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ABSTRACT

Out-of-vocabulary (OQV) words can appear more than once in
conversation or over a period of time. Such multiple insésnof
the same OQV word provide valuable information for learnihg
lexical properties of the word. Therefore, we investigdted to es-
timate better pronunciation, spelling and part-of-spg@ebS) label
for recurrent OOV words. We first identified recurrent OOV der
from the output of a hybrid decoder by applying a bottom-ugsel
tering approach. Then, multiple instances of the same OOkd wo
were used simultaneously to learn properties of the OOV wbna
experimental results showed that the bottom-up clustexppyoach
is very effective at detecting the recurrence of OOV wordsgther-
more, by using evidence from multiple instances of the saormw
the pronunciation accuracy, recovery rate and POS labetacg of
recurrent OOV words can be substantially improved.

Index Terms— OOV word detection, recurrent OOV words,
distributed evidence, OOV word learning

1. INTRODUCTION

Most speech recognition systems are closed-vocabulaognizers
and do not accommodate out-of-vocabulary (OOV) words. But i
many applications, e.gvpice searctor spoken dialog systen ®0OV
words are usually content words such as names and locatiuioh w
contain information crucial to the success of these taskzeeéh
recognition systems in which OOV words can be detected areth
fore of great interest.

Hybrid speech recognition systems use a hybrid lexicon gnd h
brid language model (LM) during decoding to explicitly repent
OO0V words with smaller sub-lexical units [1-9]. In previowsrk,
we have built hybrid systems using different types of sudekd
units [10]. We also improved the hybrid system performancejs
plying system combination techniques [11, 12]. But in con@OV
word detection systems, each OOV word is recognized antettea
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could estimate a better pronunciation, spelling and paspeech
POS) label for the word. The proposed OOV word clusteringl an
arning techniques were tested on data with different lspga
styles and recording conditions including the Wall Stremirdal
(WSJ), Switchboard (SWB), and Broadcast News (BN) datasets

The remainder of this paper is organized as follows. Se@ion
describes the bottom-up clustering approach. Sectionspts the
details of estimating the pronunciation, spelling and Péaxgl for
recurrent OOV words. Sections 4 and 5 discuss experiments an
results. Concluding remarks are provided in Section 6.

2. FINDING RECURRENT OOV WORDS

2.1. OOV word detection using the hybrid system

In our hybrid system, we applied a hybrid lexicon and hybri L
during decoding to detect the presence of OOV words. The hy-
brid lexicon was obtained by integrating sub-lexical umitel their
pronunciations into the word lexicon. The hybrid LM was ted

in a flat manner. First, the pronunciation of OOV words was es-
timated through the grapheme-to-phoneme (G2P) convef&din
and then used to train the sub-lexical units. After that, O@rds

in the training text were replaced by corresponding suizééxinits

to get a new hybrid text corpus. Finally, a hybrid LM was tesin
from this hybrid text data. When training the hybrid LM, sdimees
two or more OOV words might appear consecutively in the train
ing data. After representing OOV words using sub-lexicaisthe
word boundary between two OOV words was lost. To solve this
problem, we added two more symbols into the sub-lexical secg!

of each OOV word, which were the word start™and word end
“$”. More details of our hybrid system can be found in [12].

In the hybrid system output, we considered the recognizbd su
lexical units as detected OOV candidates. And we segmensed a

individually. We do not know whether two detected OOV words duence of sub-lexical units into multiple OOV candidateingishe

correspond to the same word or not.

word start and word end symbols. Then, we collected the glmne

In [13], we described how to find recurrent OOV words in a acoustic and contextual features for each OOV candidateyives

hybrid speech recognition system through bottom-up dlingie
Specifically, we began with collecting the phonetic, acisuahd
contextual features for OOV candidates in the hybrid systern
put. During clustering, each OOV candidate was initiallgated
as one cluster, then pairs of clusters were iteratively ecemntil
the distance between two clusters exceeded a thresholtheAstrid,

in Table 1, the phonetic feature is simply the decoded phane s
guence of an OOV candidate, the acoustic feature is posfaob-
ability vectors extracted from the OQV region in the testspgech,
while the contextual feature is obtained from words surdiog the
OQV candidate in the hybrid decoding result. Since we ctélgc
evidence from the hybrid system output, recognition emaight be

OOV candidates in the same cluster were considered as teultipincorporated in those features. For e)_<ar11_ple, in the comaéXea-
instances of the same OOV word. In this paper, we extended odkre of OOV candidate;, the word “major” is a mis-recognition of

previous work to show that such multiple occurrences of aivOO
word were very valuable in the OOV word learning task, whees w

*This research was conducted while | was a PhD student at CMU.

“mayor”; and the correct pronunciation of OOV candidaiés actu-
ally “B AO R AO F". Depending on the hybrid system performance
the collected features could be very noisy, which thus coalgse a
poor clustering performance.



. . compensates for the acoustic confusability between pHdBe$8],
Table 1. Examples of the phonetic, acoustic and contextual festure P y P |

of OOV candidates. edit(0,0) = 0
ooV Phonetic Acoustic Contextual edit(i,0) = i
$1 SEHLTS | [0.00...0.17]| ... major join crowd edit(0, §) j
wall street ... '
s2 | MAORAOF | [0.01...0.24]| ... pakistani minister edit(i—1,7) +1
campaign ... edit(i,j) = ming edit(i,j—1)+1 4
s3 WAOLIY |[0.02..001]| .. play ball court edit(i — 1,4 — 1) + (4, j).
rule gym schedule ..

In Eq. 4,c¢(i,7) is the confusability between phones at positions

andj

2.2. Bottom-up clustering c(i, j) = { (1)—p(i,j) :; Z 4 ;.7 (5)

As we normally do not know the number of OOV words in the tegtin where p(i, j) is the probability of mis-recognizing two phones,

speech and many OOV words only appear once, we cannot appWhich was estimated from the recognition result of the trajn

the centroid-based or distribution-based clusteringritlyoms, such ~ speech.

as the k-means algorithm. Therefore, after collectinguiest from

the hybrid system output, we performed the bottom-up clirgldo 2 2 2 Acoustic distance

iteratively find multiple instances of the same OOV word tiiiy,

each OOV candidate was considered as a single cluster. Ten, Besides measuring the phonetic distance between OOV cedid

each iteration, two clusters with the smallest distanceeweerged. We can also compare their acoustic features extracted frier@OV

This clustering procedure ended when the distance betwesters ~ region in the testing speech. Acoustic features, such asntie

was larger than a threshold. And the threshold was tuned @n thscale frequency cepstral coefficients (MFCCs), are higehsgive

development data to achieve the best clustering perforenanc to speaker and channel variations. On the other hand, pmster
We defined the distance between two clusters as the average B#Sed features, such as the phonetic posteriorgram, agerotmrst

pairwise distances between OOV candidates in two clustees. ~ and @lso widely used in speech recognition [19-21]. Theefae

mally, the distance between clust&y, andC,, is used the p_osterior featgre to measure th_e acoustic dislmumen
OOQV candidates. Precisely, each fraghein the OOV region was
1 ) represented by a probability vector
D(Cmvcn) = m Z Z d(578 )7 (1)
mlinl seen srec, ve = [P(p1lfe), P(pzlfe), ... P(px| fi)], (6)
whereP (px|f+) is the posterior probability of; belonging to phone

here|C,,| and|C,| are the number of candidates in cl 3 . . .
\;vndC | anld Gl . I In cluséy pr and K is the number of phones. To estimd®éps| f: ), we trained

a Gaussian mixture model (GMM) with 256 Gaussian components
for each phone. Then the posterior probabiltyp,| f:) can be cal-
culated as

__ P(filpx)

is the distance between two OOV candidates. Hete(s,s’), Plpilt) = > wer P(felpr)’ ™

/ / H H

e e e horel: Scaustc A ConeXl e ) i the helhod of oserving rom the G

their weights respectively. of pr. In our experiments, we found that the probability mass was
usually absorbed by only a few GMMs. Most phones had a pos-

terior probability close to zero. Because of that, we penfeal a

discounting-based smoothing on the posterior probahikigtor v,

in a way similar to [21]. Specifically, each zero elemenvinvas

The most direct way to determine whether two OOV candidates ¢ @ssigned a small posterior probabilityand each non-zero element

respond to the same OOV word or not is to examine whether theyas discounted byl — N ), whereN is the number of zero ele-

have the same pronunciation. To do that, we measured thespon MeNts inve.

similarity between OOV candidates by computing the distaloe- After constructing the posterior features, we calculated t

tween their decoded phone sequences. Specifically, theepbaiis- ~ acoustic distance between OOV candidates using the dyrtamec

tancedp (s, s') between OOV candidateands’ was formulated as  Warping (DTW) algorithm [22, 23],

the normalized edit distance between their decoded phanesee

d(s,s") = wpdp(s,s’) + wada(s,s') + wedo(s,s'),  (2)

2.2.1. Phonetic distance

ps andp.:: da(s,s’) = DTW (s,s"). (8)
dp(s,s') = edit(ps, ps) @3) InDTW, the distance between two posterior vectorandv; was
ps| + |ps| defined as the negative log cosine similarity betweeandv;
where|ps| and|p,/| are the lengths of phone sequepg@ndp,. As vi - vj
shown in Table 1, the decoded phone sequences of OOV caeslidat d(vi, v;) = —ZOQ(W)- 9)

may incorporate recognition errors. Particularly, simignones,
such as “AA” and “AO”, are more often to mis-recognize thae th Moreover, similar to the phonetic distance, we also norzedlithe
other phones. Therefore, we adopted a modified edit distdrate acoustic distance by the lengths of OOV regions.



2.2.3. Contextual distance

3.1. Learning the pronunciation and spelling

OOQV words are usually content words such as names or losatiorTo learn a better pronunciation for a recurrent OOV word, we<

and the same OOV word may appear in similar contexts or emviro
ments. If two OOV candidates are surrounded by the same veords

bined the pronunciations of its multiple instances. Speslify, we
implemented an algorithm similar to the recognizer outpating

used in the same topic, they may actually be the same OOV worcrror reduction (ROVER) system to produce a composite proinu

As presented in Eq. 2, besides the phonetic and acoustandes,
we also measured the contextual distance between OOV caasdid
during clustering. To take the position of surrounding veondto
account, the contextual distance has two elements:

de(s,s') = w'de(s,s') +w?d (s, s). (10)

Here, d- (s, s') is the local contextual distance that measures the

similarity between the adjacent words of OOV candidatesiclwvh
works like an N-gram LM. AndiZ (s, s") is the global contextual
distance, which resembles a topic model.

Table 2. Examples of the local and global contextual features o
OOV candidates.

OOV S1 S2

Text i am going to watch| i love sz ryan i alway
tonight because s; | like to watch him pitch
ryan is going to pitch

Local tonight because s; | ilove so ryani

Context | ryanis

Global watch:0.33 pitch:0.33 watch:0.25 pitch:0.25

Context | ryan:0.33 ryan:0.25 love:0.25

To calculate the local contextual distance, just like thgram
LM, we compared the left two and right two words of OOV candi-
dates M

:1——7

dl /
C(878) 4

(11)

where M is the number of matched words. For instance, as shown
in Table 2, there is one match between the local context of OOV

candidates; ands:, henced (s, s') equals to 0.75.

The global contextual distance was calculated in the sanme ma

ner as measuring the similarity between two documents orimd-
tion retrieval. However here, we focused on words in the ssame
tence and we only used content words. Particularly, for aitvOO

candidates, its global context was represented by a term frequenc

vector ¢, which was built from the content words of the recogni-
tion hypothesis containing. Then the global contextual distance
between OOV candidateands’ was calculated as

/
Cg " Cg

d? (878l) = _lOg(
¢ lleglllles I

) (12)

which is the negative log cosine similarity between the glaion-

ation from multiple OOV candidates’ decoded pronunciati{@d].
Here, the multiple pronunciations were first combined intsira
gle phone transition network. Then this phone transitiotwoek
was re-scored and searched to find the optimal pronuncifdidhe
OO0V word. When re-scoring the phone transition network, ale ¢
culated both the phone frequency and phone posterior piltizab

N(p:)

> N(pi)

where N (p;) is the count of phone at the i-th alignment in the
phone transition networkP(p;) is the posterior probability calcu-

Score(pi) = - + (1 —a)- P(ps), (13)

1Jated from 256 GMM components, adis the weight used to bal-

ance the phone frequency and posterior probability.

For example, as shown in Table 3, our system found three in-
stances of the OOV word “PASHOVSKI” in the testing speechdAn
the decoded pronunciation of each instance is different feach
other. According to the reference lexicon, the correct prmmation
for “PASHOVSK” should be “P AH SH AAV S K IY”. We can
find that none of the three pronunciations is correct. But &y c
rectly combining those pronunciations, we may be able tonase
the correct pronunciation for the OOV word “PASHOVSK”.

Table 3. Examples of the decoded pronunciations of recurrent OOV
words.

OOV Candidates Decoded Pronunciations
S1 KRAHSHNAAVSKIY
So PAHSEHVSKIY
S3 PAESHAAFSKIY

After learning the pronunciation for recurrent OOV words w
applied the phoneme-to-grapheme (P2G) conversion to &tithe
spelling of those words. To achieve the best P2G converston p
formance, we trained a 6-gram joint-sequence model witht gina-

)phone units as suggested in [25].

3.2. Learning the POS label

After representing decoded OOV words with estimated smglin

the hybrid system output, we performed the POS tagging imat

the POS label for recurrent OOV words, where the StanfordHiax
POS tagger was used [26]. we adopted all 35 labels from the Pen
Treebank POS tag set [27]. In our system, words like “I'VE” or

text of s ands’. Examples of the global context are also provided in“TEAM'S” were processed as a single unit. However, in the POS

Table 2.

3. LEARNING RECURRENT OOV WORDS

After finding recurrent OOV words from the hybrid system autp
we worked on learning the lexical properties for those OOVdso
Specifically, we considered clusters with more than one O&nde
dates as recurrent OOV words which appeared more than ottoe in
testing speech. Then, we estimated the pronunciationljrepaind

tagger, those words were predicted with separate labels.inFo
stance, the POS tagger output of “TEAM’'S” was “TEAM NN” and
“S POS". To solve this problem, we combined the separatelab
of a word to form a compound label, such as “TEAM’'S NN+POS".
Therefore, besides the 35 base labels, there were also noamy ¢
pound POS labels in our system. As multiple instances ofahges
OO0V word may be incorrectly tagged with different POS lakiéls
they appeared in different context, we applied majorityingtto
combine the multiple POS labels of a recurrent OOV word. Dur-

POS label for recurrent OOV words by combining evidence froming vote, if there was a tie between different labels, we oanig

their multiple instances.

selected one label for that OOV word.



4. EXPERIMENT SETUP

phonetic

4.1. The hybrid system 0.9t B acoustic
. . — |
We built hybrid systems from the the Wall Street Journal (YWSJ 0.87 _;ﬁ';tf;;ﬂa 1
Switchboard (SWB) and Broadcast News (BN) corpora, respec 07t — Al
tively. The WSJ and BN system had a 20k-word vocabulary, avhil
the SWB system had a 10k-word vocabulary. For WSJ, the evalu 06r _ 1
ation data included the WSJ '92 20k-word and '93 64k-word|Eva §( 05k
sets. For SWB, a subset of the SWB2 data was selected foraevalu oal
tion. And for BN, the evaluation data were the FO and F1 setleof ’
1996 HUB4 Eval data. 0.3f
0.2f
Table 4. The OOV word detection performance. 0.1f H
Task WSJ | SWB BN 0—=—

WSJ SwB BN

OOQV Rate| 2.2% 1.7% 2.0%
Precision | 63.8% | 67.2% | 49.8%
Recall 74.0% | 74.6% | 62.4%

Fig. 1. The bottom-up clustering performance.

From the OOV word detection performance in Table 4, we can

find that the hybrid system performs very well in the WSJ andBSW mutual information (AMI) score [30], which calculates thestmal

tasks — up to 75% OOV words are detected and the precision imformation between the hypothesis and reference clugigrnd is

more than 60%. But in the BN task, utterances are usually muchlso normalized against chance. In our experiment, we fé\RH

longer than those in the WSJ and SWB tasks and multiple OO\and AMI had very similar observations. Therefore, only thelA

words can appear in one utterance or even in a sequence, mwhl@  score was reported.

OO0V word detection more difficult. To evaluate the OQV word learning performance, we calcdlate
the pronunciation accuracy (PA), recovery rate (RA) and R8I

) ) _accuracy. PA measures how many detected OOV words are adkecode

system output. tected OOV words’ spelling is correct, and the POS label mmyu
OOV Word Has | WsJ | SWB BN computes the percentage of OOV words with the correct PQS.lab
1 instance 70.8% | 77.5% | 68.8%
2 instances 24.0% | 16.5% | 19.5% 5. EXPERIMENT RESULTS
> 3instances | 5.2% | 6.0% | 11.7%

5.1. The bottom-up clustering results

The number of instances an OOV word has is given in Table 5The bottom-up clustering performance is given in Fig. 1. ust
It can be seen that about 70% OOV words only have one instandiést compare the clustering performance when using onefed
and less than 10% OOV words have more than two instances. Omeasure the distance between OOV candidates. We can firtti¢hat
average, one OOV word has 1.2 instances. phonetic feature is very effective in all tasks. The acaufgature
works well in the WSJ task but shows the same ARI score as ran-
dom clustering in the SWB and BN tasks. This may because that
measuring the distance between acoustic signals in theaspEus
The Rand index (RI) is a common evaluation metric for clister or noisy speech is less reliable than in the clean speecto dge
[28]. It involves counting pairs of items on which the hypesis  that the WSJ data consists of read speech with extendedinegsr
and reference clusterings agree or disagree. In practiveves, RI ~ from each speaker. Although the contextual feature is ngfoasl
does not take on a constant value for random clustering.dizdfye ~ as the phonetic one, it does produce positive results adifissent
when the number of classes is large and the number of caedidattasks. In addition to using only one feature during clustgrive also
is small, a random clustering result can have a very good &ksc applied the combined feature as defined in Eq. 2. It can betkaén
Contrarily, the adjusted Rand index (ARI) is another wideged the ARI score gradually increases when using more featunesgl
clustering evaluation metric [29], which adjusts for thewebe of a  clustering. Even for the SWB and BN tasks, where the acofesiic
clustering result. The ARI score is bounded between -1 tont. | ture does not work at all, combining the phonetic and acoust-
dependent clusterings has a negative ARI score, similatarimgs  tures can still yield some improvement. And the best peréorce
has a positive ARI score and an ARI score of 1 indicates a gerfe is achieved when combining all features. Overall, the ARIreds
match between the hypothesis and reference clusteringshéwsn  up to 0.8 in the WSJ and SWB tasks and about 0.6 in the BN task,
in Table 5, in our experiment, the majority of clusters onbnin  which indicates that we can successfully find most recur@oy
one candidate and the candidate to cluster ratio is as low2adfl ~ words using the proposed bottom-up clustering approach.
without clustering but simply consider each candidate as©@®V The goal of finding recurrent OOV word is to combine the ev-
word, the Rl score will be almost 1, but the ARI score will beveadi idence from its multiple instances, so that we can estimateeb
value close to 0. For that reason, we chose to use ARI foraringt  lexical properties for the word. Therefore, during cluisteywe pre-
evaluation. We also tested the clustering result using tliested  fer not having different OOV words in the same cluster thgmg

4.2. Evaluation metrics
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Fig. 2. The pronunciation accuracy of recurrent OOV words with Fig. 3. The recovery rate of recurrent OOV words with and without

and without combination. combination.
to find all instances of one word. For example, there are four | 100 B basciine
stances of the OOV word “CIBA” in the testing speech. We prefe ol I combination

finding two or three instances than grouping all four “CIBAitkv
some other OOV words into the same cluster. From the clugteri
result, for clusters with more than one OOV candidates, wmiem
how many clusters are pure — only contain instances of theesam
OOV word. From Table 6, we can find that most detected recturren
OO0V words are correct, which only consist of instances ofstrae
word. As a result, we were able to collect evidence from rpldti
instances of recurrent OOV words for OOV word learning.

POS Label Accuracy (%)

Table 6. The percentage of detected recurrent OOV words which
only contain instances of the same OOV word.

Task WSJ | SWB | BN WSJ SWB BN
Correct Clusters| 97% | 81% | 86%

Fig. 4. The POS label accuracy of recurrent OOV words with and

) without combination.
5.2. The OQV word learning results

To estimate a better pronunciation for recurrent OOV worel com-
bined the pronunciations of its multiple instances. Thexprwiation

accuracy (PA) of recurrent OOV words with and without conabin -
tion is presented in Fig. 2. It can be seen that PA increadestau of the same word to produce a more accurate Iabel._ Fig. 4“”.&36
tially after combining the multiple pronunciations of an @@ord the POS label accuracy of recurrent OOV words with and withou

in the WSJ and BN tasks. In the SWB task, however, we found tha?omblnatlon. It can be seen that the POS label accuracy ivireg

T after combining labels from multiple instances of an OOV dvdrhe
Vrcil:t!tlfgz Isr‘:;? en Cpe;‘f)nOJnt(r;]igtisoimeA(s)(a)\ﬁeV;lcjlrtds\/v\évijﬂz l:;‘:i:z iﬁtyoi(:ﬁpos label accuracy in the SWB task is much lower than thaten th

provement from combination WSJ and BN tasks, this may because many conversationantes

We also evaluated how many recurrent OOV words had the co2re not grammatical in the SWB task, which makes POS tagging

rect spelling after the P2G conversion. The recovery raf) (& much harder.

recurrent OOV words with and without combination is giverkrig.

3. We can see that RR also increases when performing the R2G co 6. CONCLUSIONS

version on the combined pronunciation of a recurrent OOVdwor

the WSJ and BN tasks. As there is no improvement on PA in thén this paper, we studied learning better lexical properfig re-
SWB task, RR also does not change. By comparing Fig. 2 with Figcurrent OOV words. Specifically, we first identified recutr&@0OV
3, we can find that RR is usually lower than PA, as the P2G cenvewords through bottom-up clustering. We then estimated:bgito-
sion failed to estimate the spelling of many OOV words, altffo  nunciation, spelling and POS label for recurrent OOV worgsiti
their pronunciations are correct. lizing their multiple instances. From the experimentaluitss we

Besides estimating better pronunciation and spelling éour-
rent OOV word, we also combined POS labels of multiple instan
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