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Abstract

This paper deals with a special class of nonlinear

discrete design optimization problems which involve nonlinear

separable objective functions and bilinear constraints. These

constraints involve products of design and state variables in

which the former are restricted to take discrete values Two

special cases are identified for which advantage can be taken of

the discrete nature of the design variables to reformulate these

problems as MILP models which can be solved to global

optimality. The computational expense can be reduced with

SOS 1 sets and a simple solution strategy that is proposed. The

application of the MILP reformulations is applied to

multiproduct batch plant problems in chemical engineering and
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to structural design problems in civil engineering. Numerical

results and comparisons with other methods are also presented.

1. INTRODUCTION

Many problems in engineering design give rise to

nonconvex nonlinear programming (NLP) problems (e.g. see

Floudas and Pardalos, 1990). Furthermore, quite often due to

manufacturing constraints, design variables are restricted to take

discrete values for selecting standard sizes which gives rise to

mixed-integer nonlinear programs (MINLP) (e.g. see

Papalambros and Wilde, 1988; Grossmann, 1990). These

problems in many cases have a continuous relaxation that

corresponds to a nonconvex NLP. Due to the difficulty in

solving these problems, many design models reported in the

literature have assumed continuous sizes, and used ad-hoc

rounding procedures. It is the purpose of this paper, to show

that important classes of discrete design optimization problems

that involve separable objective functions and bilinearities in the

constraints, can in fact be reformulated as mixed-integer linear

programs (MILP), and therefore solved rigorously to global

optimality.

This paper will be organized as follows. In Section 2

we will present basic NLP and MINLP formulations that arise

in discrete design optimization problems. In Section 3 we will

consider two special cases of bilinear constraints that arise in

many design applications. We will show that advantage can be

taken of the discrete nature of the design variables in order to

reformulate these problems as MILP models. Section 4 will



compare the proposed formulations with other linearization

schemes and briefly discuss computational aspects. Sections 5,

6 and 7 will present the application of the reformulations to

multiproduct batch plant problems in chemical engineering and

to structural design problems in civil engineering. These

problems have traditionally been formulated as continuous

optimization problems, and thereby neglected the fact that in

most practical applications only standard sizes are available.

Finally, Section 8 will present some numerical results.

2. BASIC FORMULATIONS

Consider the following MINLP problem with separable

objective function and with linear and nonlinear constraints:

min C = X fi(xi)

s.t. A z . b

g(x,z)<0

, zeZ

where firR1 —> R1 and g:Rn+m —»RQ are continuous functions,

X o C R n
+ is a set of discrete values, Z c R m is a set of

continuous values, and A€R r x m , b€Rr. In the context of a

design optimization problem C is a cost function, x is the vector

of discrete design variables which are restricted to choices of

standard sizes in the set XD, and z is the vector of continuous

state variables.



Since the MINLP problem (PI) is in general difficult to

solve, it is common to consider the continuous relaxation of

problem (PI) which leads to the NLP problem:
n

min C = £ fi(xi)
i=l

s.t. Az < b
(P2)

g(x,z)<0
x€X , zeZ

where X is the convex hull

The common approach is then to find an optimal

solution to problem (P2) with a standard NLP solver (e.g.

MINOS or SQP algorithm) and round up the variables XJ,

i=l...n, to the next highest discrete value in XD- Clearly the

difficulty is that this might lead to a suboptimal solution, or to a

solution that is infeasible. Furthermore, to complicate matters,

the functions fj(x), i=l..n, and g(x,z) are often nonconvex

which can give rise to several local optima in problem (P2).

Another way to circumvent the problem of getting non-

discrete design variables is to reformulate problem (P2) as an

MINLP problem with 0-1 variables. That is, let

DS(i)={dii,di2>—diN(i)} be the set of discrete values for each

design variable xj. Furthermore, let yis, s=l,...N(i), be 0-1

variables defined as follows:

(
y i s ~ l 0 otherwise

Then, since each variable xj can be expressed as:



s=l

yis = i (3)
s=l

problem (P2) can be reformulated as the MINLP model:

n
inC = 2rffi(xi)

s.t. Az < b (P3)

g(x,z)<0

Xi = X disYis
s=l

T v - 1 i-l n
JLJ yis A i i,..n
s=l

XGX , z € Z , y i s= {0,1}

Problems (PI) and (P3) can be solved in principle with

a branch and bound method (Gupta, 1980), Generalized

Benders Decomposition (Geoffrion, 1972) or with the Outer-

Approximation method (Duran and Grossmann, 1986).

However, the inherent difficulty is that due to possible

nonconvexities in the nonlinear functions, these algorithms may

not converge to the global optimum. The next section will

show, however, that for special cases of the nonlinear

constraints g(x,z) that involve bilinearities, problem (P3) can



be reformulated as an MILP problem and solved to global

optimality.

3 . MILP REFORMULATIONS FOR SPECIAL
CASES

Consider the two following particular cases for the

nonlinear constraints g(x,z):

a) Case 1: gy = ayxjvj - py < 0 , j€J(i), i=l..n (4)

where v is a subvector of zT = [u,v]T and ay * 0,

Pij * 0.

b) Case 2: gy = ayxivj - pywj < 0 , j€J(i), i=l..n (5)

where v and w are subvectors of zT = [u,v,w]T

and ay * 0, py*O.

For simplicity we consider here the case of inequalities,

although (4) and (5) could also involve equality constraints.

Case 1 is clearly a particular case of Case 2, but as will be

shown below it leads to a simpler reformulation which is worth

considering. Also, as will be shown later in the paper, Cases 1

and 2 arise in multiproduct batch design problems, while Case

2 arises in structural design problems.

For the MILP reformulation consider first the objective

function C in (P3). By introducing the binary variables yjs as

in (1) subject to the constraints in (3), then by defining

cis = fi(dis) (6)

it is clear that C can be expressed by the linear combination



n NO)

i=l s=l

Consider now Case 1. From (4) it follows that for xi > 0,3

(XjjVjA jeJ(i) , i=l..n (8)

In order to remove the nonlinearity in the right-hand side of (8),

the inverse of the design variable x$ will be represented by a

linear combination of inverse values of the discrete sizes; that

is,

m i=l,..n (9)
s=l i s

Then by substituting (9) into (8) yields the linear inequalities,

i=l,..n (10)
s=l

Hence, from (7), (10), (3) and by expressing the linear

constraints Az < b as [Ai, Aj | U 1 < L l L problem (P3) can be
LvJ Lb2J

reformulated for Case 1 as the binary MILP problem:

xi > 0 does not hold, Case 2 applies.



n

min C = J)
i=l s=l

s.t. [AiAdi:^^1! (Rl)

B
«iJvJ" S T1 y« ^ 0 Je J(i), i=L.ni J v J T

s=l flis

S = l

U € U , V G V yis = {0,1}

where UxV = Z and Cis is given by (6). Note that the interesting

feature in this formulation is that it has fewer variables and

fewer constraints than the MINLP model (P3).

Consider now Case 2. Substituting (2) into (5) leads to

the bilinear constraints

aij 2 disyisVj - pijWj < 0 jeJ(i) , i=l,..n (11)
s=l

In order to remove the bilinear terms yisv.j, define the

continuous variables v,js such that

Vj = X vijs J e J (0 . i = 1 '"n

s=l

yis < vijs < VjU yis je J(i), s=l, N(i), i=l..n (13)



where VjL, VjU are valid lower and upper bounds. Then, the

constraints in (11) can be replaced by the linear inequalities

otij X disvijs - PijWj < 0 je J(i) , i=l,..n (14)
s=l

A proof for the equivalence of the constraints in (14), (12) and

(13) with the inequalities in (5) for discrete values in x* is given

in the Appendix. Hence, from (7), (12)-(14), (3) and by

expressing the linear inequalities Az < b as

[AiA2A3]
' U "

V

. w .
<

bi
b2

Lb3J
(15)

problem (P3) can be reformulated for Case 2 as the binary

MTT.P problem:

min C = £ £ cis y>s
i=l s=l

S.t. [A1A2A3]

s=l

" u "
V

- W -

<
r bi

b2

Lb3J

disvijs - 0

(R2)

^iL Yis ^ Viic < ViU Vis
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VJ = la V ijs
s=l

s=l
UGU,VGV,W€W yis ={0,1}

where UxVxW = Z and q s is given by (6). Note that in this

case the number of variables and constraints is larger than in the

MINLP model (P3).

4. REMARKS

The proposed linearization of the bilinear constraints in

(11) with (12)-(14) can also be applied to the case when (11) is

given by equality constraints. This follows trivially from the

proof in the Appendix. Also, given the reformulation of the

objective function in (6) and (7), no assumption is required on

the form of the cost function fi(xi). In fact this function can be

discontinuous, which is not an uncommon occurrence in

practice. The linearizations in (12)-(14), however, are not

unique. Other alternatives include the linearizations by Glover

(1975) and by Torres (1991). As will be shown below the

former requires a larger number of constraints and may yield a

weaker LP relaxation. The latter, which is only applicable to

inequalities, requires fewer constraints, but may also yield a

weaker LP relaxation.

The bilinear constraints in (11) can be linearized with

the following formulation proposed by Glover (1975):
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i), s=l,
(16)

n
which requires 4 ^|J(i) | |N(i) | inequalities. In contrast the

i=l

proposed linearization scheme in (12) and (13) only requires

n n

2 XI J G) 11N® I + XI J^ I constraints. Furthermore, while a

point (vjjs, Vj, yis) satisfying (12) and (13) satisfies the

inequalities in (16), the converse may not be true. For instance,

assume a non-integer point yjs such that vys = Vjuyis. Using

(3) it follows from (16) that

vj' + Cvf-vjOyi, < Vj < vf (17)

while (12) yields Vj = Vju. Thus, the inequalities in (16) may

produce a weaker LP relaxation.

For the case when the bilinear constraints in (11) are

only inequalities, Torres (1991) has shown that it is sufficient

to consider the following constraints from (16):

VjL y i s ^ v i j s

vijs > VJ - VjU(l- yis) je J(i), s=l,
(18)

n

which requires ^ | J(i) | fewer constraints than the proposed
i= l

linearization in (12) and (13). However, the above inequalities
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also can produce a weaker LP relaxation. For instance, setting

Vijs = Vj^is for a non-integer point y\s yields,

(19)

while (12) yields Vj = VjL. In summary, the proposed

linearizations in (12) and (13) are tighter since they exploit the

convexity condition in (3), while the ones by Glover (1975)

and Torres (1991) do not.

As for the computational requirements, the

reformulations (Rl) and (R2) correspond to MILP problems

that can be solved to global optimality with branch and bound

methods such as the ones implemented in SCICONIC, MPSX,

ZOOM and LINDO. Furthermore, the constraints in (3)

correspond to special ordered sets of type 1 (SOS1; e.g. see

SCICONIC, 1990) whose structure can be exploited to reduce

the number of nodes that must be examined in the branch and

bound enumeration. While problem (Rl) is somewhat smaller

in size than the nonlinear model in (P3), problem (R2) is

potentially much larger and has the additional difficulty that

lower and upper bounds VjL, VjU,must be supplied which can

have a great impact in the integrality gap of the LP relaxation.

The issue of size in problem (R2) can be addressed in

several ways. One is to generate cutting planes in the MILP in

order to strengthen the LP relaxation (e.g. see Van Roy and

Wolsey, 1987). The other one is to apply Benders

decomposition so as to greatly reduce the size of the LP

subproblems (see Sahinidis, 1990). In our experience,
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however, we have found that the greatest source of

computational difficulty in the proposed MILP models

(particularly in (R2)) lies in their tendency to predict small sizes

in the relaxed LP creating many infeasible nodes in the branch

and bound tree. To circumvent this problem we have devised a

simple but rigorous solution strategy for fixing subsets of 0-1

variables in (Rl) and (R2) that consists of the following steps:

Stepl. (Optional). Obtain an upper bound. The relaxed LP is

solved to compute sizes xjR from (9) or (2). The MILP model is

solved with binary variables yis fixed to zero for which djs <

x i •

Step 2. Predict valid lower bounds x*L for each size xj. In

simple models these can be obtained analytically. In more

complex models these can be obtained by maximizing (9) or

minimizing (2)) with the relaxed LP model. Note that if step 1

is used, those XiR with zero value yield valid lower bounds.

Step 3. Obtain the global optimum by solving the MELP model

with binary variables yis fixed to zero for which dis < xjL, and

with the upper bound obtained in step 1.

This procedure can obviously be made more effective if

the MILP problems in steps 1 and 3 are solved with SOS1 sets.

5 • APPLICATION TO SIMPLE BATCH PROCESS
DESIGN

In order to illustrate the application of the reformulation

(Rl), consider the problem of sizing multiproduct batch plants

with one unit per stage (see Fig. 1) and operating with single

product campaigns (see Grossmann and Sargent, 1978). In
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these plants it is assumed that each product requires all the

processing stages in the same sequence.

V V V
3

— • V
6

Products

A
B
C
D
E

Fig. 1. Multiproduct batch plant with one unit per stage

The following parameters and variables are required to

formulate the design optimization problem:

Parameters:

N the number of products j=l ..N

M the number of stages i=L .M

TLJ the cycle time of product j

Qj demand of product j

S jj size factor for product j in stage i

H horizon time

Yi, 5i cost coefficients for unit in stage i with

0 < Yi < 1

Variables:

Vi size of unit in stage i

Bj batch size of product j

If the sizes Vi are assumed to be continuous, the problem of

finding an optimal design as given by the NLP:
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M

min C = X 8j Wf
i=l

(Bl)
s.t. Vj > Sij Bj j=l,..N, i=l,..M

N n

j - i BJ
Bj, Vi > 0

In problem (Bl) the objective function represents the

investment cost that is to be minimized. The first set of

constraints simply states that at each stage i, the size Vi must be

sufficiently large for all products j. Finally, the second

constraint states that the total time for production, as given by

the number of batches (Qj/Bj) by the corresponding cycle time

(TLJ), should not exceed the allotted time H.

Problem (Bl) corresponds to an NLP that involves

nonconvexities in the objective function and in the second

constraint. However, as shown by Grossmann and Sargent

(1978) this problem can be transformed into a geometric

programming problem with posynomial terms.

Assume, however, that the sizes Vi are only available in

discrete values DV(i) = {Vn,Vi2...ViN(i)}. Rather than

formulating (Bl) as an MINLP according to problem (P3), we

will show that it can be reformulated as an MILP. First, note

that the first set of constraints in (Bl), which contains the

design variable Vi, is linear while the second constraint is

nonlinear. In order to remove the nonlinearity in the latter, let
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Bj = ^ j=l..N (20)

with which problem (Bl) reduces to

M

min C = X

(B2)
s.t. -Vibj+Sij<0 j=l..N, i=l..M

j
Vi>0 , bj>0

Note that the first set of constraints are now of the same

form as equation (4) for Case 1. If we introduce the 0-1

variables yis as in (3) to select the discrete size Vis, then by

letting

y
=l V » s

as in (9), following a similar treatment for the derivation of

problem (Rl), the reformulated MBLP corresponds to:
M N(i)

min C = X Z cis ^s
i=l s=l

(RB)
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s=l is

s=l
N

bj>0,

where Cis = bi(V[s)\ The important feature of this model is that

it readily allows the treatment of discrete sizes which have been

commonly treated as continuous variables in previous work.

6. APPLICATION TO STRUCTURAL DESIGN

In order to illustrate the reformulation (R2), consider the

least weight design of a truss consisting of a number of

specified bars with fixed nodal locations (see Fig. 2) that is

subject to a number of different loading conditions, and for

which constraints on stresses, nodal displacements and bar

elongations are specified (see Bremicker et al., 1990; Haftka et

al., 1990; Ghattas and Grossmann, 1991).

Fig. 2. Truss with 10 bars and 2 loads.
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In order to find a design with minimum weight the following

parameters and variables must be considered:

Parameters:

M

N
L

Ei

Pi

bji

ViL,VilJ

djL,djU

Variables:

Aj

Si*

number of bars i=l,M

number of degrees of freedom4 j =1 ,N

number of loading conditions 4=1,L

length of bar i

modulus of elasticity of bar i
density of bar i

jth component of load at condition H

direction cosine relating the force in bar i

with the degree of freedom j

maximum stresses in compression and

tension in bar i

limits on elongations in bar i

limits of displacements for degree of

freedom j

cross sectional area of bar i

force in bar i for condition k

stress in bar i for condition Jl

elongation of bar i for condition H

displacement at degree of freedom j for

condition Jl

4Number of degrees of freedom is given by N = N N e - b, where N N is the
number of nodes, e the degrees of freedom at each node, and b is the
number of support fixities.
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If the cross sectional areas are assumed to be continuous, the

optimal design for a truss with minimum weight is given by the

NLP:

M

min C = Y, Pi k Ai (ST)

S.t.

(a) Equilibrium equations
M

j=l,N I=1,L

(b) Compatibility equations
N

i=l fM A=1,L

(c) Hookefs law

-̂ 7-Ai viA = siA i = 1 ^ M i_lL

(d) Stress equations

1Jl ij •* 1=1 ,M 4=1 , L

(e) Bounds

Gi <an<Gi i=l,M 4=1,L

v^^vj^Vi1 1 i=l,M H=1,L

djL < djA < dju j=l,N 4=1,L

Ai>0 i«=l,M
si4 e R1 i=l,M, H=1,L

Note that except for Hooke's law equations in (c),

which involve bilinear terms of the form in equation (5), the

above model is linear in the objective function and in the

remaining constraints.
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It should be noted that the above model is commonly

formulated by eliminating the variables v^ and d^ b y

substituting the compatibility equations into Hooke's law

equations, and the result in the equilibrium equations.

Although this reduces the number of variables and constraints,

it actually increases the number of bilinear terms.

Assume now that the cross section areas Ai are specified

with discrete values DA(i)={An, AiS2,..AjN(i)}. To

reformulate problem (ST) as an MILP, we introduce the 0-1

variables yis as in (3) to select the discrete sizes Ais. By then

letting

Aisyis (22)
s=l

as in (2), substituting into Hooke's law equations yields

E; Ais v.. yis = si4 i=l,M 1=1,L
*i s=l

By defining the variables VJ& as in (12) to (14), and by setting

cis = pi<tiAis . (23)

then by analogy to problem (R2) the MILP reformulation of

(ST) yields:
M

min C = T̂
i=l s=l

(RST)
M

s.t. X bJi sii = PH j=l..N, 1=1,L
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N N(i)

X bJi % = X vUs i=l..M, 1=1,L
j=l s=l

i s=l

is ^ v a , < v i 4u y is
x~~ x j l

i=l..M, 1=1 ,L

aiL<Oi|[<OiU i=l..M, 1=1,L

djL<djj|<djU j=l..N, 1=1,L

sue R1 i=l,M , 1=1,L
viils€ R1 s=l,N(i), Jl=l,L i=l,M

yis = {0,l} s=l,N(i), i=l,M

where the variable v^ has been substituted from the equation
N(i)

ViJ = X viis (24)
s=l

and cj s is a parameter given by (23). The importance of model

(RST) is that it allows the rigorous removal of bars with which

one can optimize the topology, as well as the sizes of the bars.

Further discussion on this model can be found in Ghattas and

Grossmann (1991).
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7 . APPLICATION TO COMPLEX BATCH
PROCESS DESIGN

As a third application we will consider the optimal

design of multipurpose batch plants with multiple production

routes, a problem that has been considered recently by Faqir

and Karimi (1990).

As opposed to the problem considered in Section 5, in

this problem we are given a number of stages with a number of

potential units of identical type. Also, not all products require

all production stages and therefore potential production routes

are specified for each product as shown in Fig. 3. Faqir and

Karimi (1989) formulated this design problem as an MINLP

problem which involves bilinearities in the constraints which

cannot be transformed into a geometric programming problem.

10,

12

Fig.3. Complex multiproduct batch plant

The following parameters and variables are involved in

this formulation.

Parameters

N the number of products j=l,..N



23

M the total number of potential units

NR the number of production routes r= 1 ,..NR

Er index set for units i involved in route r

Rj index set for routes r that produce product j

TLT cycle time of route r

Qj demand of product j

Sri size factor for route r in unit i

Vis discrete size s for unit i, i=l , N(i) (Vii = 0)

H horizon time

Yi, 5i cost coefficients for unit i with 0 < Yi < 1

Variables

Vi size of unit i

Br batch size in route r

qr amount produced in route r

0r production time spent with route r

yis 0-1 variable to denote selection of size s in

unit i

The MINLP model for the optimal design problem is then given

by
M N(i)

min C = n 8 i v i T l

i=l s=l

S.t.

(a) Volume requirements for units
Vi>S r iB r iEE,, r=l,NR

(b) Production in each route

% ^ i*l,NR
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(c) Demand constraint

reRj

(d) Definition of sizes

s=l s=l
(e) Horizon constraints

h(e 1 ,e 2 , . . .e r , . . )<H
Vi>0 i=l,M yis = {O,l} s=l,N(i) i=l,N

B r ,q r ,0 r >O r=l,NR

where h(0i, G2..6NR) are linear functions that define the

allocation of times for production (see Faqir and Karimi, 1990).

As can be seen, problem (MB) is an MINLP that

involves nonconvexities in the objective function and in the

constraints (b). In order to reformulate (MB) as an MILP,

substitute Br from constraints (b) into the constraints in (a)

which then leads to

- Vi9r + SriTuq, < 0 ieEr, r=l,NR (25)

which has exactly the same form as equation (5) for Case 2.

By setting the cost coefficients Cis = 8i V^1, and by

applying equations (12) and (13) as in model (R2) for the

variables Grfs, the resulting MILP model is

M N(i)

min C = 2 ]T cis yis
i=l s=l



25

(RMB)

s.t. X V« 0ris * Sri T^ qr ie E,, r=l,NR
s=l

e"s ieEr, r=l,NR
s=l

- 6r
U yis^ 0 s=l, N(i), i€Er r=l,NR

yis = 1 i=l,M

reRj

h(0i, 02,..er)<H

6r, q r >0 r=l,NR
6ris ^0 s=l,N(i), ieEr, r=l,NR

yis = {0,l} s=l,N(i), i=l,M

where a simple choice of the upper bound 9r is H, the total

horizon time.

8. NUMERICAL RESULTS

Batch process design
Consider the problem by Voudouris and Grossmann

(1991) of a multiproduct batch plant which produces five
different products A,B,C,D and E. The plant consists of six
stages involving one piece of equipment (see Fig. 1). The
demands for the five products are: 250,000 tons per year for A,
150,000 tons per year for B, 180,000 tons per year for C,
160,000 tons per year for D and 120,000 tons per year for E.
Size factors and cycle times are given for each product and the
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specified time horizon is 6000 hours. The equipment at any

stage are available in 5 discrete sizes; namely

3000,3750,4500,5860 and 7325 liters. In this case the

equipment cannot be removed from the process train and so the

value of 0 liters is not allowed.

The problem can be formulated as the NLP (Bl) where

the equipment volumes are relaxed to be continuous variables.

The optimal design found by this formulation has an investment

cost of $231,489.6, and the corresponding optimal volumes are

[6017.6, 3483.6, 3960.9, 4823.4, 4646.5, 3885.5 ] liters.

Rounding up to the next available size gives [7325, 3750,

4500, 5860, 5860, 4500] liters and a capital investment of

$255,886.2. In this case there is no need to check for the

feasibility of the proposed solution since rounding up gives

always a feasible design. The CPU time required with

GAMS/MINOS 5.2 (Brooke et al, 1988; Murtagh and

Saunders, 1985) was 2.3 seconds in a VAX-6420. The NLP

involved 11 continuous variables and 31 constraints.

The MINLP formulation of the problem was

convexified with exponential transformations and solved using

the Outer Approximation algorithm implemented in DICOPT

(Kocis and Grossmann, 1989). It involved 30 0-1 variables,

11 continuous variables and 43 constraints. For the NLP's the

solver used was MINOS 5.2 whereas for the MILP's

SCICONIC (1990) was used. The problem converged in 19.9

seconds in a VAX-6420: 2.3 seconds or 12% of the total time

were required for the NLP subproblems and 17.6 seconds or

88% of the total time were required for the MILP master
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problems. The optimal solution obtained was [5860 , 3750 ,

3750 , 5860 , 4500 , 4500] liters for the equipment in each

stage and the capital investment required was $238,650.24.

By formulating the problem as the MILP in problem

(RB), 30 0-1 variables, 5 continuous variables and 37

constraints were involved. Using SCICONIC on a VAX-6420,

3.1 seconds were required to solve the MILP problem to

optimality; using ZOOM (Marsten, 1986) in the same computer

required 23.2 seconds. The globally optimal solution found

using the MILP formulation had a capital investment of

$238,650.24 with equipment sizes [5860 , 3750 , 3750 , 5860,

4500 , 4500] liters. This solution is the same as the one

obtained by the MINLP formulation. Note that the solution

found by the NLP formulation followed by the rounding of the

equipment sizes does not yield an optimal design as its capital

investment is 7.2% higher than the global optimum solution. It

is also worth noting that the CPU time required by the MILP

formulation when solved with SCICONIC is only slighly

higher than the CPU time required by the continuous NLP

model when solved with MINOS.

Structural Design

Consider the 5 bar fan stress shown in Fig. 4 which is

subject to one load of 100,000 lbs (Ghattas and Grossmann,

1991). The modulus of elasticity is lxlO7 psi, the density is

0.1 lb/in3 for each bar and the maximum stress is 20,000psi in

compression or tension. Also, for each bar 6 discrete sizes are

assumed, [0,2,4,6,8,10] in2, where the zero value allows for
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the possible removal of the bars. Also constraints were

specified on maximum displacement and elongation; these were

not binding at the solution. The problem was first formulated

as the NLP in (ST) which led to a minimum weight of 146.25

lb with cross-section areas of A=[6.988,0,0,0,6.525] in2. By

rounding up the sizes to [8,0,0,0,8] and resolving the NLP a

feasible solution was obtained with a weight of 172.97 lb. The

total CPU-time required with GAMS/MINOS was 1.94 sec on

VAX-6420 (1.43 sec first NLP, 0.51 sec second NLP). The

NLP involved 23 continuous variables and 18 constraints.

The problem was also formulated as an MINLP which

required 30 0-1 variables, 23 continuous variables and 28

constraints. With the outer-approximation method implemented

in DICOPT (Kocis and Grossmann, 1989) the problem

converged in 6.4 sec using MINOS for the NLP subproblems

and ZOOM for the MELP master problems. Generalized

Benders decomposition was also applied but it failed to

converge to the optimum. Finally, a branch and bound method

100,000 lbs

Fig. 4. Five-bar fan truss
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was also used for the MINLP which was formulated as in (PI)

requiring 5 discrete variables, 23 continuous variables and 18

constraints. The method required 11.5 sec enumerating 10

nodes which were solved with MINOS. By formulating the

problem as an MILP in problem (RST) 30 0-1 variables, 43

continuous variables and 83 constraints were involved. The

computer code SCICONIC solved the MILP problem to

optimality in 3.5 sec while ZOOM required 9.3 sec. The

optimal solution of the MILP led to a minimum weight of

172.18 lb with areas A = [8,0,0,2,6] in2 which was the same

solution that was found with DICOPT and with the branch and

bound method. Note that in this case the rounded solution is

[8,0,0,0,8] with weight 172.97 lb. This solution does not

correspond to the optimum design although the difference in the

weight is only 0.5% higher. It is also worth noting that the

rounded solution yields a different topology than the global

optimum.

As an additional example, consider the truss shown in

Fig. 2. which consists of 10 bars and is subjected to two

loading conditions of 100,000 lbs. The modulus of elasticity is

lx lO 7 psi, the density is 0.1 lb/in3 for each bar and the

maximum stress is 25,000psi in compression or tension. For

each bar 11 discrete sizes are assumed,

[0,1,2,3,4,5,6,7,8,9,10] in2, where as in the example above,

the zero value allows for the possible removal of the bars. Also

constraints were specified for the displacements and

elongations. By formulating the problem as the MILP (RST),

110 0-1 variables, 148 continuous variables and 268 constraints
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Fig. 5. Optimal topology for truss in Fig. 2.

were involved. The computer code SCICONIC solved the

MILP problem to optimality in 602 sec on an HP-9000/720

(without SOS1 sets). On a VAX-6420 the problem could not

be solved to optimality in 900 sec without the SOS1 sets; when

they were included, the problem was solved to global optimality

in 135 sec. As for the solution strategy described in the

remarks section, the problem was solved also with SCICONIC

on the VAX-6420 in 75.2 sec (stepl: 6 sec LP, 7.5 sec MILP;

step 2: 30.2 sec LFs; step3: 31.5 sec MILP with SOS1). The

optimal solution of the MILP led to a minimum weight of

1636.4. lb with areas A = [8,0,8,4,0,0,6,6,6,0] in2 which

yields the configuration shown in Fig. 5. When this problem

was solved as an MINLP in (P3), DICOPT (Kocis and

Grossmann, 1989) failed to converge to the global optimum

from several starting points due to the nonconvexities;

Generalized Benders decomposition did not converge after 900

sec due to the large number of infeasible NLP subproblems. It

should be noted, that when the problem was solved as a
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continuous NLP, the model required 48 continuous variables

and 38 constraints. With zero initial guesses for all variables

MINOS failed to converge; with nonzero guesses (all areas with

size 5), the rounded solution was the same as the one of the

MILP requiring a total of 6.1 sec.

Complex batch process design

Consider the design of a multipurpose batch plant with

multiple production routes that is shown in Fig.3 (Faqir and

Karimi, 1990). Assume that this plant must produce four

products A, B, C and D satisfying the demands of 300000,

250000, 180000 and 200000 tons per year, respectively. The

time horizon in which these demands have to be satisfied is

6000 hours. As seen in Fig. 3, there are a total of 10 potential

equipment units available which are placed in 6 different

processing stages. Each product must be manufactured with

different processing stages which then gives rise to a total of 12

potential production routes. The equipment are available in 6

discrete sizes; namely 0, 500, 1000, 2000, 2500 and 3000

liters. Note that the nonexistence of an equipment is

represented by a volume of 0 liters. There is a constant

processing time characterizing every task of a product in a

specific equipment group.

Faqir and Karimi (1990) have developed a special

purpose strategy for solving the associated MINLP problem

which requires a significant amount of preprocessing and user

interaction. Formulating the problem as the MILP in (RMB),

50 0-1 variables , 225 continuous variables and 234 constraints
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are involved. The computer code SCICONIC was used in

order to solve the problem through GAMS. The optimal

solution obtained requires a capital investment of $124,500

which is the same solution as the one reported by Faqir and

Karimi (1990). The CPU requirements on a VAX-6420 were

305.2 seconds. It has to be mentioned here that exploiting the

fact that the logical constraints in (RMB) can be treated as

special ordered sets of type 1 (SOS1), the CPU time was

further reduced to 148.4 seconds.

9. CONCLUSIONS

This paper has considered a special class of nonlinear

discrete design optimization problems which involve nonlinear

separable objective functions in the design variables and bilinear

constraints that are given by products of design and state

variables, where the former are restricted to take discrete

values. Two special cases for the constraints were identified

for which it was shown that the discrete nature of the design

variables can be exploited to reformulate these problems as

MILP models. The solution of these models can be expedited

through the use of SOS1 sets, and with a simple solution

strategy that relies on deriving valid lower bounds on the sizes.

The application of the MILP reformulations was applied to

multiproduct batch plant problems in chemical engineering and

to structural design problems in civil engineering. These

represent novel design optimization models that can explicitly

handle discrete sizes, and therefore avoid the common heuristic

rounding procedures for discrete nonlinear programming
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models. Numerical results have been presented which show

that the proposed models not only produce global optimum

solutions, but are computationally competitive when compared

to nonlinear formulations with continuous sizes.
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APPENDIX. On the equivalence for the
linearization of case 2.

Proposition. The constraints,

isVijs - pijWj < 0 je J(i), i=l,..n (Al)
s=l

v>js jeJ(i) , i=l,..n (A2)
s=l

yb = 1 (A3)
s=l

VjL yis < vijs < VJU y i s je j( i) , s = i f N(i), i=l..n (A4)

are equivalent to the inequalities,

ijWj < 0 , jej(i), i=l..n (A5)

for xj = ]T disyis, £ yis=l, i=l,-n; yis=O,l (A6)
s=l s=l

Proof. Let yit(i) =1 and yis=0 for s * t(i), s=l,..N(i), i=l,...n.

From (A6) it follows that xi = djt(i), with which (A5) becomes,

otijdit(i)Vj - PijWj <0 , j€j(i), i=i..n (A7)

Also, from (A4) it then follows that VJJS = 0, j€j(i), s =

l,...N(i), i = l,...n, s * t(i). Hence, from (A2),

vj = vijt(i) J€J(i), i=l..n (A8)

and aijdit(i)Vijt(i) - pyWj <0 , j€j(i), i=l..n (A9)

Substituting (A8) into A(9) leads to

aydit(i)Vj - pij WJ < 0 , j€j(i), i=i..n (A 10)

which is identical to (A7).


