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Abstract
We present a methodology for the automatic identification and delineation of germ-layer
components in H&E stained images of teratomas derived from human and nonhuman primate
embryonic stem cells. A knowledge and understanding of the biology of these cells may lead to
advances in tissue regeneration and repair, the treatment of genetic and developmental syndromes,
and drug testing and discovery. As a teratoma is a chaotic organization of tissues derived from the
three primary embryonic germ layers, H&E teratoma images often present multiple tissues, each
of having complex and unpredictable positions, shapes, and appearance with respect to each
individual tissue as well as with respect to other tissues. While visual identification of these tissues
is time-consuming, it is surprisingly accurate, indicating that there exist enough visual cues to
accomplish the task. We propose automatic identification and delineation of these tissues by
mimicking these visual cues. We use pixel-based classification, resulting in an encouraging range
of classification accuracies from 74.9% to 93.2% for 2- to 5-tissue classification experiments at
different scales.
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1. INTRODUCTION
The biology of embryonic stem (ES) cells holds great potential as a means of a1dvancing the
research of tissue regeneration and repair, the treatment of genetic and developmental
syndromes, and drug testing and discovery [1-3]. By understanding the mechanisms through
which ES cells differentiate into tissue, we can further our understanding of early
development. The qualities of an ES cell that set it apart from other cells are its ability to
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self-renew, perpetuate indefinitely, and produce the three germ layers from which all tissue
is derived (pluripotency). In typical laboratory situations, ES cells are defined by the
proteins they express and their behavior in culture. Human and nonhuman primate cells are
different in that they cannot be considered ES cells until they are able to produce a teratoma
tumor when injected into immunocompromised mice. A teratoma is strictly defined by
histological evidence of tissues derived from each of the three primary germ layers of
ectoderm, mesoderm, and endoderm. Initial observation of a teratoma, after hematoxylin and
eosin (H&E) staining and imaging, reveals a mass of individual germ-layer components
whose underlying organization is unclear (see Figure 1 for examples). Quantitative
knowledge of the contribution and organization of the germ layers may provide significant
insight into normal and abnormal development. To accomplish this task, the tissues present
need to be first identified and delineated. While visual identification of these tissues is time-
consuming, it is surprisingly accurate, indicating that there exist enough visual cues to
accomplish this task. We propose automatic identification and delineation of these tissues by
mimicking these visual cues.

There is a growing demand for image analysis to aid both clinical and research applications
in pathology, such as the determination of the absence or presence and severity of cancers
such as breast and prostate cancer. These problems are either binary classification tasks
(malignant or benign), or continuous-state assignments (grading of severity of cancer) [4-7],
and consider single-class images precluding the need for segmenting the image into regions
of interest (ROIs). A less common application is the classification of tissues in normal
human systems [8]. Such applications take advantage of the known organization and
relationships between different tissues in a given human system.

Our task is significantly more challenging due to the chaotic nature of teratomas. Unlike
cancer detection/grading applications, our task is a multi-class problem that requires
segmentation of any given image into ROIs, each of which contain only one tissue that must
then be identified. Unlike classification of tissues in normal human systems, teratomas do
not present any known regular organization or relationships between tissues. As a result, the
identification and delineation of tissues in H&E stained images of teratomas is a rather
general classification problem.

Other teratoma-specific challenges include occasional low intra-class similarity (one tissue
type presents itself in many ways) and high inter-class similarity (multiple tissue types often
have similar appearances) as shown in Figure 1. Additionally, since teratomas are masses of
maturing tissue, the exact manifestation of a tissue changes depending on the age of the
teratoma, introducing within each tissue type a series of subtypes with some common
features, but also specific ones unique to the maturation stage.

We propose an algorithm for high-resolution classification of H&E images to automatically
identify and delineate tissues. We create a set of scalable image features we term
histopathology vocabulary (HV) to mimic the visual cues used by experts to perform this
task. We implement these features in a multiscale fashion to describe and classify a given
image at any given scale. Given increasingly finer scales, the resulting classifications will
provide increasingly sharper delineations of tissues.

Classification of Single-Tissue Images
Our previous work focused on classification of single-tissue images in an effort to gauge the
feasibility of developing an automated classification algorithm [9] with accuracy of 88% in a
6-tissue problem. As this algorithm classifies only single-tissue images, it requires
segmentation when presented with multiple-tissue images. To automate the entire algorithm,
we must automate segmentation as well.
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We argue that our problem cannot be solved as segmentation followed by classification, but
instead as a joint process. Many segmentation algorithms focus on performing segmentation
based on apparent visual similarity or dissimilarity of regions, and are insufficient to
segment teratomas into single-tissue ROIs. In addition to visual cues, there are textural and
structural cues that must be included to achieve the level of segmentation we require.
However, by using these cues, the distinction between segmentation and classification is
lost, and thus, accurate segmentation of teratomas into single-tissue ROIs is identical to
identification and delineation of tissues present in the teratoma, which is our focus in this
work.

2. HIGH-RESOLUTION CLASSIFICATION
We begin by formalizing our notion of high-resolution classification of an image. Given an
image I of size M×N, our goal is to assign a label to every one of a set of disjoint regions of
size w that partition the image. For simplicity we only consider square regions. We will
determine the function

(1)

where xn and yn are the coordinates of the center of the nth disjoint region of size w in I,
while cn ∈ {1,2, … , C} is the class (tissue) label associated with the region such that

(2)

where xn,i and yn,i are the coordinates of all pixels in the nth region, that is, all pairwise
combinations of xn,i ∈ {xn − w, … , xn + w} and yn,i ∈ {yn − w, … , yn + w}. The highest
possible resolution we can consider is when w = 0 resulting in a separate classification of
every pixel and the sharpest delineations of tissues. While we could sacrifice some
sharpness by decreasing the resolution to gain computational efficiency and possibly
increased resolution-specific accuracy, we choose not to do so as it would require a
partitioning of the image into disjoint regions. Such regions may not always align
themselves well to the actual contours of the tissue regions and thus reduce the accuracy of
our delineation. We refer to high-resolution classification as pixel-level classification.

Typically, pixel-level classification cannot be accomplished by looking at pixels in isolation,
but rather with respect to their local neighborhood at a given scale (the size of the
neighborhood). We consider multiple scales for many reasons, the most important being that
a tissue is a collection of very local organization and appearance, in conjunction with
typically medium-scale organization. Thus, we extract features from a pixel using the pixel
itself and its local neighborhood; we call these features local features.

We must now determine which local features to use. As we are trying to mimic those visual
cues used by experts, it is crucial to agree upon a common set of terms describing the
features that are understood by both pathologists and engineers. We address this issue by
developing such a set of terms we term histopathology vocabulary (HV), which we discuss
next.

Histopathology Vocabulary
The purpose of the HV is to provide a set of terms, understood by both pathologists and
engineers, to concisely and accurately describe the cues (visual, structural, etc.) used by
pathologists, and thus guide our feature design. Additionally, these features should be robust
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and accurate mimicking the experts who are able to repeatedly and accurately perform the
task.

Creation of the HV is simple and the basic formulation is not limited to this application only.
While the formulation below is by no means unique or new, it is rarely used. We now list
the basic steps of the HV formulation in the context of our application:

1. The pathologist describes (in as simple terms as possible) and ranks, in order of
discriminative ability, the cues (visual, structural, etc.) used to manually identify
each tissue type.

2. The engineer takes the pathologist’s descriptions and translates them into terms
with a clear computational synonym, but still in terms that are understandable by
the pathologist.

3. The engineer describes tissue types using only the translated terms; the pathologist
then attempts to identify the tissue types based only on the engineer’s descriptions.

4. Terms that allow the pathologist to identify tissue types are included in the HV.

Using this formulation we have created an HV consisting of the following 10 terms:
background/fiber color, lumen density, nuclei color, nuclei density, nuclei shape, nuclei
orientation, nuclei organization, macro shape, cytoplasm color, and background texture. We
have currently implemented the first 4 terms as local features and the experiments in this
work use these 4 local features.

We now briefly describe each of our initial 4 features. Background/fiber color is the
apparent/average color of a pixel/region not belonging to nuclei, cytoplasm, or lumen
(regions to which none of the H&E stains bonded to), described using RGB values. Lumen
density is the percentage of a given area occupied by lumen resulting in a scalar value
ranging in value from 0 to 1. Nuclei color is the apparent/average color of a pixel/region
belonging to nuclei, again described using RGB values. Nuclei density is analogous to
lumen density but now for nuclei. For any given pixel, we will have an HV feature vector of
length 8 (3 for each color feature and 1 each for density features) that concisely describes
much of the identity of the various tissue types.

HV Features
We now describe the implementation of our HV features. A given image first undergoes
H&E stain separation [8] resulting in a hematoxylin-stain image (H) and an eosin-stain
image (E). Using these stain images, we create three binary masks representing the portions
of the image belonging to nuclei, lumen, and background. Nuclei are identified by simply
thresholding H to find sufficiently saturated regions which typically correspond to nuclei.
Lumen is identified as regions where there is little contribution from either stain, and
background is then determined as those regions not belonging to either nuclei or lumen.

Given these binary masks, we compute the HV features locally and at every pixel location
efficiently using filters. We must first consider the size (support) of the neighborhood
around each pixel and the weighting we use for each pixel in the neighborhood. Typically,
both the support and weighting of the neighborhood are dictated by a single filter. The
filter’s nonzero positions and values effectively determine which pixels belong to the
neighborhood and how much each contributes to the feature. However, simple filtering of
masked images will suffer from inclusion of the artificial effect of the mask itself. For
example, when computing the local nuclei color, given a sufficiently large neighborhood, we
will likely include in it regions which do not include any nuclei. As it is not desirable to
include the effect of these “black” regions on the computed nuclei color, we could iteratively
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address each nuclei pixel and use values in its neighborhood that are identified as nuclei, at
the cost of losing the computational advantages filters offer.

We propose to use a pair of filters to avoid these artifacts. We define a pixel-count filter that
merely filters the binary mask of interest (for example, the nuclei mask) with a flat (all 1’s)
filter whose spatial support dictates the neighborhood to be considered. The result is an
image where the value at any pixel is the number of on (nonzero) pixels in the mask in that
neighborhood. Similarly, we filter the masked image (for example, nuclei-only image) with
a pixel-value filter whose values specify the spatial weighting to be applied in the
neighborhood. The result is an image where the value at any pixel is the spatially-weighted
sum of the on values of the masked image. Given these two images, we proceed to perform a
pointwise division with the pixel-count result dividing the pixel-value result. The result is an
image where each pixel’s value is the spatially-weighted sum of only the on pixels
belonging to the mask. Using this formulation, we can quickly extract all 4 HV features for
every pixel in the images.

Classifier Training
After generating HV features, we train and test a classifier to evaluate the efficacy of our
features in the scope of pixel-level resolution. As the focus of our work is not the design of
new classification algorithms, we use available algorithms, specifically, neural networks
(NN) trained using backpropagation. Our use of NNs is motivated by our success using them
in our previous work [9]. However, it is unclear whether or not existing classification
algorithms are sufficiently powerful for this problem.

We now train our selected classifier over a set of training data. Since we are using pixels as
our fundamental unit of data we have an over-abundance of data. It is, in fact,
computationally infeasible to use all available data while training certain classifiers
including NNs. Thus, given a set of training images, we must decide how many and which
pixels from each training image to use. This is essentially an issue of overfitting, but not
necessarily to the entire dataset but rather to the individual images. If we choose too many
pixels from one image we risk learning the specific instances of tissues in that image as
opposed to the tissue in general. Conversely, if we choose too few pixels we may not learn
enough about the specific instances to account for its particular variations. Moreover,
choosing many pixels from one image is not necessarily useful since spatially adjacent
pixels are often highly correlated. However, there are instances where neighboring pixels
within a tissue present very different appearances and thus potentially discriminative
information. We will address this complex issue in future work; here, we choose to use
random sampling of pixels within an image to create our training data.

3. EXPERIMENTS AND RESULTS
We now present experiments and results which will evaluate the effectiveness of the overall
algorithm while focusing on the influence of the HV features on performance.

Dataset
Teratomas are derived and serially sectioned as in [9], then H&E stained and imaged at 4X
magnification resulting in 36 1600×1200 images. 15 tissues appear in these images although
the exact number of instances of each tissue varies greatly.

Experimental Setup
We evaluate our algorithm in a series of 2-, 3-, 4-, and 5-tissue/class problems (see Table 1).
Bone (B) and cartilage (C) are present in all experiments as they are relatively easily
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discriminable, while additional classes test the ability of the algorithm to maintain separation
as the size of the problem grows.

In each problem we choose training and testing sets by first choosing 50% of images with
relevant tissues for training. From each of these training images we randomly sample 1% of
available pixels from each available relevant tissue. We insure that each tissue is present in
at least one training image. The testing set is all available pixels of the relevant images not
being used for training. Local HV features are computed for all pixels in the training and
testing set. Both the pixel-count and pixel-value filters are flat circular filters of different
radii of 4, 8, 16, and 32 pixels. A 2-layer NN is trained and then tested. We perform 10-fold
cross-validation and report average accuracy for each experiment.

Results
We present the best results for each experiment (Table 1), differentiated by the particular set
of HV features used (different scales), indicating the apparently preferred scale of each
tissue. We present the tissue-specific accuracy as all tissues do not have an equal number of
available samples and presenting an overall accuracy would misrepresent the performance of
the algorithm.

We also present an example confusion matrix from the 5-tissue problem to indicate the scale
of the problem and the sources of error in Table 2. To illustrate the delineation of tissues
accomplished, Figure 3 shows the labeling of one image from each of the problems.

4. CONCLUSIONS AND FUTURE WORK
We presented a methodology for automatic identification and delineation of germ-layer
components in H&E stained images of teratomas derived from human and nonhuman
primate embryonic stem cells. Our results demonstrate that our simple and concise HV
features are reasonably sufficient for problems of these sizes, and that given a relatively
small amount of training data we are able to characterize a large portion of unseen data.
While particular tissues are not as well represented by the 4 HV features, we believe this
will be remedied once a full set of 10 HV features is used to cover all structural cues.

In future work, we will focus on developing the full HV set, as well as creating a method
with which to choose pixels from a set of training images. Additional classifiers will be
tested and formulated in a hierarchical/tree structure that will allow us to perform a type of
taxonomic classification of tissues. We will also develop quantitative metrics with which to
describe tissues in the pursuit of understanding the underlying biology of ES cells.
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Figure 1.
H&E stained teratoma images at different magnifications; outlined in black are specific
tissues (a, b) bone at 4X, (c) striated muscle at 10X, and (d) myenteric plexus at 10X.
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Figure 2.
HV feature-extraction methodology.
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Figure 3.
Top to bottom: Example delineations of tissues for 2-, 3-, 4-, and 5-class problems
respectively. Left to right: Original image, expert-labeled ground truth, our algorithm’s
labeling. Color coding: B (light blue), C (cyan), I (yellow), N (orange), F (maroon), other
tissues (dark blue).
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