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Measuring Information Diffusion in an Online Community 

Abstract 

Measuring peer influence in social networks is an important business and policy question that 

has become increasingly salient with the development of globally interconnected ICT networks. 

However, in spite of the new data sources available today, researchers still face many of the 

same measurement challenges that have been present in the literature for over four decades: 

homophily, reflection and selection problems, identifying the source of influence, and determin-

ing pre-existing knowledge. The goal of this paper is to develop an empirical approach for 

measuring information diffusion and discovery in online social networks that have these meas-

urement challenges. We develop such an approach and apply it to data collected from 4,000 us-

ers of an online music community. We show that peers on such network significantly increase 

music discovery. Moreover, we demonstrate how future research can use this method to measure 

information discovery and diffusion using data from other online social networks. 

 

 

Keywords: information diffusion, peer influence, new content discovery, online music commu-
nity, social influence, empirical research, data mining 
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1. Introduction 

Empirical studies of information diffusion date back to the mid-twentieth century and focus on 

the diffusion of innovations; for example, new drugs in medical physician’s networks [13], or 

new process and technique imitation by corporations [39]. Researchers also evaluated how prod-

uct related word-of-mouth triggered the diffusion of information [3]. This created interest in 

evaluating the process of diffusion, especially for product marketing [4]. Over the next three 

decades, interest in information diffusion continued to develop among researchers in the social 

sciences, marketing [8, 37], and computer sciences [31] disciplines.  

Online social communities provide a new channel for diffusing information, but at the same time 

estimating diffusion is now more challenging because of the large amount of information being 

exchanged on the Internet and the added uncertainty in identifying the information source [35]. 

The Internet has contributed to this uncertainty because personal communication has become 

more diversified: users now communicate in person, over analog channels (e.g. phones), and 

over new digital channels (e.g., email, social networks, discussion forums, instant messages). 

Thus our research focuses on these digital channels, which present challenges for estimating dif-

fusion because of the large volume of untraceable information flows between individuals. 

Measuring information diffusion online has become more important in the last decade in part be-

cause of significant growth in the use of social networks. A study by eMarketer [52] found that 

41% of Internet users in the US visited a social network website at least once a month in 2008, 

an increase of 11% from 2007. Based on statistics from Alexa (www.alexa.com), the combined 

daily reach of Facebook (www.facebook.com) and Twitter (www.twitter.com) was 50% of daily 

Internet consumption in February 2011. While the growth of online social networks suggests a 
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significant impact on online community members, empirical research is only beginning to ana-

lyze how online social communities help users discover and diffuse new content [2, 23, 24, 42]. 

At the same time, there are many empirical challenges to measuring diffusion in online social 

networks. For example, researchers have found that, in some contexts, online peers may not sig-

nificantly influence diffusion because of the presence of a large numbers of peers causing limited 

interactions between those peers [28]. This is understandable when one considers the large num-

ber of peers one might interact with online. For example, users have an average of 130 “friends” 

on Facebook [18]. However, even with this large number it seems likely that some of these 130 

connected friends are more valuable than others for diffusing new information to users. Like-

wise, peers and friends in online social networks tend to be self selected, leading to a significant 

selection problem. There are also empirical challenges from homophily [43] and contamination 

due to outside sources influencing diffusion [1]. 

Our goal in this paper is to develop an empirical method to measure information discovery and 

information diffusion that addresses these challenges and that can be used in the context of the 

data available in online social networks. After outlining our empirical method, we apply it to da-

ta on the music listening behavior of over 4,000 users of Last.fm, an online social network that 

allows users to consume, discover, and discuss music. Last.fm also allows us to isolate users for 

whom the platform provided by Last.fm is the only mode of communicating with each other. Us-

ing our empirical method, we identify a statistically significant causal influence of peers on mu-

sic discovery in the network. Specifically we show that, on average, peers are six times more 

likely to diffuse a new song to other network users than they would be in the absence of those 

peers.  
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2. Literature Review 

Information diffusion in social networks can be broadly classified into two categories: influence 

(by a system or a peer) and discovery (by active search or observational learning). Influence 

from peers occurs when individuals influence other individuals directly. Prior work has shown 

that peer influence has a positive effect in a variety of contexts [11, 16]. Influence through sys-

tems commonly occurs through recommender systems, which are used to influence and inform 

potential customers [34, 46].  

We can further separate the discovery literature into discovery by active search and by observa-

tional learning. This lets us differentiate between two scenarios: one where a user makes an ef-

fort to find content and another where a user comes across content serendipitously, without sig-

nificant additional effort. Active search on the Internet is accomplished through search engines 

or by seeking help on discussion forums. In this case the user knows what to look for, but her 

behavior towards the new content is unobservable. Observational learning has long been studied 

in the psychology literature, but has more recently attracted interest in business and economics 

literatures, and is classified as learning by either observable action or observable signal [7]. 

Peer influence may be described as a type of observable signal where actions from peers influ-

ence the decision of a consumer. For example, user generated content available on online forums 

can provide signals to influence other consumers [17]. The literature has shown that online fo-

rums such as blogs [29] and message boards [6] can be more effective in influencing consumers 

than direct marketing channels are. Our research extends this prior work to the context of online 

social networks and focuses on identifying the extent of additional learning from the presence of 

peers in an online platform. 
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Specifically, our research analyzes the role of peers in influencing others and the diffusion of 

new information. The literature has observed positive effects from peer based online marketing 

approaches such as online word-of-mouth [23] and viral marketing [32] when used as a means of 

influencing potential consumers. This influence happens not only because of the presence of the 

peers but also because of online word-of-mouth [22], which can build trust [45] and foster coop-

eration in online marketplaces [16]. Research has also shown that word-of-mouth helps consum-

ers to make better and quicker decisions [26]. But we have also seen that word-of-mouth diffuses 

not only positive information but also negative information, which dominates in many cases 

[36]. Finally, the literature has analyzed social influence in a variety of online settings such as 

computer mediated communication [50], email [48], and instant messaging [44]. 

The literature has also shown that informed consumers prefer differentiated products [12], and 

since music is a highly differentiated product, information shared in online social networks may 

make consumers more aware of music available in the market. This strengthens the need for 

measuring the extent of peer influence and information diffusion in an online social network.  

Thus, in this paper we attempt to identify peer influence and to quantify the extent of diffusion in 

an online community for music, while attempting to use the unique characteristics of our data to 

address the estimation challenges commonly faced in existing studies: selection, homophily (ten-

dency of individuals to associate with similar others), identification of the diffusion source, a us-

er’s pre-existing knowledge, and the size of a user’s personal online network. Thus, one key con-

tribution of our study is to provide an empirical approach whereby traditional estimation chal-

lenges could be reduced when analyzing large datasets available on the Internet. 
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In addition to contributing to the peer influence literature outlined above, our research also con-

tributes to the growing literature in Information Systems analyzing the impact of ICT systems on 

online networks,1 and the growing literature in marketing and information systems analyzing 

word-of-mouth in online markets.2 

3. Methodology 

In this section we discuss empirical challenges in studying information diffusion in online social 

networks, an ideal experimental scenario for detecting diffusion, and a feasible approach for ana-

lyzing an available archival dataset to cleanly identify diffusion.  

3.1. Estimation Challenges 

Owing to the openness of information, the Internet, at a macro level, has simplified the meas-

urement of diffusion of a new product in a social community: once a new product is launched, 

one can study how quickly a product can diffuse in a community [4]. However, it becomes hard-

er to identify whether the information was diffused due a particular online platform, especially 

for existing non-novel content. Because of this, we examine diffusion at a micro level: between 

two individuals in an online community and because of the communication and interaction me-

dium provided by that community. In other words, we seek to identify whether members of an 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 See for example several recent papers in the Journal of Management Information Systems such as [51] in the con-
text of positive influence on technology use, [30] in the context of diffusion of software, [14] in the context of re-
view creation, [19] in context of co-creation and cooperation between consumers, and [5] in the context of music 
sales in presence of piracy. 
2 Representative papers in this literature include [33] which suggests positive and negative effect of self-selection on 
consumer reviews, [27] which analyzes role of network structure on information diffusion when bidding for secret 
reserve price auctions, [10,49] which analyze the role of influencers, imitators, and opponents on diffusion of inno-
vation, [15] which compares various diffusion models to estimate the effect of consumer reviews on box office 
sales, and [21] which discusses the consumer’s valuation of products in the presence of alternate secondary markets. 
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online social platform discover something new from their peers on that platform and because of 

the existence of that platform. 

Although information diffusion and peer influence has been studied by social scientists for many 

years, estimation of micro-level diffusion on online channels [25] is still attracting innovative 

identification strategies. There are several notable challenges that exist with online diffusion 

studies: the reflection problem, homophily, the confounding effect of diffusion source, media 

influence, noise in data, and the availability of an actual dataset. We outline these challenges in 

more detail in the following sections. 

3.1.1. Reflection Problem and Homophily 

Most social influence studies face the reflection problem (e.g., [40] and [47]), which suggests 

that the behavior of individuals could be a reflection of the peers they associate with or other en-

vironmental factors. This adds complexity to cleanly estimate diffusion in an online social net-

work because of the presence of endogenous effects, which can be defined as an environment 

“wherein the propensity of an individual to behave in some way varies with the prevalence of 

that behavior in the group.” [41, p.1] 

This endogenous effect implies that the behavior of individuals may be similar because of shared 

characteristics that could be interpreted incorrectly as influence. These shared characteristics can 

arise from homophily [43], which is often expressed with the adage “birds of a feather flock to-

gether.” In online social networks any two users may have an inherent propensity to discover the 

same piece of information because of homophily (shared behaviors, beliefs, interests, or charac-

teristics). Thus diffusion from one user to another may not be cleanly identified. In the case of 
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Last.fm (the platform used in this study), two individuals might share the same interests in genre, 

artist, band, broadcast station, and fan-base and thus any discovery could arise because of that 

intersection of interests and not diffusion of information from one individual to another.  

A correlated effect, which can be defined as a situation “wherein individuals in the same group 

tend to behave similarly because they face similar institutional environments or have similar in-

dividual characteristics” [41, p.1] is a significant obstacle in empirical studies of diffusion. In 

the case of Last.fm, correlated effects suggest questioning whether diffusion between two indi-

viduals is a result of shared information or of shared environments (e.g., residential neighbor-

hood, school/college, or workplace). The correlated effect also suggests analyzing if two indi-

viduals share the same characteristics. For example two saxophone playing women in their mid-

thirties might tend to discover the same new song by “Jazzmasters” because of their (shared) in-

terests, as opposed to from information diffusion on the social network. 

3.1.2. Confounding Effect of Diffusion Source 

The reflection problem is a significant challenge in estimating diffusion in traditional environ-

ments, and online platforms exacerbate this issue by introducing challenges in identifying the 

source of diffusion. For example, if we observe diffusion of the song “Touch and Go” by “Jazz-

masters” from one individual to her peer, we still have significant uncertainty around the source 

of the diffusion. One cannot confidently identify the source of diffusion as the observed peer be-

cause of the possibility of influence by other peers and outside media. 

The size of a social network on Facebook, MySpace, or LinkedIn is frequently more than 150 

peers or friends. Thus the probability that a single piece of information was diffused from a spe-
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cific individual becomes much lower. It is possible that an individual discovers new information 

from any of the other peers in the network, and this can cause an overestimation of diffusion. 

Similarly a large number of social connections could simultaneously exist on other online or of-

fline platforms, creating multiple channels for diffusion. Thus, the true value of diffusion on a 

social platform could actually be much lower than observed diffusion without controlling for the 

true source of diffusion. 

***Insert Figure 1 Here *** 

To illustrate this with an example consider Figure 1, which shows a hypothetical case of the dif-

fusion of four songs in an online community from four peers of an individual (in the middle). If 

we do not control for the true source of diffusion, we will see that each peer causes an individual 

to discover one new song. However, after controlling for the sources of diffusion (Figure 2), we 

see that in reality there was only one song discovered from one peer (an average of 0.25/peer) on 

the online social network. This happened because the other three songs were not diffused by the 

directly connected peers, but rather (1) through the media, (2) indirectly through other peers, and 

(3) through an offline channel. This highlights the importance of accounting for the source of 

diffusion. 

***Insert Figure 2 Here *** 

3.1.3. Noise and Media 

Assuming that individuals are only discovering information from their peers in an online com-

munity is an overly ambitious assumption for diffusion studies. Instead, we need to allow for the 

possibility that users discover information from media or through sampling of content. This issue 

is more prevalent in a study of music diffusion because of the availability of a vast number of 
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technologies allowing users to sample music in many locations and at many different times. To 

address this issue, most studies use a control user to account for “chance” discovery and we fol-

low suit in this paper. Additionally, we use the strength of a large group of homophilic peers of a 

user to further control for any false positives in music diffusion.  

3.1.4. Data 

Another challenge faced when observing diffusion in online social networks is obtaining rich 

data on a user’s behavior. This is especially challenging in online social networks because of 

concerns of privacy. For this reason, we selected music as the target of our observation for diffu-

sion because of the reduced chance that observing music listening behavior will reveal evidence 

leading to identification of an individual’s identity. This allows users to track and share much of 

their listening behavior online. 

Music is also a useful setting for diffusion studies because of its large consumption volume and 

because it features two distinct dimensions of measurement: bands and songs. These two metrics 

are important because songs represent a single unit of information and bands represent an aggre-

gated information category. To better identify this distinction, throughout the remainder of the 

paper we refer to “music” when the statement is independent of a particular band or song and we 

refer to “bands” and “songs” when there is a dependence on the granularity of information. 

3.2. The Ideal Experiment 

How can a researcher address these empirical estimation challenges? To answer this question, 

first consider an ideal experiment to measure peer influence in an online social network. To 

cleanly measure peer influence in an online social network we would need to observe all interac-



!
!

)!!

tion between two random users in a closed environment, while preventing any flow of infor-

mation into the network from external sources. We would also need control users who are not 

interacting with other users, to control for diffusion that might occur because of other uncon-

trolled sources or inherent propensity to discover music. Additionally, we would need to observe 

diffusion of completely novel or niche information to account for any pre-existing knowledge of 

a user. Thus, observation of a controlled exchange of niche content in a closed online environ-

ment can allow us to estimate the peer influence in the experimental network.  

Unfortunately, conducting this experiment in a real world environment is not only difficult but 

also poses challenges in the selection of participating candidates. Therefore in this study we use 

an alternative approach that mimics this ideal scenario by utilizing a large volume of archival 

data from Last.fm to estimate peer influence. 

3.3. Alternate Approach 

Because of the difficulty in conducting an “ideal experiment,” in this study we pick “neighbors” 

as the potential source of diffusion. These neighbors (recommended peers) are typically strangers 

to the user and are recommended by Last.fm based on an observed matched interest in music. 

Thus these peers have no other mode of communication with the users except for modes offered 

by the Last.fm network. From this, we gain access to most of the content exchanged between us-

ers and their neighbors on Last.fm.  

We also know a user’s playlist before she connects to a new neighbor, and from this we can 

readily identify if songs from the peers diffused to the user.  Together, the use of neighbors as 
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peers and control over the diffused music emulates, to some extent, the “ideal” closed environ-

ment for diffusion estimation discussed above. 

To account for any pre-existing knowledge of a user, we remove all songs or bands listened to by 

the user and her peers (non-new neighbors) from the list of songs or bands available for 

diffusion. This reduced playlist represents content that could be diffused to a user by the new 

neighbors, and includes only those songs that have not been played by the user or anyone else in 

the user’s neighbor network. 

Finally, we need a control user to account for any by-chance discovery of the pool of songs 

available for diffusion. This control user population needs to be similar to the target users — 

users that are connected to and discovering content from neighbors. Therefore we pick control 

users that share a similar interest in music as the target users, but who don’t directly influence the 

target user’s behavior in the observed time period. To ensure similarity and the absence of a 

current connection we identify potential control users by observing network dynamics and new 

ties formed in future time period. This allows us to select control users who are similar to the 

music diffusing peers, but who are not connected to them at the time of observation. This set of 

control users then allows us to estimate the discovery of new content from sources other than the 

diffusing neighbor, and to adjust our estimate of peer influence accordingly. 

With this setup, we are able to account for common challenges in the measurement of peer influ-

ence or information diffusion. Selection issues are addressed by using system recommended 

neighbors (who are not friends). Endogenous and correlated effects are reduced by removing any 

homophily between the music discovering users and her neighbors during the selected 

timeframe. Pre-existing knowledge is accounted for by screening out music already played by 
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the user. Finally diffusion, “by chance” or from external sources is controlled by using a control 

group of users who are similar to, but are not currently connected to the target user. 

3.3.1. Empirical Model 

In this section, we explain our empirical approach mathematically. For simplicity we summarize 

our notations in Table 1. Within this notation we express the total number of music discovering 

users i as ni, and the total number of music diffusing (new) neighbors j to a user i as ni,j, and any 

other connected neighbors k as ni,k. We also express the total number of distinct songs played by 

all users i and neighbors j and k as ns and total number of distinct music bands as nb. Then a bina-

ry row vector S indicating all songs (and B indicating all bands) listened to by an individual i be-

tween time periods t1 and t2 is given as follows: 

!!!!!!!!!! !! !! ! !!!                                                       (1) 

!!!!!!!!!! !! ! !! ! !!!                                                             (2) 

***Insert Table 1 Here *** 

For the sake of simplicity, we use M to denote music that represents either songs or bands. This 

allows us to create one equation with M, where M is used in lieu of S or B. Thus: 

!!!!!!!!!! !! ! !! ! !!!                                               (3) 

Now assume that there are three non-overlapping time periods of interest: pre-connection, con-

nection, and post-connection. Our goal then is to estimate diffusion from a new peer j who is 

connected to our music-discovering peer i during the “connection” period. We then detect the 

music that was played by this peer j during the “pre-connection” period and discovered by user i 

during “post-connection” period. Thus diffusion from user j to user i can be presented as an in-

tersection (or dot-product) of their respective M vectors across two distinct time periods: 
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!!!! !!!! !!!! ! !!!!!!!!!!!!! ! ! !!!!!!!!!!!!                                     (4) 

Here the time interval (0, T - tc) represents the “pre-connection” time period, (T, T + !t) repre-

sents the “post-connection period, and (T – tc, T) represents the “connection” period. We use the 

“connection” period to (1) account for uncertainty around the actual time of the connection of the 

users and (2) dilute the correlated effect or diffusion because of other environmental elements 

(for example, radio stations).  

To account for a user’s pre-existing knowledge we remove all music previously listened to by 

user i (in both the pre-connection and connection time periods). Thus, Equation 4 becomes: 

!!!! !!!! !!!! ! !!!!!!!!!!!! ! ! !!!!!!!!!!!! ! ! ! ! !!!!!!!!!!                  (5) 

Still, there is a possibility that the diffused music really came from other peers of user i and not 

peer j. To address this issue, we remove all content that could possibly be diffused from other 

peers. 

!!!! !!!! !!!! ! !!!!!!!!!!!! ! ! !!!!!!!!!!!! ! ! ! ! ! !!!!!!!!! ! ! ! ! ! !!!!!!!!!!!!!!!!"!!!                 (6) 

! ! !!!!!!!!!!!! ! ! !!!!!!!!!!!! ! ! ! ! ! !!!!!!!!!!!!!!!                                                 (7) 

Thus, Equation 7 represents the diffusion from neighbor j to user i after reducing the effect of 

homophily and the uncertainty of other peers as a source of diffusion. Since we selected neigh-

bors as peers who are diffusing music, our issue of a diffusion source from an alternate platform 

is also minimized. Still we need to address the issues of correlated effect and noise and media. 

To further minimize the effect of media and noise we use a control user who is homophilic to the 

neighborhood, but who is not connected to the music diffusing neighbors J. First, we find all po-
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tential control users from the list of neighbors K that are not connected to music-diffusing neigh-

bors J. Then from that list we find one control user ci that is most similar (in terms of music lis-

tening behavior) to the target user i. This allows us to have a strong control for media and noise 

using homophily because control user is very similar to target user i and all of the music-

diffusing neighbors J but is not connected to those neighbors. 

Using Equation 7, we can define the vector of all music diffused by all neighbors J as: 

!!!! !!!! ! !!! ! ! !! ! ! ! !!!!!!!!!!!! ! ! !!!!!!!!!!!! ! ! ! ! ! !!!!!!!!!!!!!!!!!!!                    (8) 

!!!!! !!! ! ! !!! ! ! ! ! ! ! ! !!!!!!!!!!!!! ! ! !!!!!!!!!!!! ! ! ! ! ! !!!!!!!!!!!!!!!!!!!                  (9) 

Equation 8 estimates diffusion from the newly connected music diffusing neighbors J to con-

nected target user i and Equation 9 estimates diffusion from the newly connected music diffusing 

neighbors J to a non-connected control user ci. Taking the dot product of these binary vectors for 

multiple users results in a vector that has 1s for music that is played by every individual. Similar-

ly a dot product of a complementary vector (1-M) gives a list of songs that are not played by any 

individual in the community. Thus equations 8 and 9 strategically account for most of the empir-

ical challenges discussed above. Notice that after accounting for various controls, the music 

available for diffusion will be mostly niche music. Thus our estimates should be viewed as a 

lower bound on the effect of peers in diffusing music. 

Binary vector Di,J represents all music that was diffused to user i. Given this, we define two other 

variables: (1) binary variable Y1,i indicating the existence of diffusion and (2) an integer (count) 

variable Y2,i indicating the total music diffused to user i. These two variables are given as: 
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!!!! ! !!!"!! ! !!!!!!!!!!!!!!! ! !!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"!!"#$%!                     (10) 

!!!! ! ! !!"!!!!!!!!!!!!!!                      (11) 

Using the above strategy to dissect the archival data, we can conservatively estimate the extent of 

peer influence on the online community. Our last challenge is obtaining data for the analysis. 

3.4. Data 

We use the online community created by Last.fm (www.last.fm) as our empirical setting. Last.fm 

is a platform to share, listen and discuss music. The site is part-owned by CBS Interactive and 

has an estimated user-base of 40 million active users in over 200 countries. Based on statistics 

from Alexa in December 2009, Last.fm reaches 0.33% of daily Internet users (globally) and is 

the second most popular music community online, behind Pandora. An interesting feature of 

Last.fm is scrobbling, which allows Last.fm’s users to track the music they have listened to 

online or off-line (from personal computers or portable music players). From a research perspec-

tive, scrobbling provides us with access to an extremely rich dataset, enabling us to observe both 

the current and past listening behavior of users. Additionally, Last.fm allows users to socially 

connect with friends and other registered users on the website. Finally, Last.fm recommends a 

list of 60 neighbors who share a similar taste in music to the user, allowing the user to socially 

connect and interact with both existing friends and new similar users. Figure 3 provides a snap-

shot of the neighborhood provided by Last.fm. These recommended neighbors change as users’ 

music listening behaviors change over time. 

***Insert Figure 3 Here *** 
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To collect data from this network, we needed a random set of target users. To achieve random-

ness we captured a list of 500 active users from the 40 million registered users on Last.fm during 

five different time periods in April 2008. Of these 500 users we used a simple random number 

generation algorithm to pick 50 target users. We selected our random users from all registered 

users because music listening data was available only for members of the community. We then 

found the neighbors of these target users and identified 50 control users who were similar to the-

se target users, but who were not connected with the music diffusing neighbors. We then collect-

ed data on the neighbors of these 100 users (50 target users and 50 control users). This resulted 

in data for about 4,017 neighbors leading to 21 million data points over nine months of “histori-

cal usage.” Our final dataset contains network information for the 50 target users during three 

non-overlapping time periods (January to April 2008, April to July 2008, and July to September 

2008), and the playlist (songs and the time the user played the song) for each user. Figure 4 pro-

vides a snapshot of a representative user’s playlist.  

***Insert Figure 4 Here *** 

During the analysis we found that some users had missing playlist data, possibly because of a 

change in their privacy settings. Dropping these users from the study, we ended up with 35 target 

users and 40 control users who had data available for the entire nine-month period. Table 2 lists 

summary statistics for this data. 

***Insert Table 2 Here *** 

The selection of these time periods was especially important in our research methodology. We 

consider three different time periods: pre-connection (or creation) from January to April 2008, 
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connection from May to July 2008, and post-connection (or discovery) from August to Septem-

ber 2008.  

During the connection period we observe changes in the network, and specifically the entry of 

music diffusing new neighbors who played songs that were new to the entire network. Increasing 

the duration of connection period (tc) would allow us to better control for any environmental ef-

fect but would reduce the probability of diffusion from a peer because of additional delays. To 

balance the two considerations, and observing an average of one new music-diffusing neighbor 

replaced per week, we selected tc to be about 10 weeks to have about 10 new music diffusing 

neighbors. 

The pre-connection duration (T-tc) was selected to observe the formation of networks and listen-

ing behavior of all users and to control for any pre-existing knowledge of a user. A large pre-

connection duration could cause selection issues associated with the user’s length of membership 

on the platform, and a shorter duration could cause underestimation of pre-existing knowledge. 

To balance the two considerations, and since Last.fm launched the free music initiative in Janu-

ary 2008, we selected a pre-connection period (T-tc) of 16 weeks from January to April 2008.  

During the post-connection (July and September 2008) time period (!t) we observe the discov-

ery of new songs that were introduced by the new neighbors. A small duration may provide no 

observations and a large period could increase complexities from network dynamics. To balance 

these two considerations we selected !t to be 10 weeks. Summary statistics for each phase are 

given in Table 3. 

***Insert Table 3 Here *** 
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Figure 5 summarizes our empirical process. To explain our data more clearly, consider a target 

user “Sue” (who is connected to say, 10 new neighbors) and a control user “May” (whose taste in 

music is similar to Sue but who is not connected to any of Sue’s 10 new neighbors). Suppose Sue 

and May have 60 other neighbors that they are already connected to. Let’s assume 10 of those 

new neighbors played about 500 songs, of which 300 were played by the other neighbors as well. 

Eliminating all songs played by other neighbors (other users in the network) and by Sue herself, 

we find that new neighbors expose Sue to 87 new songs. Similarly, “May” is exposed to 98 new 

songs. Of these potential songs that can possibly diffuse, we observed diffusion for Sue and May 

to be 10 and 3 respectively. Controlling for other characteristics, the difference in Sue’s and 

May’s diffusion rate is the effect of the peers. Put another way, Sue is discovering additional new 

content as compared to May because she is connected to the new neighbors. 

***Insert Figure 5 Here *** 

4. Analysis 

We assume diffusion has happened when a song that was played by a music diffusing new 

neighbor (J) in the pre-connection period shows up in the music discovering user’s (i) playlist in 

the post-connection period. As discussed previously, we pick only songs that are new to the en-

tire network of a user: that is, only songs or bands that are not played by the user or any of her 

neighbors (K) in any of the time periods prior to diffusion. To ensure that a song is indeed dif-

fused, we consider diffusion only when the user played the song at least two times. A simple re-

gression model could be defined as follows: 

!"##$%"&'! ! ! ! !"#$%&!!"#$%"&!!"##$ ! ! !! !! !!"#$!!!!"!#$%"&'$&#'!!           (12) 
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Here the dependent variable, diffusion, takes the form of a binary occurrence of diffusion (Y1,i) 

or, a count of music (bands/songs) diffused to a user (Y2,i). The two variations of the dependent 

variable allow us to not only estimate the existence of music diffusion between peers but also to 

quantify the extent of diffusion because of online peers. The count of diffusion of bands and 

songs for both target and control users is given in Figure 6 below. 

***Insert Figure 6 Here *** 

The independent variables are the users’ music listening characteristics: the number of unique 

bands or songs listened during the post-connection period, the number of new bands or songs the 

new-neighbors made available for diffusion, and the listening heterogeneity of a user (described 

below). The parameter of interest is the coefficient on the target/control indicator variable.  

4.1. User Characteristics 

When evaluating diffusion, we need to control for user characteristics that may influence users’ 

music listening behavior and hence diffusion. We consider the following characteristics: 

Quantity of music played is the number of unique bands or songs in a user’s playlist. Two mu-

sic listeners could be very different in terms of their exploratory nature. A user listening to a 

larger diversity of music may be more interested in discovering new music. Since the average 

quantity of music played is large and has a large variance, we use the log value of this character-

istic in our regressions. 

Quantity of new music exposed reflects the amount of music exposed to a user. Since each user 

gets exposed to a different set of music diffusing new neighbors who may bring in a different 

quantity of new content, we would expect that more exposure will lead to higher diffusion. Since 
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the average quantity of music exposure is large and has a large variance, we use the log value of 

this characteristic in our regressions. 

Heterogeneity in listening behavior captures a user’s propensity to listen to more diverse mu-

sic. We capture this heterogeneity by the Gini coefficient [20], which measures the inequality or 

statistical dispersion in the data. Since diversity of music in a user’s playlist follows approxi-

mately a Lorenz curve with unique bands/songs on the x-axis and the number of repetitions on 

the y-axis, we define the Gini coefficient as follows: 

! ! !!"#$%&'(!!!!"#$%&
!!"#$%&'(

       (13) 

!"! !! ! !!! !! ! !!!!!!!!
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!"#! !!!! !!!!!!!!
!!!!!!!!!! !! !!!! ! !!! !!!!!!!         (14) 

Here Fi,(T,T+!t) is a vector representing the frequency of each piece of music (band or song) 

played by the user i during post-connection period (T,T+!t). The summation in numerator com-

putes the total entries in a user’s playlist and maxp() in the denominator represents the maximum 

frequency value of a piece of music (band or song) in the playlist. A smaller Gini coefficient rep-

resents more diversity in the music listened to by a user. The representation of four different lis-

tening behaviors is illustrated in Figure 7 below. 

***Insert Figure 7 Here *** 

Over the entire nine months we collected comprehensive data on 35 target users i and 40 control 

users ci. On average, the number of new neighbors (ni,j) was 15. The music listening statistics for 

these users are presented in Table 4. 

***Insert Table 4 Here *** 
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4.2. Control Users 

Since we picked control users based on homophily and absence of connections with music dif-

fusing neighbors, it is important to compare the relative similarity of both target and control us-

ers with the music diffusing neighbors. To avoid any bias in the measurement of influence, we 

test the extent of similarity in music listening behavior for both the target and control users we 

use various distance measurements to compare their behaviors.  

One potential metric is the Euclidean (ordinary) distance between two users. We define this dis-

tance measures as the difference in the music listening patterns of two users and is computed by 

taking the distance between the two vectors representing the frequency of each intersecting song 

played by each user. Let the Euclidian distance between a target user i and her neighbor j is pre-

sented as E(i, j) and the distance between a control user ci and j be represented as E(ci, j) as fol-

lows. 

! !! ! ! !!!! !! !!!!!
!!!

!!! !!!!!!!!! !! !!!!!!!!! !!!!!!!!!!!!!!!! !!!!!!!     (15) 

! !! ! ! ! !!!!! !! !!!!!
!!!

!!! !!!!!!!!! !! !!!!!!!!!!! !!!!!!!!!!!!!!!! !!!!!!!     (16) 

Here fi,p is the pth element of the frequency vector Fi. Thus, for each user i we need to test if the 

Euclidean distances between i and j, and ci and j are similar. The paired t-test for both set of Eu-

clidian distances has a p-value of 0.0761. Thus we can say, with 90% confidence, that both the 

target and control users are similar to music diffusing new neighbors based on Euclidean dis-

tances. Euclidean distance measures of both target and control users are presented in Figure 8. 
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***Insert Figure 8 Here *** 

We also tested the similarity of the target and control users with the music diffusing new neigh-

bors using a Gini coefficient that measures statistical dispersion in the music listening behavior 

of two sets of users. We find here the p-value from a paired t-test is 0.0937, which is also within 

the 90% confidence interval for both kinds of users being similar to the music diffusing new 

neighbors. This dispersion measure doesn’t really compute the distance between the users, but 

gives us a better understanding of listening behavior as a combination of diversity and repetition 

of songs in a user’s playlist. The model to compute the Gini coefficients for both target and con-

trol users is presented in equations 17 and 18 below and actual measures are shown in Figure 9. 

! !! ! ! !! ! ! ! !!!!!!!!!!! !!!
!!!

!!!!!!!!!!"!!! !!!!!!!!!! !
!!!!!!!!! !! !!!!!!!!! !!!!!!!!!!!!!!!!! !!!!!!!   (17) 

! !! ! ! ! ! ! ! ! ! !!!!!!!!!!!! !
!!
!!!

!!!!! !!!"!!! !!!!!!!!!!! !
!!!!!!!!! !! !!!!!!!!!!! !!!!!!!!!!!!!!!!! !!!!!!!   (18) 

***Insert Figure 9 Here *** 

Thus from the above two measures — Euclidean distance and the Gini coefficient — we can say, 

with 90% confidence, that both target and control users are similar to the music diffusing neigh-

bors. This strengthens our selection of control users in measuring peer influence.  

5. Results 

We estimate Equation 12 with diffusion as the dependent variable and report the results in Tables 

5 and 6. There are two interesting observations here: (1) evidence of discovery because of online 

peers in the presence of control users and (2) quantifying the extent of discovery. 
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First we evaluate diffusion as a binary variable (specifically, 1 if diffusion occurs and 0 other-

wise) using a logit model and report the findings in Table 5. We find that the coefficient for the 

target/control dummy variable is positive (3.4 for bands and 6.1 for songs) and significant at a 

10% level. This suggests that diffusion of new bands is 3.4 times more likely (6.1 times more 

likely for new songs) to occur in the target group than in the control group.  

***Insert Table 5 Here *** 

Additionally we see that users who listen to more songs are more likely to see diffusion. A 1% 

increase in the average number of distinct bands listened to (104) increases the odds-ratio of dif-

fusion of a new band by 0.07. Similarly a 1% increase in the average number of distinct songs 

listened to (439) increases the odds-ratio of diffusion of a new song by 0.13. This is intuitive be-

cause the more music a user listens to, the more she is prone to discovering.  

Finally, users who are exposed to a larger volume of new content are also likely to see more dif-

fusion — a 1% increase in the average number of distinct bands played by peers (485) increases 

the odds-ratio of diffusion by 0.04. This change is approximately the same for the 1% increase in 

the average number of distinct songs played by peers (3,166). This follows a similar intuition as 

before, except the results are driven by the behavior of the neighbors whereas previously they 

were driven by the behavior of the user. In other words, users who are close to peers who are lis-

tening to more new songs, tend to get a spillover effect in new music discovery.3  

Next we evaluate diffusion as a count of the number of unique bands/songs diffused to a user. 

Because of over-dispersion in the count data (seen from non-zero values of " in Table 6) we use 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3 We note that we did not observe is a significant role of the Gini coefficient in this model. This implies that the sta-
tistical dispersion in music listening behavior does not play a role in suggesting the presence of diffusion. 
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a negative binomial regression [9, 53]. We believe that the music listening behavior and hetero-

geneity among random users is the cause of this over-dispersion. A chi-squared test for disper-

sion in data provided a p-value equal to zero rejecting the null hypothesis (" = 0). Thus we use a 

negative binomial regression for this analysis and report the resulting estimates in Table 6.  

***Insert Table 6 Here *** 

In the case of individual songs, the marginal effect for the target/control dummy is positive (2.7) 

and significant at the 5% level, suggesting that peer influence leads to diffusion of 2.7 additional 

unique songs to a target user.  

Additionally a 1% increase in the number of songs played by a user suggests diffusion of an ad-

ditional 2.3 unique songs, and a 1% increase in exposure to new songs increases the diffusion by 

1.9 songs. We also see that a 1 standard deviation (0.137) increase in the Gini coefficient leads to 

a diffusion of 0.5 additional songs. In the case of diffusion of bands, the coefficient of the tar-

get/control indicator variable is positive (0.4738) but insignificant (p-value: 0.16). 

Since the Gini coefficient is a function of the two other independent variables (unique music lis-

tened to and unique music exposure), a possible concern could be the correlation between the 

variables. But from Tables 7 and 8 we see that the correlation between the variables is very low, 

especially for songs. 

***Insert Table 7 Here *** 

***Insert Table 8 Here *** 

Testing for multicollinearity, we found that the variance inflation factor (VIF) is 1.0 for the 

bands and songs regression, suggesting that multicollinearity is not a problem in our data [38]. 
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6. Discussion 

6.1. Findings and Contribution 

In this paper, we find that online peers have a positive influence on the diffusion of new music. 

Users are 6.1 times more likely to discover a new song and 3.4 times more likely to discover a 

new band as a result of peer influence. There are two key contributions of our work:  

First, from a methodological perspective we provide an empirical approach to test for diffusion 

in online networks and to overcome many key challenges in estimating peer effects. Moreover, 

we do this in a field setting as opposed to the more commonly used survey or laboratory setting. 

Thus our paper provides a roadmap for using a large yet noisy dataset for estimation of peer ef-

fects in online social networks.  

Second, from a managerial and research perspective, we provide empirical evidence that even a 

network with extremely weak ties and where peers don’t know one another can aid information 

discovery among users. We observed that new songs seem to diffuse in such a network, suggest-

ing a significant power of online networks in content discovery. We believe this is a notable 

finding as marketers seek to both measure and harness the power of online networks to diffuse 

information about their products. 

Indeed, we believe that recommending peers, as modeled by Last.fm, could be a new trend in 

marketing that could benefit from high consumer involvement, increased online trust between 

peers, and “pull” marketing strategies. While peer recommendation may not guarantee diffusion 

of a product, we think that the methodology outlined here will be effective in measuring influ-

ence and possibly in matching products to the customers who value those products.  
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In terms of managerial implications, our results suggest that adding a social platform to an exist-

ing online forum could accelerate the diffusion and discovery of relevant information. Our re-

sults could also be used by marketing managers in evaluating a conservative estimate of the re-

turn on investment for marketing a new product using social media. Specifically, our results in-

dicate that the diffusion of songs is six times more likely when using peers than otherwise; and 

managers could use our proposed methodology to evaluate whether this result generalizes to oth-

er product categories. With this information, marketing professionals could plan and justify in-

vestment in social media when compared to non-social platforms. 

6.2. Limitations and Future Work 

One notable limitation of our study arises from our conservative approach to identifying diffu-

sion, which causes us to ignore a potentially large volume of data that may include diffusion of 

other popular songs. This means that we may be underestimating the actual influence of online 

peers. Thus a next logical step is to analyze a larger volume of non-dissected data, which will 

allow researchers to test the diffusion of more popular music.  

Another limitation pertains to the use of control users. Although control users do provide a base-

line for diffusion in the absence of peers, there is still a possibility that target users discover a 

song or a band outside of the network and in a way that is not accounted for by our controls. 

Since control users cannot perfectly account for this issue, we have tried to further minimize the 

extent of diffusion from unobserved sources by screening the music played by all homophilic 

neighbors. 
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A related limitation arises from the need to use the neighbors of the target user to identify the 

music diffused to the control users. Ideally, we would have been able to use the control user’s 

actual neighbors at the time the diffusion occurred. Since control users were identified after the 

post-connection time period, and historical network information is unavailable in the data, we 

were not able to screen out all songs played in the control user’s neighborhood. This results in an 

overestimation of diffusion to the control user because some songs that could have been elimi-

nated from the control user’s playlist end up contributing to diffusion to the control user. This 

makes our estimates conservative and strengthens our finding of music diffusion in the online 

community of music listeners. 

We also note that the only information available about the recommendation models used by 

Last.fm reveals that recommendations are based on the similarity and frequency of the music 

played by users (bands, artists, and genre). However, while we were unable to obtain detailed 

information about the specific recommendation system that Last.fm uses, our model is somewhat 

independent of the recommendation system. There are two reasons for this: (1) our model re-

quires that users have Last.fm as the only platform for communication with their peers and any 

recommendation system suffices this for requirement; and (2) our model requires that recom-

mendation system is consistent in matching users, thus if the performance of the model is higher 

or lower the diffusion estimates for both target users and control users will shift synchronously 

causing relatively much smaller change in the net diffusion estimates.  

Future work could also extend our results by incorporating music genre in the diffusion esti-

mates. For example, it is possible that a user listens to “pop” music, and discovers new music in 

the similar genre. Unfortunately, there are two challenges with using genre: First, there is no sin-
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gle recognized tagging system for music genre. Second, there is a possibility of high correlations 

between different music genres (e.g. “pop” may not be meaningfully different from “rock” in the 

same way that “pop” and “jazz” are different).  

Further, although our approach using longer time periods allows us to dilute the instantaneous 

effect of media and other environmental factors, it would still be useful to explore applying our 

approach to shorter time periods for measuring information diffusion. Using shorter time periods 

would allow managers to evaluate the instantaneous effect of social media advertising, and re-

searchers to estimate the role of micro-level network dynamics in the diffusion process. 

We have modeled user’s behavior based on observable music listening characteristics. Future 

research could consider a consumer’s behavior like curiosity and willingness to discover new 

music. This will allow researchers to model diffusion as a function of market and social signals. 

In conclusion, our results measuring the extent of diffusion are statistically significant yet con-

servative because our approach (of necessity) only considers the diffusion of niche music that 

was repeated by individuals after diffusion had occurred. In reality any single instance of use 

should be considered as potential diffusion, and popular content may be more likely to be dif-

fused than niche content. We also note that our approach is just a starting methodology to ana-

lyze large datasets available on the Internet to statistically estimate the extent of information dif-

fusion. We believe this and subsequent methodologies will create new perspectives to address 

the non-trivial challenges of measuring information diffusion in online ICT networks. 
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Table 1: Guide to Notations 

Notation Description 
i Target or music discovering target user 
j Music diffusing neighbor of i (vector of all j is J) 
k Non-music diffusing neighbor of i (vector of all k is K) 
ci Control user that is similar to i but not connected to j 
ni Number of music discovering target users i 
ni,j Number of music diffusing new neighbors J of a user i 
ni,k Number of non-music diffusing neighbors K of a user i 
Si, (t1, t2) Binary vector of songs played by a user i between time period t1 and t2 
Bi, (t1, t2) Binary vector of bands played by a user i between time period t1 and t2 
Mi, (t1, t2) Binary vector of music (songs or bands) played by a user i between time period t1 and t2 
Fi, (t1, t2) Vector representing frequency of music (songs or bands) played by a user i between time period t1 and t2 
fi,p Represents the element p of the frequency vector Fi,(t1, t2) 
nb Total number of distinct bands played by all users and neighbors 
ns Total number of distinct songs played by all users and neighbors 
nm Total number of distinct music (bands or songs) played by all users and neighbors 
Di,j (t1, t2) Binary vector of music diffused from neighbor j or user i during period t1 and t2 
d Represents elements of the diffusion vector Di,j(t1, t2) 
(0, T-tc) Pre-connection period when user i is not connected with music diffusing neighbors j 
(T-tc, T) Connection period during which music diffusing neighbor is connected with user i 
(T, T + !T) Post-connection period when user i discovers new music (songs or bands) from neighbor j 
Y1,i binary variable indicating the existence of diffusion to user i 
Y2,i an integer (count) variable indicating the total music diffused to user i 
Gi Gini coefficient measuring the inequality and statistical dispersion in music consumed by user i 
G(i, j) Gini coefficient representing the statistical dispersion in differences in music consumed by users i and j 
E(i, j) Euclidian distance based on differences in music consumed by users i and j  
 

Table 2: Data Summary 

Data Description Value 
Observed treated users 35 
Observed control users 40 
Unique neighbors (observed in April 2008 & July 2008)  4017 
Entries in playlist for all observed users 21,104,040 
 

Table 3: Music Listening Statistics during Various Time Periods 

Variable Time Period Target User Control User 
Average Number of Bands Played per User Pre-Connection 256.91 283.75 

Connection 232.25 204.82 
Post-Connection 164.17 212.52 

Average Number of Songs Played per User Pre-Connection 1319.91 1124.32 
Connection 1139.71 960.6 
Post-Connection 722.37 842.07 
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Figure 3: Snapshot of Neighbors on Last.fm 

 

 

Figure 4: Snapshot of Playlist on Last.fm 
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Figure 5: Estimation Process 

 

 

 

Figure 6: Number of Bands and Songs Diffused to Target (UT) and Control (UC) Users 
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Figure 7: Hypothetical Scenarios of Listening Behaviors of 4 Different Users 

 

 

Figure 8: Euclidean Distance Comparison for Target (UT) and Control (UC) Users 
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Figure 9: Gini Coefficient Comparison for Target (UT) and Control (UC) Users 

 

 

 

"#"""!

"#$""!

"#%""!

"#&""!

"#'""!

(#"""!

(#$""!

(#%""!

(! %! )! ("!(*!(&!(+!$$!$,!$'!*(!*%!*)!%"!%*!%&!%+!

G
in

i C
oe

ff
ic

ie
nt

 V
al

ue
 

User ID (Target or Control) 

Target & Control User Comparison - Gini 

Gini_UT 

Gini_UC 



!
!

#)!

Authors Bios 

RAJIV GARG is a fourth year doctoral student at School of Information Systems and Manage-

ment at Heinz College of Carnegie Mellon University in Pittsburgh, PA. He received graduate 

degrees in Computer Science and Electrical Engineering, both from University of Southern Cali-

fornia in Los Angeles, CA and an undergraduate degree in Electrical Engineering from Indian 

Institute of Technology, Banaras Hindu University in Varanasi, India. His research interests are 

in the areas of social media, online marketing, Internet technologies, economics of information 

systems and artificial intelligence. Rajiv is a senior member of IEEE and has been serving on the 

board of various IEEE sections and multiple small corporations during past decade. Rajiv has 

also served as reviewer for Information Systems and Research (ISR), the Journal of Management 

Information Systems (JMIS), and various peer reviewed conferences.  

 

MICHAEL D. SMITH is a Professor of Information Systems and Marketing at Carnegie Mellon 

University. He holds academic appointments at Carnegie Mellon University’s School of Infor-

mation Systems and Management and the Tepper School of Business. He received a Bachelors 

of Science in Electrical Engineering (summa cum laude) and a Masters of Science in Telecom-

munications Science from the University of Maryland, and received a Ph.D. in Management Sci-

ence from the Sloan School of Management at MIT. Professor Smith’s research relates to the 

impact of digital technologies on consumers, firms, and markets. Professor Smith has received 

several notable awards including the National Science Foundation’s prestigious CAREER Re-

search Award, and he was recently selected as one of the top 100 “emerging engineering leaders 

in the United States” by the National Academy of Engineering. 

 



!
!

#!!

RAHUL TELANG is a Professor of Information Systems and Management at the Heinz College, 

Carnegie Mellon University. He received his Ph.D. in Information Systems from the Tepper 

School of Business, Carnegie Mellon University in 2002. His research interests include digital 

media and information security and privacy. He is the recipient of Sloan Foundation Industry 

Study fellowship and National Science Foundation's CAREER Research Award. His recent work 

includes the role of Internet and piracy on music and movie industry. His research has appeared 

in many top journals including Management Science, Marketing Science, Information systems 

research etc. He has been on the editorial board of Management Science and Information sys-

tems research. 

 

Contact Information 

Name Rajiv Garg* Michael Smith Rahul Telang 
Affiliation School of Information Systems and Management, 

Heinz College, Carnegie Mellon University 
Address 4800 Forbes Ave,  

Suite 3030 
Pittsburgh, PA 15213 

4800 Forbes Ave,  
Suite 3028 
Pittsburgh, PA 15213 

4800 Forbes Ave,  
Suite 3040 
Pittsburgh, PA 15213 

Phone (412) 268-8717 (412) 268-5978 (412) 268-1155 
Fax  (412) 268-5338 (412) 268-5337 
Email rg@cmu.edu mds@cmu.edu rtelang@andrew.cmu.edu 
* contact author 
 


