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ABSTRACT 
A number of recent studies have demonstrated that groups 
benefit considerably from access to shared visual 
information. This is due, in part, to the communicative 
efficiencies provided by the shared visual context. However, 
a large gap exists between our current theoretical 
understanding and our existing models. We address this gap 
by developing a computational model that integrates 
linguistic cues with visual cues in a way that effectively 
models reference during tightly-coupled, task-oriented 
interactions. The results demonstrate that an integrated 
model significantly outperforms existing language-only and 
visual-only models. The findings can be used to inform and 
augment the development of conversational agents, 
applications that dynamically track discourse and 
collaborative interactions, and dialogue managers for natural 
language interfaces. 

Author Keywords 
Shared visual information, multimodal interaction, language 
use, discourse, communication, and modeling. 

ACM Classification Keywords 
H.5.3 [Information Interfaces and Presentation]: Group 
and Organization Interfaces – collaborative computing, 
computer-supported cooperative work. 

INTRODUCTION 
In order to develop widely deployable and successful 
conversational agents that interact with humans during 
collaborative physical tasks [8], applications that 
dynamically restructure their environment to minimize 
ambiguity, or video-mediated communication systems that 
adapt their views on the basis of a predictive model of what 
a speaking partner needs to see [39], we need a richer 
computational description of the ways in which shared 
visual information influences collaborative reference. In this 

paper we present a computational model that precisely 
describes how visual cues are combined with linguistic cues 
to enable effective reference during tightly-coupled, task-
oriented interactions. The results demonstrate that an 
integrated model significantly outperforms both language-
only and visual-only models of reference resolution. 

BACKGROUND 
A number of behavioral studies have begun to uncover the 
relation between shared visual information and spoken 
language use. For example, conversational pairs are more 
likely to replace full noun phrase (NP) descriptions with 
deictic pronouns such as “that” when shared visual 
information is available [19]. Distributional patterns of 
proximity markers (e.g., this/here vs. that/there) change 
according to whether speakers perceive themselves to be 
physically co-present or remote from their partner [7, 19]. 
And people use shorter and more syntactically simple 
language [42], and produce different surface realizations [9], 
when gestures or actions accompany their speech. Together 
this work suggests that both the linguistic and visual context 
shared by a collaborative pair has an impact on patterns of 
reference. Yet, a major gap exists between these empirical 
findings and the current state of technologies that deal with 
collaborative reference. 

Surprisingly, the vast majority of computational models of 
reference rely solely on linguistic information and disregard 
the surrounding visual context [5, 29, 47, 50]. Without a 
more complete computational account of reference, we run 
the risk of developing agents, systems and technologies that 
fail. For example, if the goal were to develop a 
conversational agent for everyday interaction, then the agent 
needs to keep up its end of the conversational bargain by 
speaking and behaving in a natural way. It needs to 
understand speech and behaviors generated by people in 
real-world environments, and conversely, it needs to 
generate speech and actions in line with natural human 
behaviors. Studies have shown that when this does not 
occur, people overcompensate and adapt their 
communication patterns in ways that are unnatural (e.g., by 
producing hyper-articulated speech or adjusting their rate of 
disfluency [40, 41]), and these adaptations often lead to 
difficulties for computing systems. 

 



 

MOTIVATION 
There are several reasons for developing a computational 
model of referring behavior in shared visual contexts. First, 
an integrated model provides a deeper theoretical 
understanding of how humans make use of various forms of 
shared visual information in their everyday communication. 
Second, an explicit computational model can be used to 
inform the development of a range of technologies to 
support distributed group collaboration. Finally, an 
integrated model can be used to increase the robustness of 
existing interactive agents and dialogue managers that 
converse with humans in real-world situated environments. 

A number of behavioral studies have demonstrated the need 
for a more detailed theoretical understanding of referring 
behavior in the presence of shared visual information [52]. 
Although these studies have shown that shared visual 
information about the objects and workspace can influence 
collaboration and communication in task-oriented 
interactions [33, 38], an explicit theoretical description of 
how this is possible and the mechanisms by which it occurs 
are underspecified. Theories such as Clark and colleagues’ 
Grounding Theory [12, 13] provide excellent 
conceptualizations of human communication as a joint 
activity, yet they often remain modest in the details provided 
about the mechanisms and processes underlying successful 
communication. A detailed computational description of 
these processes can expose implicit and possibly inadequate 
assumptions underlying our current understanding. 

The development of a multimodal model of reference can 
also yield practical guidelines for the development of 
technologies to support collaboration. Video-mediated 
communication systems, shared media spaces, and 
collaborative virtual environments are all technologies 
developed to support joint activities between geographically 
distributed groups. Yet, without a clear understanding of 
how visual information impacts language use we may 
unintentionally disrupt the critical information required for 
successful communication [4, 22]. 

Finally, there are a number of educational applications of 
language technologies such as tutorial dialogue [35] and 
adaptive collaborative learning support [27], where text 
processing technologies may be used to process student 
explanations in the context of a running dialogue with a 
computer agent or with one or more human peer learners 
[17]. Interventions triggered by the resulting analysis may 
be in the form of simple prompts or full tutorial dialogue 
interactions. Thus, an additional motivation for this work is 
to improve the performance of state-of-the-art models of 
communication currently used to support conversational 
interactions involving intelligent agents [1, 16]. 

THE DIFFICULTIES OF TRACKING REFERENCE  
IN COLLABORATIVE DISCOURSE 
Natural language provides a number of ways for someone to 
refer to things. For example, in the puzzle study paradigm 
we developed [34] (and shown in Figure 1), an entity 

described as “the bright blue block” by the Helper may 
subsequently be referenced using a variety of forms such as: 
it, this, that, the piece, that bright blue one, the brightest 
blue piece, etc. Each of these referring expressions contains 
clues about the status of a given object in a pair’s current 
model of the task [26]. For example, it is unlikely that the 
Helper would use the pronoun “it” to refer to “the bright 
blue block” if she had since discussed several other pieces. 
Similarly, the Helper should use the phrase “the brightest 
blue piece,” only if she knows that she shares visual access 
to three blocks of different shades of blue with her partner. 

 

Figure 1. Puzzle study task. Worker’s view (left)  
and Helper’s view (right).  

Linguistic Context in Support of Reference 
In spoken dialogue, licensed referents1 are often introduced 
through the prior linguistic context. This sets the stage for 
the later use of efficient referring expressions such as 
pronouns. Consider the following excerpt drawn from our 
previous work [20], whereby a Helper describes to a Worker 
how to construct an arrangement of colored blocks so they 
match a solution that only the Helper has visual access to: 

(1) Helper: Take the dark red piece. 
 Helper: Overlap it over the orange halfway. 

In excerpt (1), the first utterance uses the definite-NP “the 
dark red piece” to introduce a new discourse entity. 
Assuming the Worker has correctly heard the utterance, the 
Helper can now expect the entity to be the current focus of 
the discourse as established by the linguistic context [24]. 
This status provides license for the dark red piece to be 
subsequently referred to using a pronominal expression such 
as “it,” in the second utterance. 

Visual Context in Support of Reference 
In contrast to the prior linguistic example, during task-
oriented collaborations with physical objects, the visual 
context often plays a critical role in determining which 
objects are salient parts of a conversation. The following 
example demonstrates that it is not only the linguistic 
context that determines the potential antecedents for a 
pronominal expression, but also the shared visual context: 
(2) Helper: All right, uh, take, um, the darkest orange block. 
 Worker: OK. 
 Worker: [moved incorrect piece] 
 Helper: Oh, that’s not it. 
                                                           
1 Licensed referents are those objects or entities that are syntactically 
available for future reference. 



In excerpt (2), both the linguistic and visual information 
provide entities that could be potential targets of a referring 
expression. In this excerpt, the first pronoun “that,” specifies 
the “[…incorrect piece]” that was physically moved into the 
shared visual workspace. While the second pronoun, “it,” 
has as its antecedent the object specified by the definite-NP, 
“the darkest orange block.” 

Another problem when applying models based exclusively 
on linguistic properties to the puzzle study data is in the 
predicted use of a pronoun. In the following example, the 
visual information creates ambiguity for the pair that results 
in a full NP being repeated, while a model based solely on 
linguistic context would claim it is not needed. 

(3) Helper: The bluish block goes in the upper right corner. 
 Worker: [Blue block positioned in the workspace] 
 Worker: [Green block re-positioned in the workspace] 
 Helper: The bluish block should be all the way  

              in the corner. 

In excerpt (3), if the model only accounted for the spoken 
contributions and disregarded the two visible moves, the 
repeated use of “The bluish block” in the last utterance 
would appear incoherent. Instead, the use of a pronominal 
phrase, “It should be all the way in the corner,” would seem 
more coherent. This example demonstrates that the visual 
information introduces ambiguity regarding the most salient 
entity for the pair, and hence, which entity is the most likely 
referent of a pronominal expression. 

Toward an Integrated Model 
A number of existing computational models of reference 
will accurately resolve the pronoun in excerpt (1) but fail to 
do so in excerpts like (2). Similarly, the same models would 
have difficulty describing the use of the repeated NP in 
excerpt (3). Together these examples demonstrate a number 
of ways that both the linguistic and visual context serve a 
central role in the ability of pairs to make use of efficient 
communication tactics such as pronominal reference. 

Recently, a handful of systems have begun to integrate 
visual and linguistic information for reference resolution 
(e.g., [10, 31, 32]). Typically the expressions available in 
these systems are part of a command language bound to 
particular functions known by both the user and system 
(e.g., “open” a “folder,” or “tell me about” a “[pointer 
hovering over a position on a map]”). While these systems 
have made significant progress in implementing working 
systems (e.g., [2]), their goals differ somewhat in that they 
typically aim to support specific interaction techniques. Our 
work aims to develop a richer theoretical understanding of 
human-to-human communication in the presence of various 
forms of shared visual information and to use this 
understanding of the interplay between linguistic context 
and shared visual information to develop a more general 
account of situated interpersonal communication. These 
findings can then be used to inform further refinement of 
existing multimodal systems. 

Our approach is most closely related to a recent 
investigation by Byron and colleagues that explored the role 
of shared visual information in a task-oriented, human-to-
human collaborative virtual environment [6]. They 
compared the results of a language-only model with a 
visual-only model, and developed a visual salience 
algorithm to rank objects according to recency, exposure 
time, and visual uniqueness. In a hand-processed evaluation, 
they found that a visual-only model accounted for 31.3% of 
the referring expressions, and that adding semantic 
restrictions (e.g., “open that” could only match objects that 
could be opened, such as a door) increased performance to 
52.2%. This model differs from the work reported here in 
that it does not make simultaneous use of both visual and 
linguistic salience information. So, for example, referring 
expressions cannot be resolved to entities that have been 
mentioned but which are not visible. Furthermore, it could 
fail to resolve references that the linguistic context 
determines are highly salient and the visual context does not. 
Therefore, in addition to language-only and visual-only 
models, we develop an integrated model that uses a balance 
of linguistic and visual salience to support resolution. 

THE MODELING FRAMEWORK 
Our modeling framework augments a rule-based model of 
spoken discourse to account for the reference patterns found 
in various visual conditions. The approach adopts the ideas 
of Centering Theory originally developed by Grosz and 
colleagues [23, 24]. Centering Theory is a dynamic model 
developed to describe the mutual attentional state of 
discourse participants. It has been used to explore such 
linguistic concepts as common ground and discourse object 
salience [3, 30], and it provides a salience-based, real-time, 
dynamic method for describing discourse focus. 

Overview of the Modeling Architecture 
The major components of the modeling architecture are a 
Running Discourse History, a Transient Knowledge Base, a 
World Knowledge component, and a set of proposed 
ranking strategies for ordering the entities contained in the 
Transient Knowledge Base. 

Running Discourse History 
The Running Discourse History captures the utterances, 
actions and objects that can serve as potential referents in 
future utterances. From these various streams of data we 
parse and extract the major units needed for inclusion in the 
models. The visual and linguistic information from both the 
Helper and Worker are captured independently and 
synchronized on the basis of a common timestamp. 

Transient Knowledge Base 
At the heart of the model is a dynamically updated ranked-
list of entities that contains the constituent entities ordered 
by their relative salience. The highest-ranked entity in the 
Transient Knowledge Base is considered the most likely 
candidate for a subsequent referring expression. In this way, 
the Transient Knowledge Base captures the current focus of 
the discourse, whether it is a recently mentioned object or a 



 

highly prominent visible object or action. A number of 
algorithms describe how to rank this list in spoken discourse 
[5, 47, 49], yet, little work has been done to explore the role 
of visual salience and how it influences the ranking of 
entities in a shared model of discourse. 

 

Figure 2. Modeling framework. Basic components (blue) and 
hypothesized ranking strategies (yellow). 

Linguistic entities and their salience ranking. The linguistic 
entities used to populate the Transient Knowledge Base are 
extracted by parsing, chunking and tagging the utterances 
contained in the Running Discourse History. Each linguistic 
object has a number of features that determines its 
availability as a potential referent and its ranking within the 
list. Grammatical function is the ranking mechanism used in 
this paper, and agreement constraints such as those based on 
gender, plurality (i.e., number), and binding constraints2 [11, 
29] are enforced when resolving a referential expression. 

Visual entities and their salience ranking. In addition to the 
linguistic entities, the Transient Knowledge Base can be 
populated with visual entities. In the puzzle paradigm these 
elements consist of the blocks and their associated 
properties. Obviously, there are a great number of visual 
features that can impact the visual salience of a particular 
entity in a particular environment [45]. However, one 
particular attribute that is highly salient is object motion. For 
this reason, we use the recency of object motion as the 
primary visual feature in this paper. If visual information, as 
measured by this rather coarse attribute of salience, 
influences referring behaviors then a more complete future 
investigation of visual salience is warranted. 

Integrating the elements of the linguistic and visual salience 
rankings. Together, the linguistic entity list and the visual 
entity list are intended to capture all the entities that could 
potentially be referenced. The evaluation presented in this 
paper examines the balance between visual and linguistic 
salience of the objects contained in the Transient Knowledge 
Base, and the hypothesized ranking strategies used to model 

                                                           
2 Chomsky’s Binding Theory (1982) describes whether a pronoun needs to 
be locally bound. For example, a reflexive pronoun such as “himself” needs 
to be locally bound, as in “John painted himself” versus “him” that cannot 
be locally bound, as in “John painted him.” 

the salience of the elements in a multimodal, task-oriented 
environment. 

World Knowledge 
The World Knowledge component is used to capture any 
previously existing shared knowledge the pairs may have 
and also serves to enforce semantic restrictions. The models 
in this paper match the evaluations of earlier pronoun 
resolution evaluations which assume no world knowledge, 
and rely instead on syntactic agreement criteria and binding 
constraints [48, 49]. However, this component is included in 
the framework in order to support future modeling 
endeavors. 

THE PUZZLE CORPUS 
The data for the evaluation were randomly selected trials 
from two major manipulations of our previously collected 
puzzle study data [20, 34]. As Table 1 demonstrates, the 
data consisted of 14 dialogues from the No Shared Visual 
Information condition where the Helper could not see the 
Worker’s workspace at all. In this condition, the pairs 
needed to successfully complete the task using only 
linguistic information. Another 22 dialogues were selected 
from the Shared Visual Information condition, where the 
Helper received immediate visual feedback about the state 
of the Worker’s work area. Each dialogue was collected 
from a unique participant pair. 

Task Condition Corpus Statistics 
 Dialogues Utterances Pronouns 

No Shared Visual 
Information 

14 336 76 

Shared Visual Information 22 327 217 

 36 663 293 

Table 1. Overview of the evaluation corpus. 

MODEL EVALUATION 
Three models were developed in order to address the 
question of whether or not an integrated model of reference 
resolution could be more successful than a language-only 
model or a visual-only model. The following sections 
present a detailed description of the models and their 
development, an empirical evaluation of their performance, 
and a reflection on the findings and future avenues for 
modeling. The evaluation in this paper is a hand-processed 
evaluation on data that were automatically extracted. 

Hypothesized Ranking Strategies 
Three ranking strategies are examined, each of which 
corresponds to a hypothesized method for ranking possible 
referents in the Transient Knowledge Base. The ranking 
strategies are represented in yellow in Figure 2, and are 
described here: 

Purely linguistic context. One hypothesis is that the visual 
information is completely disregarded and the entities are 
salient purely on the basis of linguistic information. While 
prior empirical work suggests this should not be the case, 
several existing computational models function at this level. 



Purely visual context. A second possibility is that the visual 
information completely overrides the linguistic salience. 
Thus, visual information dominates the discourse structure 
when it is available and relegates linguistic information to a 
subordinate role. This too should be unlikely given the fact 
that not all discourse deals with external elements from the 
surrounding world. 

A balance of syntactic and visual context. A third hypothesis 
is that both linguistic and visual entities are required in order 
to accurately and perspicuously account for patterns of 
observed referring behavior. Salient discourse entities result 
from some balance of linguistic salience and visual salience. 

Data Pre-Processing 
Several challenges exist in preparing a multimodal corpus 
for use with models of reference, and a number of 
preparatory steps need to be taken in order to prepare the 
elements of the linguistic and visual context. 

Dialogue transcription, segmentation, and alignment. To 
transcribe and segment the dialogue, we followed guidelines 
established by Heeman and Allen [28] for segmenting 
unconstrained, multiparty dialogue. 

POS-tagging, noun phrase extraction, and subject/object 
tagging. To generate the appropriate features and entities, 
part-of-speech (POS) tagging, chunking (e.g., NP chunking), 
and subject/object detection was performed on the corpus. 
Each contribution was parsed using a memory-based 
shallow parser that was trained on the Penn Treebank II 
Wall Street Journal Corpus. The Tilburg Memory-Based 
Learner (TiMBL) v5.1 software package [14, 15] was used 
to extract the entities and tags needed for the language 
features of the models.  

The POS-tags are used to identify pronouns of various types. 
The output from the chunker identifies NPs that are the 
essential entities required to populate the Transient 
Knowledge Base. These constitute both the pronouns that 
need to be resolved as well as the entities that make up the 
coreference chains and may specify the referents of various 
pronominal expressions. Finally, the subject/object detection 
provides syntactic information for ranking the entities by 
grammatical function. 

Extracting the visual data. In order to work with the visual 
information from the shared visual workspace, the actions 
and visible elements were extracted from detailed 
interaction logs provided by the puzzle study software. 
These logs contained information that could be pruned to 
develop the relevant data structures for the models. 

The linguistic data was then aligned with the visual data 
using a common timestamp. Each contribution has a start 
and finish time, and the visual state of the shared workspace 
can be resolved whenever it is needed by the model. 

Model Details 
As previously mentioned, the models in this evaluation are 
based on Centering Theory [24, 25]. However, one area 

where the original formulation of Centering Theory and its 
related algorithms [5] are deficient is in their ability to 
describe reference in an online and real-time fashion at a 
finer-grained level of resolution than a complete sentence. 
This poses a problem for extending the model to account for 
visual information, since the stream of visual information is 
continuous and not easily partitioned into discrete bins in the 
same way as utterances or sentences. This was solved in 
part, by a solution proposed by Tetreault and his Left-Right 
Centering (LRC) algorithm [49]. The LRC algorithm makes 
provisions for incremental resolution by maintaining a 
partially-ordered list of potential entities that are available at 
any point during the construction of an utterance. This 
dynamic, real-time list of entities allows one to capture the 
attentional state of a discourse at a finer level of granularity 
than previous algorithms and makes it a natural candidate 
for extension to the visual domain. 

The Language-Only Model 
The LRC algorithm is used as the base model and algorithm 
for the language-only model. It uses grammatical function as 
a central mechanism for resolving references. It resolves 
references by first searching within the current utterance for 
possible antecedents, and makes co-specification links when 
it finds an antecedent that adheres to syntactic agreement 
and binding constraints. If a match is not found the 
algorithm then searches the lists of possible antecedents in 
prior utterances in a similar fashion. The primary structure 
employed in the language-only model is a ranked entity list 
sorted by linguistic salience. In this evaluation, the output of 
the subject/object detector was used to generate syntactic 
labels that would allow a given NP to be ranked in the entity 
list according to grammatical function. The grammatical 
function ranking was determined by the following 
precedence ranking: Subject > Direct Object   > Indirect 
Object > Other. Any remaining ties (e.g., an utterance with 
two direct objects) were resolved according to a left-to-right 
breadth-first traversal of the parse tree. 

The Visual-Only Model 
The visual-only model captured the visible actions and 
utilized an approach based on visual salience. This method 
captured the relevant visual objects in the puzzle task and 
ranked them according to the level of recency with which 
they were active. Given the highly controlled visual 
environment that was used in the puzzle studies, timing 
information is available about when the pieces become 
visible, are moved, or are removed from the shared 
workspace. In the visual-only model, an ordered list of 
entities that comprise the shared visual space was 
maintained. The entities are included in the list if they were 
visible to both the Helper and Worker, and then they were 
ranked according to the recency of their activation. 

The Integrated Model 
The integrated model took advantage of the salience list 
generated from the language-only model and integrated it 
with that of the visual-only model. The method of 
integrating the list was informed by general perceptual 



 

psychology principles stating that highly active visual 
objects attract attentional processes [45]. The visual objects 
were added to the top of the linguistic-salience list which 
essentially rendered them the focus of the joint activity. 
However, people’s attention to static objects tends to fade 
over time. Following prior work that demonstrated the 
utility of a visual decay function [6, 31], a three-second 
threshold existed on the lifespan of a visual entity. From the 
time since the object was last active, it remained on the list 
for three seconds. After the time expired, the object was 
removed and the list returned to its prior state. This 
mechanism was intended to capture the notion that active 
objects are at the center of shared attention in a collaborative 
task for a short period of time, after which the speakers 
revert to their recent linguistic history for the context of an 
interaction. 

RESULTS 
Measures 
The basic success measure used in this experiment is 
Mitkov’s [36] measure of the total number of pronouns 
correctly resolved over the total number of pronouns 
attempted. Before model performance can be assessed, the 
actual antecedents of the pronouns need to be marked. Two 
expert coders marked the antecedents for each pronoun in 
the corpus. Each coder went through the segmented 
transcripts line by line and when they identified a pronoun 
they scored its antecedent, whether it was a noun phrase, 
another pronoun, or a visual entity or action. For the 
evaluation set examined in this study, the coders 
independently rated each of the 293 pronouns in the corpus. 
Scores were counted correct if both of the coders identified 
the pronoun and tagged the same antecedent. However, if 
only one of the coders identified a pronoun, or if the 
antecedents were different, their coding was scored as 
incorrect. Overall, the coders reached a reliability of 88% 
overall agreement. The remaining anomalies were resolved 
by discussion. 

Statistical Analysis 
A number of analysis techniques were used to describe the 
performance of the models. A logistic regression was used 
to examine the overall performance of the models and to 
capture higher-order interactions of interest. The logistic 
model included Model Type (Language, Visual, Integrated), 
Lexical Complexity (Solid or Plaid), and Pronoun Type 
(Personal, Demonstrative, or Demonstrative + NP). 
Because the pronouns existed in a discourse, there was the 
possibility that observations within a trial were not 
independent of one another. Therefore, Trial was modeled as 
a random effect. In addition, all two-way interactions were 
included in the model. Three-way interactions were also 
investigated, but were not found to be significant, and were 
removed from the final analysis. 

In order to directly compare the performance of the models 
on each pronoun encountered, a second analysis involved 
the creation of a confusion matrix. McNemar’s test was used 
to test the agreement between the models and to help 

characterize differences in their performance. This approach 
examined each pronoun that had been resolved for each 
model, and provided an indication of whether or not a 
particular model faired better on the same piece of data, 
which in turn provided an aggregate statistical indication of 
model performance and also allowed a more detailed 
investigation of the patterns of failure that occurred. For 
example, examination of the data points in the off-diagonals 
of the confusion matrix could provide an indication of how 
one particular model outperformed another. 

Model Performance Results 
Table 2 presents the pronoun resolution rates of the three 
models according to whether the pairs shared visual 
information, and whether the puzzles included simple solid 
colors or more lexically complex plaid pieces. 

Performance in the No Shared Visual Information condition 
As can be seen in the “Total” columns of Table 2, the 
language-only model correctly resolved 67.1% of the 
referring expressions when applied to the set of dialogues 
where only language could be used to solve the task. 
However, when the language-only model was applied to the 
dialogues from the task conditions where shared visual 
information was available it performance diminished 
significantly. It only resolved 49.3% of the referring 
expressions correctly (χ2

(1, N=293) = 7.17, p < . 01). 

 No Shared Visual 
Information 

Shared Visual 
Information 

 Solids Plaids Total Solids Plaids Total 
Language 
Model 

70.0% 
(21 / 
30) 

65.2% 
(30 / 
46) 

67.1%  
(51 / 
76) 

43.6%  
(17 / 
39) 

50.6% 
(90 / 
178) 

49.3% 
(107 / 
217) 

Visual  
Model 

n/a n/a n/a 66.7%  
(26 / 
39) 

61.2% 
(109 / 
178) 

62.2% 
(135 / 
217) 

Integrated 
Model 

70.0% 
(21 / 
30) 

65.2% 
(30 / 
46) 

67.1%  
(51 / 
76) 

69.2%  
(27 / 
39) 

73.0% 
(130 / 
178) 

72.4% 
(157 / 
217) 

Table 2. Success rates for resolving pronominal reference. 

The integrated model performed at the same level as the 
language-only model when there was no shared visual 
information available. The integrated model essentially 
reverts back to a language-only model, achieving the same 
67.1% performance. 

Performance in the Shared Visual Information condition 
A direct comparison between the three models of reference 
can be made by exploring their performance on the data in 
the cases in which shared visual information was available. 
Model Type was a significant factor in the model, G2

(2) = 
15.21, p < .001, and contrasts between the different levels of 
Model Type revealed significant differences between the 
performance of each model (at p < .05 in all cases). 

The language-only model correctly resolved 49.3% of the 
pronouns when applied to the trials performed in the 
presence of shared visual information. However, when the 
visual-only model was applied to the same data, it correctly 



resolved 62.2% of the pronouns. The difference in 
performance between these two models was substantial, χ2

(1, 

N=217) = 8.52, p < .01, and indicated a major performance 
benefit for the visual model. The confusion matrix presented 
in Table 3 demonstrates that both the visual-only and 
language-only models correctly resolved pronouns missed 
by the other. An informal examination of the cases that the 
visual-only model correctly resolved and the language-only 
model failed (27.1% of the cases) revealed a few trends. A 
large proportion of these cases appeared to occur when an 
efficient referring expression was used to reference an entity 
that was not mentioned in the prior linguistic stream. For 
example, “Oh, that is one we need, so put it to the upper 
left”. Another case was when contrastive statements were 
made regarding the current visible object and the targeted 
referent, for example, “…a darker color than that.” There 
were also a small number of references that the language-
only model mistook to refer to sub-features of a piece, while 
the visual-only model correctly suggested the whole block 
as an entity. 

  Language 
  Incorrect Correct 

Incorrect 50 
(23.0%) 

32 
(14.8%) 

Vi
su

al
 

Correct 59 
(27.1%) 

75 
(34.6%) 

Table 3. Confusion matrix between the Language Model and 
the Visual Model. 

An informal examination of the cases that the language-only 
model correctly resolved and the visual-only model failed 
(14.8% of the cases) also revealed some interesting trends. 
First, there were a number of cases where the language-only 
model successfully resolved pronouns to linguistic entities 
where the last piece of visual information would have led to 
an incorrect referent. These included cases when the 
discourse included longer discussions regarding the details 
of a piece or a layout. There were also cases where the 
language-only model could successfully resolve references 
within a sentence. And finally, there were a small number of 
cases where an incorrect visual object was available and the 
pronoun instead referred to a previously introduced 
linguistic entity (e.g., “no, it is a different yellow piece”). 

Returning to the right-hand side of Table 2, when the 
integrated model was applied to the data from the cases 
when the pairs had access to the shared visual information, it 
correctly resolved 72.4% of the referring expressions. This 
was significantly better than the 49.3% exhibited by the 
language-only model (χ2

(1, N=217) = 26.8, p < .01). Similar to 
the last comparison, Table 4 reveals that both the integrated 
and language-only models correctly resolved pronouns that 
the other model did not. In this comparison, there appeared 
to be substantially more cases (33.9%) that the integrated 
model exclusively identified versus those that the language-
only model did (10.6%). The differences between these two 
models were similar to those discussed above in comparing 
the performance of the visual-only model with the language-

only model. However, in this case, the integrated model 
could resort to the linguistic-salience list when the shared 
workspace was inactive, and therefore benefit from the 
ranking of entities based on linguistic-salience.  

  Language 
  Incorrect Correct 

Incorrect 37 
(17.0%) 

23 
(10.6%) 

In
te

-
gr

at
ed

 

Correct 74 
(33.9%) 

84 
(38.5%) 

Table 4. Confusion matrix between the Language Model and 
the Integrated Model. 

Finally, the integrated model’s 72.4% performance was 
significantly better than the visual-only model’s 62.2% on 
the same data (χ2

(1, N=217) = 17.29, p < .01); indicating a 
major performance benefit to having an integrated model. It 
is interesting to note in Table 5 that the integrated model 
nearly dominates the visual-only model. There are only 
three instances where the visual-only model correctly 
resolves a referent that the integrated model did not. All 
three of these instances were cases where a longer visual 
decay parameter would have captured the proper referent. 
However, a longer decay could harm the performance of the 
integrated model by inhibiting a switch to the linguistic 
salience list. 

  Visual 
  Incorrect Correct 

Incorrect 57 
(26.3%) 

3 
(1.4%) 

In
te

-
gr

at
ed

 

Correct 25 
(11.5%) 

132 
(60.8%) 

Table 5. Confusion matrix between the Visual Model and the 
Integrated Model. 

Model Performance by Language Type 
Finally, a detailed examination of the form of referring 
expressions successfully resolved differed across the model 
types. In other words, there was a significant Model Type × 
Pronoun Type interaction in the model, depicted in Figure 3 
(for the interaction, G2

(4) = 17.43, p = .001). An examination 
of this interaction reveals that the language-only model 
appears to perform best when resolving personal pronouns 
and decreases in success when resolving demonstrative 
pronouns, while the opposite trend is seen in both the visual-
only and integrated models. This revelation reveals some 
interesting patterns regarding the appropriateness of the 
various models and suggests that future lines of work might 
explore strategic shifts in the use of the visual-salience or 
linguistic-salience lists triggered by the syntactic 
information in the utterance.  

To summarize, the language-only model performed 
reasonably well on the dialogues in which the pairs had no 
access to shared visual information. However, when the 
same model was applied to the dialogues collected from task 
conditions where the pairs had access to shared visual 
information, the performance of the language-only model 
was significantly reduced. However, both the visual-only 



 

model and the integrated model showed significantly 
increased performance over the language-only model; and 
the integrated model was the top performer overall. 
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Figure 3. Effect of Model Type and Pronoun Type on 
successful pronoun resolution. 

Error analysis 
In order to inform further development of the model, a 
number of failure cases were examined in detail, particularly 
those in which all of the models failed. The first thing to 
note was that a number of the pronouns used by the pairs 
referred to larger visible structures in the workspace. An 
example of this was when the Worker would state, “like 
this?”, and ask the Helper to comment on the overall 
configuration of the puzzle. In the current model, only the 
puzzle pieces are included as possible visual referents. One 
approach to alleviating this error is to integrate a richer 
notion of semantics with the additional visual entities in 
order to accurately model such situations (e.g., see [6]). 

Another area where the models suffered performance 
problems was during references to higher-order referents 
such as general events or the state of the world. For 
example, “OK, this is going to be tough” where “this” 
specifies the general construction of the puzzle. Similarly, 
non-referential “its” as in “It is easy to make something 
work” posed a problem for the models. These are both 
common problems in reference resolution and may be 
addressed in the future by applying recent advances in these 
areas. Work by Müller [37] provides an automated method 
for filtering out non-referential “its,” and this technique 
could be applied to refine the pronouns attempted by 
applying a filter earlier on in the processing pipeline.  

In addition, there were several errors that resulted from 
chaining errors: When the initial referent was misidentified 
all subsequent chains of referents were incorrect. The 
approach used in this study to score the success of the 
resolved pronouns followed Walker’s original description 
[51] where all referents are scored as incorrect if the original 
binding is incorrect. This makes sense from a systems 
perspective where incorrect inferences could be made if the 
initial referent is incorrect. However, recent evaluations 

have used a more lenient formulation whereby a “location-
based” evaluation procedure is used [49]. These studies only 
look one step back and do not penalize for longer “error 
chains”. 

Finally, the visual-only model and the integrated model had 
a tendency to suffer from timing issues. For instance, the 
pairs occasionally introduced a new visual entity with, “this 
one?” However, the piece did not appear in the workspace 
until a short time after the utterance was made. In such 
cases, the object was not available as a referent on the object 
list. The implementation presented here followed the notion 
that actions typically precede the associated keywords or 
language [43]. Future work could include a richer model of 
gestures and spoken language alignment in order to 
successfully account for such issues (e.g., [18]). 

DISCUSSION 
The results of this experiment find that the language-only 
model performs in the range of previous studies of pronoun 
resolution on spoken discourse by successfully resolving 
approximately 67% of the pronouns encountered3. This 
apparent success is due, in part, to the fact that the approach 
captures the many well-known syntactic and 
psycholinguistic factors that contribute to entity salience. 
However, when the language-only model is applied to the 
portions of the corpus in which the pairs had access to 
shared visual information, its performance suffers. In fact, 
the application of the language-only model to the trials 
undertaken with shared visual information performs below 
50%. One reason for this is that when shared visual 
information is available, action and language use can 
become interchangeable [21]; this is highlighted by the fact 
that the visual-only model performs at 62% and is better in 
many instances. 

Overall, the integrated model is the best performer in this 
evaluation. Its performance is equivalent to the language-
only model during trials without shared visual information 
available, since it falls back to using linguistic salience as a 
source for resolution. However, when applied to the cases 
where shared visual information is available, the integrated 
model performs significantly better than the language-only 
model. This is due, in part, to the fact that it captures 
linguistic references to physical actions. 

A comparison of the integrated model to the visual-only 
model yields interesting results. The first is that the 
integrated model resolves reference when no shared visual 
information is available, while the visual-only model does 
not. Second, when shared visual information is available, the 
integrated model outperforms the visual-only model, and 
this difference exists regardless of the lexical complexity of 
the puzzle pieces. The integrated model captures elements of 
the discourse that are neglected by the visual-only model, 
particularly when there is a prolonged discussion about the 
                                                           
3 Prior literature finds resolution rates of approximately 65% for similar 
evaluations using task-oriented spoken dialogues. 



features of a given object. As a result, the decay parameter 
allows the model to shift its focus from active visual events 
to the conversation currently taking place. In a sense, this 
mimics the shift in attention that occurs between participants 
as they fluidly move between referring to objects and 
actions in the environment to those discourse entities 
produced in the spoken dialogue stream. Together these 
findings provide strong support for the need to have an 
integrated model of reference. Indeed, both linguistic 
entities and visual entities are central to accurate and 
perspicuous accounting of referring behaviors. 

Throughout this paper, we focus on developing a 
computational understanding that can be applied to systems 
supporting collaborative physical tasks (e.g., [39, 44]) and 
collocated physical interactions (e.g., [46]). While at first 
glance these environments may appear limited, they are 
often rife with cross-modal references and complex 
linguistic behaviors that current models do not capture. To 
further our understanding of these patterns, we perform an 
evaluation using a limited amount of world knowledge. We 
do this for two major reasons. The first is to maintain a 
direct comparison to prior models of reference resolution 
that perform evaluations without a world knowledge 
component [48, 50]. The second is to control for the 
potentially conflating influence world knowledge could have 
in different visual environments. For example, if a rich 
notion of semantics is applied and its use varies across 
experimental conditions, then it is no longer clear whether 
the benefits derive from the visual salience component of 
the model or the semantic restrictions enforced by a world 
knowledge component. Clearly, extension of our model to 
richer task domains requires further development of our 
world knowledge component, and may also require 
significant research into scene analysis, object tracking, and 
the integration of richer task models. 

FUTURE WORK 
In the future, we plan to extend this work in several ways. 
First, a fully-automated version of the models is currently 
under development. This constitutes a fully automated 
parsing and resolution system that can then be applied to a 
range of new tasks with a variety of parameters. This will 
allow us to assess the generalizability of the model. A 
second area is to develop studies that expand our notion of 
collaborative visual salience. For example, objects may 
become activated multiple times in a short window of time, 
or be more or less salient depending on nearby actions. 
Future work will explore these parameters in detail. Finally, 
we plan to appreciably enhance the integrated model. It 
appears from both the initial data analysis and a qualitative 
examination of the model performance that the pairs make 
tradeoffs between reliance on the linguistic and visual 
context. Yet, our current understanding could be enhanced 
by taking a more theoretically informed approach to 
integrating the information from multiple streams. 
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