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Abstract 

The computation of Graduate Point Average (GPA) incorrectly assumes that grades are 

comparable across courses and instructors.  GPA overstates the performance of students who elect an 

“easier” course of study relative to those who choose a more “difficult” course of study.  This paper 

proposes a method of adjusting GPA and applies it to data from one cohort of undergraduates at 

Carnegie Mellon University.  Adjusted GPAs are more highly correlated with students’ high school 

Grade Point Average and with SAT scores than are the raw GPAs or GPAs adjusted using a prominent 

alternative method, Item Response Theory.  A survey of students finds that the new methods’ estimates 

of relative course difficulty are consistent with students’ perceptions of relative course difficulty. 
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Introduction 

Grade point average (GPA) is the dominant measure of student quality in educational systems 

throughout the world.  Students at all levels strive for a higher GPA because there are so many 

important consequences associated with it:  parental and peer approval, admission to undergraduate and 

graduate programs, financial aid, graduation, graduation standing and honors, and access to selective 

employment interviews. 

Unfortunately, GPA is an extremely flawed measure of student performance (Milton et al. 1988; 

Elliott & Strenta 1988; Chance 1988; Ramist et al. 1990; Young 1990; Larkey & Caulkins 1992)  Like 

any scalar measure of a complex phenomenon like educational performance, GPA inevitably omits a lot 

of important information.  GPA’s weaknesses, however, exceed those inherent to scalar measures.  

GPA assumes incorrectly that all course grades mean essentially the same thing; for comparing students, 

GPA assumes that an A is an A, a B is a B.  There is, however, substantial variation among majors, 

courses, and instructors in the rigor with which grades are assigned.  Some courses give grades to 

students that are systematically lower or higher, than the grades obtained by those same students in 

other courses (Young 1990; Elliott & Strenta 1988; Strenta & Elliott 1987; Goldman & Widawski 

1976; Goldman & Slaughter 1976; Goldman & Hewitt 1975; Goldman et al. 1974).  The same GPA 

for different students can represent different levels of achievement and performance.  A lower GPA for 

a student may not necessarily mean that the student performs less well than students who have higher 

GPAs;  the student may simply be studying in fields and taking courses or instructors with more stringent 

grading standards. 

Table 11 shows just how perverse unadjusted GPAs can be.  Four students (A, B, C, and D) 

each take five classes of the nine available.  Student A receives the highest score in every class she 

takes.  Student D obtains the lowest score in every class he takes.  Students B and C fall in between; 

student B is always better than student C when they take the same class.  Given this information,  we 

expect a measure that fairly represents students’ performance to rank students in the following order: 

                                                 
1   This table is taken from Larkey and Caulkins (1992), 
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A>B>C>D.  Unfortunately, GPA, as conventionally computed, yields exactly the opposite order: 

D>C>B>A.  This result is caused by the widely different grading standards among the nine classes in 

terms of class average grades. 

[Table 1 goes about here] 

The above example is clearly contrived but real examples  of widely different grading standards 

with perverse implications for GPA are common.  For example, 253 students at Carnegie Mellon 

University took both Calculus and Computing Skills Workshop classes in the fall of 1990.  The mean 

grade of these students was 1.87 in Calculus and  3.45 in the Computing Skills Workshop on a 4.0 

scale.  This difference in standards is not a problem for comparing the 253 students who took both 

courses but it is for comparing students who took Calculus but not the Computing Skills Workshop with 

students who took the Computing Skills Workshop but not Calculus. 

The problem that different grading standards poses for GPA as a student performance measure 

is venerable (Meyer 1909).  The grading standards problem can be solved by (1) getting the graders to 

adhere to the same standard or (2) correcting for differences in grading standards after the grades have 

been assigned.  The most frequently used method for attempting to get graders to adhere to a common 

standard is to require graders to use a common “curve” in which grades are assigned in fixed 

proportions (Aiken 1963).  Curving introduces a new potential bias in GPA, bias against classes 

consisting of above average students in ability or performance.  The assignment of students to classes is 

nonrandom.  There is overwhelming evidence that student abilities are not evenly distributed across 

courses and departments. Different fields have different “curves.”  For example, Sabot and Wakeman-

Linn (1991) found that the mean grade in Mathematics courses was 2.53 out of 4.0, 0.59 lower than 

that for English courses in a seven college study.  Low ability students tend to gravitate toward fields 

with lax grading standards (Willingham 1985; Goldman & Hewitt 1975).  The variety in fields, subjects 

and faculty personalities probably makes coherent, enforceable grading standards unachievable; seeking 

evaluative consistency among diverse faculty is like “herding squirrels.” 

A second and perhaps more promising approach to reducing the bias in GPA is to permit the 

assignment of grades on a largely unregulated basis by individual faculty and then adjust the grades for 
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construction of a corrected GPA.  Researchers have proposed many methods to correct GPA so that it 

reflects the differential difficulty of grade accomplishments (Linn (1966) and Young (1993)).  Two of 

the more visible proposals have been a pairwise comparison method (Elliott & Strenta 1988; Goldman 

& Widawski 1976) and an Item Response Theory based method (Young 1990 & 1989).  No grade 

correction method has been used much in practice either because they had no significant effect or 

because they were difficult to implement (Young 1993). 

No adjustment can make GPA a perfect measure of students’ performance because of inherent 

deficiencies in the grades themselves.  More important, student quality, performance, and aptitude can 

never be captured adequately by any scalar measure.  Nonetheless, the impossibility of achieving a 

perfect scalar measure of student performance is hardly an excuse for continuing to live with the 

correctable flaws in unadjusted GPAs and the improper student rankings and course selection incentives 

that result from these flaws. We propose alternative methods for adjusting GPAs to reflect variation in 

the stringency of grading standards across courses and apply them to data on a cohort of 

undergraduates at Carnegie Mellon University.  Alternative Methods for Adjusting GPA 

This section examines five methods for adjusting GPAs to reflect variation in grading standards.  

Two methods are naive in that they ignore differences in the quality of students across classes.  These 

are foils against which the other methods can be compared. 

Deviation method (Naive method I) 

The simplest adjustment is to look at individual course grades relative to the average grades 

awarded in that course by subtracting the mean grade attained in the course from the raw grades.  The 

adjusted GPA would be the average of these adjusted grades.  More formally, the adjusted GPA, qi, is: 
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where, Nc
i denotes the number of courses student i takes,  Ns
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in course j, and rij is student i’s grade in course j. 
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Standardization method (Naive method II) 

The deviation method described above may not be satisfactory if the variance in grades is 

different across courses.  This potential problem can be addressed by dividing the grade deviation by 

the standard deviation of grades in the course.  Formally, 
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where, STDj is the standard deviation of grades in course j. 

The need to adjust for student quality 

The naive adjustment methods fail to account for variation across courses in students’ ability.  

Suppose two students received grades equal to the class mean in every course taken and that one of 

them took classes exclusively with the strongest students in the university while the other took classes 

with the weakest students in the university.  The naive methods would assign them the same adjusted 

GPA even though the mean grade is tougher to achieve against the strongest than against the weakest. 

There are methods that can account for both students’ grades and students’ ability in courses. 

Larkey (1991, 1992) developed methods for fairly comparing professional golfers where they had 

performed in circumstances of varying difficulty.  For example, the Professional Golf Association of 

America awards the prestigious Vardon Trophy each year to the professional golfer with the lowest 

scoring average and must choose between golfers who have played under scoring conditions that vary 

in difficulty.  Just as easy courses raise students’ GPAs, easy golf courses lower the professionals’ 

scoring average.  Caulkins et al. (1993) found the same difficulty in comparing airlines’ in terms of their 

on-time performance.  Some airports are much more difficult to arrive in on-time than others and airlines 

that fly more frequently into “difficult” airports are disadvantaged in terms of average on-time 

performance.   

The generic problem for rating golfers, airlines, students, and many other performers is:  Given 

N players who compete and receive scores in varying subsets of M tournaments, and given no 



 

 
 5 

exogenous information about the difficulty of those tournaments or the quality of the players, 

rate each player’s performance relative to that of the other N-1 players (Caulkins et al. 1993).   

For ranking students in educational environments, students are players and courses are tournaments with 

students competing for higher grades and GPA. 

We derive three methods that adjust students’ GPA to reflect course difficulty.  Consider a 

general grade model given by Equation (3).  A student’s grade in a specific course is a function of the 

student’s attributes and the course’s attributes. 

 ij ijr  =  f (  ,    ) +  i jq β ε  (3) 

 Where   rij is student i’s grade in course j, 

qi is a vector of attributes for student i, 

bj is a vector of attributes for course j, and 

ε ij is a random error term. 

This function could be very complex since many factors affect students’ course grades.  For 

example,  student i’s attribute vector qi could include the student’s aptitude in specific areas and how 

hard this student works.  A course’s attribute vector could include the subject of the course, the 

instructor of the course, and the abilities of other students in the course. 

Here we consider only the very special case in which the attribute vectors contain only one or 

two elements.  The first method is an additive method in which one scalar is employed to represent a 

student attribute that is called adjusted GPA and another scalar is used to represent a course attribute 

that is called the grading standard index.  A student’s observed grade in a course is the difference 

between the student’s adjusted GPA and the course’s grading standard index plus an error term 

(Equation 4 below).  Previous studies (Strenta & Elliott 1987, Goldman & Widawski 1976) have found 

that the index of grading standards for different departments is nearly additive in predicting the outcomes 

of comparisons of grading standards in pairs of departments. 

For the second method, instead of using the difference between the adjusted GPA and the 

course difficulty index,  we use a ratio of the student’s adjusted GPA over the course difficulty index 

plus an error term to represent the student’s observed grade.  The third method combines the two 
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methods and uses one scalar to describe the course’s discrimination power and another to describe the 

course’s grading stringency.   

The goal is to find parameters for these simple models that minimize the difference between 

students’ observed course grades and the grades projected by these models.  The estimated parameters 

do not necessarily fall between 0 and 4, the conventional range for the GPA measure, but the 

parameters corresponding to GPA can be linearly scaled to 0-4 or any other interval. 

The additive method. 

The additive method assumes that student i has an ability to earn an average grade, qi.  Thus 

absent any information about course difficulty, one would predict that student i’s grade would be qi.  

Similarly, courses are assumed to differ in grading stringency by shifting all students’ grades up or down 

by a constant β i.  Thus one would predict that student i’s grade in course j would be the difference 

between the student’s qi and the course’s constant β j.  qi is called student i’s adjusted GPA, and β j is 

called course j’s grading standard index here and for the balance of this paper. 

ij i j ijr  =  q  -   +   ;   for i =  1, 2, 3,...N;  j = 1, 2, 3,...M;β ε  (4) 

This method predicts that students with any specified ability will receive higher grades from courses with 

laxer grading standards (small βj) and lower grades from courses with more stringent grading standards. 

Rating students’ performance and courses’ difficulty can be viewed as a parameter estimation 

problem.  One way to estimate the N qis and M β js is to use the least squares method, that is, to  solve 

the following minimization problem:  

Min  [ r  -  ( q  -   ) ]   
i j

ij i j
2∑∑ β  (5) 

This yields the following first order conditions (FOC): 
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Notice that the above summations should be interpreted as summing only over those i and j for which a 

grade exists. 

The additive method has an appealing interpretation.  Student i’s adjusted GPA is an average of 

the adjusted course grades, (rij+β j), that student i gets from all courses he or she takes.  Equation 6 

represents this calculation.  Student i’s grade in course j is increased by adding course j’s difficulty index 

bj in this calculation.  A course’s difficulty index is a relative grading standard of this course versus all 

other courses and can be estimated.  If, for example, most students in a course get lower grades than 

their GPAs then this course is considered to have a stricter grading standard and, hence, a higher 

difficulty index.   A superior approach is to substitute the adjusted GPA, qi, for students’ GPA because 

it better reflects student performance.  Equation (7) calculation calculates the difficulty index using qi. 

Equations (6) and (7) are a system of N+M linear equations that can be easily solved.
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Multiplicative method 

A parallel approach is multiplicative in the sense that it projects students’ GPA in a ratio format: 

ij i j ijr  =  q  /   +   ;   for i =  1, 2, 3,...N;  j = 1, 2, 3,... M;α ε  (8) 

where parameter α j is a course difficulty index.  The bigger the α j  (>1), the more difficult the 

course grading standard. 

The minimization problem for this method is:  
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A simple iterative procedure can solve these two sets of equations. 

The combined method 

The additive and multiplicative approaches fail to consider that courses not only have different 

grading stringency but also different discrimination power.  Some courses give better students grades 

that are substantially higher than those obtained by weaker students.  Other courses give all students 

nearly the same grade and are not very useful in differentiating between good performers and bad 

performers.  A combined method that uses two parameters to describe course grading partly addresses 

this problem. 

The formula for this method is:  

 ij i j j ijr  =  q  /   -   +   ;   for i =  1, 2, 3,...N;  j =  1, 2, 3,...M;α β ε  (12) 
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Again, an iterative procedure can be employed to solve these equations.  

Each of the three new methods give solutions which exist and are unique up to a scaling factor 

(Caulkins et al. 1993).  All three are equivalent to the conventional GPA calculation if all courses are 

equally difficult.  For example, with the additive method,  if b1=b2=b3=...=bM=0, then equation (6) 

reduces to the formula for calculating  the conventional GPA.   

Evaluating the New Methods   

It is easy to propose methods for adjusting GPA; it is harder to determine if the proposals have 

any merit.  We consider three criteria.  First, an adjustment method should generate an accurate 

measure of students’ performance.  There is, of course, no observable and absolute measure of 

performance—if there were then the whole adjustment exercise would be irrelevant—and so we must 

evaluate accuracy indirectly.  One approach in the literature (Elliott & Strenta 1988;  Strenta & Elliott 

1987) is to see if students’ adjusted freshman year GPA is more highly correlated with their high school 

GPAs and SAT scores than is their unadjusted GPA.  We also examine correlations between students’ 
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adjusted GPAs across different years in college on the assumption that student ability and performance 

is fairly stable over time so “better” measures will give higher correlations. 

Second, we can see if the new methods produce reasonable course difficulty indices.  Again, 

there is no absolute standard; but we can ask students to rate courses in terms of grading stringency and 

compare the survey results with the estimated course difficulty indices. 

Finally, how do the new methods compare with existing methods?  The Item Response Theory 

(IRT) based method developed by Young (1989 and 1990) is the most theoretically defensible and 

well-developed extant adjustment method so we compare the new methods to it. 

Empirical Results 

The registrar and enrollment offices at Carnegie Mellon University (CMU) provided data for 

1197 students who entered CMU in Fall 1990.  These data include gender, ethnicity, high school grade 

point average (HGPA), SAT mathematical score (SAT_M),  SAT verbal score (SAT_V), various 

achievement test scores, grades on courses they took in their first three years in CMU, and college of 

enrollment.  Students were enrolled in four colleges: College of Fine Arts (CFA), Carnegie Institute of 

Technology (CIT), College of Humanities and Social Science (HSS), and  Mellon College of Science 

(MCS). 

We only included courses that give a letter grade because it is not clear how to compare letter 

grades with PASS/FAIL grades and PASS/FAIL courses are not currently included in calculating 

students’ GPA.  We converted the letter grades to numerical values for this study: A=4, B=3, C=2, 

D=1, and R=0. (R means failure at CMU.)  All the other letter grades, such as I (incomplete) and W 

(withdraw), were coded as missing values; this is equivalent to assuming that the students receiving those 

grades did not attend those classes.  Where the same course was offered in different semesters, they 

were considered to be different courses since they had different students, and may have been taught by 

different professors.  Different sections of one course taught in one semester were considered to be one 

course since the data used do not provide course section information. 

Students in the College of Fine Arts (CFA) were excluded primarily because there is insufficient 

reciprocal course-taking between CFA and the rest of CMU to have a reliable basis for comparing 
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students (Wei 1994).  Courses that had an enrollment of fewer than five students from this cohort were 

excluded.  The methods per se do not require a minimum number of students per course, but courses 

with less than five students may give unreliable course difficulty indices.  We calculated students’ 

unadjusted GPA in a slightly different way than is employed by the registrar’s office.  Instead of 

weighting course grades by course credits and dividing the product of these two by the total credits, the 

unadjusted GPA is simply the average of course grades that students obtained; the correlation between 

the two is very high. 

Effects of the new methods for all students 

All five adjusted GPAs have higher correlations (in absolute value) with the pre-admission 

variables (HGPA, SAT_M, SAT_V, and students high school rank) than does the unadjusted GPA 

(See Table 2).  All of the correlation differences between the adjusted GPAs from the three new 

methods and the raw GPA are statistically significant at the 0.01 level using the Z1* statistic (Steiger 

1980).  The adjusted GPAs from the combined method have the highest correlation with students’ high 

school rank (HRANK), SAT_M, and SAT_V among all six GPAs.  The adjusted GPAs from the 

additive method have the highest correlation with students’ high school grade point average.  The naive 

adjustment methods, deviation and standardization, improve on unadjusted GPA but have lower 

correlations with pre-admission variables than the three more sophisticated adjustment methods. 

[Table 2 goes here.] 

Of the three traditional predictors, HGPA has the highest correlation with students’ freshman 

GPA.  This result is consistent with previous studies (Willingham et al. 1990; Linn 1966).  Note that 

SAT_M is more highly correlated with students’ freshman year GPA than is the SAT_V.  This may be 

peculiar to Carnegie Mellon University where courses in many disciplines are quantitative. 

For the balance of the paper, we will mainly report results from the additive method because it 

is simple, has an appealing interpretation, and produces GPA results very highly correlated (r= 0.993) 

with the GPAs from both the multiplicative and combined methods. 

Tables 3 and 4 report course difficulty indices from the additive method by college and 

department.  Table 4 only includes those departments that offered more than five courses to this cohort 
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of students.  The CMU courses, which are courses that do not belong to any college (e.g. fundamental 

computing skills), have the least stringent grading standards according to the course difficulty indices 

from the additive method.  The Mellon College of Science (MCS) courses have the most stringent 

grading standards.  These results are consistent with previous studies (Elliott and Strenta (1988) and 

Ramist et al. (1990)). 

[Tables 3 and 4 go about here.] 

Students were asked their perceptions of course grading standards.  A questionnaire that included 20 

courses with enrollment of at least 60 students was sent through electronic mail to the 930 of the 1197 

students who were still enrolled in CMU in their senior year.  Students were asked to rate the 20 

courses in terms of the difficulty of getting higher grades on a 1-7 scale with 1 indicating it was very easy 

to get a higher grade in that course.  Students were asked to rate only those courses about which they 

had some knowledge, either from taking the course or by reputation, and to indicate whether they had 

taken the courses themselves.  We got 122 usable responses, a 13% response rate.  A course’s 

surveyed difficulty index is the average of all responses for that course.  The correlation between the 

survey results and course difficulty indices from the additive method is 0.845, suggesting that the course 

difficulty indices produced by the additive method are consistent with students’ perceptions about 

course grading standards.
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Results of adjusted GPA on predictive validity in college admission.  

Adjusted GPA’s can be predicted substantially better from pre-admission variables than can 

conventional GPA (see Table 5).  Substantially more variance is explained by the three predictors of 

college grade performance when the dependent variables are adjusted GPAs instead of unadjusted 

GPAs; the improvement in variance explained with the combined method is 0.132, a 102 percent 

increase. 

[Table 5 goes about here.] 

The adjusted students’ GPAs are more consistent  than the unadjusted GPA overtime during 

college.  Table 6 shows that the correlations of adjusted GPAs between years are higher than those of 

the unadjusted GPA.  The yearly adjusted GPAs are statistically significantly (at the 0.01 level) more 

highly correlated than are the unadjusted GPAs,  using Z2* statistic for testing two dependent 

correlations described by Steiger (1980).  

[Table 6 goes about here.] 

Results of the adjusted GPA on gender bias. 

Previous studies (McCornack & McLeod 1988; Young 1992) have shown that using a single 

equation to predict GPA for both men and women often leads to systematic under-prediction of 

women’s GPA.  This is also true for this cohort of students.  Table 7 shows the descriptive statistics of 

the three pre-admission variables and their freshman year raw GPA and adjusted GPA by gender.  To 

compare the adjusted GPA with the raw GPA,  we transformed the  adjusted GPAs linearly to have the 

same mean and standard deviation as the raw GPA.  

[Table 7 goes about here.] 

All three pre-admission variables of the female students are lower on average than those of the male 

students.  However, the female students have higher freshman year GPA than the male students.  Using 

one equation to predict students’ freshman year GPAs for both female and male students would result in 

a significant underprediction for female students particularly since the equation would be largely 

determined by data from the larger number of male students. 
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Using the adjusted students’ GPA as a criterion reduces the underprediction since male students 

have higher adjusted GPAs than do the female students.  The gender difference in adjusted GPAs for 

this cohort students can be understood better by examining patterns of course selection.  The mean 

proportion of female students in social science courses (0.43) is higher than in natural science (0.23) and 

engineering (0.12) courses.  Since the grading standards in the natural science and engineering courses 

were found to be generally more stringent than those of the social science courses,  the additive method, 

on average, increases grades for natural science and engineering courses and  depresses grades for 

social science courses.  This results in the relatively lower adjusted GPAs for female students. 

We also examined the correction effects on various ethnic groups, e.g., black, asian, and white.  

There were no clear differential effects of the correction along ethnic lines in this sample. 

Comparison between the additive and Item Response Theory based methods. 

To compare the new methods with the Item Response Theory based method, we need to apply 

all methods to the same data.  The Item Response Theory based method separates courses into 

categories and applies the method to each category separately.  Young divided his course data into 

three categories: natural science and engineering courses, social science courses, and humanities 

courses.  He found that the Item Response Theory based method performs best on the natural science 

and engineering courses in the sense that the IRT-based GPA is more highly correlated with the pre-

admission variables than the raw GPA (Young 1989).  Here, we compare the new methods with the 

Item Response Theory based method on the natural science and engineering courses offered by CIT, 

MCS, and the Department of Statistics in HSS. 

A PARSCALE2 program, used by Young in his study, was employed to estimate parameters 

for the Item Response Theory based method.  Two adjusted GPAs, denoted Add-GPA and IRT-

based GPA, were generated in addition to the conventional GPA.  Table 8 reports multiple regression 

results with the three pre-admission variables as independent variables and three GPAs as dependent 

variables.    

                                                 
    2. PARSCALE2 is available through Scientific Software, Inc.,  Chicago, Il.  
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[Table 8 goes about here.] 

 

The amount of variance in the IRT-based GPA which is explained by the three pre-admission 

variables is greater than the amount of variance in unadjusted GPA similarly explained (R2: 0.264 vs. 

0.230), but the amount of variance in the Add-GPA is larger still (R2: 0.321).  Note that the SAT_V is 

not statistically significant in any of the regression equations; this may be because we only included 

natural science and engineering courses. 

Discussion 

Conventional GPA is a flawed measure of students’ performance and ability.  Any scalar 

measure will have serious shortcomings because performance and ability are not unidimensional.  There 

are, however, persistent demands for such a summary measure.  It is important to find a better scalar 

measure than conventional GPA.  This paper proposed three alternatives for GPA.  All three are similar 

in concept, calculation, and outcome.  They compute the adjusted GPAs as the least squares parameter 

estimates for elementary models for how students and course attributes combine to yield grades. 

Since there is no definitive, observable standard of student quality, it is impossible to determine 

absolutely whether these adjusted GPAs are “better” than conventional GPA.  However, the various 

pieces of circumstantial evidence suggest that the adjusted GPAs are both reasonable and probably 

reflect student ability more accurately than does the unadjusted GPA.  In particular, the adjusted GPAs 

were shown to be more highly correlated with pre-admission variables and more highly correlated 

across years within college.  The adjusted GPAs were also more highly correlated with pre-admission 

variables than were either unadjusted GPAs or GPA adjusted by an Item Response Theory based 

method.  Furthermore, the course grading difficulty indices produced by the method were consistent 

with students’ perceptions.  Finally, there is a certain intuitive appeal to the new methods, particularly 

the additive method.  It makes sense that grades be adjusted to reflect variation across courses in 

grading stringency and that a course grading stringency should be assayed by considering the quality of 

the students in that class as well as the grades given. 
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The replacement of GPA with a better measure must be a gradual process.  GPA has been 

used by many people for a long time and we need to know more about both the effects of GPA and the 

effects of the alternatives before advocating wholesale change.  The problems with conventional GPA 

are, however, sufficiently obvious that schools should consider producing both unadjusted and adjusted 

GPAs.  More research is essential; the research should:  (1) replicate these results in other contexts, (2) 

refine the methods proposed here (e.g., by developing ways of systematically determining when grades 

from a college such as CFA should and should not be analyzed separately from grades from other 

colleges), and (3) search for still better adjustment procedures. 

This research is important because improving GPA as a measure of students ability and 

performance could bring significant benefits both at the individual and societal level.  At the individual 

level, injustices such as those depicted in Table 1 might be mitigated and/or avoided (all of the new 

methods rank the four students in the desired order: A>B>C>D).  Adjusting grades for grading 

stringency should reduce the incentive for students to prefer courses and instructors with easy grading 

standards and lead them to base course choice more on factors such as the value of what they expect to 

learn.  Larkey and Caulkins (1992) argue that since natural science and engineering courses generally 

have more stringent grading standards, adjusting GPA to reflect grading difficulty might remove a 

disincentive to major in those fields.  In all fields it could alleviate pressures toward grade inflation. 

It is worth observing that the proposed adjustment methods are very simple and, hence, quite 

flexible.  For example, one could constrain the extent to which a course’s grades are adjusted simply by 

adding the appropriate constraint to the least squares optimization problem solved to estimate the 

student and course parameters. 

The methods can also be applied in different contexts, such as incorporating Achievement Test 

scores into college admission decisions.  Many students take Achievement Tests, but this information is 

typically used less systematically than high school GPA or SAT scores in part because not every 

students takes every Achievement Test.  Wei (1994) applied the methods developed here to the SAT 

math, Biology, Chemistry, Physics, Math Level I, and Math Level II achievement tests to estimate a 

measure of mathematics aptitude which is broader than SAT math test alone.  Similarly, the SAT verbal, 



 

 
 17 

English Composition, English Composition with Essay, and American History and Social Studies scores 

were combined to yield a broader measure of verbal skills.  These broader measures were more highly 

correlated with undergraduate grades than were the SAT scores alone. 

Also, the measures of course grading stringency can be useful in and of itself.  For example, Wei 

(1994) used them to assess the impact of factors such as college, class size, and homogeneity of 

students on grading stringency. 

Finally, the adjusted GPA can be implemented centrally; it is not necessary to ask faculty to 

change their grading behavior in any way.
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Table 1.  Example 

 Student 

A 

Stude

nt B 

Student C Student D Class 

Avg. 

Class #1 93   90 91.50

Class #2 85  80  82.50

Class #3   100 95 97.50

Class #4 80 75   77.50

Class #5  97  95 96.00

Class #6 93   85 89.00

Class #7  92 89  90.50

Class #8 92 91 90 88 90.25

Class #9  91 89  90.00

GPA  88.60 89.20 89.60 90.60  

 



 
Table 2.  Correlations Between Pre-admission Variables and Various Criterion Variables 

 
 
 

 GPA Dev-GPA Std-GPA Mul-GPA Add-GPA Com-GPA 
HGPA (926) 
HRANK(920) 
SAT – V (1074) 
SAT-M(1074) 

0.348 
-0.311 
.0104 
.0179 

0.386 
-0.368 
0.122 
0.254 

0.387 
-0.367 
0.132 
0.250 

0.419 
-0.395 
0.138 
0.311 

0.434 
-0.414 
0.150 
0.351 

0.432 
-0.425 
0.150 
0.398 

 
 
Note:  HGPA denotes students high school GPA; HRANK denotes students high school rank in 
their senior class and we standardize the HRANK between 1 to 100 with 1 indicating the best 
students.  SAT-V denotes the SAT verbal score and SAT_M denotes the SAT quantitative score.  
The number in the parentheses denotes the number of observations used in the calculation.  Bold 
number means that it is the biggest (in absolute value) in a row. 



Table 3.  Courses Difficulty Index by Colleges 
 
 

 GPA Mul-GPA Add-GPA Com-GPA 
 Estimate t-Value Estimate t-Value Estimate t-Value Estimate t-Value 
Intercept 
HGPA 
SAT_M 
SAT_V 

0.161 
0.544 
0.127 
0.118 

0.656 
9.377 
2.070 
2.044 

-0.711 
0.600 
0.349 
0.102 

-3.028 
10.841 
5.976 
1.857 

-0.963 
0.608 
0.422 
0.097 

-4.148 
11.098 
7.309 
1.787 

-1.139 
0.584 
0.529 
0.062 

-4.879 
10.605 
9.123 
1.129 

R2 0.130 0.215 0.243 0.262 
 
 
Note:  The SAT_M and SAT_V in these regressions are rescaled by dividing the original values 
by 200. 
 
 
 
 

Table 4.  Courses Difficulty Index by Departments 
 
 

 Freshman Year 
GPA 

Sophomore Year 
GPA 

Junior Year 
GPA 

Freshman Year GPA -- 0.628 0.485 
Sophomore ear GPA 0.683 -- 0.565 
Junior Year GPA 0.560 0.625 -- 

 
 
Note:  Correlations above the main diagonal are for raw grade point average; correlations below 
the main diagonal are for the adjusted GPA from additive method. 



Table 5.  Multiple Regressioin Results fro Various GPAs 
 
 Female Students Male Students 
 N Mean STD N Mean STD 

Difference 
between 

Female and 
Male students 

SAT-M 
SAT-V 
SAT 
HGPA 
GPA 
Add-GPA 

313 
313 
313 
266 
340 
340 

602 
548 

1150 
3.525 
2.800 
2.674 

94 
87 

150 
0.442 
0.832 
0.817

767 
767 
767 
664 
835 
835

673 
556 

1229 
3.570 
2.793 
2.845

76 
70 

135 
0.432 
0.812 
0.813

-71.000 
-8.000 

-79.000 
-0.045 
0.007 

-0.171 
 
 
Table 6.  Correlations of Yearly Calculated GPA 
 
 
Colleges No. of 

Courses 
Course 

Average Grade
Course Difficulty 

Index 
Mellon College of Science (MCS) 
Carnegie Institute of Technology (CIT) 
College of Humanities and Social 
Science (HSS) 
Carnegie Mellon University (CMU) 

48 
10 
58 
 

11 

2.691 
2.995 
2.855 

 
3.623 

0.174 
0.083 
-0.141 

 
-0.681 

 



Table 7.  Descriptive Statistics of Pre-admission Variables  
and Students’ Freshman Year GPA by Gender 

 
Departments No. of Courses Course Average 

Grade 
Course Difficulty 

Index 
Mathematics 
Physics 
Chemistry 
Psychology 
Philosophy 
History 
English 
Computer Science 
Modern Languages 

19 
13 
7 
7 
6 
16 
8 
7 
12 

2.565 
2.686 
2.832 
2.779 
2.807 
2.791 
2.914 
3.037 
2.987 

0.313 
0.172 
0.095 
0.002 

-0.064 
-0.165 
-0.209 
-0.231 
-0.343

 
 
Table 8.  Comparison Between the Item Response Theory Based Adjustment Method and the 
New Methods 
 
 Dependent Variable (N=784) 
 GPA Irt-GPA Add-GPA 
 Estimate T Value Estimate T Value Estimate t-Value 
Intercept 
HGPA 
SAT_M 
SAT-V 

-3.083 
0.740 
0.004 
0.000 

-8.043 
9.310 
9.207 
0.684 

-8.620 
0.773 
0.005 
0.001 

-22.752 
9.839 
10.091 
1.665 

-4.095 
0.772 
0.006 
0.000 

-11.258 
10.227 
13.060 
0.348 

R2 0.230 0.264 0.321 
 


