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Abstract
The local histogram transform of an image is a data cube that consists of the histograms of the
pixel values that lie within a fixed neighborhood of any given pixel location. Such transforms are
useful in image processing applications such as classification and segmentation, especially when
dealing with textures that can be distinguished by the distributions of their pixel intensities and
colors. We, in particular, use them to identify and delineate biological tissues found in histology
images obtained via digital microscopy. In this paper, we introduce a mathematical formalism that
rigorously justifies the use of local histograms for such purposes. We begin by discussing how
local histograms can be computed as systems of convolutions. We then introduce probabilistic
image models that can emulate textures one routinely encounters in histology images. These
models are rooted in the concept of image occlusion. A simple model may, for example, generate
textures by randomly speckling opaque blobs of one color on top of blobs of another. Under
certain conditions, we show that, on average, the local histograms of such model-generated-
textures are convex combinations of more basic distributions. We further provide several methods
for creating models that meet these conditions; the textures generated by some of these models
resemble those found in histology images. Taken together, these results suggest that histology
textures can be analyzed by decomposing their local histograms into more basic components. We
conclude with a proof-of-concept segmentation-and-classification algorithm based on these ideas,
supported by numerical experimentation.
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1. Introduction
A local histogram of an image is a histogram of the values of the pixels that lie in a
neighborhood of a given pixel’s location. It indicates the particular combination of pixel
intensities or colors that appear in that neighborhood. When used as features in an image
classification scheme, such histograms can help distinguish one texture from another. We, in
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particular, use them in automated segmentation-and-classification algorithms for digital
microscope images of biological tissues.

To be precise, the work presented here was motivated by the need to identify and delineate
the various tissues exhibited in images of histological sections of teratoma tumors derived
from embryonic stem cells, such as the one given in Figure 1(a). This image was provided
by Dr. Carlos Castro of the University of Pittsburgh and Dr. John A. Ozolek of the
Children’s Hospital of Pittsburgh, who grow and image such teratomas to gain greater
insight into tissue development. In this image, which is purple-pink from hematoxylin and
eosin (H&E) staining, even a layman can discern several distinct textures, each
corresponding to a distinct tissue type. For each image under study, Drs. Castro and Ozolek
make use of their years of medical training and experience to identify what tissues are
present, and to what degree. Moreover, when provided with a point-and-click interface, they
can manually segment the image according to tissue type, resulting in per-pixel labels such
as those given in Figure 1(b). Though straightforward for medical experts, such tasks are
nevertheless tedious and time-consuming, leading to inconsistencies when working with
large data sets. It is therefore our goal to automate as much of this process as is possible.
Our current algorithm is given in [1] and builds upon previous work given in [2, 4, 14].

Our use of local histograms was motivated by the unique image features found in histology
images of teratomas derived from primate embryonic stem cells. In layman’s terms, these
tumors begin as masses of undifferentiated cells that are implanted in laboratory animals.
Over time, these tumors grow and their cells differentiate into many various types—bone,
cartilage, skin, etc.—until a point at which they are excised, sectioned, stained and viewed
under a microscope, resulting in images such as the one in Figure 1(a). As such, these
images exhibit a wide variety of tissue types, arranged in a seemingly random fashion.
Indeed, to a casual observer such images can appear as a jumbled mess. In truth however,
the arrangement of these tissues is not completely random, and is rather the result of not yet
well-understood biological mechanisms. Drs. Castro and Ozolek believe that by looking at
many such images—many sections of many teratomas—they can gain greater insight into
these mechanisms. Here, spatial context is crucial: one must identify which particular tissue
is present at any given point in order to estimate the total amount of each type, as well as the
degree to which any given type is adjacent to other types.

In light of these facts, we seek an algorithm which assigns a tissue label to each pixel,
thereby segmenting (delineating) and classifying (identifying) the image at the same time.
Indeed, such an algorithm would be useful in a broad class of digital pathology applications
beyond the teratoma problem [1]. While designing such an algorithm, we must keep in mind
that often no single pixel contains enough information to uniquely determine a label. Rather,
the decisions will be made based on features computed over some fixed neighborhood of
every given pixel location. To determine which specific features to use, it helps to have a
closer look at each individual tissue. For example, for the 1200 × 1200 image given in
Figure 1(a) and thumbnailed in Figure 2(a), we zoom in on three tissue types—cartilage,
connective tissue and pseudovascular tissue—resulting in the 128 × 128 subimages given in
Figure 2(b), (c) and (d), respectively. Each of these three tissue types exhibits a unique
aperiodic texture. For instance, the cartilage texture can be regarded as a light purple field
speckled with darker reddish-purple blobs; each blob represents an individual cell’s nucleus.
Meanwhile, connective tissue appears as dark purple blobs over a light pink field;
pseudovascular tissue is similar to connective tissue, but contains additional reddish-pink
structures. In particular, these three textures exhibit distinct distributions of color, a fact
which can quantitatively be confirmed by computing the two-dimensional histograms of
their red-blue (RB) pixel value pairs, as depicted in Figure 2(f), (g) and (h).
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As certain tissues can be distinguished from others based solely on the distributions of their
pixel values, we propose to use histograms as image features in a segmentation-and-
classification scheme. These histograms must be computed locally—over a fixed
neighborhood of every pixel location—since global histograms, such as the one depicted in
Figure 2(e) derived from Figure 2(a), destroy spatial context by mixing all of the individual
distributions together. A similar issue arises in time-frequency analysis: spectrograms
preserve spatial context while Fourier transforms do not. Indeed, local histograms are
philosophically similar to spectrograms: in a neighborhood of a given point, the local
histogram transform estimates the frequency of occurrence of a given value while the
spectrogram estimates frequency in the traditional sense.

The purpose of this paper is to provide a mathematically rigorous justification for the use of
local histograms in this fashion. To be precise, we regard our images as functions from a
finite abelian group  of pixel locations into a second finite abelian group  of pixel values.
That is, our images f are members of the set ℓ( , ) := {f :  → }. For example, the 1200

× 1200, 8-bit red-green-blue (RGB) image given in Figure 1(a) has 

and , where ℤN denotes the cyclic group of integers modulo N. For purple-pink
H&E-stained images, we often omit the green channel for the sake of computational

efficiency, at which point  becomes . The local histograms of an image f are defined in
terms of a weighting function, that is, a nonnegatively-valued w ∈ ℓ( , ℝ) whose values
sum to one. Specifically, the local histogram transform of f with respect to w is the function
LHw f :  ×  → ℝ,

(1)

where δy(f (x + x′)) = 1 if f (x + x′) = y and is otherwise zero. For any fixed x ∈ , the
corresponding cross-section of this function, namely (LHw f)(x, ·) :  → ℝ, counts the
number of instances at which f obtains a given value y in a w-neighborhood of x.

In this paper, we show that local histogram transforms (1) are well-suited to the analysis of a
particular class of textures. In short, we want a rigorous explanation of the following
hypothesis: say for the sake of argument that 80% of the cartilage texture in Figure 2(b)
consists of “background” light purple pixels while the remaining 20% of pixels lie in a
“foreground” of darker-reddish purple blobs; we then expect a local histogram computed
over a portion of cartilage to be a mixture—convex combination—of 0.8 of the background
pixels’ distribution with 0.2 of the foreground pixels’ distribution. Other tissues arise from
other distinct decompositions. For example, looking at the pseudovascular tissue of Figure
2(d), we might guess it to be 0.5 light pink, 0.25 dark purple and 0.25 reddish-pink. We
rigorously show that such decompositions of local histograms indeed exist for textures
arising from a certain class of probabilistic image models; our long-term goal is to exploit
this fact in a segmentation-and-classification algorithm.

To see how to formalize these ideas, it helps to consider a toy example: imagine that at any
given pixel location, a coin is flipped, with “heads” resulting in a pink pixel value, and
“tails” resulting in a purple one. One expects that, on average, the local histogram at any
point will consist of two peaks: one in the pink portion of , and one in the purple. Such an
image can be regarded as the result of occluding a solid purple image f0 with a solid pink
one f1: at each pixel, the flip of a coin determines whether f1 lies on top of f0 at that point, or

vice versa. More generally, the occlusion of a set of N images  in ℓ( , ) with respect
to a given label function ϕ ∈ ℓ( , ℤN) is:
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(2)

That is, at any pixel location x, the label ϕ(x) determines which of the potential pixel values

 actually appears in the composite image  at that point.

The main results of this paper are concerned with when the local histograms (1) of a
composite image (2) are related to the local histograms of the individual fn’s. Though it is
unrealistic to expect a clean relation for any fixed ϕ, we can show that these quantities are
indeed closely related, provided one averages over all possible label functions ϕ. Indeed,
denoting the probability of getting “heads” in the above toy example as ρ ∈ [0,1], we would
expect the volumes of the pink and purple peaks of the composite image’s local histograms
to be ρ and 1 − ρ, respectively. That is, LHwoccϕ{f0, f1} should be (1 − ρ)LHw f0 + ρLHw
f1, on average. We generalize this idea so as to permit more realistic textures with more
colors and with spatially-correlated pixels.

To be precise, fix a set of source images  and consider the set  of
all possible composite images (2) obtained by letting ϕ be any one of the N| | elements of ℓ
( , ℤN), where | | denotes the cardinality of . We refer to a random method for choosing
one of these composites as an occlusion model Φ. Formally speaking, Φ is a random
variable version of ϕ, meaning there exists a probability density function PΦ : ℓ( , ℤN) →
[0, 1] such that Σϕ∈ℓ( , ℤN) PΦ(ϕ) = 1. For example, imagine three 128 × 128 images f0, f1
and f2 which exhibit a nearly constant shade of pink, purple and red, respectively. Given any

label function  we can produce a corresponding 128 × 128 composite image
occϕ{f0, f1, f2} whose pixels are some mixture of pink, purple and red. For some choices of
ϕ the resulting composites will look like the pseudovascular tissue texture given in Figure
2(d). However, even in this small example, there are an enormous number of such possible
composites—one for each of the 31282

 possibilities for ϕ—and only a few of these will look
like pseudovascular tissue; most will appear as pink-purple-red static. The role of the
occlusion model Φ is to assign a probability to each of these possible ϕ’s in a manner that
emphasizes those textures one expects to appear in a given tissue while de-emphasizing the
rest. That is, one particular choice of Φ will generate textures that look like pseudovascular
tissue (Figure 2(d)). Another choice of Φ will lead to cartilage-like textures (Figure 2(b)).
Most Φ’s will generate textures that look nothing like biological tissues.

In this paper, we provide a sufficient hypothesis on the occlusion model Φ so as to ensure
that the local histograms (1) of a composite image (2) can, on average with respect to PΦ, be
decomposed in terms of the local histograms of the individual images. In particular, we
focus on the special case where the occlusion model Φ is flat, meaning that on average, the
probability that Φ chooses label n at a given pixel location x is equal to the probability of

choosing n at any other x′; formally, Φ is flat if there exists scalars  such that:

(3)

That is, Φ is flat if the marginal distributions obtained by fixing any given x ∈  are

identical. Note that for any fixed x ∈ , summing (3) over all n yields that .
Indeed, at any given pixel location x, the value λn represents the probability that the random
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label function Φ will have label n at that x. In our toy example where the values of ϕ are
determined by | | spatially-independent coin flips, the probability of getting any particular
ϕ ∈ ℓ( , ℤ2) is PΦ(ϕ) = ρ|ϕ−1{1}| (1 − ϕ)| |−|ϕ−1{1}|; substituting this expression into (3), the
binomial theorem implies that this model is indeed flat with λ0 = 1 − ρ and λ1 = ρ. Note
that, if , the resulting random image occΦ{f0, f1} will be more pink than purple; flatness
does not mean that each label is equally likely, but rather that the chance of being pink at
any given pixel location is the same as at any other location. These concepts in hand, we
present one of our main results, which formally claims that, on average, the local histograms
of composite images produced from flat occlusion models are but mixtures of the local
histograms of the source images:

Theorem 1
If Φ is flat as in (3), then the expected value of the local histogram transform (1) of a
composite image (2) is a convex combination of the local histograms of each individual
image:

(4)

From the point of view of our motivating application, the significance of Theorem 1 is that it
gives credence to a certain type of segmentation-and-classification algorithm. To be precise,
given a set of training images which are manually segmented and labeled by medical
experts, we, for any given tissue type, can compute local histograms over regions which are
labeled as that type. In light of Theorem 1, it is reasonable to demix—decompose into
convex combinations—the local histograms of that type into a set of more basic
distributions. For example, we expect that the local histograms of pseudovascular tissue
(Figure 2(d)) can be demixed into three simpler distributions—one pink, another purple and
a third reddish-pink—while those of connective tissue (Figure 2(c)) are mixtures of only the
first two. Once sparse demixings of each tissue type have been found, we then use them to
segment and classify: given a new image, we assign a label at any given point by
determining which particular set of learned distributions its local histogram is most
consistent with.

The remainder of our main results are in support of this interpretation of Theorem 1.
Specifically, the next section contains several basic results on local histograms. In Section 3,
we prove Theorem 1 and also a generalization of it—Theorem 4—to the non-flat case. In
Section 4, we provide various methods—Theorems 5, 6 and 7—for constructing flat Φ’s,
and some of these produce textures that resemble those found in digital microscope images
of histological tissues. The final section discusses a preliminary segmentation-and-
classification algorithm inspired by Theorem 1 in which local histograms are decomposed
using principal component analysis (PCA).

Both local histograms and probabilistic image occlusion models have long been subjects of
interest. Theorem 2 below details how local histograms can be computed as systems of
convolutions; a similar result is given in [8], and both [8] and [18] discuss how such a
computation can be implemented in optical hardware. Recently, local histograms have been
used in an active contour-based segmentation scheme [16]; this algorithm partitions an
image into two smoothly bounded regions whose pixel values are maximally separated with
respect to the Wasserstein (earth mover’s) distance. Local histograms have also recently
been used as smoothing filters [7]. Though the work we present here focuses exclusively on
local histograms of the pixel values themselves, an alternative approach is to first pass the
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image through a filter bank and then compute histograms of the resulting values [6, 12].
Local histograms, like time-frequency transforms, preserve global spatial context while
obscuring all local spatial context, and as such they are well-suited to the processing of
locally orderless images [5, 9, 10]. We use local histograms to analyze a class of textures
generated by a certain probabilistic occlusion model; this model, like the dead leaves model
[3, 11, 15], generates these textures via a sequential superposition of random sets. Our
contribution to this body of literature is a formalism that unifies the theory of local
histograms with that of occlusion models and permits us to rigorously prove that local
histograms are indeed a useful transform for the analysis of a particular class of textures.

2. Local histograms
In this section, we discuss an efficient means of computing local histograms (1) and discuss
several of their basic properties. Computing local histograms can be time consuming,
especially as  and  become large. In particular, for a general window w, a direct
computation of (1) requires (| |2| |) operations: (| |) operations for each x ∈  and y
∈ . A more efficient method is given in Theorem 2 below: (1) can be computed as a
system of | | convolutions over , which only requires (| || |log | |) operations if
discrete Fourier transforms are used. In particular, we filter the characteristic function of the
graph of f, namely 1f :  ×  → ℝ,

(5)

with the reversal of w ∈ ℓ( , ℝ), namely w̃ (x) := w(−x). This method for computing local
histograms is illustrated in Figure 3. Alternatively, (1) can be computed as a single
convolution over  × ; here, the tensor product of w ∈ ℓ( , ℝ) with ω ∈ ℓ( , ℝ) is
defined as w ⊗ ω ∈ ℓ(  × , ℝ), (w ⊗ ω)(x, y) := w(x)ω(y).

Theorem 2
For any w ∈ ℓ( , ℝ), ω ∈ ℓ( , ℝ), f ∈ ℓ( , ), x ∈ , and y ∈ :

a. Local histograms (1) can be evaluated as a system of | | convolutions over :
(LHw f)(x, y) = (w̃ * 1f−1{y})(x).

b. Alternatively, (1) may be computed as a single convolution over  × : (δ0 ⊗ ω) *
LHw f = (w̃ ⊗ ω) * 1f. In particular, taking ω = δ0 gives LHw f = (w̃ ⊗ δ0) * 1f.

Proof—For (a), replacing x′ with −x′, and substituting the relation δy(f (x − x′)) =
1 f−1{y}(x − x′) into (1) yields:

(6)

For (b), the definition of δ0 gives:

(7)

Substituting (6) into (7) and using (5), gives our result:
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The next result summarizes several other basic properties of local histograms, the proofs of
which are given in [13].

Proposition 3
For any w ∈ ℓ( , ℝ) and f ∈ ℓ( , ):

a. The levels of a local histogram transform sum to 1: for any x ∈ , Σy ∈ (LHw f)
(x, y) = 1.

b. Local histograms commute with spatial translation Tx: for any x ∈ , LHwTx =
T(x,0), LHw.

c. Adding constants to images shifts their local histograms along : for any y ∈ ,
LHw(f + y) = T(0,y)LHw f.

d. Quantizing an image will bin its local histograms: for any q ∈ ℓ( , ),

This basic understanding of local histograms in hand, we turn to the theory of applying them
to textures generated by the probabilistic image occlusion models discussed in the
introduction.

3. Local histograms of randomly-generated textures
In this section, we rigorously confirm our intuition regarding local histograms of textures
generated via random occlusions: if a texture, such as that found in the pseudovascular tissue
of Figure 2(d), is some sufficiently-spatially-random combination of 50% pink pixels, 25%
purple pixels and 25% red pixels, then its local histograms should, on average, be a mixture
of three simpler distributions, namely a convex combination of 0.5 of a purely pink
distribution with 0.25 purely purple and red ones.

To do this, fix any set of N source images  and let Φ be any occlusion model as
defined in the introduction. That is, let Φ be a random variable version of a label function ϕ:

 → ℤN, as defined by a probability density function PΦ : ℓ( , ℤN) → [0, 1] where
Σϕ∈ ℓ( ,ℤN) PΦ(ϕ) = 1. In the results that follow, a useful quantity to consider is the expected
value—with respect to PΦ—of the characteristic function 1ϕ obtained by letting f = ϕ in (5):

(8)

Massar et al. Page 7

Appl Comput Harmon Anal. Author manuscript; available in PMC 2014 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Essentially, 1̄Φ(x, n) is the probability that a random label function ϕ generated by the
occlusion model Φ will assign label n to pixel location x. When compared with the

definition of flatness (3), we see that Φ is flat if and only if there exist scalars  such
that 1̄Φ(x, n) = λn for all x ∈  and n ∈ ℤN. That is, Φ is flat if and only if 1 ̄Φ(x, n) is
constant with respect to pixel location x. Having this concept, we present one of our main
results:

Theorem 4

For any sequence of images , weighting function w and any N-image
occlusion model Φ, the expected value of the local histogram (1) of the composite image (2)
with respect to w is:

(9)

where the error term ε is bounded by . Moreover,

(10)

and so (9) states that, on average, the local histograms of the composite image 
can be approximated by convex combinations of local histograms of each individual image
fn.

Proof—The expected value of the local histogram (1) of a composite image (2) is:

(11)

For any fixed ϕ, x, and x′, we have ϕ (x + x′) = n for exactly one n. For any fixed x, x′ and
y, we can therefore split a sum of 1ϕ (x + x′, n)δy(fn(x + x′)) over all n into one summand
where n = ϕ (x + x′) and the remaining N − 1 summands for which n ≠ ϕ (x + x′):

(12)

where the final equality follows immediately from (2). Substituting (12) into (11) and using
(8) yields:

(13)
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Rewriting (13) in terms of  gives our first
claim (9):

For the second claim, we bound ε using the triangle inequality and the fact that |δy(fn(x + x
′))| ≤ 1:

Finally, to prove our third claim (10), note that for any fixed x ∈ , (8) gives:

(14)

Since as previously noted we have ϕ (x) = n for exactly one n, (14) becomes:

.

An example illustrating the direct computation of the left-hand side of (9) is given in Figure
4. Note that Theorem 4 implies that the error term ε in (9) will be small provided the
probability 1̄Φ(x, n) of assigning label n to x changes little as x varies over regions smaller
than the the support of w. The extreme case of this is when the occlusion model Φ is flat,
meaning 1̄Φ(x, n) is constant with respect to x. In this case, ε vanishes entirely, leading to
Theorem 1 as given in the introduction:

Proof of Theorem 1—If Φ is flat, 1̄Φ(x + x′, n) = 1̄Φ(x, n) for all x, x′ ∈ . The error
bound in Theorem 4 then gives ε = 0. Denoting 1̄Φ(x, n) as λn in (9) thus yields our claim.

That is, when Φ is flat, (9) simplifies to (4), and so the in-depth computation of Figure 4 can
be replaced by the much simpler one depicted in Figure 5. Thus, flatness is indeed an
important theoretical assumption for the analysis of local histograms of textures generated
via random occlusions. It nevertheless remains to be shown that flatness is also a realistic
assumption from the point of view of our motivating application; this is the topic of the next
section.

4. Flat occlusion models
Theorem 1 gives some insight into the behavior of the local histograms of images generated
via random occlusions. However, this result only holds when Φ is flat (3), namely when its
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average characteristic function 1̄Φ(x, n), as defined in (8), is constant with respect to pixel
location x, but is still permitted to vary with label value n. In this section, we demonstrate
that flatness is a reasonable assumption. In particular, we provide a variety of methods for
constructing flat occlusion models. Some of these models produce textures similar to those
encountered in digital microscope images of histological tissues. Our first method involves
the translation operator Tx :  → , Txϕ(x′) := ϕ (x′ − x). To be precise, we show that an
occlusion model Φ is flat if it is translation-invariant, meaning that its probability density
function PΦ satisfies:

(15)

Theorem 5—If Φ is translation-invariant (15), then Φ is flat (3).

Proof: Fix any x, x′ ∈  and any n ∈ ℤN. Note that the set {ϕ ∈ ℓ( , ℤN) : ϕ (x) = n} of all
functions ϕ that assign label n at pixel location x is merely a translate of the set {ψ ∈ ℓ( ,
ℤN) : ψ (x′) = n} of all functions ψ that assign n at x′. In particular, any such ϕ can be
written uniquely in terms of such a ψ as ϕ = Tx−x′ ψ. Making this change of variables, our
assumption of translation-invariance gives:

Thus, we see that the quantity on the left-hand side of (3) is indeed independent of x, as
claimed. We thank one of the anonymous reviewers of this manuscript for suggesting this
proof.

Theorem 5 indicates that flatness is not too strong of an assumption. Indeed, one method for
producing a flat model Φ is to generalize the coin-flipping example given in the
introduction: given any random method for picking a number from ℤN—a probability
spinner—produce ϕ by conducting | | independent spins. The resulting model Φ is
translation-invariant, and therefore flat, since PΦ(ϕ) is solely determined by the number of
times that ϕ achieves each given value n. Other translation-invariant examples abound. For
instance, for any fixed ϕ0, we can assign equal probability  to ϕ0 and each of its translates,

and assign probability 0 to all others; if the source images  are constant, the composite
images (2) produced by such a model are all translates of a single image. More generally, we
can always partition the N| | elements of ℓ( , ℤN) into translation-invariant equivalence
classes and assign any fixed probability to the members of each class, provided we ensure
that in the end they all sum to one. For example, for the case N = 2 and  = ℤ2 × ℤ2
depicted in Figure 4, we may partition the 16 possible ϕ’s into 7 such classes, and pick any

probabilities  such that p1 = p2 = p3 = p4, p5 = p6, p7 = p8, p9 = p10, p11 = p12 =
p13 = p14. Armed with one method—translation-invariance—for producing flat models Φ,
we now turn to ways of combining known models to produce more complicated and realistic
ones.

4.1. Expansion
Digital microscope images of histological tissues often contain randomly distributed blobs.
These blobs correspond to biological structures: cells, nuclei, etc. The nature of these
processes guarantees that the distribution of such structures is roughly uniform, both
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spatially and in terms of color: two cells cannot occupy the same space; cells will usually
grow and reproduce so as to occupy any empty space; cells in a given tissue all have
approximately the same size and color patterns. We want to construct flat occlusion models
that emulate such textures, since in light of Theorem 1, doing so would formally justify the
demixing of local histograms as part of a segmentation-and-classification algorithm. Note
that there is a natural method for randomly generating a set of roughly uniformly-distributed
points: flip a coin at each point x. Here, we explore the idea of expanding each of these
randomly generated points into a given blob.

To be precise, let ϕ ∈ ℓ( , ℤ2) indicate a set of randomly generated points. For each of the
points x ∈  for which ϕ (x) = 1, we will replace it with a blob whose shape is indicated by
some ψx ∈ ℓ( , ℤ2). The new texture will be the union of all such blobs. Formally, given
any ϕ ∈ ℓ( , ℤ2) and {ψx}x∈  ∈ [ℓ( , ℤ2)] , we define the expansion of ϕ by {ψx}x∈  to
be ϕ ★ {ψx}x∈  ∈ ℓ( , ℤ2),

(16)

Two examples of this expansion operation are given in Figure 6. Note that expansion itself
(16) is not an occlusion model. Indeed, (16) is but a way of combining functions in ℓ( , ℤ2)
to produce other ones, whereas an occlusion model is a random variable Φ defined by a
probability density function PΦ over ℓ( , ℤ2). This fact notwithstanding, the expansion
operation (16) on label functions ϕ and {ψx}x∈  does in fact induce a parallel operation on
their random variable cousins Φ and Ψ. To be precise, given two occlusion models Φ and Ψ
from  into ℤ2, we define the expansion of Φ by Ψ to be the occlusion model Φ ★ Ψ whose
probability density function is PΦ★Ψ : ℓ( , ℤ2) → [0, 1],

(17)

Note that the probability that Φ ★ Ψ will produce a given label function σ depends on the
ways in which σ can be written as ϕ ★ {ψx}x∈  and, moreover, the probability that Φ and
Ψ will produce those particular ϕ’s and ψx’s, respectively. In the next result, we verify that
(17) indeed defines a probability density function on ℓ( , ℤ2). We further show that if Φ is
translation-invariant (15), then Φ ★ Ψ is translation-invariant which implies that Φ ★ Ψ is
flat by Theorem 5. In particular, image models which produce collections of blobs similar to
those found in biological tissues will indeed be flat provided the distribution that produces
the “centers” of these blobs is translation-invariant. Moreover, if the flatness of Φ ★ Ψ is all
that is desired, we can weaken the requirement that Φ be translation-invariant so as to only
require that Φ is itself flat, provided Φ and Ψ are effectively disjoint:

(18)

Put another way, (18) means that there is only at most one way, with nontrivial probability,
in which the x in (16) can be written as x = x′ + x″ where both ϕ(x′) = 1 and ψx′ (x″) = 1.
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Theorem 6—If Φ and Ψ are occlusion models from  into ℤ2, then their expansion Φ ★
Ψ, with probability density function (17), is as well. Moreover, if Φ is translation-invariant
(15), then Φ ★ Ψ is translation-invariant. Furthermore, if Φ and Ψ are effectively disjoint
(18) and either Φ or Ψ is flat (3), then Φ ★ Ψ is flat.

Proof: We first show that (17) defines a probability density function, namely that values of
PΦ★Ψ(σ) over all σ in ℓ ( , ℤ2) sum to 1. Since PΦ is a probability density function by
assumption, we have:

(19)

Similarly, for any fixed x ∈ , we have:

(20)

where the subscript “x” on ψ indicates that this particular ψ is intended to expand ϕ at the
particular point x as opposed to at some other point. Taking the product of (19) with the
product of (20) over all x yields:

(21)

where the final quantity in (21) contains all of the cross terms resulting from distributing the
product over all sums of the form (20). Now, since for each choice of ϕ and {ψx}x∈  there
is exactly one resulting σ = ϕ ★ {ψx}x∈ , we can rewrite (21) in terms of the definition
(17) of PΦ★Ψ, obtaining our claim:

Thus, (17) indeed defines a probability density function, as claimed.

We next show that the occlusion model Φ ★ Ψ is translation-invariant, if Φ is translation-
invariant. To do this, we claim that if Tx̃σ = ϕ ★ {ψx}x∈  then σ = (T−x̃ϕ) ★ {ψx+x̃}x∈ .
To see this claim, note that

if and only if there exists some x′, x″ in  such that x = x′ + x″, ϕ(x′) = 1, and ψx′ (x″) =
1. Letting x̂ = x − x̃, we thus have that σ(x̂) = 1 if and only if x̂ = (x′ − x̃) + x″, where
(T−x̃ϕ)(x′ − x̃) = ϕ(x′ − x̃ + x̃) = ϕ (x′) = 1 and ψ(x′−x̃)+x̃ (x″) = ψx′ (x″) = 1, implying σ =
(T−x̃ϕ) ★ {ψx+x̃}x∈ , as claimed. Having the claim, (17) implies:
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To continue, we make the change of variables ϕ′ := T−x̃ϕ and :

Since Φ is translation-invariant and , we have:

and so Φ ★ Ψ is indeed translation-invariant (15), as claimed.

For our final claim, we assume that Φ and Ψ are effectively disjoint (18) and that either Φ or
Ψ is flat. To do so, it is helpful to characterize the flatness of an arbitrary occlusion model Φ
from  to ℤ2 in terms of the corresponding function Φ̄ : = Σϕ∈ℓ( , ℤ2) PΦ(ϕ) ϕ. Indeed, for
any ϕ :  → ℤ2, (5) may be rewritten as 1ϕ (x, 1) = ϕ (x) and so:

(22)

In light of (22), we claim that Φ is flat if and only if Φ̄ is constant. Indeed, if Φ is flat, then
there exists λ1 such that Φ̄(x) = 1̄Φ(x, 1) = λ1 for all x ∈ . Conversely, if Φ̄ (x) is constant,
then there exists λ1 such that 1̄Φ(x, 1) = Φ̄ (x) = λ1 for all x ∈ ; by (10), this further
implies that 1̄Φ(x, 0) = 1 − 1̄Φ(x, 1) = 1 − λ1 for all x ∈  and so Φ is flat.

Having this claim, we show that Φ ★ Ψ is flat by showing that  is constant. To do this,
we show that if Φ and Ψ are effectively disjoint then  where “*” denotes
standard convolution over . According to the definition of Φ ★ Ψ (17) we have:

(23)
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Since any particular choice of ϕ and {ψx}x∈  produces a unique σ via ★ we can simplify
(23) to

(24)

Moreover, since Φ and Ψ are effectively disjoint (18) we have 
meaning (24) becomes:

(25)

Now, for any fixed x′ ∈  such that ϕ(x′) = 1, we factor the corresponding innermost sum
in (25) into a product of | | distinct sums—one for each x ∈ —to obtain:

(26)

Substituting (26) into (25) then gives:

Thus, the effective disjointness of Φ and Ψ indeed implies . As such, if we
further assume that either Φ or Ψ is flat, then either Φ̄ or Ψ̄ is constant, implying in either
case that  is constant and so Φ ★ Ψ is flat.

4.2. Overlay
Above, we discussed how the expansion (17) of a binary-valued occlusion model Φ with
another such model Ψ is a new model Φ ★ Ψ that randomly generates label functions of the
form σ = ϕ ★ {ψx}x∈  as defined in (16). Under certain hypotheses, Theorem 6 gives that
such models Φ ★ Ψ are flat, meaning their local histograms can be understood in terms of
Theorem 1. Moreover, some examples of these models produce textures that resemble those

Massar et al. Page 14

Appl Comput Harmon Anal. Author manuscript; available in PMC 2014 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



encountered in histological tissues: if f0 and f1 are roughly constant light purple and dark
purple fields, respectively, then the composite image occϕ {f0, f1} obtained by picking ϕ as
in Figure 6(f) bears some similarity to an actual image of cartilage, such as the one given in
Figure 2(b). Taken together, these facts provide some theoretical justification for the use of
local histograms for the analysis of such tissues.

There is however a deficit with this theory: due to the nature of the construction (16),
models produced by expansion (17) can only be binary-valued, and as such are insufficient
to emulate textures that exhibit three or more distinct color modes, such as the
pseudovascular tissue depicted in Figure 2(d). In this subsection, we discuss a method for
laying one occlusion model over another which, amongst other things, permits us to build
multivalued models out of binary-valued ones. To be precise, for any ϕ ∈ ℓ( , ℤNϕ), ψ ∈ ℓ
( , ℤNψ) and σ ∈ ℓ( , ℤ2), we define the overlay of ϕ over ψ with respect to σ to be ϕ#σψ
∈ ℓ ( , ℤNϕ+Nψ),

(27)

Essentially, an overlay (27) is the result of cutting holes out of an image of ϕ and laying it on
top of an image of ψ; the location of these holes is indicated by σ and the values of ψ are
increased by a factor of Nϕ so that they cannot be confused with those of ϕ. Examples of this
overlay operation are given in Figure 7.

In a manner similar to the relationship between (16) and (17), we have that (27) naturally
induces a parallel operation on occlusion models: given probability density functions PΦ, PΨ
and PΣ on ℓ(X, ℤNΦ), ℓ(X, ℤNΨ) and ℓ(X, ℤ2), respectively, we define the overlay of the
occlusion model Φ over Ψ with respect to Σ to be the new occlusion model Φ#ΣΨ whose
probability density function is PΦ#ΣΨ : ℓ( , ℤNϕ+Nψ) → [0, 1],

(28)

In the next result, we verify that (28) indeed defines a probability density function, and
moreover that the corresponding model Φ#ΣΨ is flat provided Φ, Ψ and Σ are flat, meaning
that the local histograms (1) of composite images (2) produced by such a model will behave
according to Theorem 1.

Theorem 7—If Φ, Ψ and Σ are occlusion models on ℓ(X, ℤNΦ), ℓ(X, ℤNΨ) and ℓ(X, ℤ2),
respectively, then (28) defines a probability density function on ℓ( , ℤNϕ+Nψ). Moreover, if
Φ, Ψ, and Σ are flat, then Φ#ΣΨ is flat.

Proof: To show that (28) defines a probability density function on ℓ( , ℤNϕ+Nψ), note that:
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(29)

Noting that for each fixed ϕ, ψ, and σ, there exists exactly one υ ∈ ℓ( , ℤNϕ+Nψ) such that
ϕ#σψ = υ, (29) becomes:

as claimed. For the second conclusion, assume that Φ, Ψ, and Σ are flat. Our goal is to show
that Φ#ΣΨ is flat (3), meaning that for any n ∈ ℤNϕ+Nψ, we want to show that there exists a
scalar λn such that:

(30)

for all x ∈ . To see this, note that for any such x and n, we have:

(31)

Now, in the special case where n = 0, …, Nϕ − 1, (27) gives that (ϕ#σψ)(x) = n if and only if
ϕ (x) = n and σ(x) = 0. As such, in this case (31) becomes:

(32)
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If, on the other hand n = Nϕ, …, Nϕ + Nψ − 1 then (27) gives that (ϕ#σψ)(x) = n if and only
if ψ (x) = n − Nϕ and σ(x) = 1. In this case, (31) becomes:

(33)

Thus, for any x ∈  we either have (32) or (33) meaning Φ#ΣΨ is flat (30), as claimed.

5. A local histogram-based segmentation-and-classification algorithm
In this section, we present a proof-of-concept segmentation-and-classification scheme that is
inspired by Theorem 1. We emphasize that for the algorithm presented here, local
histograms are the only image features that are computed. That is, the decision of which
label to assign to a given pixel is based purely on the distribution of color in its surrounding
neighborhood. We do this to demonstrate the validity of the concept embodied by Theorem
1 as an image processing tool. For algorithms intended for real-world use, such color
information should be combined with morphological data—size, local and global shape,
orientation and organization—in order to obtain better classification accuracies. An example
of such an algorithm, accompanied by thorough testing and comparisons against other state-
of-the-art methods, is given in [1]; these facts are not reprinted here.

The concept of Theorem 1 is that the local histograms of certain textures should, on the
whole, be able to be decomposed in terms of more basic distributions. Indeed, it is
reasonable to expect a local histogram computed over a region of cartilage (Figure 2(b)) to
be a mixture of 0.8 of a “light purple” distribution—a distribution mostly supported in
portions of  that correspond to light purple—with 0.2 of a darker reddish-purple one.
Meanwhile, local histograms of other tissues will correspond to distinct mixtures of other
distributions. For example, local histograms computed over a region of pseudovascular
tissue (Figure 2(d)) might be a mixture of 0.5 of a light pink distribution, with 0.25 of a dark
purple one and 0.25 of a reddish-pink one.

The algorithm we present here exploits this concept. The first step is to train our classifier.
To do so, let K be the number of distinct tissue types found in a training image such as

Figure 8(a) or (d). For any tissue type k = 1, …, K, we compute local histograms 

about pixel locations  that have been labeled as being of that type by medical
experts. Each hk;m is a nonnegatively-valued function over  that sums to one. There are
several ways to pick the xk;m’s. One approach is to have the expert choose each point
individually. Alternatively, if the expert has manually segmented and labeled the entire
image (Figure 8(b)), then the xk;m’s can be chosen at random from regions of type k. The
number Mk of local histograms that we compute for type k is somewhat arbitrary; we used
repeated experimentation to find a sample size large enough to guarantee reliably-decent
performance.
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In light of Theorem 1, it would be nice to demix the training local histograms  in

terms of a type-dependent class of more basic distributions . That is, we would like
to find nonnegatively-valued functions gk;n over  that sum to one and have the property

that for each training local histogram hk;m there exists nonnegative scalars  that
themselves sum to one and such that:

(34)

Unfortunately, computing the gk;n’s that minimize the approximation error in (34) is a
nontrivial optimization problem. As such, we leave this approach for future work, and
instead consider a mathematically-simpler problem in which the λk;m,n’s and gk;n’s are
permitted to be arbitrary real scalars and vectors, respectively. That is, we perform PCA for
each tissue type k. To be precise, for each type, we form a | | × Mk matrix Hk whose
columns are the (vectorized) local histograms hk;m less their average h̄k:

(35)

We then compute the singular value decompositions  and identify those left-

singular vectors  that correspond to some experimentally-determined number Nk of

dominant singular values . In this setting, the approximation (34) is replaced by:

(36)

The classical theory of PCA states that the approximation error in (36) is optimally small in
the sense that these specific uk;n’s span the particular Nk-dimensional subspace of ℓ( , ℝ)
whose orthogonal projection operator Pk minimizes the total squared-error

. The vectors h̄k and  in hand, we store them in
memory, completing the training phase of our classification algorithm.

To segment and label a given image f, we compute its local histograms (1), obtaining local
distributions of color hx :  → ℝ, hx(y) = (LHw f)(x, y) about every pixel location x ∈ . At
any given x, we then assign a tissue label k(x) by finding the tissue type k whose shifted

subspace  is nearest to hx. Specifically, we let:

(37)
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In implementation, we compute the summations over  in (37) as running sums, looping
over all y ∈ . This computational trick greatly reduces our memory requirements: at any
given time, we only store a single level of LHw f. By Theorem 2, such a level can be
obtained by filtering an indicator function; in the following experimental results, we avoided
edge artifacts by using a weighted noncyclic method of filtering, namely the ★-convolution
of [17]. Without such a trick, one must store the entire local histogram transform in memory,
a daunting task for even modestly-sized images: the full local histogram transform of the
1200 × 1200, 8-bit RGB image given in Figure 1(a) is a 1200 ×1200 ×256 × 256 × 256
array.

Further computational advantages may be gained by quantizing the image and reducing the
dimension of the color space. For our particular set of histology images, we experimentally
found that we could still obtain good accuracies even if we discard the green channel of our
purple-pink images, and moreover quantize the 8-bit red and blue channels down to 3-bits

apiece. That is, we quantize  from  to . By Proposition 3, this is equivalent to
binning the original 1200 × 1200 × 256 × 256 × 256 local histogram array down to a new
one of size 1200 × 1200 × 8 × 8. The quantized version of Figure 1(a) is given in Figure
8(a); for the sake of readability, a 3-bit quanitized version of the unused green channel was
included in this rendering. As a result of this quantization, it only takes a few seconds to
assign per-pixel labels to a 1200 ×1200 histology image using a MATLAB-based
implementation of (37), running on standard desktop hardware. To be precise, the
classification algorithm requires approximately 75 seconds to assign a label to every pixel of
the 1200 × 1200 3-bit RB image. Alternatively, using 4-bit and 5-bit RB images requires
approximately 4 and 15 minutes of run time, respectively, while 3-bit and 4-bit RGB images
need 4 and 27 minutes, respectively. For this particular set of images, further color

quantization, such as using 2-bit colors ( ) or converting the original image to
grayscale (  = ℤ256), results in an unacceptable loss in classification accuracy, as do

attempts at spatial quantization ( ). Throughout all of this experimentation, we chose
the weighting function w to be a discretized Gaussian of a scale that we experimentally
determined to yield good classification performance. In the numerical results presented
below, we found  to be a good standard deviation for this Gaussian, meaning the
window had an effective radius of about 68 pixels. Multiscale methods were left for future
work.

Two runs of this classification algorithm are depicted in Figure 8. In the first run, we train
the classifier on the 3-bit 1200 × 1200 red-blue image given in Figure 8(a). For the sake of
simplicity, we restrict ourselves to K = 3 tissue types: cartilage, connective tissue and
pseudovascular tissue; all other tissue types are ignored in the confusion matrices given
below. For each type k = 1,2,3, we randomly choose Mk = 64 points of that type, making use
of a small number of the 12002 ground truth labels given in Figure 8(b); edge artifacts are
avoided by not picking points near the border. For each type, we then perform PCA on the
64 local histograms hk;m of that type, computing an average local histogram h̄k as well as the
dominant left-singular vectors of Hk (35). For the sake of simplicity, in a given experiment
we will use the same number of principal components for each of the three types, that is, Nk
= N for k = 1,2,3. At the same time, we experiment with this number itself, letting N be
either 1, 2, 3 or 4. With the training complete, we then segment and classify Figure 8(a)
using the decision rule (37), resulting in per-pixel labels such as the ones given in Figure
8(c) for N = 4. Comparing Figure 8(c) and the ground truth of Figure 8(b), we see both the
power and limitations of local histograms: color is a big factor in determining tissue type,
but by ignoring shape, we suffer from oversmoothing. The accuracy percentages for various
choices of N are given by a confusion matrix:
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N = 1 N = 2 N = 3 N = 4

Ca Co Ps Ca Co Ps Ca Co Ps Ca Co Ps

Ca 79 16 5 88 7 5 92 3 5 95 3 2

Co 0 93 7 1 91 8 4 93 3 3 93 4

Ps 2 8 90 2 8 90 3 8 89 3 7 90

Here each row of the matrix tells us the percentage a certain tissue was labeled as cartilage
(Ca), connective tissue (Co), and pseudovascular tissue (Ps). In particular, the first three
entries of the first row of this table tell us that when using a single principal component,
those points labeled as cartilage by a medical expert in Figure 8(b) are correctly labeled as
such by our algorithm 77% of the time, while 22% of it is mislabeled as connective tissue
and 1% of it is mislabeled as pseudovascular tissue. Note here that we have trained and
tested on the same image; such experiments indicate the feasibility of our approach in a
semi-automated classification scheme in which a medical expert handpicks 64 points of each
given type and lets the algorithm automatically assign labels to the rest.

The second run of this algorithm is almost identical to the first, with the exception that we
use a distinct image in the training phase. To be precise, for each of the three tissue types,
we perform PCA on the local histograms of 64 randomly-chosen points of that type in
Figure 8(d), making use of its ground truth labels (not pictured). We then apply the principal
components obtained from Figure 8(d) to generate labels (Figure 8(e)) for Figure 8(a) using
the decision rule (37). Compared to the first run, the algorithm’s performance here is a better
indication of its feasibility as a fully automated classification scheme, and is summarized by
the following confusion matrix:

N = 1 N = 2 N = 3 N = 4

Ca Co Ps Ca Co Ps Ca Co Ps Ca Co Ps

Ca 70 17 13 87 6 7 86 6 8 76 16 8

Co 5 88 7 17 75 8 7 93 0 1 99 0

Ps 8 27 65 3 57 40 3 51 46 3 44 53

Though the performance in the second run is understandably worse than that of the first, it
nevertheless demonstrates the real-world potential of the idea exemplified by Theorem 1:
the local histograms of certain types of textures can be decomposed into more basic
distributions, and this decomposition can serve as an image processing tool.
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Figure 1.
(a) A digital microscope image of a H&E-stained tissue section. (b) The histology image has
been manually segmented and classified by a medical expert, resulting in the per-pixel
labels. From darkest to lightest, the labels indicate cartilage, pseudovascular tissue,
connective tissue, bone, fatty tissue, and background pixels, respectively. Our goal is to
automate this segmentation-and-classification process. The purpose of this paper is to
provide a theoretical justification for using local histograms to achieve this goal.
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Figure 2.
A 1200 × 1200 histology image exhibiting multiple tissue types (a) and the 256 × 256
histogram of its red-blue (RB) pixel values (e). As is common with H&E staining, the
tissues in (a) are purple-pink and so we ignore the green component of these red-green-blue
(RGB) images when computing (e). This histogram is viewed from above, with red and blue
ranging from 0 to 255 on the horizontal and vertical axes, respectively; here the height of the
histogram is proportional to darkness for the sake of readability. In (b), (c) and (d) we zoom
in on three 128 × 128 patches extracted from (a), each of which exhibit a single tissue type,
namely cartilage, connective tissue and pseudovascular tissue, respectively. Each of these
three tissue types has a distinct distribution of pixel values, as evidenced by their
corresponding RB histograms (f), (g) and (h). These 256 × 256 histograms are similar to (e),
but are only computed over those points of a given type according to the ground truth labels
in Figure 1(b). In particular, the histogram (f) of cartilage (b) is computed over all points
labeled in black in Figure 1(b). We see that cartilage is darker, on average, than connective:
(f) is distributed more towards the lower left-hand side than (g) is. Moreover,
pseudovascular is similar to connective, but possesses additional reddish-pink structures, as
evidenced by the subdiagonal blob found in (h), but not (g). As such, it is plausible that local
histograms can serve as discriminating features in segmentation-and-classification
algorithms.
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Figure 3.
An example of how to compute local histograms using Theorem 2(a). For the sake of
readability, larger numerical values are represented by darker shades throughout. The source
image (far left) f is 6 × 8 and has grayscale values ranging from 0 to 4. That, is f ∈ ℓ( , )
where  = ℤ6 × ℤ8 and  = ℤ5. Its characteristic function (5) is a {0,1}-valued 6 × 8 × 5
data cube whose cross-sections (left column) indicate those locations at which f attains any
given value. By Theorem 2(a), the 6 × 8 × 5 data cube that contains the local histograms of f
(far right) may be computed one level at a time (right column) by filtering these binary-
valued cross-sections with a real-scalar-valued weighting function (middle column). In this
simple example, the weighting function is , where the
origin lies in the upper left-hand corner of the grid.
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Figure 4.
An example of how to compute the left-hand side of (9) explicitly as a probability-weighted
sum. For the sake of readability, larger numerical values are represented by darker shades

throughout. We consider two 2 × 2, 3-bit images, namely  in ℓ( , ) where N = 2, 
= ℤ2 × ℤ2 and  = ℤ8. In this particular example, the values of the fn’s are all distinct, with
f0 assuming values {0, 1, 2, 3} and f1 assuming values {4, 5, 6, 7} (far left). There are N| |

= 222
 = 16 distinct label functions ϕ: ℤ2 × ℤ2 → ℤ2 (left column) each yielding a composite

image occϕ {f0, f1} (center column); in accordance with (2), we take values from f0 in places
where ϕ is white and values from f1 where ϕ is black. Each of these composites has a 2×2×8
local histogram transform (1) (right column). Since occlusion (2) is nonlinear, there is no
clean relationship between the local histograms of any single composite and the local
histograms of the source images f0 and f1. Nevertheless, under certain hypotheses, we can
say something about the average of these local histograms (far right) with respect to some
probability density function PΦ on the set ℓ(ℤ2 × ℤ2, ℤ2) of all possible ϕ’s. In particular, if
the occlusion model Φ is flat (3), meaning in this case that the probability-weighted-sum of
all ϕ’s is a constant function of x, then Theorem 1 states that this average is a convex
combination of the local histograms of f0 and f1 as depicted in Figure 5.
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Figure 5.
A continuation of the example of Figure 4. When the occlusion model Φ is flat, Theorem 4
becomes Theorem 1, with (9) simplifying to (4). Though each of the 16 distinct composite
images shown in Figure 4 has a distinct local histogram transform, the average of these 16
local histogram transforms with respect to PΦ is but a convex combination (right) of the
local histograms (center) of the two source images (left). That is, when Φ is flat, the
average-over-all-composites local histogram computed in Figure 4 is equal to the average-
over-all-sources local histogram computed above.
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Figure 6.
Examples of the expansion operation (16), where black denotes the value of 1, and the
lighter shade denotes the value of 0. A function ϕ:  → {0,1} is given in (a), and can be
chosen, for example, via a sequence of | | independent coin flips. Meanwhile, for each x ∈

, we pick a corresponding function ψx :  → {0,1}. Cropped versions of a few examples
of such ψx’s are given in (b). The expansion ϕ ★ {ψx}x∈  of ϕ by {ψx}x∈  is given in (c).
Essentially, each point x for which ϕ(x) = 1 is replaced with the corresponding blob ψx, with
the origin of the ψx coordinates being translated to x. In the second row, (f) shows the

expansion of a second set of points ϕ′ by a second set of blobs . These examples
notwithstanding, note that (16) does not require these blobs to be disjoint. We could have,
for instance, produced a texture by expanding the points in (d) by the blobs in (b).
Nevertheless, stronger conclusions can be made if such disjointness is enforced; see
Theorem 6.
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Figure 7.
Two examples of the overlay operation (27). Recall the two {0,1}-valued label functions σ =

ϕ ★ {ψx}x∈  and  of Figure 6(c) and (f) reshown here in (a) and (c),
respectively. Further consider a constant function 0 :  → ℤ1 that assigns label 0 to every
point in . The overlay (27) of 0 over σ′ is given in (b); essentially, σ-shaped holes are cut
from 0 and the result is laid over σ′, resulting in a new texture. A distinct texture can be
produced by cutting σ′-shaped holes out from σ and laying the result over the constant
function 0 (d). Overlaying the resulting textures with each other can produce even more
complicated textures. In Theorem 7, we consider randomly generated versions of (b) and (d)
arising from randomly generated versions of (a) and (c). In essence, we show that if the
models that generate (a) and (c) are flat, then the induced models that generate (b) and (d)
are also flat, meaning that Theorem 1 applies to them. In terms of our motivating
segmentation application, the important fact here is that the model that generates (b) is
distinct from the model that generates (d)—the flatness constants for (b) are different than
those of (d)—and so by Theorem 7, the local histograms of (b)-generated composites are
distinct from the those of (d)-generated composites. This means that local histograms can
serve to discriminate regions in an image that look like (b) from those that look like (d).
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Figure 8.
An example of using PCA of local histograms to perform segmentation and classification of
the image given in (a), which is a 3-bit quantized version of Figure 1(a). A manually
segmented and labeled version of (a) is shown in (b) where black represents cartilage, light
gray represents connective tissue, dark gray represents pseudovascular tissue, and white
represents other tissues that have been ignored in this proof-of-concept experimentation.
Using (a) as both the training and testing image in a PCA-based classification scheme (37),
we obtain the labels shown in (c). A similar, but less-accurate classification of (a) can still
be obtained if we instead train on (d), resulting in the labels given in (e).
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