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Abstract

Cohesion and structural equivalence are two competing social network models to explain diffusion

of innovation. While considerable work has been done on these models, the question of which network

model explains diffusion has not been resolved. This paper examines diffusion of Caller Ring Back

Tones in a cellular telephone network. Since these societal scale networks are very large (e.g., our call

detail record data set has more than one million customers and one billion calls over a three months

period from a large cellular service provider in India), the study of diffusion in these settings require

the development of methods to extract connected subpopulations from the network. We develop

a novel technique to detect densely connected and self-contained components of the network and

demonstrate through random restarts that the technique can enumerate distinct connected compo-

nents in the network. Using a standard network auto-correlation model, we study the competing

effects of cohesion and role equivalence on each of the distinct connected components detected using

our sampling technique. The comparison of the results from the two models shows cohesion is more

statistically significant than role equivalence. The results have consistent pattern across different

sizes of subpopulation. We also conducted meta-analysis to summarize the size for both network

effects. We find a significant summarized effect and its size changes as E/I index changes.
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1 INTRODUCTION

The core question in this research is whether cohesion (direct contact) or role equivalence (structural

equivalence) plays a more influential role in caller ring-back tone (CRBT) diffusion. When forming

opinions or making decisions, people usually use someone they know or someone in their social network

as their frame of reference, taking their opinions into account. This progress, in which an actor adapts

his behaviors to those of alters in his social network, is known as contagion or social influence (Leen-

ders, 1997). There are two social network models, cohesion and role equivalence, to analyze contagion.

Cohesion is made through communication, which is direct contact between actor and alter; while role

equivalence is created through comparison, which occurs when an actor competes with other alters

who he considers in a similar position to him in the social network. Both models have been used to

explain the progress of contagion. Coleman et al. (1966) studied diffusion of medical innovation and

found medical doctors adopted new technology at the early stage because of cohesion. Burt (1987)

reanalyzed Coleman et al’s data and concluded that contagion does not happen through cohesion but

rather through role equivalence. Burt used a network autocorrelation model to conduct the analysis

but could only include one network effect at a time because of the limitations of the method at that

time. Since then, quantitative methods for social networks have been developed. For example, Doreian

(1989) developed a two regimes of network effect autocorrelation model, which can accommodate two

networks structures in one model. But such a method has never been applied to this classic research

question.

In this paper, we would like to investigate the effect of cellular phone communication social networks on

diffusion of CRBT adoption. CRBT is becoming one of the most attractive mobile content with a pro-

jected worldwide revenue of $4.7 Billion by 2012 1. CRBT replaces plain ring-back tones with music a

caller will hear as he/she waits for the receiver to answer. The analysis of social network based on cellular

phone communication is an exciting area of research. Cellular phones are a ubiquitous communication

medium. They have become a strategic component of modern life and economies. Cellular phones are

expected to become the major medium of communications, including voice calls, internet access, email

and file transfer etc. Phone call networks can be a good representation of one’s true social network,

because unlike other examples of large social networks, which are often extracted from online network-

ing sites, the interaction between two individuals entails a stronger notion of intent-to-communicate.

Furthermore, phone call networks can provide detailed information on the spatio-temporal behavior

of users, especially on the social networks they build and maintain, as reflected by their phone calls.

Several recent studies have used cellular phone call data to characterize the social interactions of cell

phone users, with a focus on understanding the structural properties of the graph, its evolution, and

the evolution of social groups. It can be important to understand how the dynamics of adoption are

likely to unfold within the underlying phone call social network: the extent to which people are likely

to be affected by decisions of their friends and colleagues. However, how new products spread within

such networks has not been well studied.

Our data set is from one of India’s largest cellular phone services. Each record includes phone numbers

1fiercewireless.com
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(hash values) from the sender and receiver, the date and time of phone call. There are over one million

subscribers and over one billion phone call records in our data after preprocessing. Given the size of

our data, it is impossible to analyze the whole data size using the current computing power available.

Hence in order to investigate CRBT diffusion, we need to solve another substantial problem – finding

subpopulation to make our analysis computationally tractable. The extracted subpopulations should

be isolated subnetworks so they can show pure network effect on CRBT diffusion. A community has

the features we want because, according to Newman (2006), community is a densely connected group

of vertices in a network, with only weak connections between groups. We can use community for this

matter because it can represent real social groupings in a social network (Girvan and Newman, 2002).

Our new method – Two-stage Clustering and Pruning (TSCP) algorithm is based on a commonly used

sampling method – chain-referral sampling, also known as snowball sampling. The algorithm is de-

signed to identify subpopulations having the same features as communities. Our algorithm identifies

self-contained subpopulations on the order of 1000 fast, without input of the parameters of the global

network.

The rest of the paper is organized as follows. We discuss the literature on diffusion, cohesion and role

equivalence models in Section 2; the data set, our subpopulation extraction method that can identify

local communities fast and with low computing cost, and two network effects autocorrelation model,

and meta-analysis for our research are presented in Section 3. In Section 4 we present our empirical

results. Discussion, conclusion and limitation complete the paper in Section 5.

2 THEORY

2.1 Diffusion

The theoretical foundation for our research is social influence on the diffusion process. Diffusion is

the “process by which an innovation is communicated through certain channels over time among the

members of a social system ... a special type of communication concerned with the spread of messages

that are perceived as new ideas” (Rogers, 1962). The network model has been widely used to study

diffusion since the Bass (1969) model. A history of network models used to study diffusion of innovations

is reviewed by Valente (2005). He categorized the evolution of network models as three stages: macro

models, spatial autocorrelation and network (effect) models. In the early era, the probability of adoption

is only related to the time that an actor gets exposed to the object of diffusion. In 1969, Bass proposed

a famous model to include both rate of innovation and imitation. This model can estimate both the

influence from the social network and innovativeness, and is shown in the equation below. Let Yt−1 be

the proportion that has adopted at time period t − 1; yt be the proportion of new adoption at t; b0
be the coefficient of innovation, which is the probability of initial adoption; and b1 be the coefficient of

innovation.

yt
1− Yt−1

= b0 + b1Yt−1

yt = b0 + (b1 − b0)Yt−1 − b1Y 2
t−1

Bass’ model is still at the population level. Its assumption is that everyone in the social network has
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the same probability of interacting. Such an assumption is not realistic because given a large social

network, the probability of any random two nodes connecting to each other is not the same. It seems

fair to assume people with closer physical distance communicate more and exert greater influence on

each other thus spatial autocorrelation was brought in to the models used in the literature. It is still

a measure of diffusion at the population level, and does not account for whether one actor is more or

less likely to adopt based on his network position. It does not show how network structure influence

diffusion either. So researchers turned to network models to more accurately reflect these influences.

The diffusion network model explains that the initial adoption is based on actor’s innovativeness and

exposure to sources of influence, and that this influence originates from alters who have already adopted

and are able to persuade nonusers to adopt. Before moving on, we need to take a look at event history

analysis, which offers some quite useful tools for network analysis. Sometimes the factors that affect

adoption also affect the formation of network. Thus it is necessary to collect data at different time

periods (panel data), and bring in event history analysis. The purpose of event history analysis is to

explain why certain individuals are at a higher risk of experiencing the event of interest than others.

The most commonly used analysis methods include failure-time models, survival models, and hazard

models etc. (An event is a transition from one status to another, e.g. from non-adoption to adoption.)

Network influences are captured by contagion model. Social contagion is the interpersonal connection

over which innovation is transmitted (Burt, 1987). The probability of each actor’s adoption increases

when the number or proportion of the adopters in his network increases. The network exposure is

defined as below, where Ei is the proportion of actor i’s neighbors who have adopted; y is the variable

of adoption; and w is social network structure matrix.

Ei =

N∑
j=1

wijyj

N∑
i=1

wi

2.2 Cohesion Model

In the diffusion network model, network influence drives diffusion. Network influence can be measured

by exposure, which can be modeled as three processes, direct ties, structural equivalence (role equiv-

alence), and centrality (Valente, 2005). Direct ties and structural equivalence both belong to physical

proximity. Direct ties is also called the cohesion model and structural equivalence is also called the

competition model or role equivalence model.

The cohesion and role equivalence models are two competing models in diffusion theory. In the cohe-

sion model, a focal person’s adoption is influenced by his neighbor who he directly connects to. Those

connections are communications between actors. A focal person could be informed by, persuaded by,

or receive suggestion from the people in his network. The most famous piece of work about cohesion

model might be that of Coleman et al. (1966). In their seminal work, they found that medical doctors
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prescribe a new drug because of directed ties with other doctors. The greater a doctor’s connection to

his colleagues, the earlier he prescribes that drug for the first time. Coleman et al. gave a very rea-

sonable explanation: when there is the need to make a decision in an ambiguous situation, the doctor

would ask for suggestions and advice from those who they usually discuss questions with or get advice

from. “The more frequent and empathic the communication is between actor and alter,” the more likely

alter’s adoption will affect actor’s. Such adoption could be a result of discussions about benefits and

costs between actor and alter (Burt, 1987).

Rogers and Kincaid (1981) also investigated cohesion’s effect on innovation diffusion. Different from

Coleman et al., Rogers and Kincaid used personal network density as the measure of cohesion. Their

result is similar to that of Coleman et al. though, they found that personal network density is positively

related to the adoption.

The conclusions from the literature discussed above suggest that people notice and understand new

product through discussion and observation with those who are in their social network (Harkola and

Greve, 1995). Thus a focal person’s direct ties to adopters influences his decision about adoption. So

in the hypothesis below we want to test whether the average number of CRBT subscriptions by people

whom a focal person calls influences the number of subscription by that person.

Hypothesis 1: Cohesion and CRBT Diffusion

The number of CRBT subscription a focal person purchases is positively related to the average

number of CRBT subscription the focal person’s neighbors purchase

2.3 Role Equivalence Model

Role equivalence is also known as structural equivalence model. It is a positional model (Burkhardt,

1994). An actor is structurally equivalent to an alter if they connect to the same others. Structural

equivalence model describes the competition between actor and alter that have same position in the

social network. “Structural equivalence model were developed ... explicitly as a vehicle for describing

the structure of role relations defining statuses across multiple networks.” (Burt, 1987) For example, a

medical doctor wants to maintain an image of innovativeness. After another doctor who he/she shares

common friends or advisee with adopts a new technology, the doctor believes the adoption of a new

technology will enhance his/her innovative reputation and effective power in the social network, so he

wants to adopt before others who are in the same position as him.

In our research, we do not emphasize the competition relationship between actor and alter that are

structurally equivalent. Instead, we want to emphasize that they have same or similar pattern of rela-

tions with other nodes in the network. In the role equivalence model, “the trigger to actor’s adoption is

adoption by the people with whom he jointly occupies a position in the social structure.” (Burt, 1987)

Similarity in decisions may happen when actor and alters connect to the same people. In addition to

occurring when people adopt the behaviors, attitudes, and beliefs of those with whom they interact,

similarity may occur when people interact with the same others (Burt, 1982, 1987; Coleman et al., 1966;

Krackhardt, 1989). The degree to which a focal individual and another person interact with the same
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others reflects the extent to which the focal and the other are structurally equivalent (Burt, 1982). In

the relational model, individuals have to interact directly in order to be similar to one another; but

according to the structural equivalence model, they do not. Rather, structural equivalence is a measure

of the extent to which individuals communicate with the same other people, not necessarily with one

another. Thus, two individuals may be structurally equivalent even if they never communicate with

one another. Actor would infer judgement of alters that have the same position in the influential flow

of the network, and in order not to lose its influential power, actor would make same judgement and

eventually adopt as well.

Many researchers have reanalyzed Coleman et al’s seminal work. Burt (1987) reanalyzed their Medical

Innovation data and drew the conclusion that contagion was not the only or the dominant factor driving

diffusion. Personal preferences about adoption was also a significant factor. More importantly, Burt ob-

served that structural equivalence alters of adopters are more likely to adopt, concluding that the effect

of contagion was through structural equivalence instead of cohesion. Strang and Tuma (1993) found

strong influence from doctors that are role equivalent and little influence from cohesion. Burkhardt

(1994) also compared two effects, cohesion and role equivalence, with regard to users’ attitude, self-

efficacy belief and frequency of use of computers. He found “when people evaluate their own personal

skills or self images, they rely on those close to them; when they determine job-related attitudes, they

are more likely to rely on role equivalents. ” Van den Bulte and Lilien (2001) reanalyzed Burt’s anal-

ysis. They also compared effects from cohesion and structural equivalence. Different from Burt, who

used Euclidean distance to measure structural equivalence, Van den Bulte and Lilien used proportion of

exact alters’ matches as their measure. Their results show, without considering marketing effort, both

network effects are significant, with structural equivalence being more significant.

We conclude from the literature that people in the same position in a social network will “use each

other as a frame of reference for subjective judgments and so make similar judgments even if they have

no direct communication with each other” (Harkola and Greve, 1995). Our hypothesis about the role

equivalence effect on the diffusion is described as below:

Hypothesis 2: Role Equivalence and CRBTs Diffusion

The number of CRBT purchased by a focal person is positively related to the extent to which

the focal person’s role equivalent alters have purchased many CRBT

In summary, we have seen that determining figuring out whether the cohesion or role equivalence model

is the real driving factor of diffusion has been a research subject that many scholars have devoted in

it for a long time. Different scholars have found either effect significant in their research. This subject

continues to be a phenomenon that keep attracting scholars’ attention and effort. In our research,

we hope to see which network effect is responsible for deciding the diffusion of CRBT among cellular

phone users. So far all the empirical researches only accommodate one network effect in one model, and

compare the coefficients from two models using Q-test (Leenders, 2002). Although Doreian (1989) has

proposed two regimes of network effect autocorrelation model, a method appropriate for this context.

Such method has not been applied to this research question yet.
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3 METHOD

3.1 Data

Caller ring back tones (CRBT) have become more and more popular among cellular phone users glob-

ally. CRBT gives a called party the ability to decide what a calling party will hear as he/she waits for

the called party to answer. For example, a CRBT subscriber selects a popular song as his ring-back

tone. When someone calls, the caller will not hear the standard plain ring-back tone but instead will

hear the song until the called party (the subscriber) answers the phone or the mailbox takes over.

CRBT replaces standard ring-back tones with any tune the subscriber chooses, such as a song or a joke.

With the ability to set up personalized ring-back tones, subscribers can instantly express their own

individuality. They also make a fashion statement by allowing other callers to hear their own personal-

ized CRBT. Their self-satisfaction can also be fulfilled if purchasers believe others will enjoy their CRBT.

Our data were obtained from a large Indian telecommunications company (source and raw data confi-

dential). We have cellular phone call records and CRBT purchase records over a three-month period,

and phone account holders’ demographic information such as age and gender. The entire data set con-

tains approximately 26 million unique users. Since we have both the hash values of phone number for

the calling party and the called party, the network we have is a directed one, where calling party is

the initial node and called party is the terminal node, and the phone call is the edge between the two

parties. There were about 1 billion phone calls initially in our data set. It includes all the phone calls

received by the company’s customers in three months. Those phone calls were initiated by customers

both inside and outside of the company. Our analysis is only constrained to phone calls that occur be-

tween customers using the same provider. As a result, we have some of their demographic information

such as age and gender.

Identifying reciprocated calls is important in our data set. Since the phone call social network is di-

rected, asymmetry can exist between callers. Any asymmetric connection between two callers may

indicate a weak connection, and may be less likely to indicate a relationship that provides social influ-

ence of either party on the other. An asymmetric connection indicates an unstable relationship while

symmetric connections imply equal and stable connections (Hanneman and Riddle, 2005). We define

reciprocity for dyads (A, B) as the condition in which A calls B and B calls A in same calendar month.

We interpret reciprocity as an increase probability that the two parties are acquaintances. Thus we

further constrain our analysis to include only the data that involve reciprocal dyads. Constrained by

these requirements, the size of our phone call record becomes to about 197 million, calls from 1.4 million

customers. Although the network yielded by these constraints is much smaller than the original one,

the coefficient of structure matrix of the network still can not be estimated by maximum-likelihood,

given the current computing power available. Therefore a subpopulation extraction looks necessary.

A detailed description of the preprocessed data is listed in Table 1. The dependent variable was mea-

sured as an integer variable, indicating number of CRBT a caller downloaded given a three-month

period. There were 1.3 million CRBT purchases during this period. We only lost 494 observations if we

limit our data to those with demographic data. There are about 7,000 distinct ring tones downloaded.
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Table 1: Data Description

Variable Description

Y Dependent variable, number of CRBT purchased by caller

Gender Gender of cellular phone account holder

Age Reported age of cellular phone account holder

Degree Outdegree of phone account,

Wc cohesion effect matrix, normalized

Wre role equivalence effect matrix

All these CRBT purchases in three months belong to about 580,000 distinct customers.

The independent variables included in our models are gender, which is the gender of the cellular phone

account holder; age, which is the age of the account holder. Since we do not know whether the account

holder is the real user, the age and gender information might not be the real information about the

caller. We also include the outdegree of the caller, which is the number of unique users an account

calling to, to observe the exogenous effect of number of connections. Our independent variables also

includes network measures. Cohesion is defined as callers who make phone calls to each other. Cohesion

assumes callers who make phone calls to each other will hear the called party’s CRBT thus more likely

to buy that ring-back tone or get interested in CRBT and eventually adopt the technology. Since the

number of people a caller calls are drastically different, we normalize the cohesion matrix by dividing

each row by the total number of adopters, to make the matrix element to be the percentage of adoption.

Structural equivalence is defined as the Euclidean distance between two callers. It measures how many

common friends two callers share. The more common friends two callers share, the smaller the Euclidean

distance between them. However, in order to make the parameter of role equivalence have a positive

relationship with high role equivalence, we use the inverse of role equivalence plus one.

3.2 Extracting Subpopulations

Before we can address the question of which network effect, cohesion or role equivalence, has the greater

influence over the diffusion of CRBT, we face another challenging problem: making our analysis tractable

with respect to our data. Our data size is huge. We have three months of phone call records and three

months of CRBT purchase records. The number of phone call is about 200 million, and distinct phone

call is more than 11 million, from about 1.4 million unique callers. That is to say, the number of nodes

in our network is 1.4 million and the number of edges is close to 11 million. It is not feasible to inverse

an adjacency network of this size. So we have to extract a subpopulation from the full data. Two

obvious methods come to our minds: snowball sampling and spectral modularity clustering.

3.2.1 Snowball Sampling

Since our data size is large, we have to construct a subpopulation. However, random sampling with

respect to these phone calls will not preserve the social network’s structure at the local level. A more
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legitimate and efficient method to build a subpopulation in this situation is snowball sampling. This

method was introduced by Coleman (1958) and Goodman (1961). Individuals in the sample are col-

lected through a chain-referral process. The sampling procedure starts with predefining the number of

steps of sampling s, then randomly drawing some nodes from the population. For each node i, we get

k nodes that it connects to, so k is number of nodes that each node in one step will link to. Sampling

stops after s steps. Since s and k are all defined before the sampling, it is also called s stage k name

snowball sampling. It is possible that nodes linked from one node will be linked from other nodes again.

This method has been extended by Salganik and Heckathorn (2004). In their method, an individual

sample is formed by randomly selecting a user from the network and returning the connected compo-

nent containing this user, repeating this on the remaining users until some maximum number of users

is attained. This method is desirable for social network data sampling since it allows researchers to

have larger sample size than other methods given available resources (Semaan et al., 2002). Snowball

sampling is also referred as chain-referral sampling, link-tracing sampling, and random-walk sampling.

Samples can be used to make estimates about the network connecting the population. Using informa-

tion about networks constructed from snowball samples, we can “derive the population proportion in

different groups” (Salganik and Heckathorn, 2004).

We acknowledge that snowball sampling has shortcomings. For example any bias in the seed selection

would lead to biased sample. The estimates drawn from snowball samples are biased and cannot be use

to infer from the whole population. However, it may be still suitable in our subpopulation extraction

task because we are more interested in the impact of network structure on actor’s adoption. It was

pointed out by Snijders (1992) that snowball sampling is more appropriate for inference about the

structure of the network. Since our research concentrates on the network effect of each node, snowball

sampling’s breath-first search principle can be part of our subpopulation extraction algorithm.

3.2.2 Spectral Clustering (Modularity)

We also can find subpopulation extraction methods in the cluster detection literature. This is a field

attracting researchers in physics, mathematics, and computer science. It has been found that many

networks are inhomogeneous, consisting of distinct groups, “with dense connections within groups and

only sparser connections between them” (Newman, 2004). Such groups are called “communities”.

Researches show that communities at the local level can be quite different from each other, and even

different from the global network (Newman, 2006). So analyses on local communities can give us more

properties of, and information about, the network. In our paper we would like to concentrate on

modularity clustering, one of the most commonly used community detection methods, and one that

has been proven to be effective. The detail of the method is shown below: modularity, Q, is difference

between the actual number of edges in communities and the expected number of edges. If it is large,

meaning the edges are more dense then expected, the communities is cohesive. Note that i and j must

belong to the same group. If the difference between actual and expected edge between two nodes that

belong to same group is large then Q is large. The definition of Q is described as below. Let m be the

total edges of the graph, Aij be the actual number of edges between nodes i and j, Pij be the expected

number of edges between i and j; gi be the group’s number that node i belongs to; gj be j’s group

number; and �(gi, gj) indicates whether i and j belong to the same group, where 1 stands for the same
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group and 0 otherwise.

Q =
1

2m

n∑
i

n∑
j=1

[Aij − Pij ]�(gi, gj)

The time complexity of modularity is not fast if we have huge network. For example, the complexity of

spectral clustering method to bisect a graph is O(n3), where n is the number of nodes in the network. A

faster method using the min-cut, Kernighan-Lin algorithm, can reach complexity of Θ(n2log(n)). The

fastest algorithm still have O(nm) time complexity, where m is the number of edges in the network.

Modularity methods need to know the number of communities in advance, and most of the methods can

only divide the network into two communities. A notable work in community detection that achieves

better complexity is by Clauset (2005). His method improves the local modularity maximization by

using the greedy algorithm. This method’s complexity is O(n2d), where n is the number of nodes

traversed and d is the mean degree of node. However, if the number of nodes is at the level of, or

beyond one million, such a method is still not tractable. Summarizing the current status of community

detection method complexity, Newman writes:

“I don’t think the spectral algorithm will work for such a large network [N=1 million]. Re-

member that the algorithm is O(mn), where m is edges and n is vertices, so you’re talking

about 1015 operations to perform the eigenvector calculation, which is not feasible with cur-

rent computers.

Basically, if you’re working with networks that large, you are limited to O(n) or O(nlogn)

algorithms, of which there are only a few, none of which work very well. There was a new

multi-scale method that came out in the last year that might be worth looking at, and

there’s an improved version of the greedy algorithm of Clauset et al. that can do a good job

in some circumstances. But overall the situation is not very promising for extremely large

networks at present.”

Such concerns highlights the challenge of this topic; there is no method that can really solve this problem

with a large-scale network. Some well-accepted methods have to make a trade-off between speed and

stability. As Newman argues about the performance of his spectral clustering method.

“I should point out that this code should not be used for gauging the speed of the algorithm.

It uses dense-matrix methods to do the eigenvector calculation, which are very slow. A much

faster implementation is possible using sparse matrix methods. I have such an implemen-

tation, but it’s not very stable. For merely testing the efficacy of the algorithm on small

networks this implementation is better.”

Given these problems, neither snowball sampling nor modularity can extract subpopulations with the

ideal features. So we developed our own method – Two-Stage Clustering and Pruning (TSCP) Algo-

rithm.
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3.2.3 Two-Stage Clustering and Pruning (TSCP) Algorithm

In this section, we present our subpopulation extraction method that can identify a dense and isolated

local community without processing the whole network. We attempt to find subpopulations that have

the following characteristics: first, they have high density within the community. Internal density shows

strong connections among actors in the community, so contagion is likely to happen. Second, these net-

work are reasonably dense but not fully connected. We need to find dense subpopulations to feature

network influence, but not so dense that we lose variation of degrees of each actor. Third, relatively few

ties from within the community to the outside, so the subpopulation is relatively isolated and integral

itself.

Our method is designed to find subpopulations having the preferred characteristics as above and consists

of two steps, clustering and pruning.

Clustering Our method starts from a random node in the global network, and gets a snowball sample

of a predefined size n. Our sampling will also include the leaf nodes (pedants) at the same level as the

n-th node, if they were not included in the n nodes yet. The size of such set is N1, and N1 ≥ n. The

reason for getting N1 nodes instead of just getting n is that we can get a more completed subset, and

record more completed connection among nodes to be included in our subpopulation. After getting a

snowball sample, define the following variables: N2 is number of nodes connecting to those added in the

the last step of snowball sampling, defined as boundary nodes, I is the total number of connections in

the sample, E is the number of connections (ties) between nodes in last step of snowball and N2. For

illustrations of each variable, see Figure 1.

We then construct the adjacency matrix of nodes we get from snowball sampling. In adjacency matrix

A, element Aij shows whether node i connects to node j or not, which means whether i has made phone

call to j or not in the context of this research.

Aij =

{
1 if node i connects to node j

0 otherwise

where i ∈ [1, N1], j ∈ [1, N1 +N2]

This adjacency matrix records information of reciprocated phone calls. A value of 1 in columns 1 to

N1 indicating phone calls between both parties in the snowball sample, and 0 meaning no phone calls

existing between those two parties; a 1 in columns N1 + 1 to N1 + N2 indicating phone calls between

caller inside of the snowball sample and outside of it, and 0 meaning no phone calls.

We denote the matrix with N1 nodes in snowball sample as I, since it has all internal connections of

a subpopulation, and denote the matrix with N2 nodes E, since the latter has external connections to

the network outside of the subpopulation. (See Figure 2) The elements of E have the form Ei,j = 1 if

i connects to j, and 0 otherwise. The product C = [ I E ] ⋅ [ I E ]T gives us the total common con-

nection between nodes in I (Figure 3). The product matrix C is at the size of N1 ×N1. The diagonal
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Figure 1: Adjacency matrix of a cluster I and boundary nodes E

element of C, Cii, is the degree of each node (caller) i, while the off The diagonal of Hadamard product

(element-wise product) N = I ∘ C gives us the number of common called parties between nodes in I,

and the two nodes must also be connected. We then find a subset of nodes that have the highest degree

in I ∘ C at the size of Np, We call this step pruning and call the set of nodes NPT .

Figure 2: Nodes and edges included in matrices I and E

Figure 4(a) below is an example of a snowball sample at the size of 200, before the pruning step.

Using this method we can get a smaller more cohesive cluster, denote its size as N3. Next we use the

nodes in NPT to start our next round snowball sampling. Likewise, we set a predefined number n and

include all the pedants at the same level of n-th node again. We get the matrices I and E, and start the

second round of pruning and get C for this round. Then we start another round of clustering. After

several rounds of clustering, we will fall into a relatively more densely connected community compared

to the region in the network with which started sampling. In the last round of clustering, after getting

NPT , we snowball sample a larger set than n1, which is intended to include more nodes in the global

network, we then move on to pruning stage.
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Figure 3: Product of [ I E ] ⋅ [ I E ]T

Pruning From the last round of clustering, we get a final pair of matrices I and E. Then we can use
E

I
(Krackhardt and Stern, 1988) to evaluate the cohesiveness of the final cluster. We prune the nodes

that have the largest ej − ij , where ej is the number of nodes in E that j connects to, and ij is the

number of nodes in I that j connects to. If
E

I
< t (t = 0.1 for now) then we stop snowballing. A

subpopulation obtained through three rounds of snowballing and pruning is shown in Figure 4(b). We

can tell that the subpopulation is much more dense than at the very beginning. The pseudocode of our

algorithm is provided in the Appendix.

(a) A subpopulation at size of 200, before pruning (b) A cluster at the size of 200, after pruning

Figure 4: Initial subpopulation and final subpopulation after pruning

The complexity of our TSCP algorithm is O(N1N2), where N1 is the size of initial snowball sample, and

N2 is the size of the boundary nodes. If we want to identify a subpopulation at the size of 1000, we set

N1 to be 200 based on our empirical experience, if the mean degree of each node is 10, N2 is about 1000,

so the complexity of TSCP algorithm is O(105). On the other hand, Clauset’s greedy maximization of

local modularity algorithm, which is considered as one of the fastest community detection algorithms,

has a complexity of O(107). Our algorithm is asymptotically faster than most of the current methods.

Empirically we have compared the running speed of our method and Newman’s spectral clustering. It
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took spectral clustering two hours to detect a subpopulation of size 1000, while only took TSCP 15

minutes to detect a subpopulation at the same size. A rigorous benchmark comparison will be conducted

in our future works.

3.3 Two Regimes of Network Effects Autocorrelation Model

We use a network autocorrelation model in order to investigate network effects on CRBT diffusion.

The network autocorrelation model takes both interdependence of actors and their local effect such as

demographics into consideration. Such interdependence are described by a weight matrix. Examples

of such weight matrices are the adjacency matrix (Coleman et al., 1966) and the Euclidean distance

between two actors (Burt, 1987). Most of the models can only accommodate one network effect, for

example Burt’s model, and Leenders’ model. The goal of our research requires investigation of which

effect, cohesion or role equivalence, plays a more significant role in CRBT diffusion, thus we adopted

Doreian (1989) two regimes of network effects autocorrelation model, which incorporates two network

weight matrices. Doreian’s model can capture both actor’s intrinsic opinion and influence from alters

in his social network. The model is described as below:

y = X� + �1Wcy + �2Wrey + " (1)

where y is the dependent variable, an integer variable representing the number of CRBT a caller pur-

chased; X is a vector of explanatory variables including age, gender and outdegree (number of different

people that a customer places phone calls to); W represents the social structure underlying each autore-

gressive regime. Wc is the matrix of weight for cohesion; Wre is the matrix of weight for role equivalence;

�1 and �2 are the parameters of two network effect respectively; " is normally distributed disturbance

term. With this model, we can investigate how networks affect people’s decisions about the number of

CRBTs purchased.

We use Euclidean distance to measure structural equivalence. In a directional network with non-

weighted edges the Euclidean distance between two actors i and j is the sum of squared difference

between the nodes that i and j connect to respectively, and from all nodes to i and j respectively. The

distance is shown in the equation (2).

dij =

√√√⎷ N∑
k=1,k ∕=i,j

(Aik −Ajk)2 (2)

where

Aik =

{
1 if node i and k are neighbors

0 otherwise

The larger d between node i and j, the less structurally equivalent they are. We get the inverse of dij
plus one in order to construct a measure with a positive relationship with role equivalence:

sij =
1

dij + 1
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3.4 Meta-analysis

After collecting of subpopulations and estimating the network effects, it is critical to know whether these

effects are consistent across different studies. Thus we turn to meta-analysis for assessing the consistency

of these effects. Meta-analysis not only directly takes effect sizes, instead of p-value, into consideration,

it also accommodates observed dispersion due to random sampling variation. Meta-analyses are based

on two statistical models, the fixed-effect model and random-effects model. The fixed-effect model as-

sumes that effect size is the same across all studies. However, given there are many factors impacting

the effects, such as the size of subpopulations, the connection strength within a community versus the

strength between a community and outside of it, it is not reasonable to assume all the network effect

sizes are the same in all the subpopulations extracted, thus the assumption of a same effect size does

not likely to hold in our study. On the other hand, random-effects models address variations across

studies. Random-effects models assume that true effects are normally distributed (Borenstein et al.,

2009). So we would like to use random-effects model to conduct meta-analysis.

Meta-analysis uses observed effects from different studies to estimate the population effect. In our

context, we could use network effects from different subpopulations to estimate the effect for the whole

network. The random-effects model calculates a weighted mean as a precise estimate of the overall

mean. The method is described as follow:

First, define

Q =

k∑
i=1

wi�
2
i −

(
k∑

i=1

wi�i

)2

k∑
i=1

wi

(3)

wi =
1

�2i

df = k − 1

k = number of studies (subpopulations) (4)

and

C =
k∑

i=1

wi −

k∑
i=1

w2
i

k∑
i=1

wi

(5)

we can get the sample estimate of the between-studies variance:

�̂2 =
Q− df
C
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After between-variance is obtained, we can get the total variance defined as below:

�∗2i = �2i + �̂2

We can then get the weight of each study:

w∗i =
1

�∗2i

Finally we can compute the mean effect:

�∗ =

k∑
i=1

w∗i �i

k∑
i=1

w∗i

�∗ is the measure we use to estimate the global network effect in our meta-analysis.

4 RESULTS

4.1 Extracted subpopulation and Descriptive Analysis

69% customers have single accounts, 29% have two accounts on same number, 2% have three accounts

or more. 7% of the account holders are females. 91% are males, and 2% missing. The average age of

customer is 39 years old.

There were 389,964 CRBT purchases in the first month; 518,192 purchases in the second month; and

424,616 purchases in the third month. From the distribution we found the number of CRBT purchases

in the second month is higher than the other two months. (See Table 2.) There were 7,176 different

CRBTs purchased during this period. There were 4,586 CRBTs purchased in the first month; 5,134

CRBTs purchased in the second month; and 5,122 CRBTS purchased in the third month. There were

576,358 unique customer purchased CRBT in the three months period. 35% of them (259,170) bought

only one CRBT, the rest of them bought more than one. 294,210 customers purchased CRBT in the

first month; 340,311 customers purchased CRBT in the second month; and 313,227 customers pur-

chased CRBT in the third month. The top three ring tones downloaded are MERE SAPNON KI RANI

(50,503 times), CHUKAR MERE MAN KO (43,055 times), and O SAATHI RE (42,548 times). We

also observe stable adoption behavior. Among the 447,193 callers who did not buy any CRBT in the

first month, there are 169,069, and 164,006 of them bought CRBT in the second month and the third

month, respectively. We can conclude that once callers adopt CRBT, they will continue buying CRBT.

We extracted 20 subpopulations in total, which can be categorized into three groups according to

their sizes. We have seven subpopulations of size about 200, from 150 to 263; eight subpopulations

of size about 500, from 431 to 677. five subpopulations of size about 1000, from 774 to 977. Those

subpopulations can also categorized as two groups based on E/I index, where E is the number of
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Table 2: Descriptive statistics of CRBT

Num. of CRBT

Month Downloads Pct. Distinct Tones Pct.

First month 389,964 29.3% 4,586 30.9%

Second month 518,192 38.9% 5,134 34.6%

Third month 424,616 31.9% 5,122 34.5%

Total 1,332,772 100% 14,842 100%

external caller connection, and I is the number of internal caller connection in the subpopulation. One

group has the E/I index at 0.4, the other has the index at 0.1. The former group has stronger connection

to other communities, while the latter group are relatively isolated communities. We want to confirm

whether there is difference with respective to network effect between these two groups.

Table 3: Extracted subpopulations

Subpopulation N N[y>0] I E E/I I/N

1 150 62 730 291 0.4 4.9

2 159 82 1528 610 0.4 9.6

3 171 59 1712 161 0.1 10.0

4 202 116 1452 580 0.4 7.2

5 213 82 652 227 0.4 3.1

6 238 93 780 78 0.1 3.3

7 263 142 902 87 0.1 3.4

8 431 206 2910 291 0.1 6.8

9 447 136 6508 646 0.1 14.6

10 465 312 5779 2287 0.4 12.4

11 485 249 3504 349 0.1 7.2

12 553 285 3962 394 0.1 7.2

13 563 312 2402 960 0.4 4.3

14 597 470 13281 1319 0.1 22.2

15 677 431 6134 612 0.1 9.1

16 774 509 11006 1099 0.1 14.2

17 789 374 3124 312 0.1 4.0

18 894 521 5413 534 0.1 6.1

19 962 489 5920 592 0.1 6.2

20 977 497 5960 594 0.1 6.1

Mean 501 271 4183 601 8.1

S.D 277 171 3422 513 4.8
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The descriptive statistics of independent variables for each subpopulation is listed in Table 4.

Table 4: Descriptive statistics of independent variables

Subpopulations

Variables (1) (2) (3) (4) (5) (6) (7)

Gender 0.0067 0.16 0.19 0.12 0.033 0.11 0.065

0=male (0.082) (0.51) (0.50) (0.45) (0.18) (0.40) (0.29)

Age 36 37 45 42 38 42 42

(11) (12) (11) (12) (11) (11) (12)

Degree 5.7 15.1 13.6 10.0 3.6 4.0 4.5

(7.6) (14.5) (14.9) (10.6) (5.1) (5.2) (5.6)

N 150 159 171 202 213 238 263

E/I 0.4 0.4 0.1 0.4 0.4 0.1 0.1

(8) (9) (10) (11) (12) (13) (14) (15)

Gender 0.23 0.37 0.57 0.12 0.27 0.12 0.050 0.13

(0.60) (0.78) (0.89) (0.41) (0.62) (0.42) (0.25) (0.44)

Age 46 55 48 45 40 42 36 39

(13) (4) (12) (13) (13) (13) (12) (13)

Degree 9.9 21.7 18.1 9.3 9.8 5.3 3.4 12.9

(12.9) (11.9) (18.6) (13.6) (15.5) (6.7) (1.8) (10.9)

N 431 447 465 485 553 563 597 677

E/I 0.1 0.1 0.4 0.1 0.1 0.4 0.1 0.1

(16) (17) (18) (19) (20)

Gender 0.27 0.15 0.038 0.062 0.062

(0.63) (0.44) (0.20) (0.29) (0.29)

Age 40 41 39 41 41

(14) (13) (12) (12) (12)

Degree 21.0 4.8 8.5 8.0 8.0

(14.7) (6.8) (12.9) (12.6) (12.6)

N 774 789 894 962 977

E/I 0.1 0.1 0.1 0.1 0.1

4.2 Analysis of Network Autocorrelation Model

We first show the results of network autocorrelation model for small subpopulations, where the depen-

dent variable is the number of CRBT purchases. Table 5 present the results for subpopulations at the

size of 200 level, ranging from 150 to 263. We find that a community at the size of about 200, role

equivalence effect is consistently insignificant, while cohesion effect shows inconsistent pattern. Four

out of seven subpopulations show significant cohesion effect at level of p < 0.05. However, if we separate

these seven subpopulations by E/I ratio, we found two insignificant effects belong to high E/I ratio
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subpopulations, and only one insignificant cohesion effect belong to low E/I ratio group. Thus if a

small community (subpopulation) at the size of about 200 and high E/I = 0.4, the network effects

are relatively not significant. If a subpopulation has strong connection with the global network, the

network effects of are not significant. When we have isolated subpopulation, with E/I = 0.1, most of

the cohesion effects are positive and statistically significant. Such result confirms our hypothesis. It

show that callers receive strong influence through direct connections to alters in the same community

who have already adopted. An example illustrates: if a caller calls more CRBT subscribers, he gets

exposure to more ring-back tones, and is more likely to hear ring tones interest him, thus he is more

likely to try different ring tones. In subpopulation 1, 4 and 7, the effects of outdegree are positive and

significant at 0.0001 level, which suggest if a caller calls to more people, the probability of purchasing

a CRBT increases.

One could argue that the size of subpopulation is likely to have an impact on network effects. So we

extract subpopulation at different sizes from the network. If network effects are universal in the global

network, when we extract random local communities from the global network, these network effect

should be consistent. We then increase the size of subpopulation we want to extract to 500. From the

results in Table 6 we find cohesion is consistently statistical significant in all subpopulation at this size

level. This again confirms our hypothesis about cohesion, when the network is at the size of about 500,

callers’ CRBT adoption is influenced by the people who he calls directly. We do not find support for our

hypothesis about role equivalence though since the effect from all eight subpopulations are insignificant.

Seven out of eight of the subpopulations at 500 level show that cohesion is more significant than role

equivalence. For the role equivalence model, caller evaluate alters who are in the same position of a

phone call network as him. Same position in a social network means people are in the same kinds of

relations, with the same kinds of people. In this case, people who are role equivalent are most immediate

competitors in the network. Degree is positive and statistically significant in nearly all subpopulations

at the size of 500.

We observed inconsistent effect of cohesion and role equivalence, respectively, across different random

subpopulation, at smaller scales. However above a threshold subpopulation size, we did observe con-

sistent effects. Specifically, when the subpopulation is above a threshold in our case 500, we observe a

more consistent pattern – cohesion is more significant than role equivalence. (See Table 7). The results

show that cohesion effects all are significant at 0.0001 level except one, ranging from 0.072 to 0.56. The

role equivalence effect, ranging from 0.00037 to 0.0038, is not significant. The results show that the

purchase of ring tone is impacted by solely cohesion. The cohesion effect implies that, of all the alters

a caller calls, if the average number of CRBT adopted by alters gets higher, the probability of a caller

purchasing CRBT increases as well. The role equivalence effect implies that, if a caller shares more

common called parties with an alter who adopted CRBT, the more CRBT those alters purchase, then

the more the caller will also purchase. Subpopulation 11 and 15 show significant role equivalence effect

at 0.05 level. One explanation is that in a cellular phone call social network, parties who call each other

are likely to be friends or belong to same group under some relationship. In this case the enthusiasm

of showing others about his adoption of frontier fashion and individuality is higher. The satisfaction of

letting friends appreciate his fashion taste or simply an interesting tone is also higher. Motivated by
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this thought, a perceived competition is created among these subscribers. Actor will know about an

alter he does not necessary call to has adopted ring-back tone through common friends they both call.

The more ring tones those alters bought, the more CRBT the actor will adopt. Degree is significant at

0.0001 level in all subpopulations at this size, indicating a significant relationship between number of

CRBT adoption and number of people call to. Gender and age consistently do not have any relationship

with number of CRBT adopted.

Table 5: Network Autocorrelation, , subpopulation 1 to 7

Subpopulations

Variables (1) (2) (3) (4) (5) (6) (7)

Gender −0.20 −0.47 0.38 0.79 −0.78 0.27 2.0∗

(3.3) (0.43) (0.51) (0.63) (0.77) (0.51) (0.75)

Age −0.026 0.0094 0.023 0.021 0.016 0.024 0.028†

(0.017) (0.014) (0.018) (0.021) (0.010) (0.015) (0.017)

Degree 0.12∗∗∗∗ 0.0071 −0.0014 0.080∗∗∗∗ 0.0091 0.0043 0.069∗∗∗

(0.016) (0.0076) (0.0088) (0.013) (0.014) (0.020) (0.020)

Cohesion 0.19∗ 0.22 0.28∗∗ 0.18∗ 0.015 0.056 0.18∗∗

(0.061) (0.16) (0.087) (0.087) (0.077) (0.070) (0.060)

Role 0.011 0.034† 0.0059 −0.0059 0.0062 0.0079 −0.0015

equivalence (0.020) (0.019) (0.022) (0.015) (0.012) (0.011) (0.0080)

N 150 159 171 202 213 238 263

I 730 1528 1712 1452 652 780 902

E 291 610 161 580 227 78 87

E/I 0.4 0.4 0.1 0.4 0.4 0.1 0.1

†: p < 0.10, *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001
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Table 6: Network Autocorrelation, subpopulation 8 to 15

Subpopulations

Variables (8) (9) (10) (11) (12) (13) (14) (15)

Gender −0.034 −0.39 −0.11 0.094 1.4∗∗∗∗ 0.69† 0.90 0.95∗

(0.33) (0.26) (0.31) (0.46) (0.36) (0.39) (0.87) (0.47)

Age 0.053∗∗∗ 0.065 0.086∗∗∗∗ 0.064∗∗∗∗ 0.037∗∗ 0.052∗∗∗∗ −0.0080 0.041∗∗

(0.014) (0.040) (0.021) (0.014) (0.013) (0.012) (0.017) (0.016)

Degree 0.030∗∗ 0.0064 0.040∗∗∗∗ 0.043∗∗∗∗ 0.024∗∗∗ 0.058∗∗∗∗ 0.029∗∗∗∗ 0.026∗∗

(0.028) (0.031) (0.027) (0.022) (0.019) (0.033) (0.016) (0.025)

Cohesion 0.13∗ 0.68∗∗∗∗ 0.15∗ 0.12∗∗ 0.13∗∗∗ 0.20∗∗∗∗ 0.68∗∗∗∗ 0.30∗∗∗∗

(0.052) (0.12) (0.062) (0.044) (0.040) (0.039) (0.10) (0.064)

Role −0.010† −0.061 −0.0066 −0.0098∗ −0.0017 −0.0049† 0.00064 0.0041∗

equivalence (0.0058) (0.038) (0.0047) (0.0041) (0.0032) (0.0025) (0.0052) (0.0026)

N 431 447 465 485 553 563 597 677

I 2910 6508 5779 3504 3962 2402 13281 6134

E 291 646 2287 349 364 960 1319 612

E/I 0.1 0.1 0.4 0.1 0.1 0.4 0.1 0.1

†: p < 0.10, *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001

Table 7: Network Autocorrelation, , subpopulation 16 to 20

Subpopulations

Variables (16) (17) (18) (19) (20)

Gender 0.38 −1.1∗∗∗ 0.97† −0.13 −0.14

(0.33) (0.32) (0.58) (0.39) (0.39)

Age −0.0014 0.022∗ 0.032∗∗∗ 0.024∗∗ 0.023∗∗

(0.014) (0.0091) (0.0091) (0.0082) (0.0081)

Degree 0.029∗∗∗∗ 0.069∗∗∗∗ 0.048∗∗∗∗ 0.034∗∗∗∗ 0.034∗∗∗∗

(0.0064) (0.010) (0.0050) (0.0050) (0.0050)

Cohesion 0.56∗∗∗∗ 0.17∗∗∗∗ 0.072∗ 0.15∗∗∗∗ 0.15∗∗∗∗

(0.066) (0.030) (0.033) (0.033) (0.032)

Role 0.0038 0.00037 0.00078 0.00051 0.00072

equivalence (0.0028) (0.0016) (0.0015) (0.0015) (0.0015)

N 774 789 894 962 977

I 11006 3124 5413 5920 5960

E 1099 312 534 592 594

E/I 0.1 0.1 0.1 0.1 0.1

†: p < 0.10, *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001
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4.3 Meta-analysis

Our meta-analysis for network effect shows some interesting results (Table 8). The pooled mean cohe-

sion effect is 0.21, with a 95% confidence interval at (0.16, 0.26). This result shows the mean cohesion

result across all subpopulations is significantly different from 0, and thus confirms our hypothesis about

the network cohesion effect on purchase decision. It shows the strong tie to people who already adopted

product could increase the number of an actor’s adoption.

We then break down our subpopulations to two groups. (See Table 9 and 10). One group consists

of subpopulations with weaker internal connection within community (E/I = 0.4), the other group

consists of subpopulations with stronger internal connection within community (E/I = 0.1). Through

the comparison of the two pooled mean effect, we see quite different ranges for these two groups. The

external strongly connected group has a pooled mean at 0.17, with a 95% confidence interval at (0.12,

0.22); while the interval strongly connected group has a pooled mean at 0.23, with a confidence interval

at (0.16, 0.30). The results show the cohesion effect is stronger among people in a densely connected

community, though the effect is signivicant for both more and less densely connected communities.

The result of meta-analysis confirmed our hypothesis that if people within a community has stronger

connections, then the diffusion of CRBT will be significantly affected by direct contact, in this context,

phone calls.

The pooled effect for role equivalence is −0.000273 (Table 11), but it is not statistically significant; the

95% confidence interval is (−0.0021, 0.0015). So our hypothesis about role equivalence on diffusion is

rejected – it has no significant impact on adoption of multiple products. In order to remove the effect

that might be caused by heterogenous communities because of different E/I ratio, we separate them

into two different groups. As Table 12 shows, the role equivalence effect is statistically insignificant with

a size of −0.0036, and a 95% C.I. of (−0.0092, 0.0020fd), when E/I = 0.4. The effect is not statistically

significant either when E/I = 0.1, with a mean at 0.00037, and a 95% C.I. of (−0.0013, 0.0020). This

means if the communality is strongly connected then there exists a competition effect among actors

(Table 13).
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Table 8: Meta-analysis for cohesion effect, all subpopulation pooled

95% C.I.

Subpopulation �c Lower Upper Weight

1 0.19 0.0700 0.31 1.0

2 0.22 −0.094 0.53 0.42

3 0.28 0.11 0.45 0.82

4 0.18 0.0095 0.35 0.82

5 0.15 −0.14 0.17 0.90

6 0.056 −0.081 0.19 0.95

7 0.18 0.062 0.30 1.0

8 0.13 0.028 0.23 1.1

9 0.68 0.44 0.92 0.60

10 0.15 0.028 0.27 1.0

11 0.12 0.034 0.21 1.2

12 0.20 0.12 0.28 1.2

13 0.30 0.18 0.42 0.93

14 0.68 0.48 0.88 0.73

15 0.30 0.17 0.43 1.0

16 0.56 0.43 0.69 0.99

17 0.17 0.11 0.23 1.3

18 0.072 0.0073 0.14 1.2

19 0.15 0.085 0.21 1.2

20 0.15 0.087 0.21 1.3

Summary effect = 0.21, 95% C.I. = (0.16, 0.26)

Table 9: Meta-analysis for cohesion effect, subpopulation with E/I = 0.4 pooled

95% C.I.

Subpopulation �c Lower Upper Weight

1 0.19 0.070 0.31 1.1

2 0.22 −0.094 0.53 0.15

4 0.18 0.0095 0.35 0.52

5 0.015 −0.14 0.17 0.66

10 0.15 0.028 0.27 1.0

13 0.20 0.12 0.28 2.6

Summary effect = 0.17, 95% C.I. = (0.12, 0.22)
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Table 10: Meta-analysis for cohesion effect, subpopulation with E/I = 0.1 pooled

95% C.I.

Subpopulation �c Lower Upper Weight

3 0.28 0.11 0.45 0.82

6 0.056 −0.081 0.19 0.93

7 0.18 0.062 0.30 1.00

8 0.13 0.028 0.23 1.1

9 0.68 0.44 0.92 0.63

11 0.12 0.034 0.21 1.1

12 0.13 0.052 0.21 1.1

14 0.68 0.48 0.88 0.74

15 0.30 0.17 0.43 0.97

16 0.56 0.43 0.69 0.96

17 0.17 0.11 0.23 1.2

18 0.072 0.0073 0.14 1.2

19 0.15 0.085 0.21 1.2

20 0.15 0.087 0.21 1.2

Summary effect = 0.23, 95% C.I. = (0.16, 0.30)
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Table 11: Meta-analysis for role equivalence effect, all subpopulation pooled

95% C.I.

Subpopulation �re Lower Upper Weight

1 0.011 −0.028 0.050 0.041

2 0.034 −0.0032 0.071 0.045

3 0.0059 −0.037 0.049 0.034

4 −0.0059 −0.035 0.024 0.072

5 0.0062 −0.017 0.030 0.11

6 0.0079 −0.014 0.029 0.13

7 −0.0015 −0.017 0.014 0.24

8 −0.010 −0.021 0.0014 0.44

9 −0.061 −0.14 0.013 0.011

10 −0.0066 −0.016 0.0026 0.64

11 −0.0098 −0.018 −0.0018 0.81

12 −0.0017 −0.0080 0.0046 1.2

13 −0.0049 −0.0098 0.00 1.7

14 0.00064 −0.0096 0.011 0.54

15 0.0041 −0.0010 0.0092 1.6

16 0.0038 −0.0017 0.0093 1.4

17 0.00037 −0.0028 0.0035 2.6

18 0.00078 −0.0022 0.0037 2.8

19 0.00051 −0.0024 0.0034 2.8

20 0.00072 −0.0022 0.0037 2.8

Summary effect = −0.000273, 95% C.I. = (−0.0021, 0.0015)

Table 12: Meta-analysis for role equivalence effect, subpopulation with E/I = 0.4 pooled

95% C.I.

Subpopulation �re Lower Upper Weight

1 0.011 −0.028 0.050 0.12

2 0.034 −0.0032 0.071 0.13

4 −0.0059 −0.035 0.024 0.21

5 0.0062 −0.017 0.030 0.32

10 −0.0066 −0.016 0.0026 1.7

13 −0.0049 −0.0098 0.00 3.6

Summary effect = −0.0036, 95% C.I. = (−0.0092, 0.0020)
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Table 13: Meta-analysis for role equivalence effect, subpopulation with E/I = 0.1 pooled

95% C.I.

Subpopulation �re Lower Upper Weight

3 0.0059 −0.037 0.049 0.021

6 0.0079 −0.014 0.029 0.082

7 −0.0015 −0.017 0.014 0.15

8 −0.010 −0.021 0.0014 0.28

9 −0.061 −0.14 0.013 0.0070

11 0.0098 −0.018 −0.0018 0.54

12 0.0017 0.0080 0.0046 0.83

14 0.00064 −0.0096 0.011 0.35

15 0.0041 −0.0010 0.0092 1.2

16 0.0038 −0.0017 0.0093 1.0

17 0.00037 −0.0028 0.0035 2.3

18 0.00078 −0.0022 0.0037 2.4

19 0.00051 −0.0024 0.0034 2.4

20 0.00072 −0.0022 0.0037 2.4

Summary effect = 0.00037, 95% C.I. = (−0.0013, 0.0020)

5 CONCLUSION

The debate among researchers about two classes of network models, cohesion and role equivalence, and

the impact on diffusion in social networks still persists. Some researchers believe it is direct contact

between actor and alter that triggers the adoption of actor. Some believe it is social comparison or

competition from the actors who are in the same social positions. Both camps have found empirical

evidence of their claims (Coleman 1962, Burt 1987, Leenders 1992). However, other than Coleman’s

classical Medical Innovation data, few new data sets have been used to address this research question.

Reconciling these findings is very important because the social network is a key medium of diffusion,

and figuring out which network effect drives social influence can help us understand the mechanism of

diffusion. In our study, we attempt to readdress this important but unresolved question.

One large challenge from this research is to make our analysis tractable. This challenge comes from the

size of our data – both the number of actors and connections in millions. It is impossible to analyze

the effects of the whole network given currently available computing power. One way to solve this

problem is by analyzing subpopulations extracted from the global network. However, subpopulation

or community extraction is not a trivial problem either. It has been long known that there are many

open questions in extracting communities from networks. The most significant is performance. The

complexity of most of the community detection methods are of O(nm), where n and m are number of

actors and connections in the network, respectively. We designed an innovative algorithm to extract
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local communities (subpopulations) from large scale network. Our method does not require any pa-

rameters about the network. It has a complexity of O(n1n2), where n1 is the size of initial sample,

usually with the size of 102, n2 is the size of boundary nodes, with the size of 103. So if the size of

subpopulation we want to extract is much smaller than the whole population (for example 1000 versus 1

million), our method has a complexity of O(105), compared to spectral clustering’s O(1013), and greedy

local modularity maximization’s O(107). Given the fact that more and more social networks data are

large scale, our method provides a solution for extract significant local communities.

Using the subpopulations extracted, we analyze the effects of cohesion and role equivalence’s on number

of CRBT purchases by using Doreian’s two regimes of network effects autocorrelation model. Our study

is one of the very few to investigate multiple network effects on diffusion. Our results show that when

the size of community is small (at the levels of 200 and 500) the result is relatively not consistent,

when size is large (at the level of 1000), result show consistent pattern. For the number of products

purchased, cohesion has a more significant impact. So the strength of communication or connection still

drives repetitive purchase behavior. After normalization we see large effect size from role equivalence.

The effect is not significant though.

We also use random-effects meta-analysis to summarize the effect from cohesion and role equivalence

across subpopulations. Such analysis can tell us whether these network effects are universal character-

istics of the whole network, or just local characteristics from subpopulations. The results show that

cohesion does have a statistically significant pooled effect across our studies, regardless of whether the

subpopulation is isolated. This result leads us to believe there is a universal effect size for cohesion.

Strongly internally connected communities see a strong and statistically significant cohesion effect. Also,

role equivalence effect is only significant in some internally strongly connected isolated subpopulations.

Such result make us believe that competition only exist in a community that members are strongly

connected to each other.

There are some limitations to our research that need to be addressed. First, we treat the network effect

W as fixed effect, but the acutal effect should be treated as random. Second, we could have a problem

of endogeneity. The network effects are possibly affected by other factors. Third, other influences on

CRBT adoption are not captured in our model, e.g. a marketing campaign for CRBT sales.

For the future work, we plan to explore effect weak ties (asymmetric phone calls), because it might still

have effects on diffusion. We want to narrow down the causality between network structure and CRBT

adoption, taking time in to account. We will analyze the evolution of the network at different time

period. We will also model role equivalence as a disturbance term. We want to consider binary variable,

whether a caller will adopt CRBT or not as well. We plan to use two-stage conditional maximum

likelihood estimation by Vuong (1984) and Rivers and Vuong (1988). It is a binary probit regression

that can handle network autocorrelation effects.
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6 APPENDIX

6.1 Pseudocode of Two-stage Clustering and Pruning Algorithm

Step 1: Clustering

Step 1.1

Choose a random node seed

get the neighbor of node seed

N1 = {}
queue = {}
j = 0

n = threshold, (e.g. 200)

m = number of seed’s neighbor

initialize nodesOfLevel as an empty hash map

i = 1

tempNode = first node in the ith level

while TRUE do

if j > n

exit

fi

queue = {seed}
while queue NOT empty do

node = pop the top entry from queue

if node in N1

continue

fi

if node == seed

nodesOfLevel[i] = {}
fi

add node to N1

j = j + 1

if node! = seed

if tempNode == node

if j >= n

exit

fi

i = i+ 1

fi

fi

for each neighbor ii of node do

add ii to queue

if node == seed
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add ii to nodesOfLevel[1]

else

if node in nodeOfLevel[i]

if the node is the first node in nodeOfLevel[i]

tempNode = ii

nodeOfLevel[i+ 1] = {}
fi

add node to nodeOfLevel[i+ 1]

fi

fi

od

od

od

nodeOfLevel[i+ 1] is the neighbors of all nodes on the same level as the n− th node

add nodeOfLevel[i+ 1] to N1

ss = last step of breath-first sampling

for each node kk added in step ss do

add neighbor(kk) to N2

od

Step 1.2

matrixI = adjacency matrix of nodes in N1

matrixE = adjacency matrix of nodes in N2 /*source in N1, terminal in N2*/

I = total connections in matrixI

E = total connections in matrixE

Step 1.3

C = [I E][I E]T

comment: /*diagonal element of C is degree, off-diagonal elements are common neighbors */

N = I ∘ C
find maxD = maximum entry in N

ii = row number of maxD

jj = column number of maxD

add node ii and jj to NPT

for i = 3 to n3 do

if neighbor of ii or neighbor jj is not in NPT

maxii = maximum entry in row ii

maxjj = maximum entry in row jj

maxD = maximum(maxii,maxjj)

ii = row number of maxD
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jj = column number of maxD

add node ii and jj to NPT

i+ +

fi

od

use NPT as new seed, go to Step 1.1

Step 2. Pruning

set threshold t = 0.1

sumI = sum of all elements in matrixI

sumE = sum of all elements in matrixE

while sumI/sumE > t do

arrayI = Sum of each row of matrixI

arrayE = Sum of each row of matrixE

for i = 1 to length(arrayI) do

arrayDif [i] = arrayI[i]− arrayE[i]

od

j = minimum element of arrayDif

delete row jand column j of matrixI

delete row j of matrixE

sumI = sum of all elements in matrixI

sumE = sum of all elements in matrixE

od
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