 8. Specification with smllaer sets. The shaded instances and properties beong to community B. n, k ≫ 1.

Preference for Shorter Descriptions. The first case is related to the fact that a
shorter description could be more intuitive than a longer one. For example, “All but
routes from {network 1 and 2} are to be advertised to customers.” is more concise than
“Routes from {network 3, 4, 5, …, and n} are to be advertised to customers.” The
come-from relationship produces the latter grouping while the original configuration
uses the former. Although the situation that we describe here is not common, when it
happens, we observe a tendency towards using smaller I and P sets or fewer
communities.

One case involves a large number of instances that are adjacent to a large number
of properties and a few other instances that are adjacent to only a few of the properties.
For example, most customer-originated routes are re-advertised to all the peers except a
prefix that is re-advertised to only two of the peers. In Fig. 7(a), instance in+1 represents
the special prefix, and {pk+1, pk+2} represents the two peers. The algorithm based on the
come-from relationship identifies two distinct groups: i) IA={ij|1≤j≤n} and
PA={pj|1≤j≤k}, and ii) IB={ij|1≤j≤n+1} and PB={pk+1, pk+2}. However, the original
configuration has two different groups: i) IA′={ij|1≤j≤n} and PA′={pj|1≤j≤k+2}, and ii)
IB′={in+1} and PB′={pk+1, pk+2} as shown in Fig. 7(b). Note that the new IB′ set is much
smaller, i.e. |IB′ | ≪ |IB |, but {pk+1, pk+2} still receive routes from both {ij|1≤j≤n} and
{in+1} since {pk+1, pk+2} now belongs to PA′ as well as PB′. Although the two groupings
implement the same policy, the latter grouping uses a smaller set and thus has a fewer
number of LOC. The shaded vertices use community B, and the number of LOC in Fig.
7(b) is n-2 (≫1) less than that in Fig. 7(a). This accounts for increase of LOC from 184
to 194 in network 2. Two of the four communities represent the example policy and the
latter grouping reduces the number of LOC by ten.

We also observe a similar grouping with smaller sets when the few instances have
most of a large number of properties except a few properties. For example, most
customer-originated routes are re-advertised to all the peers except a prefix that is not
re-advertised to two of the peers. Fig. 8(a) illustrates the case. Note that the only
difference from Fig. 8(a) is that the special prefix in+1 belongs to community A, not B.
Fig. 8(b) shows an alternative grouping. The shaded vertices use community B, and the

 16

number of LOC in Fig. 8(b) is n-1 (≫1) less than that in Fig. 8(b). {pk+1, pk+2} do not
receive routes from in+1 through negating community B in their if-clauses.

The last case involves a community that can be specified by AND or OR of other
communities. This idea is generally applicable to grouping any element in a network
configuration where an instance/property set is an intersection/union of other
instance/property sets. In one network, transits and peers receive different sets of
customer routes, which produce two distinct policies and thus two communities C1 and
C2. There is a route collector to which both sets of customer routes are advertised. The
come-from relationship identifies the latter case as the third separate policy, whereas
the latter policy can actually be described as “C1 or C2.” Similarly, AND can be used
for a policy which is an intersection of other policies.

Finer Decomposition Based on Actions. We can further partition the policies
resulting from the come-from relationship in order to make their meanings clearer.
Assume that a set of prefixes P1 learned from external peers is either dropped or
received a lower preference at two different remote route filters. The come-from
relationship identifies the situation as one single policy, “come-from P1,” since the
prefixes always receive the same action as a unit. However, we can divide the policy
into two policies: i) “come-from P1 to be dropped,” and ii) “come-from P1 to receive a
lower preference.” Although operators can choose whichever way is more meaningful
and convenient, if the latter is used, one can easily extend our algorithm so that come-
from based policies are further partitioned according to the corresponding actions.

Misconfiguration Detection. While adding, removing, or modifying a
configuration, an operator can make numerous mistakes, especially when dealing with
communities that have a large number of dependencies. The operator may forget to
add/delete a community or add/delete a wrong community. Such a mistake produces an
additional policy distinct from the intended policies and thus stands out as a special
policy by our algorithm. We can automate the detection by using data-mining
techniques. For example, assume that the operator does not add a community to an if-
clause in a filter outbound to a customer network, and as a results, the customer does
not receive peer routes. Another community allows customer/transit routes to be
announced to all the customers. A priori association rules mining on the set of instances
Aj adjacent to each property pj raises the Aj set for the customer as a violation of the rule
“if customer/transits are in Aj, then peers are also in Aj”. This method is semantic based
on the instance-property model as opposed to the syntactic analysis. Thus, this method
can get around false negatives/positives caused by specifications that are syntactically
different but the same in their meanings.

VI. RELATED WORK
There is a significant amount of work done to help simplify network management.

We describe here the most relevant ones. [28] extracts routing policies from a network
configuration and groups the policies with similar export and import characteristics.
The goal is to display the routing policies to operators in a meaningful way, not to
reproduce a simplified configuration. [10,11,12] propose high-level configuration
languages for specific parts of a network configuration. NetPiler is language
independent and thus can also simplify a high-level specification of policies if the
policies can be grouped. Others have proposed new management architectures. The 4D
architecture [13] has a central decision plane that pushes instructions to each router

 17

including routing table/packet filter entries. In CONMan [14], protocol
implementations expose a simple and consistent interface to the management plane.
Even for these architectures, we believe that our method of transforming a
configuration into a simpler form would make the configuration easier to maintain.
[6,7,8,9] attempt to discover operator mistakes. A network configuration is compared
with a list of predefined rules. These are useful in detecting certain types of errors, but
do not remove the root causes of operator mistakes, such as the complexity or
redundancies in the configuration.

[23,24] use directed graphs where an edge represents a dependency between
network elements. The dependencies are used to trace the source of failures. NetPiler
use dependencies as properties and group instances according to the properties to
simplify the specification.

[16,17,18] study the utilization of the BGP community and categorize the usages.
[19] proposes a structured way of defining communities. One of several predefined
actions is encoded into a community value along with the BGP speakers associated
with the action. This removes the need to manually encode the actions in route filters.
NetPiler can complement this approach by reducing redundancies in the design.

Finally, our technique is similar to machine-independent optimization techniques
used by compilers, such as dead-code and common-subexpression elimination [25,26].
Their transformation is also function-preserving, but is intended to speed up a program
or to reduce the space taken by the compiled code, not to make the program easier to
understand.

VII. CONCLUSION
We present NetPiler, a way to transform a network configuration into a simpler

form, which is easier to read and update. NetPiler groups policies into a set of distinct
policies, and thus removing any duplicate specifications and combining specifications
that are unnecessarily decomposed. We demonstrate NetPiler for routing policies in
four production networks, especially the policies implemented by the BGP community
attribute, and show that up to 90% of communities and up to 70% of community-
related commands are reduced. We also run NetPiler for snapshots over two years and
show that the reduced set of communities can be reused and are sufficient for this
evolution.

The transformation is independent of configuration languages and is applicable to
any element in a network configuration if the element is configured with policies that
can be grouped into finite sets. We are currently exploring the application of NetPiler to
other elements of the network configuration. The first step is to include other constructs
of routing policies, including prefix and AS-path based filters. We then plan to apply
NetPiler to different types of elements. Packet marking/grouping is the most similar to
route tagging. Packets are classified according to their QoS classes by using if-clauses
(e.g., policy-map along with class-map is analogous to route-map in IOS) and are either
marked (e.g., DSCP (Diffserv Code Point), IP precedence value, MPLS EXP field,
Layer 2 CoS (Class of Service), etc.) or grouped in routing tables (e.g., QoS group in
IOS). Different actions are applied to different classes of packets. Other types of
elements to consider include packet filter, MPLS, and interface configurations.

 18

REFERENCES
[1] R. Mahajan, D. wetherall, and T. Anderson, “Understanding BGP misconfigurations,” in Proc. ACM
SIGCOMM, Aug. 2002.
[2] D. Oppenheimer, A. Ganapathi and D. Patterson, “Why do Internet services fail, and what can be
done about it?” in Proc. USITS, 2003.
[3] A. Wool, “A quantitative study of firewall configuration errors,” IEEE Computer, June 2004.
[4] “Evaluating high availability mechanisms,” Agilent Technologies White Paper, 2005.
[5] Z. Kerravala, “As the value of enterprise networks escalates, so does the need for configuraiton
management,” Enterprise Computing and Networking, Yankee Group, 2004.
[6] F. Le, S. Lee, T. Wong, H. S. Kim, and D. Newcomb, “Minerals: Using data mining to detect router
misconfigurations,” in Proc. ACM SIGCOMM Workshop on Mining Network Data, Sep. 2006.
[7] F. Le, S. Lee, T. Wong, H. S. Kim, and D. Newcomb, “Characterization and problem detection of
routing policy configurations,” CMU Technical Report, CMU-CyLab-06-010, 2006.
[8] N. Feamster and H. Balakrishnam, “Detecting BGP configuration faults with static analysis,” in Proc.
NSDI, May 2005.
[9] A. Feldmann and J. Rexford, “IP network configuration for intradomain traffic engineering,” IEEE
Network Magazine, 2001.
[10] C. Alaettinoglu, C. Villamizar, E. Gerich, D. Kessens, D. Meyer, T. Bates, D. Karrenberg, and M.
Terpstra, Routing Policy Specification Language (RPSL), RFC-2622, 1999.
[11] Y. Bartal, A. Mayer, K. Nissim and A. Wool, “Firmato: A novel firewall management toolkit,” ACM
Transactions on Computer Systems, 2004.
[12] T. Griffin, A. Jaggard, and V. Ramachandran, “Design principles of policy languages for path vector
protocols,” in Proc. ACM SIGCOMM, Aug. 2003.
[13] A. Greenberg, G. Hjalmtysson, D. Maltz, A. Myers, J. Rexford, G. Xie, H. Yan, J. Zhan, and H.
Zhang, “A clean slate 4D approach to network control and management,” ACM SIGCOMM Computer
Communications Review, vol. 35, no. 5, Oct. 2005
[14] Hitesh Ballani, Paul Francis, “CONMan: A step towards network manageability,” in Proc. ACM
SIGCOMM, Aug 2007
[15] D. Caldwell, A. Gilbert, J. Gottlieb, A. Greenberg, G. Hjalmtysson, and J. Rexford, “The cutting
EDGE of IP router configuration,” in Proc. HotNets-II, 2003
[16] M. Caesar and J. Rexford, “BGP routing policies in ISP networks,” IEEE Network Magazine, special
issues on inter-domain routing, Nov/Dec. 2005.
[17] O. Bonaventure and B. Quoitin, “Common utilizations of the BGP community attribute,” Internet
draft, draft-bonaventure-quoitin-bgp-communities-00.txt, work in progress, June 2003.
[18] B. Quoitin and O. Bonaventure, “A survey of the utilization of the BGP community attribute,”
Internet draft, draft-quoitin-bgp-comm-survey-00.txt, work in progress, February 2002.
[19] B. Quoitin, S. Tandel, S. Uhlig, and O. Bonaventure, “Interdomain traffic engineering with
redistribution communities,” Computer Communications Journal (Elsevier), vol. 27, no. 4, pp. 355-363,
Mar. 2004.
[20] H. Zuse, Software Complexity: Measures and Methods, Berlin: Walter de Gruyter, 1991.
[21] S. Alexandrov, “Reliability of Compex Services,” unpublished.
http://www.cs.rutgers.edu/~rmartin/teaching/spring06/cs553/papers/
[22] JUNOS Configurations Guides.
http://www.juniper.net/techpubs/software/junos/junos83/index.html
[23] P. Bahl et al., “Discovering dependencies for network management,” in Proc. Hotnets, 2006.
[24] Irene Katzela, and Mischa Schwartz, “Schemes for fault identification in communication networks,”
IEEE/ACM ToN, vol. 3, no. 6, Dec. 1995.
[25] A. V. Aho, R. Sethi and J. D. Ullman, Compilers Principles, Techniques, and Tools 2nd edition.
Boston, MA: Pearson Addison-Wesley, 1986.
[26] S. S. Muchnick, Advanced Compiler Design and Implementation. San Francisco, CA: Morgan
Kaufmann, 2005.
[27] J. W. Stewart, BGP4: Inter-Domain Routing in the Internet. Boston, MA: Pearson Assison-Wesley,
1998.
[28] K. Levanti, H. S. Kim, and T. Wong, “Intent-based analysis of network-wide routing policy
configuration,” in Proc. ACM SIGCOMM Workshop on Internet Network Management, Aug. 2007.

