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Abstract

We characterize the invariant filtering measures resulting from Kalman filtering with intermittent observations
([1]), where the observation arrival is modeled as a Bernoulli process. In [2], it was shown that there exists a γsb > 0

such that for every observation packet arrival probability γ, γ > γsb > 0, the sequence of random conditional
error covariance matrices converges in distribution to a unique invariant distribution µγ (independent of the filter
initialization.) In this paper, we prove that, for controllable and observable systems, γsb = 0 and that, as γ ↑ 1, the
family {µγ}γ>0 of invariant distributions satisfies a moderate deviations principle (MDP) with a good rate function
I . The rate function I is explicitly identified. In particular, our results show: (1) as γ ↑ 1, the family {µγ} converges
weakly (in distribution) to the Dirac measure δP∗ , where P ∗ is the fixed point of the discrete time Riccati operator;
(2) the probability of a rare event (an event bounded away from P ∗) under µγ decays to zero as a power law of (1−γ)

as γ ↑ 1. The best exponent of such a power law decay is explicitly obtained by solving a deterministic variational
problem involving the MDP rate function I . These results offer a complete characterization of the family of invariant
distributions {µγ}γ>0.We provide computationally efficient methods for solving the variational problems in question,
leading to efficient estimates of probabilities under the invariant measures. The analytical techniques developed in
this paper are fairly general and applicable to the analysis of a broader class of iterated function systems. Several
intermediate results obtained in the process are of independent interest.

1. INTRODUCTION

A. Background and Motivation

Kalman filtering with non-classical information pattern has received significant attention in the control and

signal processing literature. There has been renewed interest, motivated by increasing real-time networked systems

applications. Such networks operate under constrained resources with lack of supervised control centers leading

to inherent sources of randomness in the information pattern. For reliable system operation, it is of interest to

understand the asymptotic properties of such systems like stability and ergodicity. In [2], we studied this problem

in the context of Kalman filtering with intermittent observations ([1].) The results in [2] establish an interesting

dichotomy for the filtering error process and show, in particular, that stochastic boundedness of the sequence of

conditional error covariance matrices (generated by the discrete time random Riccati equation (RRE)) is necessary

and sufficient for its ergodicity. In other words, we showed the existence of a critical probability, γsb, such that, if

the observation packet arrival probability γ is greater than γsb, the sequence of random error covariance matrices

converges weakly (in distribution) to a unique invariant distribution µγ . We note here that stochastic boundedness is

a much weaker condition than moment stability, and, as shown in [2], convergence to a unique invariant distribution

is possible under a packet arrival probability for which moment stability does not hold. In this context, we further

note, that our work ([2]) provides a sample-path analysis of the RRE, in contrast to moment stability analysis, as

is done conventionally in the literature (see, for example, [3], [4], [5], [6], [7], [8], [9], [10], [11] and also [2] for

a detailed review of the literature.)
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To summarize, the results in [2] showed the existence and uniqueness of an attracting invariant measure µγ for

the RRE, for every γ > γsb, to which the conditional error covariance matrices converge weakly when operated

at packet arrival probability γ. In this paper, we prove that, for observable and controllable systems, γsb = 0, and

hence µγ exists and is unique for every γ > 0 for such systems1. The main goal of this paper is to undertake the

highly nontrivial problem of characterizing the resulting invariant measures µγ . In the non-classical information

case, characterization of the steady-state error covariance distribution µγ is as important as characterizing the

deterministic fixed point of the Riccati equation in the classical case, as derived by Kalman [12] for discrete time

and by Kalman and Bucy [13] for continuous time.

We detail the key contributions of this paper. We show the following for observable and controllable systems.

1. Stochastic boundedness: γsb = 0. We prove the result stated in Theorem 9 in [2], by proving that, for controllable

and observable systems, γsb = 0, and so, for any non-zero observation arrival probability γ, the conditional error

covariance process is ergodic, with the unique attracting measure µγ .

2. Moderate deviation principle (MDP). We show that the family of invariant distributions
{
µγ
}
γ>0

satisfies a

moderate deviations principle (MDP) with good rate function I as γ ↑ 1. An immediate consequence (which is

rather intuitive but not natural) is that, as γ ↑ 1, the family of invariant measures
{
µγ
}

converges weakly to the

Dirac mass δP∗ , where P ∗ is the unique fixed point of the deterministic Riccati equation.

3. Probability of rare events. The MDP implies that the probabilities of ‘rare events’ (events bounded away from

P ∗) decay to zero as γ ↑ 1. A natural question of practical and theoretical interest is the rate at which the probability

of such a rare event goes to zero. We show that the probability of such rare events decays as a power law of (1−γ)

as γ ↑ 1.

4. Best decay: Variational problem. The best exponent for the power law decay of the probability of rare events

depends on the rare event of interest; it can be explicitly characterized in terms of the rate function I(·). Formally,

we have the following MDP asymptotics:

µγ(Γ) ∼ (1− γ)infx∈Γ I(x) (1)

(this notation is made precise in the paper.) Thus, the exact decay asymptotics of a rare event is obtained by solving

a variational problem involving the rate function I . Since, the above MDP asymptotics holds for every Borel set

Γ, our result characterizes completely the family of invariant measures
{
µγ
}

.

5. Estimating the probability of rare events. The estimation of probabilities of rare events reduces to solving

deterministic variational problems; this not only characterizes the decay rate of rare events but also gives insight

into how such events occur. In Section 8, we show several techniques that can be employed to solve these variational

problems efficiently. We emphasize that our analysis of reducing the problem of estimating probabilities of interest to

solving variational problems efficiently is much more definitive and relevant than numerically estimating the invariant

distributions. A naive numerical approach of simulating the distributions
{
µγ
}

as γ ↑ 1 becomes meaningless as the

rare events of interest become increasingly difficult to observe as γ ↑ 1 (see also Section 9.) One may take recourse

to sophisticated simulation techniques like importance sampling (see, for example, [14]), but such approaches require

characterization of the distributions in question, which is addressed in this paper.

More broadly, the techniques developed in this paper are fairly general and go beyond the setting of Kalman

1The fact, that γsb = 0, was proved for systems with invertible observation matrices in [2]. The proof for general observable systems is
provided in Appendix B of the present paper.
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filtering with intermittent observations. There is a key difference in the MDP arguments used here and conventional

methods for analyzing the moderate (or large) deviations for stationary measures of Markov processes, where it is

generally assumed that the underlying Markov process is positive recurrent and moderate deviations of stationary

measures then follow from that of finite dimensional distributions (see, for example, [15],[16].) However, the

Markov processes governing the RRE are not, in general, positive recurrent, as is the case for a large class of

iterated function systems ([17].) Our analysis proceeds by studying the probability measures induced on the space

of random function compositions (strings) and developing its topological properties, as detailed in the paper. Several

intermediate results obtained in the process are of independent interest and follow under more general assumptions.

Our tools are applicable to the analysis of more complex networked control systems (see, for example, [18]) and

hybrid or switched systems.

We summarize the organization of the paper. Subsection 1-B presents notation and preliminaries on moderate

deviations. Subsection 2-A sets up the problem and prior work is briefly reviewed in Subsection 2-B. Several key

approximation results are presented in Section 3, whereas the main results of this paper are stated and discussed in

Section 4. MDP for finite dimensional distributions of the RRE sequence is analyzed in Section 5, whereas Section 6

systematically carries out the steps required to obtain the main results on MDP for stationary distributions, which

is completed in Section 7. In Section 8, we present efficient ways to solve the variational problems involving the

rate function. Numerical studies justifying the theoretical results for a scalar system arepresented in Section 9.

Section 10 concludes the paper.

B. Notation and Preliminaries

Denote by: R, the reals; RM , the M -dimensional Euclidean space; T, the integers; T+, the non-negative integers;

N, the natural numbers; and X , a generic space. For a subset B ⊂ X , IB : X 7−→ {0, 1} is the indicator function,

which is 1 when the argument is in B and zero otherwise; and idX is the identity function on X . A metric space X
with metric dX is denoted by the pair (X , dX ). The corresponding Borel algebra is denoted by B(X ). For x ∈ X ,

the open ball of radius ε > 0 centered at x is denoted by Bε(x), i.e., Bε(x) = {y ∈ X | dX (y, x) < ε}. The closure

of Bε(x) is the closed ball of radius ε > 0 centered at x and is denoted by Bε(x). For any set Γ ⊂ X , the open

ε-neighborhood of Γ is given by

Γε =

{
y ∈ X | inf

x∈Γ
dX (y, x) < ε

}
(2)

It can be shown that Γε is an open set. Similarly, the closed ε-neighborhood of Γ is given by

Γε =

{
y ∈ X | inf

x∈Γ
dX (y, x) ≤ ε

}
(3)

which is a closed set. For a set Γ ⊂ X , we denote by Γ◦ and Γ its interior and closure respectively.

The Banach space of symmetric matrices
Let SN denote the separable Banach space of symmetric N × N matrices, equipped with the induced 2-norm.

The subset SN+ of positive semidefinite matrices is a closed, convex, solid, normal, minihedral cone in SN , with

non-empty interior SN++, the set of positive definite matrices. The cone SN+ induces a partial order in SN . For

X,Y ∈ SN , we write X � Y (Y � X) to denote Y −X ∈ SN+ ; X ≺ Y to denote X � Y and X 6= Y ; X � Y

(Y � X) to denote Y −X ∈ SN++.

Limit Notations Let h : R 7−→ R be a measurable function.

The notation limz→x f(z) = y implies that for every sequence {zn}n∈N in R with limn→∞ |zn−x| = 0, we have

limn→∞ |f(zn)−y| = 0. The notation limz↑x f(z) = y implies that for every sequence {zn}n∈N in R with zn < x
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and limn→∞ |zn−x| = 0, we have limn→∞ |f(zn)−y| = 0. The notations ↓ and ↑ have similar implications when

working with limit inferiors and superiors.

Probability measures on metric spaces: Let: (X , dX ) a complete separable metric space X with metric dX ;

B(X ) its Borel algebra; B(X ) the Banach space of real-valued bounded functions on X , equipped with the sup-

norm, i.e., f ∈ B(X ), ‖f‖ = supx∈X |f(x)|; and Cb(X ) the subspace of B(X ) of continuous functions. Let P(X )

be the set of probability measures on X . For µ ∈M(X ), we define the support of µ, supp(µ), by

supp(µ) = {x ∈ X | µ(Bε(x)) > 0, ∀ε > 0} (4)

It follows that supp(µ) is a closed set. The sequence {µt}t∈T+
in P(X ) converges weakly to µ ∈ P(X ) if

lim
t→∞

< f, µt >=< f, µ >, ∀ f ∈ Cb(X ) (5)

Weak convergence is denoted by µt =⇒ µ and is also referred to as convergence in distribution. The weak topology

on P(X ) generated by weak convergence can be metrized. In particular, e.g., [19], one has the Prohorov metric

dp on P(X ), such that the metric space (P(X ), dp) is complete, separable, and a sequence {µt}t∈T+
in P(X )

converges weakly to µ in P(X ) iff limt→∞ dp(µt, µ) = 0. The distance between two probability measures µ1, µ2

in P(X ) is computed as:

dP (µ1, µ2) = inf {ε > 0 | µ1(F) ≤ µ2(Fε) + ε, ∀ closed set F} (6)

Moderate Deviations:

Definition 1.1 Let {µγ} be a family of probability measures on the complete separable metric space (X , dX )

indexed by the real-valued parameter γ taking values in (0, 1). Let h : (0, 1) 7−→ R+ be a non-decreasing function

on (0, 1) with

lim
γ↑1

h(γ) =∞ (7)

Let I : X 7−→ R+ be an extended valued lower semicontinuous function. The family {µγ} is said to satisfy a

moderate deviations principle (MDP) with rate function I(·) at scale h(γ) as γ ↑ 1 if the following holds:

lim inf
γ↑1

1

h(γ)
lnµγ (O) ≥ − inf

x∈O
I(x), for every open set O ∈ X (8)

lim sup
γ↑1

1

h(γ)
lnµγ (F) ≤ − inf

x∈F
I(x), for every closed set F ∈ X (9)

The function I(·) is called the MDP rate function. The lower semicontinuity implies that the level sets of I(·), i.e.,

sets of the form {x ∈ X | I(x) ≤ α} for every α ∈ R+, are closed. If in addition, the levels sets are compact (for

every α), I(·) is said to be a good rate function, and the corresponding family {µγ} is said to satisfy an MDP with

good rate function I(·).

It can be shown that the MDP, as stated in (8)-(9), is equivalent to the following:

− inf
x∈Γ◦

I(x) ≤ lim inf
γ↑1

1

h(γ)
lnµγ (Γ) ≤ lim sup

γ↑1

1

h(γ)
lnµγ (Γ) ≤ − inf

x∈Γ
I(x) (10)

for every measurable set Γ. In other words, (10) holds iff (8)-(9) hold.

The above formulation of MDP is similar in spirit to the theory of large deviations principle (LDP). In fact, in

the above definition, if the scale function h(·) is a polynomial in γ, the family {µγ} is said to satisfy an LDP (see,
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for example, [15], [20].) This conceptual similarity is manifested in some of the proof techniques developed in the

paper having parallels with their counterparts in the theory of LDP.

Before interpreting the consequences of an MDP as defined above, we consider the notion of a rare event, which

is the central motivation to all MDP (and LDP):

Definition 1.2 (Rare Event) : A set Γ ⊂ B(X ) is called a rare event with respect to the family {µγ} of probability

measures, if limγ↑1 µ
γ(Γ) = 0. In other words, the event Γ becomes increasingly difficult to observe (i.e., it becomes

rare) as γ ↑ 1.

Once a rare event Γ is identified, the next natural question is the rate at which its probability goes to zero under

µγ as γ ↑ 1. This is answered by an MDP, which also gives a complete characterization of the family as γ ↑ 1.

Indeed, from Def. 1.1 it is not hard to see that, if the family {µγ} satisfies an MDP, we have for every measurable

set Γ ∈ X :

c1(γ)e−h(γ) infx∈Γ◦ I(x) ≤ µγ(Γ) ≤ c2(γ)e−h(γ) infx∈Γ I(x) (11)

where c1, c2 : (0, 1) 7−→ R+ are functions, such that, limγ↑1 ci(γ) = 1, i = 1, 2. For brevity, we subsequently use

the notation

µγ(Γ) ∼ e−h(γ) infx∈Γ I(x) (12)

as a short form of (11).

Now assume Γ is a rare event and, to avoid unnecessary technicalities, also assume that Γ is an I-continuity set,

i.e., infx∈Γ◦ = infx∈Γ = infx∈Γ. Then, by (11) we must have infx∈Γ > 0 (so that the probabilities decay to zero.)

Thus, (11) implies that the probability of the rare event Γ decays exponentially at a scale h(γ) to zero, infx∈Γ I(x)

being best exponent (or rate) of decay. Such a characterization of the best decay rate of a rare event is extremely

important in system analysis and, as will be seen in the paper, offers considerable insight into system design apart

from providing a complete characterization of the measures µγ .

2. PROBLEM FORMULATION

We split the present section into two subsections, Subsection 2-A briefly summarizing the model of Kalman filter-

ing with intermittent observations, while in Subsection 2-B we review some results from [2] on weak convergence

of the random error covariance matrices resulting from the above filtering model.

A. Setup

We start by reviewing the model of Kalman filtering with intermittent observations in [1]. Let

xt+1 = Axt + wt (13)

yt = Cxt + vt (14)

Here xt ∈ RN is the signal (state) vector, yt ∈ RM is the observation vector, wt ∈ RN and vt ∈ RM are Gaussian

random vectors with zero mean and covariance matrices Q and R, respectively. The sequences {wt}t∈T+ and

{vt}t∈T+
are uncorrelated and mutually independent. Also, assume that the initial state x0 is a zero-mean Gaussian

vector with covariance P0. Unless otherwise stated, we use the following standing assumption throughout the paper:

Assumption (E): The pair (C,A) is observable and Q,R are positive definite. The assumption Q � 0 implies

the controllability of the pair (A,Q1/2). The main results of the paper require all these assumptions, but several
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intermediate results of independent interest hold under less stringent assumptions. In that case, they are noted

explicitly.
The m.m.s.e. predictor x̂t|t−1 of the signal vector xt given the observations {ys}0≤s<t is the conditional mean. It

is recursively implemented by the Kalman filter. The sequence of conditional prediction error covariances, {Pt}t∈T+
,

is then given by

Pt = E
[(
xt − x̂t|t−1

) (
xt − x̂t|t−1

)T | {y(s)}0≤s<t
]

(15)

Pt+1 = APtA
T +Q−APtCT

(
CPtC

T +R
)−1

CPtA
T (16)

Under the hypothesis of controllability of the pair (A,Q1/2) and observability of the pair (C,A), the deterministic

sequence {Pt}t∈T+
converges to a unique value P ∗ (which is a fixed point of the algebraic Riccati equation (16))

from any initial condition P0. [12].

This corresponds to the classical perfect observation scenario, where the estimator has complete knowledge of the

observation packet yt at every time t. With intermittent observations, the observation packets are dropped randomly

(across the communication channel to the estimator), and the estimator receives observations at random times. We

study the intermittent observation model considered in [1], where the channel randomness is modeled by a sequence

{γt}t∈T+
of i.i.d. Bernoulli random variables with mean γ (note, γ then denotes the arrival probability.) Here,

γt = 1 corresponds to the arrival of the observation packet yt at time t to the estimator, whereas a packet dropout

corresponds to γt = 0. Denote by ỹt the pair ỹt =
(
ytI(γt=1), γt

)
. Under the TCP packet acknowledgement protocol

in [1] (the estimator knows at each time whether the observation packet arrived or not), the m.m.s.e. predictor of

the signal is given by:

x̂t|t−1 = E
[
xt

∣∣∣{ỹs}0≤s<t ] (17)

A modified form of the Kalman filter giving a recursive implementation of the estimator in (17) is in [1]. The
sequence of conditional prediction error covariance matrices, {Pt}t∈T+

, is updated according to the following
random Riccati equation (RRE):

Pt = E
[(
xt − x̂t|t−1

) (
xt − x̂t|t−1

)T | {ỹ(s)}0≤s<t
]

(18)

Pt+1 = APtA
T +Q− γtAPtCT

(
CPtC

T +R
)−1

CPtA
T (19)

A convenient representation of Pt is obtained by defining the functions f0, f1 : SN+ 7−→ SN+ as2:

f0(X) = AXAT +Q, ∀X ∈ SN+ (20)

f1(X) = AXAT +Q− γtAXCT
(
CXCT +R

)−1
CXAT , ∀X ∈ SN+ (21)

We then have for all t ≥ 1

Pt = fγt−1 ◦ fγt−2 ◦ · · · ◦ fγ0(P0) (22)

Unlike the classical case, the sequence {Pt}t∈T+
is now random (because of its dependence on the random sequence

{γt}t∈T+
.) Thus, for each t, Pt is a random element of SN+ , and we denote by µγ,P0

t its distribution (the measure

it induces on SN+ .) The superscripts γ, P0 emphasize the dependence of µγ,P0

t on the packet arrival probability

and the initial condition. We often use the notations Pγ,P0 ,Eγ,P0 to denote probability and expectation operators

2f0 corresponds to the Lyapunov operator, whereas f1 is the Riccati operator.

June 4, 2010 DRAFT



7

respectively, when the system is operated with observation arrival probability γ and initial covariance P0.

B. Prior work

The following extends Theorems 9, 10 in [2] on the weak convergence of the RRE sequence.

Theorem 2.1 Let assumption (E.1) hold. Then,

• For each γ > 0, there exists a unique invariant distribution µγ s.t. the sequence {Pt}t∈T+
(or sequence{

µγ,P0

t

}
t∈T+

of measures) converges weakly to µγ from any initial condition P0 ∈ SN+ .

• Define the set S ⊂ SN+ by

S = {fi1 ◦ fi2 ◦ · · · ◦ fis (P ∗) | ir ∈ {0, 1}, 1 ≤ r ≤ s, s ∈ T+} (23)

Then3, if 0 < γ < 1,

supp
(
µγ
)

= cl(S) (24)

where cl(S) denotes the topological closure of S in SN+ and supp denotes the support of a probability measure

([21]). In particular, we have

µγ
({
Y ∈ SN+ | Y � P ∗

})
= 1 (25)

The proof is in Appendix B. For a detailed discussion of the above results, the reader is referred to [2].

3. SOME KEY APPROXIMATION RESULTS

In this section we present some results on random compositions of Lyapunov and Riccati operators leading to

the RRE sequence (Subsection 3-A.) In Subsection 3-B, we present some key approximation results that are of

independent interest and establish several useful properties of the RRE and the classical Riccati operator.

A. Preliminary Results

The RRE sequence is an iterated function system (see, for example, [17]) comprising of random compositions

of Lyapunov and Riccati operators. To understand the system, we study the behavior of such random function

compositions, where not only the numerical value of the composition is important, but also the composition pattern

is relevant. To formalize this study, we start with the following definitions:

Definition 3.1 (String) : Let P0 ∈ S+. A string R with initial state P0 and length n ∈ T+ is a (n+ 1)-tuple of the

form:

R = (fi1 , fi2 , · · · fin , P0) , i1, · · · , in ∈ {0, 1} (26)

where f0 and f1 correspond to the Lyapunov and Riccati updates in eqns. (20,21). The length of a string R is

denoted by len(R). The set of all possible strings is denoted by S.

Remark 3.2 Note that a string R can be of length 0; then it is represented as a 1-tuple, consisting of only the

initial condition. We introduce notation here. Let t1, t2, · · · , tl be non-negative integers, such that,
∑l
i=1 ti = n

3In the definition of S ((23)), s can take the value 0, implying P ∗ ∈ S.
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and ikj ∈ {0, 1} for 1 ≤ j ≤ tk, 1 ≤ k ≤ l, such that, for all k, ikj = ik1 , 1 ≤ j ≤ tk. Let R be a string of length

n of the form:

R =
(
fi11 , · · · , fi1t1 , · · · , fi21 , · · · , fi2t2 , · · · , fil1 , · · · , filtl , P0

)
(27)

where the indices ikj satisfy the relations above. For brevity, we will write R as:

R =
(
f t1
i11
, f t2
i21
, · · · , f tl

il1
, P0

)
(28)

For example, the string (f0, f1, f1, f1, f0, f0, P0) is written concisely as
(
f0, f

3
1 , f

2
0 , P0

)
.

Definition 3.3 (Numerical Value of a String) : To every string R is associated its numerical value, denoted by

N (R), which is the numerical evaluation of the function composition on the initial state P0, i.e., for R of the form

R = (fi1 , fi2 , · · · fin , P0) , i1, · · · , in ∈ {0, 1}, we have4

N (R) = fi1 ◦ fi2 ◦ · · · ◦ fin(P0) (29)

Thus, the numerical value can be viewed as a function N (·) from the space S of strings to SN+ . We abuse notation

by denoting N (S) to be the set of numerical values attainable, i.e.,

N (S) =
{
N (R) | R ∈ S

}
(30)

Remark 3.4 Note the difference between a string and its numerical value. Two strings are equal iff they comprise of

the same order of function compositions applied to the same initial state. In particular, two strings can be different,

even if they evaluate to the same numerical value.

Definition 3.5 (Concatenated Strings) : Let n ∈ N and t1 ≤ t2 ≤ · · · ≤ tn ∈ T+. Also, if tn ≥ 1, choose

i1, i2, · · · , itn ∈ {0, 1}. Then

R =
((
fit1 , fit1−1

· · · , fi1 , P0

)
,
(
fit2 , · · · , fit1 , · · · , fi1 , P0

)
, · · · ,

(
fitn , · · · , fi1 , P0

))
(31)

is a concatenated string of block length n with initial state P0
5.

We similarly define the numerical value of such a concatenated string R by

N (R) =
(
fit1 ◦ · · · ◦ fi1(P0), fit2 ◦ · · · ◦ fit1 ◦ · · · fi1(P0), · · · , fitn ◦ · · · ◦ fi1(P0)

)
(32)

and note that N (R) ∈
⊗n

i=1 SN+ .

For fixed P0, n, t1 ≤ t2 ≤ · · · ≤ tn, the set of such concatenated strings is denoted by SP0
t1,··· ,tn . The corresponding

set of numerical values is denoted by N (SP0
t1,··· ,tn).

Finally, for X ∈
⊗n

i=1 SN+ , the set SP0
t1,··· ,tn(X) ⊂ SP0

t1,··· ,tn consists of all strings with numerical value X, i.e.,

SP0
t1,··· ,tn(X) =

{
R ∈ SP0

t1,··· ,tn | N
(
R
)

= X
}

(33)

A rigorous algebra of such strings can be developed, which we undertake elsewhere. In the following, we present

some important properties of strings to be used later (see Appendix A for a proof):

4For function compositions, we adopt a similar notation to that of strings, namely, for example, we denote the composition f0 ◦ f1 ◦ f1 ◦
f1 ◦ f0 ◦ f0(P0) by f0 ◦ f3

1 ◦ f2
0 (P0).

5We again adopt the convention that the first block is simply P0 if t1 = 0.
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Proposition 3.6 (i) For s, t ∈ T+ and s ≤ t, we have, N
(
SP∗s

)
⊂ N

(
SP∗t

)
. In particular, if for some X ∈

SN+ ,t0 ∈ T+ and i1, · · · , it0 ∈ {0, 1}, the string R =
(
fi1 , · · · , fit0 , P

∗) belongs to SP∗t0 (X), we have(
fi1 , · · · , fit0 , f

t−t0
1 , P ∗

)
∈ SP

∗

t (X) ⊂ SP
∗
(X), ∀t ≥ t0 (34)

(ii) Fix n ∈ N and t1 < · · · < tn ∈ T+. We then have, for 0 ≤ γ ≤ 1,

Pγ,P0

(
(Pt1 , · · · , Ptn) ∈ N

(
SP0
t1,··· ,tn

))
= 1 (35)

(iii) Let t ∈ T+ and R ∈ SP0
t = (fi1 , · · · , fit , P0) be a string. Then, there exists αP 0 ∈ R+, depending on P 0,

such that,

f
π(R)
0 (αP 0I) � N (R) (36)

where

π (R) =

{ ∑t
j=1 I{0}(ij) if t ≥ 1

0 otherwise
(37)

counts the number of f0’s in R.

B. Some approximation results

In this subsection we present several approximation results to be used in the sequel. The results are of independent

interest and establish some useful properties of the RRE and the classical Riccati operator.

The first concerns uniform convergence properties of the classical Riccati operator and is used in the sequel to

obtain various tightness estimates required for establishing the MDP. The proof is provided in Appendix A.

Lemma 3.7 For every ε > 0, there exists tε ≥ N , such that, for every X ∈ SN+ , with X � P ∗,∥∥f t1 (X)− P ∗
∥∥ ≤ ε, t ≥ tε (38)

Note, in particular, that tε can be chosen independently of the initial state X .

The following result can be viewed as a corollary to Lemma 3.7 and concerns the Lipschitz continuity of finite

compositions of the Riccati operator.

Lemma 3.8 For fixed t ∈ N and i1, · · · , it ∈ {0, 1}, define the function g : SN+ 7−→ SN+ by

g(X) = fi1 ◦ · · · ◦ fit(X), X ∈ SN+ (39)

Then g(·) is Lipschitz continuous with some constant Kg > 0.

Also, for every ε2 > 0, there exists tε2 , such that, the function f
tε2
1 (·) is Lipschitz continuous with constant

K
f
tε2
1

< ε2.

Proof: From (174) it follows that the function f1(·) is Lipschitz continuous with constant Kf1
= c1e

−c2 , where

c1, c2 are positive constants defined in Lemma 3.7. It is also easy to see that the affine function f0(·) is Lipschitz

continuous with constant Kf0 = α2, where α is the largest singular value of the matrix A.

It then follows that the function g(·) defined above is Lipschitz continuous, being a finite composition of Lipschitz

continuous functions.
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For the second assertion, choose tε2 ∈ N, such that, c1e−c2tε2 < ε2, where c1, c2 > 0 are defined in Lemma 3.7,

equation (174). It then follows from (174) that, with the above choice of tε2 , the function f
tε2
1 (·) is Lipschitz

continuous with constant Ktε2
f1

< ε2.

The following result concerns stochastic boundedness of the random sequence {Pt}t∈T+ generated by the RRE.

In particular, it completes the proof of Proposition 8 in [2] by establishing triviality of γsb for general observable

and controllable systems (in [2], Proposition 8 was proved only for systems with invertible C.)

Lemma 3.9 Assume
(
A,Q1/2

)
controllable, (C,A) observable. Then γsb = 0, i.e., the sequence {Pt} is stochasti-

cally bounded

lim
M→∞

sup
t∈T+

Pγ,P0 (‖Pt‖ > M) = 0 (40)

for every γ > 0 and initial covariance state P0 ∈ SN+ .

The proof is provided in Appendix B and offers a new insight into the random Riccati equation. For a discussion

on the consequence and significance of the result, the reader is referred to the text following Proposition 8 in [2].

We reemphasize here, that the result establishes the importance of stochastic boundedness as a metric for system

stability and design as compared to various notions of moment stability. For example, as shown in [1], the critical

probability for mean stability may be quite large, depending on the instability of A. However, we show that, even in

the sub-mean stability regime, the system is stochastically bounded (for γ > 0) and converges to a unique invariant

distribution. Hence, our analysis offers insight into system design in the sub-mean stability regime.

The following result on limits of real number sequences will be useful later.

Proposition 3.10 For J ∈ N and 1 ≤ i ≤ J , let ai : [0, 1) 7−→ [0, 1] be functions with

lim
γ↑1
− lnai(γ)

ln(1− γ)
= −a∗i , 1 ≤ i ≤ J (41)

(we adopt the convention ln0 = −∞ and a∗i is non-negative with ∞ as a possible value. Then

lim
γ↑1
−

ln
(∑J

i=1 ai(γ)
)

ln(1− γ)
= − min

i∈{0,··· ,J}
{a∗i } (42)

4. MAIN RESULTS AND DISCUSSIONS

We state the main results of the paper in this section whose proofs are provided in Section 7.

The following result is a first step to understanding the behavior of the family {µγ} of invariant distributions.

Theorem 4.1 The family of invariant distributions
{
µγ
}

converges weakly to the Dirac probability measure δP∗ as

γ ↑ 1, i.e.,

lim
γ↑1

dP
(
µγ , δP∗

)
= 0 (43)

We have the following convergence rate asymptotics:

For every ε > 0, we have

lim sup
γ↑1

−
ln
(
µγ
(
BCε (P ∗)

))
ln(1− γ)

≤ −1 (44)

We discuss the consequences of Theorem 4.1. The first assertion states that the family {µγ} converges weakly

to the Dirac measure concentrated at P ∗, δP∗ , as γ ↑ 1. This is quite intuitive, as with γ ↑ 1, the filtering problem
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reduces to the classical Kalman filtering setup with deterministic packet arrival (no dropouts), in which case the

deterministic sequence of conditional error covariances converges to the fixed point P ∗. Thus, as γ ↑ 1, we expect

the RRE sequence to behave more and more similarly to the deterministic γ = 1 case leading to the convergence

of the measures µγ to δP∗ as γ ↑ 1. However, from a technical point of view this is not obvious, as the case γ = 1

may be a singularity. Theorem 4.1 rules out this possibility and shows that the family {µγ} viewed as a function

of γ is sufficiently well behaved (continuous) at γ = 1.

An immediate consequence of Theorem 4.1 is the following:

lim
γ↑1

µγ(Γ) = 0, ∀ Γ ∩ P ∗ = φ (45)

Thus, we note that, w.r.t. {µγ}, every event Γ with P ∗ /∈ Γ is a rare event (see Defn. (1.2).) This is intuitively

clear, because as γ ↑ 1, the measures µγ become concentrated on arbitrarily small neighborhoods of P ∗, making

such an event Γ very difficult to observe.

Once the rare events are identified, the next step in the characterization of {µγ} is to ascertain the rate at which

such rare events go to zero, or the rate at which the family {µγ} converges to δP∗ as γ ↑ 1. The distance between

the family {µγ} and its weak limit δP∗ as γ ↑ 1 is important for the design engineer, as it relates the loss in

performance when operating at packet arrival probability γ < 1. The answer is provided in the second assertion

of Theorem 4.1, which says that, for every ε > 0, the probability of staying away from the ε-neighborhood of P ∗

decreases as (1− γ) when γ ↑ 1, i.e.6,

µγ = O(1− γ), ∀ ε > 0 (46)

Since the above holds for every ε > 0, the probability of any rare event vanishes at least as (1 − γ). Clearly, the

exact rate of going to zero depends on the rare event in question (for example, how ‘far’ it is from P ∗, which

becomes ‘typical’ as γ ↑ 1.

A complete characterization of the family {µγ} requires the exact decay rate of rare events as γ ↑ 1, and this is

achieved in the following result that establishes an MDP for the family {µγ} as γ ↑ 1.

Theorem 4.2 Recall in equation (37) the definition of π(·). The family of invariant distributions
{
µγ
}

satisfies an

MDP at scale −ln(1− γ) as γ ↑ 1 with a good rate function I(·), i.e.,

lim inf
γ↑1

− 1

ln(1− γ)
lnµγ (O) ≥ − inf

X∈O
I(X), for every open set O (47)

lim sup
γ↑1

− 1

ln(1− γ)
lnµγ (F) ≤ − inf

X∈F
I(X), for every closed set F (48)

where the function I : SN+ 7−→ R+ is given by:

I(X) = inf
R∈SP∗

π(R), ∀X ∈ SN+ (49)

Theorem 4.2 provides a complete understanding of the family of invariant measures {µγ} as γ ↑ 1. First, it

establishes the important qualitative behavior of {µγ}, namely, that rare events decay exactly as power-laws of

(1− γ) as γ ↑ 1. Also the exact exponent of such a power law decay depends on the particular rare event and is

obtained as the solution of an associated variational problem involving the minimization of the rate function I(·).

This is relevant for a system designer who can trade-off estimation accuracy with communication required. For

6For functions h(·), g(·), the notation h(γ) = O(g(γ)) implies the existence of a constant c > 0, such that h(γ) ≤ cg(γ) for all γ ∈ (0, 1).
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example, given a tolerance M > 0, we may ask the question, at what operating γ is the probability of lying outside

the M -neighborhood centered at P ∗ less than some δ > 0. Using the notation of (12), we then have

µγ
(
BCM (P ∗)

)
∼ (1− γ)

inf
X∈BC

M
(P∗) I(X)

(50)

Thus by computing infX∈BCM (P∗) I(X), the designer obtains an estimate of the γ required to maintain a probability

of error less than δ. Thus the estimation of probabilities of rare events reduces to solving deterministic variational

problems. As shown in Section 8, several techniques can be employed to solve these variational problems efficiently.

Finally, we emphasize that our analysis of reducing the problem of estimating probabilities of interest to solving

variational problems efficiently is much more definitive and relevant than numerically estimating the invariant

distributions. A naive numerical approach of simulating the distributions {µγ} as γ ↑ 1 becomes meaningless here

as the rare events, which are of interest, become increasingly difficult to simulate as γ ↑ 1. One may take recourse to

sophisticated simulation techniques like importance sampling (see, for example, [14]), but such approaches require

characterization of the distributions in question, which is addressed in this paper.

5. MODERATE DEVIATIONS (MD) FOR FINITE-DIMENSIONAL DISTRIBUTIONS

In this section, we establish MD for finite dimensional distributions of the process {Pt}t∈T+
as γ ↑ 1. We

start by setting notation. Fix n ∈ N and t1 < · · · < tn ∈ T+ and recall the sets SP0
t1,··· ,tn and St1,··· ,tn(X) for

X ∈
⊗n

i=1 SN+ . As noted in Proposition 3.6, the random object (Pt1 , · · · , Ptn) takes only a finite number of values

and for all γ

Pγ,P0

(
(Pt1 , · · · , Ptn) ∈ N

(
SP0
t1,··· ,tn

))
= 1 (51)

We generalize the definition of the functional π : SP0
t 7−→ Z+ (eqn. 37) to strings in SP0

t1,··· ,tn by

π
(
R
)

=

{ ∑tn
j=1 I{0}(ij) if t ≥ 1

0 otherwise
(52)

Thus π(·) counts the number of f0’s in the string R. Also, for X ∈
⊗n

i=1 SN+ , define

`(X) = min
R∈SP0

t1,··· ,tn
(X)

π(R) (53)

(We adopt the convention that the minimum of an empty set is ∞.)

The following result shows that the function ` :
⊗n

i=1 SN+ 7−→ R+ is a good rate function on
⊗n

i=1 SN+ .

Proposition 5.1 The function ` :
⊗n

i=1 SN+ 7−→ R+ in (53) is a good rate function on
⊗n

i=1 SN+ .

Proof: Clearly, `(·) > 0. Its level sets are compact because its effective domain D` is finite, where

D` =

{
X ∈

n⊗
i=1

SN+ | `(X) <∞

}
(54)

We then have the following result giving the MD for the family (as γ ↑ 1) of finite dimensional distributions

(Pt1 , · · · , Ptn). The proof is provided in Appendix C.
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Theorem 5.2 Fix n ∈ N and t1 < · · · < tn ∈ T+ and let (Pt1 , · · · , Ptn)γ be the family of of finite dimensional

distributions indexed by γ, starting from the same initial state P0. Then for every B ∈ B
(⊗n

i=1 SN+
)
, we have

lim
γ↑1

1

ln (1− γ)
ln
(
Pγ,P0

(
(Pt1 , · · · , Ptn)γ ∈ B

))
= inf

X∈B
It1,··· ,tnP0

(X) (55)

where

It1,··· ,tnP0
(X) =

{
`(X) if X ∈ SP0

t1,··· ,tn

∞ otherwise
(56)

Remark 5.3 The MDP for finite dimensional distributions gives insight into transient system behavior. More im-

portantly, it offers considerable insight in guessing the proper rate function governing the MDP for the family of

invariant distributions. A naive approach to the MDP rate function for the family of invariant distributions is to

view it as a suitable ‘limit’ of fixed time rate functions It(·), provided the latter converges in an appropriate sense

to a limit I(·) as t→∞. The intuition being the weak convergence of the random sequence {Pt}t∈T+
as t→∞.

However, in general, the limit of fixed time rate functions may not be the rate function governing the MDP for the

family of invariant rate functions. One needs to verify rigorously that the guessed rate function obtained intuitively

is the actual rate function governing the required MDP. This is precisely the way (at least implicitly) we establish

the MDP rate function of the family of invariant distributions in Section 6.

6. MDP FOR INVARIANT DISTRIBUTIONS

This section constitutes the key technical part of the paper. Apart from establishing the main ingredients for

proving the MDP results in Section 4, the results are of independent interest and form a basis for understanding the

characteristics of stationary measures resulting from stable iterated function systems in general. As suggested in

Remark 5.3, an intuitive guess for the MDP rate function of the family {µγ} as γ ↑ 1 is I(·). However, apriori, it

is not even obvious whether I(·) is lower semicontinuous to qualify as a rate function. Hence, we start by defining

the lower semicontinuous regularization IL of I and establish some of its properties in Subsection 6-A. At this

point, it is not clear whether I = IL (i.e., I is lower semicontinuous) and, hence, we set to establish the MDP for

the family {µγ} with IL as a candidate rate function. The major technical lemmas of this section are presented

in Subsections 6-B,6-C, where we establish the MDP lower and upper bounds respectively w.r.t. the proposed

rate function IL. Our approach is fairly general and is not necessarily restricted to the particular filtering problem

considered here.

A. A rate function

Recall: I : SN+ 7−→ R+ by

I(X) = inf
R∈SP∗

π(R), ∀X ∈ SN+ (57)

where, as usual, we adopt the convention that the infimum of an empty set is ∞. Note that, for X ∈ SN+ ,

I(X) = inf
t∈T+

IP
∗

t (X) (58)

and can be thought of as a natural generalization of the marginal rate functions IP
∗

t (·) for all t.

However, the function I(·) is not generally lower semicontinuous (as will be seen later) and hence does not

qualify as a rate function. A candidate rate function for the family of invariant distributions can be the lower
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semicontinuous regularization of I(·), defined as

IL(X) = lim
ε→0

inf
Y ∈Bε(X)

I(Y ), ∀X ∈ SN+ (59)

(note if I(·) is lower semicontinuous then I(·) = IL(·).)

The following proposition states some easily verifiable properties of IL : SN+ 7−→ R+, whose proof is provided

in Appendix D.

Proposition 6.1 (i) The function IL(·) is a good rate function on SN+ .

(ii) For every X ∈ SN+ , we have

IL(X) = lim
ε→0

inf
Y ∈Bε(X)

I(Y ) (60)

(iii) For any non-empty set Γ ∈ B(SN+ ) we have

inf
X∈Γ

IL(X) ≤ inf
X∈Γ

I(X) (61)

In addition, if Γ is open, the reverse inequality holds and we have

inf
X∈Γ

IL(X) = inf
X∈Γ

I(X) (62)

(iv) Let K ⊂ SN+ be a non-empty compact set. We have

lim
ε→0

inf
Y ∈Kε

IL(Y ) = inf
Y ∈K

IL(Y ) (63)

B. The MDP lower bound

The following result establishes the MDP lower bound for the sequence {µγ} of invariant distributions as γ ↑ 1.

Lemma 6.2 Let Γ ∈ B
(
SN+
)
. Then the following lower bound holds:

lim inf
γ↑1

− 1

ln(1− γ)
lnµγ (Γ) ≥ − inf

X∈Γ◦
IL(X) (64)

Proof: Let P0 be an arbitrary initial state and
{
P γ,P0

t

}
t∈T+

be the sequence generated by the RRE for

γ ∈ (0, 1). It was shown in Theorem 9 in [2], that, for such γ, the sequence
{
P γ,P0

t

}
t∈T+

converges weakly to an

invariant distribution µγ , i.e.,

lim inf
t→∞

Pγ,P0

(
P γ,P0

t ∈ O
)
≥ µγ (O) , ∀ open set O ⊂ SN+ (65)

lim sup
t→∞

Pγ,P0

(
P γ,P0

t ∈ F
)
≤ µγ (F) , ∀ closed set F ⊂ SN+ (66)

Now consider the measurable set Γ ∈ B
(
SN+
)

and let X ∈ Γ◦ ∩ DI , where DI is the effective domain of I(·).

Then, there exists ε > 0, sufficiently small, such that the closed ball Bε(X) ∈ Γ. From (66) it then follows

µγ (Γ) ≥ µγ
(
Bε(X)

)
≥ lim sup

t→∞
Pγ,P0

(
P γ,P0

t ∈ F
)

(67)

We now set to estimate the R.H.S. of (67).

To this end, recall the nonempty set SP∗(X) of all strings of finite (but arbitrary) length with initial state P ∗ and

numerical value X . For some t0 ∈ T+ and i1, · · · , it0 ∈ {0, 1}, let the string R = fi1 ◦ · · · ◦ fit0 (P ∗) ∈ SP∗(X).
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Define the function g : SN+ 7−→ SN+ by

g(Y ) = fi1 ◦ · · · ◦ fit0 (Y ), ∀Y ∈ SN+ (68)

The function g(·) is continuous (being the composition of continuous functions) and hence there exists ε1 > 0,

such that

‖g(Y )− g(P ∗)‖ ≤ ε, ∀Y ∈ Bε1(P ∗) (69)

Also, by Lemma 3.7, there exists tε1 ∈ T+, such that∥∥f t1(Y )− P ∗
∥∥ ≤ ε1, ∀t ≥ tε1 , Y ∈ SN+ (70)

It then follows from eqns. (69,70), that, for any t ∈ T+, such that t ≥ t0 + tε1 and any string R1 ∈ SP0
t of the

form

R1 =
(
fi1 , · · · , fit0 , f

tε1
1 , fj1 · · · , fjt−t0−tε1 , P0

)
(71)

where j1, · · · , jt−t0−tε1 ∈ {0, 1}, we have

N (R1) ∈ Bε(X) (72)

Indeed

‖N (R1)−X‖ = ‖N (R1)−N (R)‖

=
∥∥∥g (f tε11

(
fj1 · · · ◦ fjt−t0−tε1 (P0)

))
− g (P ∗)

∥∥∥
≤ ε (73)

where the last step follows from the fact, that,∥∥∥f tε11

(
fj1 ◦ · · · ◦ fjt−t0−tε1 (P0)

)
− P ∗

∥∥∥ ≤ ε1 (74)

by (70).

Now for R (defined above), t ≥ t0 + tε1 , consider the set of strings

Rt =
{(

fi1 , · · · , fit0 , f
tε1
1 , fj1 · · · , fjt−t0−tε1 , P0

)∣∣∣ j1, · · · , jt−t0−tε1 ∈ {0, 1}} (75)

(in other words, the indices j1, · · · , jt−t0−tε1 can be arbitrary.)

It then follows from (72) above,

N (R2) ∈ Bε(X), ∀R2 ∈ Rt (76)

From the iterative construction of the sequence {P γ,P0

t }t∈T+ it is then obvious, for t ≥ t0 + tε1 ,

Pγ,P0

(
P γ,P0

t ∈ Bε(X)
)
≥ Pγ,P0

(
P γ,P0

t ∈ N (Rt)
)

=
∑

j1,··· ,jt−t0+tε1
∈{0,1}

( t0∏
k=1

(1− γ)1−ikγik

)
γtε1

t−t0−tε1∏
k=1

(1− γ)1−jkγjk


= (1− γ)π(R)γt0−π(R)γtε1

= (1− γ)π(R)γt0+tε1−π(R) (77)
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From eqns. (67,77) we have

µγ (Γ) ≥ (1− γ)π(R)γt0+tε1−π(R) (78)

Noting that ln(1− γ) < 0 and passing to the limit in the above we have

lim inf
γ↑1

− 1

ln(1− γ)
lnµγ (Γ) ≥ −π(R) (79)

Since the above holds for all R ∈ SP∗(X), we have

lim inf
γ↑1

− 1

ln(1− γ)
lnµγ (Γ) ≥ sup

R∈SP∗ (X)

(−π(R)) = − inf
R∈SP∗ (X)

(π(R)) = −I(X) (80)

The above holds for all X ∈ Γ◦ ∩ DI and hence

lim inf
γ↑1

− 1

ln(1− γ)
lnµγ (Γ) ≥ − inf

X∈Γ◦∩DI
I(X) = − inf

X∈Γ◦
I(X) (81)

where the last step follows from the fact that, for X /∈ DI , I(X) =∞. To establish the Lemma, it suffices to show

the R.H.S. of (81) satisfies

− inf
X∈Γ◦

I(X) = − inf
X∈Γ◦

IL(X) (82)

which follows from Proposition 6.1 Assertion (iii), since Γ◦ is an open set.

We extract the following result for later use, which follows from the arguments in the proof of Lemma 6-B

culminating to (78).

Corollary 6.3 Let O ⊂ SN+ be an open set and R ⊂ SP∗ be a string, such that, N (R) ∈ O. Then, there exists a

positive integer tR,O (depending on R and O), such that,

µγ (O) ≥ (1− γ)π(R)γtR,O−π(R), ∀γ ∈ [0, 1] (83)

C. The MDP upper bound

In this subsection, we establish the MDP upper bound for the family of invariant measures as γ ↑ 1. The proof

is carried out in essentially three stages. First, we establish the upper bound for compact sets and this is done in

Lemma 6.7. Then, in Lemma 6.8 we prove a tightness result on the family of invariant distributions and finally

establish the MDP upper bound for closed sets in Lemma 6.9.

We start with the following result on topological properties of strings. We need the following definition.

Definition 6.4 (Truncated String) Let the string R be given by

R = (fi1 , · · · , fit , P0) (84)

where t ∈ T+, i1, · · · , it ∈ {0, 1} and P0 ∈ SN+ . Then for s ≤ t, the truncated string Rs of length s is given by

Rs = (fi1 , · · · , fis , P0) (85)

Lemma 6.5 Let F ∈ SN+ be a closed set. Define the set of strings U ⊂ SP∗ by

U(F) =
{
R ∈ SP

∗
| N (R) ∈ F

}
(86)
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and let

`(F) = inf
R∈U(F)

π(R) (87)

(we adopt the convention that the infimum of an empty set is ∞.) Then, if `(F) < ∞, there exists tF ∈ T+

sufficiently large, such that, for all R ∈ U(F) with len(R) ≥ tF , we have

π(RtF ) ≥ `(F) (88)

For a proof see Appendix D. We present the following remark.

Remark 6.6 (i) It follows from the definitions that

U(F) = ∪X∈FSP
∗
(X) (89)

and hence

`(F) = inf
X∈F

inf
R∈SP∗ (X)

π(R) = inf
X∈F

I(X) (90)

(ii) If `(F) < ∞, i.e., the set U(F) is non-empty, the infimum in (87) is attained, i.e., there exists R∗ ∈ U(F),

such that,

π(R∗) = `(F) (91)

This follows from the fact that the function π(·) takes only a countable number of values. Similarly, in the

case `(F) <∞, if we define X∗ = N (R∗), then

I(X∗) = inf
X∈F

I(X) (92)

We now prove the MDP upper bound for the family {µγ} as γ ↑ 1 over compact sets.

Lemma 6.7 Let K ∈ B(SN+ ) be a compact set. Then the following upper bound holds:

lim sup
γ↑1

− 1

ln(1− γ)
lnµγ (K) ≤ − inf

X∈K
IL(X) (93)

Proof: For every ε > 0, define the ε-closure Kε and the ε-neighborhood Kε of K by

Kε =

{
X ∈ SN+ | inf

Y ∈K
‖X − Y ‖ ≤ ε

}
(94)

Kε =

{
X ∈ SN+ | inf

Y ∈K
‖X − Y ‖ < ε

}
(95)

Since Kε is open, we have by the weak convergence of the sequence {P γ,P
∗

t }t∈T+
to µγ

lim inf
t→∞

Pγ,P
∗
(
P γ,P

∗

t ∈ Kε

)
≥ µγ (Kε) (96)

which in turn implies

lim inf
t→∞

Pγ,P
∗
(
P γ,P

∗

t ∈ Kε

)
≥ µγ (K) (97)

We now estimate the probabilities on the L.H.S. of (97). Since Kε is closed, the results of Lemma 6.5 apply and

recall the objects U(·) and `(·) defined for any closed set F as:

U(F) =
{
R ∈ SP

∗
| N (R) ∈ F

}
(98)
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`(F) = inf
R∈U(F)

π(R) (99)

with the convention that `(F) =∞ if U(F) is empty. Also, for every t ∈ T+ and closed set F define the sets:

U t(F) = U(F) ∩ SP
∗

t (100)

To establish the Lemma we may consider two cases, as to whether `(K) < ∞ (i.e, K is non-empty) or not. We

first consider the non-trivial case `(K) <∞.

To this end, consider fixed ε > 0 and from Proposition 3.6 Assertion (ii) it is easy to see that

Pγ,P
∗
(
P γ,P

∗

t ∈ Kε

)
= Pγ,P

∗
(
P γ,P

∗

t ∈ N
(
U t(Kε)

))
= 1 (101)

Since K ⊂ Kε and `(K) <∞, we have `(Kε) <∞. The fact that Kε is closed and Lemma 6.5 imply there exists

tKε ∈ T+, such that, for every string R ∈ U(Kε) with len(R) ≥ tKε , we have π
(
RtKε

)
≥ `(Kε). In other words,

we have for all t ≥ tKε ,

π
(
RtKε

)
≥ `(Kε), ∀R ∈ U t(Kε) (102)

Now consider t ≥ tKε and define the set of strings J P∗t by

J P
∗

t =
{
R ∈ SP

∗

t

∣∣∣π (RtKε ) ≥ `(Kε)
}

(103)

In other words, the set J P∗t consists of all strings R of length t, such that there are at least `(Kε) occurrences of

f0’s in the truncated string RtKε . The following inclusion is then obvious for t ≥ tKε :

U t(Kε) ⊂ J P
∗

t ⊂ SP
∗

t (104)

By the Markovian dynamics of the RRE, it is clear, that for t ≥ tKε

Pγ,P
∗
(
P γ,P

∗

t ∈ N (J P
∗

t )
)

=
∑
R∈JP∗t

(1− γ)π(R)γt−π(R) ≤
(
tKε
`(Kε)

)
(1− γ)`(Kε) (105)

We then have from eqns. (101,104)

µγ(K) ≤ lim inf
t→∞

Pγ,P
∗
(
P γ,P

∗

t ∈ N (Ut(Kε))
)
≤ lim inf

t→∞
Pγ,P

∗
(
P γ,P

∗

t ∈ N (J P
∗

t )
)
≤
(
tKε
`(Kε)

)
(1− γ)`(Kε)

(106)

Taking the log-limits on both sides and noting that ln(1− γ) is negative, tKε is independent of γ we have

lim sup
γ↑1

− 1

ln(1− γ)
lnµγ (K) ≤ −ln

((
tKε
`(Kε)

))
lim
γ↑1

1

ln(1− γ)
− lim

γ↑1
`(Kε) = −`(Kε) (107)

Taking the limit on both sides as ε→ 0 we have

lim sup
γ↑1

− 1

ln(1− γ)
lnµγ (K) ≤ − lim

ε→0
`(Kε) (108)

From Lemma 6.1 (Assertion (iii)) we have for all ε > 0

`(Kε) = inf
Y ∈Kε

I(Y ) ≥ inf
Y ∈Kε

IL(Y ) (109)
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Taking the limit and using Lemma 6.1 (Assertion (iv)) we have

lim
ε→0

`(Kε) ≥ lim
ε→0

inf
Y ∈Kε

IL(Y ) = inf
Y ∈K

IL(Y ) (110)

The Lemma then follows from eqns. (108,110).

The following tightness result enables us to extend the upper bound from compact sets to arbitrary closed sets

(see Appendix D for a proof.)

Lemma 6.8 The family of invariant distributions
{
µγ
}

satisfies the following tightness property: For every a > 0,

there exists a compact set Ka ⊂ SN+ , such that

lim sup
γ↑1

− 1

ln(1− γ)
µγ(KC

a ) ≤ −a (111)

We now complete the proof of the MDP upper bound for arbitrary closed sets by the upper bound for compact

sets and the tightness estimate obtained in Lemma 6.8. This has parallels with the theory of large deviations, where

one establishes the LDP upper bound first for compact sets. The tightness analogue of Lemma 6.8 here is called

exponential tightness in the context of LDP. It can be shown that the LDP upper bound for closed sets follows

from that of compact sets and exponential tightness, see, for example, [15]. Here, although we are concerned with

a MDP, the proof philosophy is related, i.e., we first establish the MDP upper bound for compact sets and then use

the tightness estimate of Lemma 6.8 to extend it to arbitrary closed sets.

Lemma 6.9 Let F ∈ B(SN+ ) be a closed set. Then the following upper bound holds:

lim sup
γ↑1

− 1

ln(1− γ)
lnµγ (F) ≤ − inf

X∈F
IL(X) (112)

Proof: Let a > 0 be an arbitrary positive number. By the tightness estimate in Lemma 6.8, there exists a

compact set Ka ⊂ SN+ , such that,

lim sup
γ↑1

− 1

ln(1− γ)
µγ(KC

a ) ≤ −a (113)

The set F ∩Ka is compact, being the intersection of a closed and a compact set, and hence the MDP upper bound

holds from Lemma 6.7, i.e., we have

lim sup
γ↑1

− 1

ln(1− γ)
lnµγ (F ∩Ka) ≤ − inf

X∈F∩Ka
IL(X) (114)

To estimate the probabilities µγ(F), we use the decomposition:

µγ(F) = µγ (F ∩Ka) + µγ
(
F ∩KC

a

)
≤ µγ (F ∩Ka) + µγ

(
KC
a

)
(115)

By Lemma 3.10 we then have

lim sup
γ↑1

− 1

ln(1− γ)
lnµγ (F) ≤ max

(
lim sup
γ↑1

− 1

ln(1− γ)
lnµγ

(
F ∩KC

a

)
, lim sup

γ↑1
− 1

ln(1− γ)
lnµγ

(
KC
a

))
(116)
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From eqns. (94,95) we then have

lim sup
γ↑1

− 1

ln(1− γ)
lnµγ (F) ≤ max

(
− inf
X∈F∩Ka

IL(X),−a
)

≤ max

(
− inf
X∈F

IL(X),−a
)

= −min

(
inf
X∈F

IL(X), a

)
(117)

Since (117) holds for all a ∈ R+, passing to the limit as a→∞ on both sides we obtain

lim sup
γ↑1

− 1

ln(1− γ)
lnµγ (F) ≤ − inf

X∈F
IL(X) (118)

This establishes the MDP upper bound for arbitrary closed sets.

7. PROOFS OF THEOREMS

Theorem 4.2: The MDP lower and upper bounds obtained in Lemma 6.2 and Lemma 6.9 respectively show

that the family
{
µγ
}

satisfies an MDP at scale −ln(1− γ) as γ ↑ 1 with a good rate function IL(·). To complete

the proof of Theorem 4.2 it suffices to show that I(·) = IL(·), i.e., the function I(·) is lower semicontinuous. We

now show that

I(X) = IL(X), ∀X ∈ SN+ (119)

Clearly, if IL(X) =∞, the claim in (119) follows from (212). We thus consider the case IL(X) <∞. Since

IL(X) = lim
ε→0

inf
Y ∈Bε(X)

I(X) (120)

and the integer-valued quantity infY ∈Bε(X) I(X) is non-decreasing w.r.t. ε, there exists ε0 > 0, such that

inf
Y ∈Bε(X)

I(X) = IL(X), ∀ε ≤ ε0 (121)

The infimum above is achieved for every ε > 0, and we conclude that there exists a sequence {Xn}n∈N, such that

Xn ∈ Bε0(X), lim
n→∞

Xn = X, I(Xn) = IL(X) (122)

Recall the set of strings

U(Bε0(X)) = {R ∈ SP
∗
| N (R) ∈ Bε0(X)} (123)

We then have

`(Bε0(X)) = inf
Y ∈Bε0 (X)

I(X) = IL(X) (124)

Since Bε0(X) is closed, by Lemma 6.5, there exists t0 ∈ T+, such that, for R ∈ U(Bε0(X)) with len(R) ≥ t0,

we have

π
(
Rt0

)
≥ `(Bε0) = IL(X) (125)

By the existence of {Xn}, there exists a sequence {Rn} of strings in U(Bε0), such that

N (Rn) = Xn, π (Rn) = IL(X) (126)
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Note that, without loss of generality, we can assume that len(Rn) = t0 for all n. Indeed, if len(Rn) < t0, we can

modify Rn by appending the requisite number of f1’s at the right end, still satisfying (126). On the other hand, if

len(Rn) > t0, we note that Rn must be of the form

Rn =
(
fi1 , · · · , fit0 , f

len(Rn)−t0
1 , P ∗

)
(127)

where the truncated string

Rt0n = fi1 ◦ · · · ◦ fit0 (P ∗) (128)

satisfies

N
(
Rt0n

)
= Xn, π

(
Rt0n

)
= IL(X) (129)

The second inequality in (129) follows from (125), whereas (128) follows from the fact that π(Rn) = IL(X)

implying

π(Rn) = π(Rt0n ) (130)

Thus the right end of Rn does not contain any f0, explaining the form in (128). The key conclusion of the above

discussion is that, if len(Rn) > t0, we may consider the truncated string Rt0n instead, which also satisfies (126).

We thus assume that the sequence {Rn} with the properties in (126) satisfy:

len(Rn) = t0, ∀n (131)

The number of distinct strings in the sequence {Rn} is at most 2t0 (in fact, lesser than that, because of the constraint

π(Rn) = IL(X)) and, hence, at least one pattern is repeated infinitely often in the sequence {Rn}, i.e., there exists

a string R∗, such that,

len(R∗) = t0, π (R∗) = IL(X) (132)

and a subsequence {Rnk}k∈N of {Rn}, such that,

Rnk = R∗, ∀k ∈ N (133)

The corresponding subsequence {Xnk} of numerical values then satisfy

Xnk = N (Rnk) = N (R∗), ∀k ∈ N (134)

and hence

X = lim
k→∞

Xnk = N (R∗) (135)

Thus the string R∗ ∈ SP∗(X) and hence

I(X) = inf
R∈SP∗ (X)

π(R) ≤ π (R∗) = IL(X) (136)

The other inequality IL(X) ≤ I(X) is obvious and hence we conclude from (136) that

IL(X) = I(X) (137)

This completes the proof of Theorem 4.2.
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Theorem 4.1: Recall

dP
(
µγ , δP∗

)
= inf

{
ε > 0 | δP∗(F) ≤ µγ(Fε) + ε, ∀ closed set F

}
(138)

Define the class of sets

C = {F | F is closed and P ∗ ∈ F} (139)

Then the following equivalence is straight forward:

dP
(
µγ , δP∗

)
= inf

{
ε > 0 | µγ(Fε) + ε ≥ 1, ∀ F ∈ C

}
(140)

Now consider 0 < ε < 1, small enough. Then there exists ε0 > 0, such that for every F ∈ C, we have Bε0(P ∗) ⊂ Fε.
(Note that the constant ε0 can be chosen independently of F , but depends on ε.) The string R = P ∗ belongs to

Bε0(P ∗) and hence by Corollary 6.3, there exists an integer t0 > 0, such that,

µγ (Bε0(P ∗)) ≥ (1− γ)π(R)γt0−π(R) = γt0 (141)

Thus for all F ∈ C
µγ (Fε)) ≥ µγ (Bε0(P ∗)) ≥ γt0 (142)

Then for γ ≥ (1− ε)1/t0 we have for all F

Fε + ε ≥ γt0 + ε ≥ 1 (143)

It then follows from (140) that

dP
(
µγ , δP∗

)
≤ ε, γ ≥ (1− ε)1/t0 (144)

Hence

lim sup
γ↑1

dP
(
µγ , δP∗

)
≤ ε (145)

Since ε > 0 is arbitrary, by passing to the limit as ε→ 0, we have the weak convergence

lim
γ↑1

dP
(
µγ , δP∗

)
= 0 (146)

For the second assertion we note that for ε > 0, the closed set BCε (P ∗) does not contain P ∗. Hence `(BCε (P ∗)) ≥
1. The claim in (44) then follows from the MDP upper bound for closed sets (Lemma 6.9.)

8. COMPUTATIONS WITH THE RATE FUNCTION

A complete characterization of probabilities under the invariant distributions are obtained in Theorem 4.2, which

shows that the probability of ‘rare events’7 decays as powers of ln(1−γ) as γ ↑ 1. The best exponent of this power

law decay is characterized by the MDP rate function I(·). As Theorem 4.2 shows, the best decay exponent of such

a rare event can be computed as the infimum of the I(·) over that set. This reduces the problem of estimating

probabilities under the invariant distributions to solutions of a related variational problem, namely, minimizing I(·)
over Borel sets in SN+ . From a numerical analysis point of view, one may simulate the function I(·) and use a

look-up table to numerically solve the associated variational problems. In this section, we show that, for a class of

events of interest, the variational problem of computing the best decay exponent can be simplified to a great extent.

7The term rare event in this context refers to a Borel set (event) bounded away from P ∗.
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In particular, we are interested in estimating probabilities of the form µγ(BCε (P ∗)) for every ε > 0. Theorem 4.1

shows that such probabilities decay to zero at least as (1− γ), i.e., for every ε > 0, we have

µγ(BCε (P ∗)) ≡ O(1− γ) (147)

However, this upper bound becomes loose as ε increases and the best exponent of decay, i.e., the best power of

(1 − γ) in (147) can be computed precisely by solving the variational problem in Theorem 4.2. The main result

of this section shows that, for a particular class of systems, this computation can be extremely simplified and for

general systems we present bounds on the decay exponent that are simple to obtain in contrast to solving the

full-fledged variational problem. For a system designer, the probabilities of the form in (147) are of interest and a

technique to obtain them efficiently is of much use. We start by setting some notation.

Define the function ι : R+ 7−→ T+ by

ι(M) = inf
{
k ∈ T+ |

∥∥fk0 (P ∗)− P ∗
∥∥ ≥M} (148)

Also, define ι+ : R+ 7−→ T+ by

ι+(M) = inf
{
k ∈ T+ |

∥∥fk0 (P ∗)− P ∗
∥∥ > M

}
(149)

We note that ι(·) is a non-decreasing right continuous function, and we have for all M > 0

ι+(M) ≤ ι(M) + 1, lim
U<M :U→M

ι(U) = ι+(M) (150)

Also recall:

BCM (P ∗) = {X ∈ SN+ | ‖X − P ∗‖ ≥M} (151)

B
C

M (P ∗) = {X ∈ SN+ | ‖X − P ∗‖ > M} (152)

Definition 8.1 (Class A systems) : Let (A,Q,C,R) be a system satisfying the assumption (E.1). Then the system

is called a class A system if

S− ⊃ {X ∈ SN+ | X � f0(P ∗)} (153)

where S− is defined in (169).

We then have the following MDP asymptotics for class A systems (see Appendix E for a proof):

Lemma 8.2 Let (A,Q,C,R) be a class A system. Then we have for all M > 0

lim sup
γ↑1

− 1

ln(1− γ)
lnµγ

(
BCM (P ∗)

)
≤ −ι(M) (154)

and

lim inf
γ↑1

− 1

ln(1− γ)
lnµγ

(
B
C

M (P ∗)
)
≥ −ι+(M) (155)

Remark 8.3 Lemma 8.2 shows that for class A systems the variational problem of computing the best decay

exponent can be simplified to a great extent. In particular, rather than generating the set of all possible strings

SP∗ (that grows exponentially with the length of the strings) one can systematically look into strings of the form

fk0 (P ∗), k ∈ T+ and obtain the decay exponent. The next natural question is whether there exists a suitable

characterization of class A systems. Determining whether a given system is class A is numerically simple, as

June 4, 2010 DRAFT



24

one only needs to check the condition in (153). From a theoretical point of view, it would be relevant to offer a

characterization of class A systems through properties of the system matrices. A detailed study to that end will be

a digression from the main theme of the paper, and we intend to do it elsewhere. However, we show that scalar

systems are included in class A, thereby confirming that it is not empty.

Proposition 8.4 Let (A,Q,C,R) be a scalar system satisfying (E.1) (i.e., Q,R > 0 and C 6= 0.) Then, (A,Q,C,R)

belongs to class A.

Proof: Define the function g : R+ 7−→ R+ by

g(X) = f1(X)−X, ∀X ≥ 0 (156)

where f1 is the scalar Riccati operator. Under the assumptions, f1 has only one fixed point in R+, P ∗, the steady

state solution. Thus, in the domain of interest,

g(X) = 0 iff X = P ∗ (157)

We note that g(0) > 0, and, by [22], there exists αP∗ ≥ P ∗ sufficiently large, such that,

g(X) = f1(X)−X < 0, ∀X > αP∗ (158)

We now claim that

g(X) > 0, 0 ≤ X < P ∗ and g(X) < 0, X > P ∗ (159)

Indeed, if this was not true, then by (158) this would imply the existence of an interval in R+ not containing P ∗,

such that the sign of g(·) changes over this interval. This in turn would imply from the continuity of g(·), the

existence of another solution to the equation g(X) = 0 on R+ other than P ∗. Clearly, this contradicts with the

hypothesis (see (157) and, hence, the claim in (159) holds.

Since f0(P ∗) > P ∗, it then follows from (159) that, for X ≥ f0(P ∗),

f1(X)−X = g(X) < 0 (160)

thus showing that scalar systems belong to class A.

As shown by Lemma 8.2, for class A systems the computation of the decay exponent of rare events can be greatly

simplified. For general systems such a simplification may not be possible, however, the solution of the variational

problem in Theorem 4.2 can still be made more efficient rather than searching haphazardly over the set of strings

SP∗ . The following proposition outlines a simple algorithm for solving the variational problems of interest leading

to the decay exponents of rare events in general systems:

Proposition 8.5 Let Γ ⊂ SN+ and define

kΓ = inf{k ≥ 0 | N
(
fk0 (P ∗)

)
∈ Γ} (161)

Define the set

JΓ = {R ∈ SP
∗
| N (R) ∈ Γ and len(R) ≤ kΓ} (162)

Then

inf
X∈Γ

I(X) = inf
R∈JΓ

π(R) (163)
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Proof: The proof is straight-forward and follows from the fact, that, infX∈Γ I(X) ≤ kΓ and so it suffices to

look at strings of length kΓ at most.

Remark 8.6 The conclusion of Proposition 8.5 is that, to find the decay exponent of a rare event Γ, one may

compute kΓ according to (161) and then the minimizing string can be found in the set JΓ as constructed above.

9. A SCALAR EXAMPLE

We present a numerical study to demonstrate the efficiency of our approach over extensive Monte-Carlo type

simulations to estimate the decay rate of rare events.

Consider a scalar system with parameters: A =
√

2, C = Q = R = 1. Solving the algebraic Riccati equation,

X = f1(X), we obtain P ∗ = 1 +
√

2. By Proposition 8.4, we note that the system is of class A. By Lemma 8.2,

we then have for M > 0,

−ι+(M) lim inf
γ↑1

− 1

ln(1− γ)
lnµγ

(
BCM (P ∗)

)
≤ lim sup

γ↑1
− 1

ln(1− γ)
lnµγ

(
BCM (P ∗)

)
≤ −ι(M) (164)

(note, we use the alternative MDP representation, (10).)

Now choose M1 = 40 − P ∗ and we estimate the decay rate of the rare event BCM1
(P ∗) as γ → 1. Using the

definitions and that

P ∗ < f3
0 (P ∗) < M1 + P ∗ < f4

0 (P ∗) (165)

we note that

ι(M1) = ι+(M1) = 4 (166)

By (164), BCM1
(P ∗) is an I-continuity set (see text following (12)), hence the limit in (164) exists and we have

lim
γ↑1

1

ln(1− γ)
lnµγ

(
BCM1

(P ∗)
)

= 4 (167)

Our theory then predicts, that, for γ close to 1,

µγ
(
BCM1

(P ∗)
)
∼ (1− γ)4 (168)

We now estimate the empirical decay rate of the event through extensive numerical simulations. We simulate

different values of γ, in the range [.55, 1) with a step size of .05. For each such value of γ, we obtained 104 samples

from the invariant measure µγ (this is needed as the event
(
BCM1

(P ∗)
)

becomes increasingly difficult to observe

as γ approaches 1.) Obtaining a sample from µγ is also numerically intensive, and we iterated the RRE 100 times

to make sure the random covariance converged in distribution to µγ . Thus, a total of 9× 104 × 102 computations

were involved. The resulting empirical cumulative distributions functions (cdf) are plotted in Fig. 1 (on the left).

We note that, as γ → 1, the empirical invariant measures converge to δP∗ , thus verifying Theorem 4.1.

To obtain the empirical decay rate of BCM1
(P ∗), for each γ, we numerically estimate the quantity

lnµγ(BCM1
(P∗))

ln(1−γ)

from the empirical cdfs obtained above. This is plotted in Fig. 1 (on the right) as a function of γ (the solid line).

The result agrees with our theoretical findings: (1) qualitatively, the rare event decays as a power law of (1− γ);

(2) the best decay exponent approaches 4 (which is theoretically established in (167)) as γ gets closer to 1; (3)

even for γ much less than 1, the empirical decay rate is close to 4, justifying (168).

This example truly demonstrates the relevance of our theoretical findings. Even for the simple scalar case, a

modest numerical estimation of the probabilities of rare events required computations of the order 107, whereas,

our theoretical findings provide the best decay exponent by solving a much simpler variational problem.
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Fig. 1. Left: Weak convergence of (empirical) measures µγ to δP∗ as γ → 1. Right: Decay exponent of probability of the rare event
BCM1

(P ∗).

10. CONCLUSIONS

The paper studies the RRE arising from the problem of Kalman filtering with intermittent observations. We show

that for every γ > 0 the conditional mean-squared error process is ergodic and the resulting family of invariant

distributions {µγ} (as they converge weakly to δP∗ as γ ↑ 1) satisfies a MDP with good rate function I . The rate

function I is completely characterized and the asymptotic decay rate of rare events characterized as solutions of

deterministic variational problems. The intermediate results obtained are of independent interest and our methods are

fairly general to be applicable to the analysis of more complex networked control systems (see, for example, [18])

and hybrid or switched systems.
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APPENDIX A
PROOFS OF PROPOSITION 3.6, LEMMA 3.7

Proof of Proposition 3.6
Proof: Assertion (i) follows from the fact, that, f1 (P ∗) = P ∗, whereas Assertion (ii) is obvious from the iterated

construction of the sequence {Pt}t∈T+ . We prove Assertion (iii) now.
Following Bucy ([22]), we define the set

S− =
{
X ∈ SN+ | f1(X) � X

}
(169)

Under the assumptions of observability and controllability, it can be shown (see [22]), there exists β ∈ R+, such that,{
X ∈ SN+ | X � βI

}
⊂ S− (170)

Now choose αP0 ≥ β, such that, P 0 � αP0I . Then αP0 ∈ S− and it follows from the order-preserving property of the
operators f0 and f1, that,

N (R) � N (R1) (171)

where R1 = (fi1 , · · · , fit , αP0I). Note that the claim is trivial for t = 0, so assume t ≥ 1. Let j1 ≤ · · · ≤ jπ(R) be the
indices corresponding to f0s in R from left to right. Consider the last segment of R1, i.e., the string

(
f0, f

t−jπ(R)

1 , αP0I
)

.
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We then have
f0 ◦ f

t−jπ(R)

1 (αP0I) � f0 (αP0I) (172)

This follows from the fact, that, f1 (αP0I) � αP0I , which implies the sequence {fs1 (αP0I)}s≥0 is decreasing and we have
f
t−jπ(R)

1 (αP0I) � αP0I . Since αP0 ≥ β and A is unstable, we have f0 (αP0I) � αP0I � βI and f0 (αP0I) ⊂ S−. In
particular, we have

N (R1) � fi1 ◦ · · · fijπ(R)
−1 (f0 (αP0I)) (173)

using the order-preserving property of the functions f0, f1. In a similar way, we can repeat the above argument inductively
starting with the string on the R.H.S. of (173) and arrive at N (R) � fπ(R)

0 (αP0I). The claim then follows from (171.)

Proof of Lemma 3.7
Proof: We use the following result on uniform convergence over compact sets of the Riccati iterates to P ∗. Let X1, X2 ∈ SN+ .

Then it can be shown (see Theorem 7.5 in [23])8 that there exist constants c1, c2 > 0, such that,∥∥f t1(X1)− f t1(X2)
∥∥ ≤ c1e−c2t ‖X1 −X2‖ (174)

Taking X1 = X , X2 = P ∗ and noting that f1(P ∗) = P ∗ we have from the above∥∥f t1(X)− P ∗
∥∥ ≤ c1e−c2t ‖X1 − P ∗‖ (175)

Thus for every compact subset K ∈ SN+ , there exists t́ε, depending on K, such that,∥∥f t1(X)− P ∗
∥∥ ≤ ε, X ∈ K, t ≥ t́ε (176)

To prove the Lemma, we need to transform the above uniform convergence over compact sets to uniform convergence over
the entire space SN+ . To this end, we note that for a observable and controllable system, the following uniform boundedness of
Riccati iterates holds from arbitrary initial state X ∈ SN+ (see, for example, Lemma 7.1 in [23]):

f t(X) ≤ α1I, t ≥ N, ∀X ∈ SN+ (177)

where α1 ∈ R+ is a sufficiently large number.
Now consider the compact set

Kα =
{
X ∈ SN+ | ‖X‖ ≤ α

}
(178)

From (177) we have
f t(X) ∈ Kα, t ≥ N, ∀X ∈ SN+ (179)

Now from (176) choose t́ε, such that, ∥∥f t1(X)− P ∗
∥∥ ≤ ε, X ∈ Kα, t ≥ t́ε (180)

Then defining tε = t́ε +N we have from eqns. (179,180)∥∥f t1 (X)− P ∗
∥∥ ≤ ε, t ≥ tε (181)

and the result follows.

APPENDIX B
STOCHASTIC BOUNDEDNESS OF ERROR COVARIANCES

Proof of Lemma 3.9
Proof: We consider the case of unstable A. For stable A, the proposition is trivial and follows from the fact, that, the

unconditional variance of the state sequence reaches a steady state (hence bounded), and a suboptimal estimate x̂t ≡ 0 for all
t leads to pathwise boundedness of the corresponding error covariance. In fact, in this case even γ = 0 leads to stochastic
boundedness of the sequence {Pt} from every initial condition.

The proof follows the same line of arguments used in Proposition 6 of [2], where the above claim was established for the case
of invertible C. The key ingredients used there consisted of uniformly bounding the Riccati operator (in case C is invertible)
and then estimating the probability that the random sequence {Pt}t∈T+ exceeds a particular range by relating it to the length
of the random time intervals between packet arrivals.

In the general case, as shown below, instead of bounding the one-step Riccati iterates, we bound N -step Riccati iterates for
controllable and observable systems and then repeat the arguments in [2] with more generality.

8The result in [23] applies to time-variant system matrices under the assumptions of uniform complete observability and uniform complete
controllability, which reduces to the observability and controllability for the time-invariant system matrices considered in this paper.
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To this end, we start with the following result on boundedness of N -step Riccati iterates. It can be shown (see Lemma 7.1
in [23]) that for controllable and observable systems9 the following holds:

f t1 (X) � κI, t ≥ N, X ∈ S+
N (182)

where α2 ∈ R+ is sufficiently large. In other words, the above states that an application of the Riccati operator more than N
times in succession leads to a covariance bounded above by a specific constant, irrespective of the initial state.

Now, for M ∈ T+ and sufficiently large, define

k(M) = min

{
k ∈ T+ | κ1α

2k + ‖Q‖ α
2k − 1

α2 − 1
≥M

}
(183)

where α = ‖A‖ and κ1 = max{κ, ‖P0‖}. Since A is unstable (α > 1), it follows that k(M) → ∞ as N → ∞. To estimate
the probability Pγ,P0 (‖Pt‖ > M) for t ∈ T+, define the random time t̃ by

t̃ = max {0 < s ≤ t | γs−r = 1, 1 ≤ r ≤ N} (184)

where the maximum of an empty set is taken to be zero. Thus, if t̃ 6= 0,10 it denotes the time closest to t, such that, there were
N successive packet arrivals in the time interval [t̃−N, t̃− 1]. Then, using the above arguments, we have

‖Pt̃‖ ≤ κ1 (185)

Indeed, if t̃ = 0, then Pt̃ = P0 and (185) holds by the definition of κ1. On the contrary, if t̃ > 0, we have by (182)

‖Pt̃‖ =
∥∥∥fN1 (Pt̃−N)∥∥∥ ≤ κ ≤ κ1 (186)

We then have

‖Pt‖ =
∥∥fγt−1 ◦ · · · ◦ fγt̃ (Pt̃)

∥∥ ≤ ∥∥∥f t−t̃0 (Pt̃)
∥∥∥ ≤ κ1α

2(t−t̃) + ‖Q‖
t−t̃∑
k=1

α2k = κ1α
2(t−t̃) + ‖Q‖ α

2(t−t̃)−1

α2 − 1
(187)

where we have used the fact, that, f1(X) � f0(X), ∀ X ∈ SN+ . It then follows from the above and (183), that,

Pγ,P0 (‖Pt‖ > M) ≤ Pγ,P0

(
t− t̃ ≥ k(M)

)
(188)

We now estimate the probability Pγ,P0

(
t− t̃ = k

)
.

First, consider the case t̃ 6= 0. On the event t̃ 6= 0, it is not hard to see that the following events are equal:

{
t− t̃ = k

}
= {γt−k−r = 1, 1 ≤ r ≤ N}

t⋂
s=t−k+1

{γs−r = 1, 1 ≤ r ≤ N}c (189)

It then follows by elementary manipulations and the independence of packet arrivals

Pγ,P0

(
t− t̃ = k

)
= Pγ,P0

(
{γt−k−r = 1, 1 ≤ r ≤ N}

t⋂
s=t−k+1

{γs−r = 1, 1 ≤ r ≤ N}c
)

≤ Pγ,P0

{γt−k−r = 1, 1 ≤ r ≤ N}
b k
N
c⋂

i=1

{
γt−k+(i−1)N−1+r = 1, 1 ≤ r ≤ N

}c
= Pγ,P0 ({γt−k−r = 1, 1 ≤ r ≤ N})

b k
N
c∏

i=1

Pγ,P0

({
γt−k+(i−1)N−1+r = 1, 1 ≤ r ≤ N

}c)

= γN
b k
N
c∏

i=1

(
1− γN

)
≤

(
1− γN

)b k
N
c

(190)

9The result in [23] applies to time-variant system matrices under the assumptions of uniform complete observability and uniform complete
controllability, which reduces to the observability and controllability for the time-invariant system matrices considered in this paper.

10Note that, if not zero, t̃ ≥ N .
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On the event t̃ = 0, using a similar set of arguments, we can show

Pγ,P0

(
t− t̃ = k

)
≤
(

1− γN
)b k

N
c

(191)

We thus have the upper bound (possibly loose, but sufficient for our purpose)

Pγ,P0

(
t− t̃ ≥ k(M)

)
=

∞∑
k=k(M)

Pγ,P0

(
t− t̃ = k

)
≤

∞∑
k=k(M)

(
1− γN

)b k
N
c
≤

∞∑
k=k(M)

(
1− γN

) k
N
−1

(192)

Rearranging and summing the geometric series above we have

Pγ,P0

(
t− t̃ ≥ k(M)

)
≤ 1

1− γN
∞∑

k=k(M)

[(
1− γN

)1/N
]k

=
1

1− γN

[(
1− γN

)1/N]k(M)

1−
(
1− γN

)1/N (193)

From eqns. (188,193) we have for all t and sufficiently large M

Pγ,P0 (‖Pt‖ > M) ≤ 1

1− γN

[(
1− γN

)1/N]k(M)

1−
(
1− γN

)1/N (194)

Since γ > 0 and k(M)→∞ as M →∞, it follows from the above

lim
M→∞

sup
t∈T+

Pγ,P0 (‖Pt‖ > M) = 0 (195)

Thus {Pt}t∈T+ is s.b. (for all initial conditions P0) for every γ > 0 and hence, the Lemma follows.

APPENDIX C
PROOF OF THEOREM 5.2

Proof: For X = {X1, · · · , Xn} ∈
⊗n

i=1 S
N
+ , we have

Pγ,P0

(
(Pt1 , · · · , Ptn)γ = X

)
= Pγ,P0 (Pt1 = X1)

n−1∏
i=1

Pγ,P0
(
Pti+1 = Xi+1 | Pti = Xi

)
(196)

which follows from the Markov property. Clearly, from the above we have

Pγ,P0

(
(Pt1 , · · · , Ptn)γ = X

)
= 0, X /∈ N

(
SP0
t1,··· ,tn

)
(197)

Also, if X ∈ N
(
SP0
t1,··· ,tn

)
, it follows from (196) through simple manipulations and the independence of the packet dropouts

Pγ,P0

(
(Pt1 , · · · , Ptn)γ = X

)
=

∑
R∈SP0

t1,··· ,tn
(X)

(1− γ)π(R)γtn−π(R) (198)

By manipulating each term on the R.H.S. above, we have

lim
γ↑1

1

ln (1− γ)
ln
(

(1− γ)π(R)γtn−π(R)
)

= lim
γ↑1

1

ln (1− γ)

[
π(R)ln(1− γ) +

(
tn − π(R)

)
lnγ
]

= π(R) +
(
tn − π(R)

)
lim
γ↑1

lnγ

ln (1− γ)

= π(R) (199)

It then follows from Proposition 3.10,eqns. (198,199) that

Pγ,P0

(
(Pt1 , · · · , Ptn)γ = X

)
= min
R∈SP0

t1,··· ,tn
(X)

π(R) = `(X) (200)

(the case X /∈ N
(
SP0
t1,··· ,tn

)
is absorbed above by using the convention, that, the minimum of an empty set is ∞.)

Now consider B ∈ B
(⊗n

i=1 S
N
+

)
. If B∩N

(
SP0
t1,··· ,tn

)
= φ, then the claim is obvious. Hence, assume B∩N

(
SP0
t1,··· ,tn

)
6=

φ (this intersection is necessarily finite) and note that

Pγ,P0

(
(Pt1 , · · · , Ptn)γ ∈ B

)
=

∑
X∈B∩N

(
SP0
t1,··· ,tn

)Pγ,P0

(
(Pt1 , · · · , Ptn)γ = X

)
(201)
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It then follows by Proposition 3.10

lim
γ↑1

1

ln (1− γ)
ln
(
Pγ,P0

(
(Pt1 , · · · , Ptn)γ ∈ B

))
= min

X∈B∩N
(
SP0
t1,··· ,tn

) lim
γ↑1

1

ln (1− γ)
ln
(
Pγ,P0

(
(Pt1 , · · · , Ptn)γ = X

))
= min

X∈B∩N
(
SP0
t1,··· ,tn

) `(X)

= inf
X∈B

It1,··· ,tn(X) (202)

which establishes the Theorem.

APPENDIX D
PROOFS OF RESULTS IN SECTION 6

Proof of Proposition 6.1
Proof: That IL(·) is lower semicontinuous follows from its definition (see, for example, [24].) Now for a ∈ R+ consider

the level set Ka = {X ∈ SN+ | IL(X) ≤ a}. By lower semicontinuity we know that Ka is closed. We now show that Ka is
bounded and hence compact. To this end, we note that for all b ∈ R+{

Y ∈ SN+ | I(Y ) ≤ b
}
⊂
{
Y ∈ SN+ | Y � f

dbe
0 (αP∗I)

}
(203)

for some constant αP∗ ∈ R+, which can be chosen independent of b. Indeed, I(Y ) ≤ b implies that SP
∗
(Y ) is non-empty and

I(Y ) = inf
R∈SP∗ (Y )

π(R) ≤ b (204)

Since π(·) takes on integral values only, the infimum above is attained and there exists R ∈ SP
∗
(Y ) with π(R) ≤ b. Then,

from Proposition 3.6, there exists αP∗ ∈ R+ (depending on P ∗ only), such that

Y = N (R) � fπ(R)
0 (αP∗I) � fdbe0 (αP∗I) (205)

This verifies the claim in (203).
Now consider ε1 > 0. For X ∈ SN+ , the sequence infY ∈Bε(X) I(Y ) is non-decreasing w.r.t. ε and hence X ∈ Ka implies

inf
Y ∈Bε1 (X)

I(Y ) ≤ a (206)

Since I(·) takes on integral values the infimum is attained and there exists Y (X) ∈ SN+ , such that, I(Y (X)) ≤ a. From (203)
we then have

Y (X) � fdae0 (αP∗I) =⇒ ‖Y (X)‖ ≤
∥∥∥fdae0 (αP∗I)

∥∥∥ (207)

Since Y (X) ∈ Bε1(X) we have
‖X‖ ≤ ‖Y (X)‖+ ε1 ≤

∥∥∥fdae0 (αP∗I)
∥∥∥+ ε1 (208)

We thus note that
Ka ⊂

{
Z ∈ SN+ | ‖Z‖ ≤

∥∥∥fdae0 (αP∗I)
∥∥∥+ ε1

}
(209)

which verifies the boundedness of Ka. Hence the level sets Ka are closed and bounded for all a ∈ R+, establishing the goodness
of IL(·).

For Assertion (ii), we note that for arbitrary ε > 0,

inf
Y ∈Bε(X)

I(Y ) ≤ inf
Y ∈Bε(X)

I(Y ) ≤ inf
Y ∈Bε/2(X)

I(X) (210)

The assertion then follows by passing to the limit as ε→ 0 on each side.
For Assertion (iii), note that, in general we have for arbitrary ε > 0, I(X) ≥ infY ∈Bε(X) I(X) and by passing to the limit

it follows
I(X) ≥ lim

ε→0
inf

Y ∈Bε(X)
I(X) = IL(X) (211)

This immediately gives for any set Γ ∈ B(SN+ )

inf
X∈Γ

I(X) ≥ inf
X∈Γ

IL(X) (212)

For the reverse inequality when Γ is open, consider X ∈ Γ. Then there exists ε1 > 0 (depending on X) such that, for every
0 < ε < ε1, the open ball Bε(X) ∈ Γ. It then follows

inf
Y ∈Bε(X)

I(Y ) ≥ inf
Y ∈Γ

I(Y ), 0 < ε < ε1 (213)
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Taking the limit on both sides we have

inf
Y ∈Γ

I(Y ) ≤ lim
ε→0

inf
Y ∈Bε(X)

I(Y ) = IL(X) (214)

Thus for every X ∈ Γ, we have
IL(X) ≥ inf

Y ∈Γ
I(Y ) (215)

Taking the infimum over X ∈ Γ on the L.H.S. gives the required inequality

inf
X∈Γ

IL(X) ≥ inf
X∈Γ

I(X) (216)

and the result follows.
We now prove Assertion (iv). By the notion of limits involving continuous arguments, it suffices to show that for every

sequence {εn}n∈N with
lim
n→∞

εn = 0, 0 < εn ≤ 1 ∀n (217)

we have
lim
n→∞

inf
Y ∈Kεn

IL(Y ) = inf
Y ∈K

IL(Y ) (218)

To this end consider such a sequence {εn} and assume on the contrary, that (218) is not satisfied. Since K ⊂ Kεn , we clearly
have

lim
n→∞

inf
Y ∈Kεn

IL(Y ) ≤ inf
Y ∈K

IL(Y ) (219)

Thus the hypothesis that (218) is not satisfied implies

lim
n→∞

inf
Y ∈Kεn

IL(Y ) < inf
Y ∈K

IL(Y ) (220)

We note that the sets Kεn are compact for all n and since a lower semicontinuous function attains its minimum over a compact
set, for every n ∈ N, there exists Xn ∈ Kεn , such that

inf
Y ∈Kεn

IL(Y ) = IL(Xn) (221)

Similarly, there exists Y ∗ ∈ K, such that,
inf
Y ∈K

IL(Y ) = IL(Y ∗) (222)

We note that {IL(Xn)} is a non decreasing sequence (hence the limit exists) and

lim
n→∞

IL(Xn) < IL(Y ∗) (223)

Also, given Z ∈ SN+ , it follows from the continuity of the metric, that the function dZ : SN+ 7−→ R+ given by

dZ(Y ) = ‖Y − Z‖ , ∀Y ∈ SN+ (224)

is continuous and hence attains its minimum over a compact set. Thus for every n ∈ N, there exists Yn ∈ K, such that

inf
Y ∈K

‖Xn − Y ‖ = ‖Xn − Yn‖ ≤ εn (225)

where the last inequality follows from the fact that Xn ∈ Kεn .
We note that the sequence {Yn} belongs to the compact set K and hence there exists a subsequence {Ynk}k∈N in K, which

converges to some Ý ∈ K, i.e.,
lim
k→∞

Ynk = Ý (226)

Now consider the sequence {Xnk}k∈N. We then have∥∥∥Xnk − Ý ∥∥∥ ≤ ‖Xnk − Ynk‖+
∥∥∥Ynk − Ý ∥∥∥ ≤ εnk +

∥∥∥Ynk − Ý ∥∥∥ (227)

Taking the limit as k →∞ we obtain
lim
k→∞

Xnk = Ý (228)

We then have from the lower semicontinuity of IL(·) and (223)

IL(Ý ) ≤ lim inf
k→∞

IL(Xnk ) < IL(Y ∗) (229)

This contradicts the fact that Y ∗ is the minimizer of IL(·) over K and we conclude that (218) holds. Hence the result follows.
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Proof of Lemma 6.5
Proof: The case `(F) = 0 is trivial as the assertion follows by choosing an arbitrary positive tF .

We consider the case `(F) ≥ 1. We use an inductive argument and it suffices to show that for every 1 ≤ i ≤ `(F) there
exists positive tiF ∈ T+, such that, for R ∈ U(F) with len(R) ≥ tiF , we have

π
(
Rt

i
F
)
≥ i (230)

We start with i = 1. Assume on the contrary, that there is no such t1F ∈ T+ with the above postulated properties. Since U(F)
is non-empty, by Proposition 3.6 Assertion (i), there exists t0 ∈ T+, such that

SP
∗

t ∩ U(F) 6= φ (231)

Thus the non-existence of t1F , implies, that for every t ≥ t0, there exists a string Rt ∈ U(F), with len(Rt) ≥ t, such that,
π
(
Rtt
)

= 0. Such a string Rt is then necessarily of the form:

R =
(
f t1, fi1 , fi2 , · · · , filen(Rt)−t

, P ∗
)

(232)

where i1, · · · , ilen(Rt)−t ∈ {0, 1}. Thus denoting

Xt = fi1 ◦ fi2 ◦ · · · ◦ filen(Rt)−t
(P ∗) (233)

we note that
N (Rt) = f t1(Xt) (234)

Now consider the sequence {Rt}t≥t0 of such strings as t→∞. Let ε > 0 be an arbitrary positive number. By Proposition 3.7,
the uniform convergence of Riccati iterates implies there exists tε ≥ N , such that, for every X ∈ SN+ ,∥∥f t1(X)− P ∗

∥∥ ≤ ε, t ≥ tε (235)

(we emphasize that the constant tε can be chosen independently of X .) Then defining t́ε = max(t0, tε), it follows from (234)
that for t ≥ t́ε

‖N (Rt)− P ∗‖ =
∥∥f t1(Xt)− P ∗

∥∥ ≤ ε (236)

Since ε > 0 above was arbitrary, it follows that the sequence {N (Rt)}t≥t0 of numerical values converges to P ∗ as t → ∞.
However, by construction, the sequence {N (Rt)}t≥t0 belongs to the set F and we conclude that P ∗ is a limit point of the
set F . Since F is closed, we have P ∗ ∈ F . It then follows{

R ∈ SP
∗
| N (R) = P ∗

}
⊂ U(F) (237)

Hence, in particular, the string f1(P ∗) ∈ U(F). The fact, that π (f1(P ∗)) = 0 then contradicts the hypothesis `(F) ≥ 1.
Thus by contradiction we establish that if `(F) ≥ 1, there exists t1F satisfying the properties in (230) for i = 1. Note that,

if `(F) = 1, this step completes the proof of the Lemma. In the general case, i.e., to establish (230) for all 1 ≤ i ≤ `(F) we
need the following additional steps.

We can now assume `(F) ≥ 2. We assume on the contrary that the claim in (230) does not hold for all 1 ≤ i ≤ `(F). By
the previous arguments, the claim clearly holds for i = 1. Then, let 1 ≤ k < `(F) be the largest integer such that the claim
in (230) holds for all 1 ≤ i ≤ k. The hypothesis k < `(F) implies there exists no tk+1

F ∈ T+ satisfying the claim in (230)
for i = k + 1. Since the claim holds for i = k, there exists tkF ∈ T+, such that for all R ∈ U(F) with len(R) ≥ tkF , we
have π

(
Rt

k
F
)
≥ k. The non-existence of tk+1

F and (231) implies, that for every t ≥ t0, there exists a string Rt ∈ U(F), with
len(Rt) ≥ t, such that,

π
(
Rtt
)
< k + 1 (238)

We now study the structure of the strings Rt for sufficiently large t. To this end, define t́0 = max(t0, t
k
F ). Then by the existence

of tkF and (238) it follows that π
(
Rtt
)

= k for t ≥ t́0. Hence for t ≥ t́0, Rt is necessarily of the form:

Rt =

(
fi1 , · · · , fitkF

, f
t−tkF
1 , fj1 , fj2 , · · · , fjlen(Rt)−t

, P ∗
)

(239)

where i1, · · · , itkF ∈ {0, 1}, such that, π
(
Rt

k
F
)

= k and j1, · · · , jlen(Rt)−t ∈ {0, 1}.
Now consider the sequence {Rt}t≥t́0 and define the set J by J = {Rt, t ≥ t́0}. Also, define J1 = {R ∈ SP

∗

tkF
| π(R) =

k}. Consider the function Λt
k
F : J 7−→ J1 by

Λt
k
F (R) = Rt

k
F , ∀ R ∈ J (240)

Since the cardinality of J1 is finite and J is countably infinite, there exists R∗ ∈ J1, such that, the set
(

Λt
k
F
)−1

({R∗}) is
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countably infinite. This in turn implies, that we can extract a subsequence {Rtm}m≥0 from the sequence {Rt}t≥t́0 , such that,

Rt
k
F
tm

= R∗, ∀m ≥ 0 (241)

In other words, if R∗ is represented by R∗ =

(
fi∗1 , · · · , fi∗tkF

, P ∗
)

for some fixed i∗1, · · · , i∗tkF ∈ {0, 1}, for every m, the

string Rtm is of the form:

Rtm =

(
fi∗1 , · · · , fi∗tkF

, f
tm−tkF
1 , fj1 , fj2 , · · · , fjlen(Rtm )−t

, P ∗
)

(242)

where j1, · · · , jlen(Rtm )−t ∈ {0, 1} are arbitrary. Denoting

Xm = fj1 ◦ fj2 ◦ · · · ◦ fjlen(Rtm )−t
(P ∗), ∀m (243)

we have
N (Rtm) = fi∗1 ◦ · · · ◦ fi∗tkF

(
f
tm−tkF
1 (Xm)

)
(244)

Since tm →∞ as m→∞, using Proposition 3.7 in a similar way, we have

lim
m→∞

f
tm−tkF
1 (Xm) = P ∗ (245)

Noting that the function fi∗1 ◦ · · · ◦ fi∗tkF
: SN+ 7−→ SN+ is continuous (being the composition of continuous functions), we then

have

lim
m→∞

N (Rtm) = lim
m→∞

fi∗1 ◦ · · · ◦ fi∗tkF

(
f
tm−tkF
1 (Xm)

)
= fi∗1 ◦ · · · ◦ fi∗tkF

(
lim
m→∞

f
tm−tkF
1 (Xm)

)
= fi∗1 ◦ · · · ◦ fi∗tkF

(P ∗)

= N (R∗) (246)

Thus the sequence {N (Rtm)}m≥0 in F converges to N (R∗) as m→∞. Hence, N (R∗) ∈ F as F is closed and N (R∗)
is a limit point of F . This in turn implies R∗ ∈ U(F). Since π(R∗) = k, this contradicts the hypothesis k < `(F) and the
claim in (230) holds for all 1 ≤ i ≤ `(F). This establishes the Lemma.

Proof of Lemma 6.8
Proof: Let a > 0 be arbitrary and z ∈ N be such that z ≥ a. From Proposition 3.6 Assertion (iii), there exists αP∗ ∈ R+,

such that,
N (R) � fπ(R)

0 (P ∗), ∀R ∈ SP
∗

(247)

Define b ∈ R+ such that ‖fz0 (P ∗)‖ < b and consider the compact set Ka =
{
X ∈ SN+ | ‖X‖ ≤ b

}
. Also define the closed

set, Fb, by Fb =
{
X ∈ SN+ | ‖X‖ ≥ b

}
. As per Lemma 6.5, define the set U(Fb) as

U(Fb) =
{
R ∈ SP

∗
| N (R) ∈ Fb

}
(248)

We then have the following inclusion:
U(Fb) ⊂

{
R ∈ SP

∗
| π(R) ≥ z

}
(249)

and hence
`(Fb) = inf

R∈U(Fb)
π(R) ≥ z (250)

Since Fb is closed, by Lemma 6.5 there exists tFb ∈ T+, such that,

π(RtFb ) ≥ z, ∀R ∈ U(Fb) (251)

To estimate the probability µγ(KC
a ), we now follow a similar set of arguments as used in Lemma 6.7. First note that we have

by weak convergence:

µγ(KC
a ) ≤ lim inf

t→∞
Pγ,P

∗ (
P γ,P

∗

t ∈ KC
a

)
≤ lim inf

t→∞
Pγ,P

∗ (
P γ,P

∗

t ∈ Fb
)

(252)
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For t ∈ T+ define the sets J P
∗

t = SP
∗

t ∩ U(Fb). For t ≥ tFb we have (see also (105))

Pγ,P
∗ (
P γ,P

∗

t ∈ Fb
)

=
∑
R∈JP∗t

(1− γ)π(R)γt−π(R) ≤

(
tFb
`(Fb)

)
(1− γ)`(Fb) ≤

(
tFb
`(Fb)

)
(1− γ)z (253)

A familiar set of arguments as in Lemma 6.7 yields the following from eqns. (252,253):

µγ(KC
a ) ≤

(
tFb
`(Fb)

)
(1− γ)z, ∀γ (254)

from which we obtain
lim sup
γ↑1

− 1

ln(1− γ)
µγ(KC

a ) ≤ −z ≤ −a (255)

Thus for every a > 0 there exists a compact set Ka such that (111) is satisfied and the Lemma follows.

APPENDIX E
PROOF OF LEMMA 8.2

Proof: By Theorem 4.2 it suffices to show that for all M > 0,

inf
X∈BC

M
(P∗)

I(X) = ι(M) (256)

inf
X∈BCM (P∗)

I(X) = ι+(M) (257)

We prove (256) only, the proof of (257) being similar.
The class A assumption implies (through the same line of arguments as in Proposition 3.6 Assertion (iii)) that

N (R) � fπ(R)
0 (P ∗), ∀ R ∈ SP

∗
(258)

By definition it follows that f ι(M)
0 (P ∗) ∈ BCM (P ∗) and hence

inf
X∈BC

M
(P∗)

I(X) ≤ ι(M) (259)

Now assume on the contrary that (256) does not hold. Then by (259) we have

inf
X∈BC

M
(P∗)

I(X) < ι(M) (260)

Thus there exists R ∈ SP
∗

, such that,

N (R) ∈ BCM (P ∗), π(R) ≤ ι(M)− 1 (261)

We then have from (258)
N (R) ≤ fπ(R)

0 (P ∗) ≤ f ι(M)−1
0 (P ∗) (262)

which implies ∥∥∥f ι(M)−1
0 (P ∗)− P ∗

∥∥∥ ≥ ‖N (R)− P ∗‖ ≥M (263)

This contradicts the definition of ι(M) which is the smallest non-negative integer k, such that,
∥∥fk0 (P ∗)− P ∗

∥∥ ≥M . We thus
conclude that the claim in (256) holds.
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