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Abstract

In this paper, we address the out-of-vocabulary (OOV) detection
and recovery problem by developing three different fragment-
word hybrid systems. A fragment language model (LM) and
a word LM were trained separately and then combined into a
single hybrid LM. Using this hybrid model, the recognizer can
recognize any OOVs as fragment sequences. Different types
of fragments, such as phones, subwords, and graphones were
tested and compared on the WSJ 5k and 20k evaluation sets.
The experiment results show that the subword and graphone
hybrid systems perform better than the phone hybrid system in
both 5k and 20k tasks. Furthermore, given less training data,
the subword hybrid system is more preferable than the graphone
hybrid system.

Index Terms: OOV detection and recovery, hybrid model,
phone, subword, graphone

1. Introduction

Most speech recognition systems are closed-vocabulary recog-
nizers and cannot deal with out-of-vocabulary (OOV) words.
On average, one OOV introduces 1.2 word errors [1]. Also,
OOV words are usually content words, such as names, loca-
tions, etc. Therefore, it is important to develop a speech recog-
nition system which can detect and recover OOVs.

There are several approaches for detecting OOVs: 1) use
a hybrid language model (LM) during decoding to explicitly
represent OOVs with phones, subwords, graphones or generic
word model [2][3][4][5]; 2) use confidence scores and other
evidences to locate possible OOV regions [6][7][8][9]; and 3)
combine hybrid LM with confidence metrics to further improve
OOV detection performance [10][11]. With respect to OOV re-
covery, phoneme-grapheme alignment can be used to restore
the written form of an OOV word [4][12]. Other approaches
have used finite state transducers (FSTs) or worked in the spo-
ken term detection framework [13][14][15].

In this paper, we report the performance of OOV detection
and recovery using the fragment-word hybrid LM, similar to the
method described in [2]. Different fragment types have been
proposed, we examine three, the phone, subword, and graphone
using hybrid systems, on the WSJ 5k and 20k evaluation sets.
We report the word-level recall and precision in the OOV detec-
tion task and word error rate (WER) in the recovery task.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the details of the OOV detection and recovery
methods. Sections 3 and 4 discuss our experiments and results.
Concluding remarks are provided in Section 5.

2. Method
2.1. OOV detection

A fragment-hybrid LM is applied during decoding to detect the
presence of OOVs. We trained an open-vocabulary word LM
from a large text corpus and a closed-vocabulary fragment LM
from the pronunciations of all words in a dictionary. When
training the word LM, all OOVs were matched to the same un-
known token “〈unk〉”. Then by combining the word LM with
the fragment LM, a single fragment-hybrid LM was generated.
For example, the unigram probability of a fragment in the hy-
brid LM, PH(fi), is calculated as

PH(fi) = PW (〈unk〉) · PF (fi) · COOV , (1)

where PW (〈unk〉) is the unigram probability of the unknown
token in the word LM, PF (fi) is the unigram probability of the
fragment in the fragment LM, and COOV is the cost of entering
an OOV word during decoding. Similarly, we can compute N-
gram probabilities in the hybrid LM.

2.2. Fragments

We investigate three different types of fragments, phones, sub-
words, and graphones for suitability in OOV detection and re-
covery. Phone and subword only model the phonetic level; gra-
phone also considers orthography.

2.2.1. Phone

In the phone hybrid system, an N-gram phone LM was trained
and combined with a word LM to generate the hybrid LM. Then
during decoding, OOVs were represented by phone sequences.
For example, our system recognized the OOV word “ashland”
as “AE SH AH N”, which is close to the correct pronunciation.

2.2.2. Subword

Subwords, such as “AH N” and “EY SH AH N”, are iteratively
trained phone sequences of variable length [3] as follows: First
we add all phones to a subword inventory to ensure the full cov-
erage of all possible words. Then, for each iteration, the most
frequent subword bigram is merged and added to the subword
inventory. Its occurrences in the training data are concatenated
into a single token. This transformed training data is used in
the next iteration. The training procedure ends when the target
number of subwords is reached.

2.2.3. Graphone

A graphone is a grapheme-phoneme pair of English letters and
phones. For example, one possible representation of the word
“speech” is

speech =

(
s
S

)(
pee
P IY

)(
ch
CH

)
.
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In our system, a trigram joint-sequence model is trained from
a dictionary and used to segment in-vocabulary (IV) words into
graphone sequences [16]. Then a graphone LM is trained and
merged with a word LM to produce the hybrid LM. Tokens have
a minimum and maximum number of letters and phones; we
used the same range for both letters and phones. The minimum
is 1 and the maximum is controlled by a parameter L. There-
fore, graphones from 1 up to L letters and phones were allowed.

2.3. OOV Recovery

After OOV detection, appropriate spellings were generated
for OOVs using the recognized fragment sequences. For
the graphone hybrid system, we can simply concatenate let-
ters from the detected graphone sequence to restore the
OOV written form. For the phone and subword hybrid sys-
tems, a phoneme-to-grapheme conversion was applied. To
achieve good phoneme-to-grapheme conversion performance,
we trained a 6-gram joint sequence model with short length
units, as suggested in [17].

3. Experiment Setup
3.1. Dataset

We tested our system on the WSJ Nov. 92 5k and 20k evalua-
tion sets [18] using the Sphinx3 decoder. The WSJ0 text corpus
was used for word LM training. In particular, the top 5k and
20k words in this text corpus were used as vocabulary, yielding
an OOV rate of 2% for both tasks. Then an open-vocabulary
5k-word LM and 20k-word LM were trained. The recognition
dictionary was generated using CMUdict (v.0.7a). The frag-
ment LM was trained from the dictionary (i.e., without weight-
ing each word by corpus frequency). Following this step, we
built a bigram hybrid LM.

We observed a significant improvement by changing the
acoustic model from WSJ-SI84 to WSJ-SI284, accordingly we
used the WSJ-SI284 model. WER using the word bigram LM
was 9.23% and 12.21% on the 5k and 20k task. This is compa-
rable to the results using the standard Lincoln Lab bigram LM.

3.2. Evaluation method

We use recall and precision defined below to measure the OOV
detection performance.

Recall =
#correctly detected OOVs

#OOVs in reference
× 100% (2)

Precision =
#correctly detected OOVs

#OOVs reported
× 100% (3)

We calculated recall and precision at the word level which mea-
sures both the presence and positions of OOV words in an ut-
terance since for practical purposes (e.g., in a dialog system),
knowing where OOVs are located in an utterance is more valu-
able than simply knowing that OOVs exist. For OOV recovery,
we compared the WER before and after restoring the written
forms of OOV words.

4. Results
4.1. Phone hybrid system

The OOV detection performance for the phone hybrid system is
shown in Fig. 1. We swept the OOV cost COOV when gener-
ating the hybrid LM to generate the recall-precision curve. We
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Figure 1: The OOV detection for the phone hybrid system.
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Figure 2: The OOV detection for the subword hybrid system.

find that the OOV detection performance for the 5k task is better
than for the 20k task. This is due to the much larger dictionary
in the 20k system, meaning that an OOV word is more likely to
be recognized as IV word. This finding applies to the subword
and graphone hybrid systems as well. In the OOV recovery ex-
periment, we observed that the higher the recall, the larger the
improvement. But the overall relative improvement after recov-
ery was not as good as expected, because of the high consonant
deletion rate in OOV hypotheses (cf. example in Section 2.2.1).
Details of OOV recovery results are given in Section 4.4.

4.2. Subword hybrid system

For the subword hybrid system, we investigated OOV detection
and recovery performance by varying the number of subwords.
For the 5k task, we used 50, 100, and 150 subwords when train-
ing the subword LM. Here, 50 subwords means that there are
50 compound subwords plus initial phone subwords. For the
20k task, as there are more IV words for training, 100, 300, and
500 subwords were tested. We find (Fig. 2) that using 50 sub-
words is better than using 100 or 150 subwords in the 5k task.
However, in the 20k task, we achieved the best result with 500
subwords, which is 10 times greater than the optimal number of
subwords used in the 5k task. The reason lies in the growth of
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available training data. There are only 5000 words for training
the subword LM in the 5k task, which is not enough to estimate
a reliable distribution over subwords. In contrast, in the 20k
task, as we had four times more IV words for training, more
subwords were affordable. Given a larger dictionary for train-
ing, 100 or 150 subwords could be a better choice in the 5k
task. In both tasks, more than 150 subwords or 500 subwords
were tested, but the performance was worse than the results we
presented in Fig. 2.

For OOV recovery, in both the 5k and 20k tasks, we found
that the relative improvement of WER after recovery was higher
with more subwords. This is reasonable as more subwords re-
quires more iteration runs, thus longer subwords will appear in
the hybrid LM. For example, the average length of 50 subwords
and 150 subwords in the 5k task is 1.6 and 2.1 phones, while
the average length of 100 subwords and 500 subwords in the
20k task is 1.9 and 2.5. Since more consonants will remain
in longer subwords during decoding, the phoneme-to-grapheme
conversion is more precise.

4.3. Graphone hybrid system

Different graphone lengths were tested to find the optimal gra-
phone set for OOV detection and recovery. In both 5k and 20k
tasks, graphones with length of 2, 3 and 4 were applied. Table
1 shows the total number of graphones when varying graphone
length. It can be seen that there will be many more graphones
if we allow a graphone to have longer sequence of letters and
phones. Fig. 3 shows the OOV detection results of graphone
hybrid system with different graphone lengths. We can find that
the optimal graphone length is 2 in the 5k task and 3 in the 20k
task. Again, similar to the subword results, because there is a
larger IV dictionary for training in the 20k task, we could use
more graphones. For OOV recovery, we observed that better
result was gained by using longer graphones. This is consistent
with the subword results.

Table 1: Graphone count over different graphone lengths.

Graphone Length 2 3 4
WSJ-5K 1167 3000 4122
WSJ-20K 1746 6220 11030

4.4. Comparing the three systems

Fig. 4 presents the OOV detection results of each individual
system. In the 5k task, the 50-subword system and the length
2 graphone system were selected. In the 20k task, we chose
the 500-subword system and the length 3 graphone system. It
can be seen that in the 5k task, the subword hybrid system is
better than the phone hybrid system. The reason is that it can
utilize a longer history of phones. For instance, a subword bi-
gram “AE N T” incorporates a history of two phones but any
phone bigram only relies on the previous phone. The subword
hybrid system is also better than the graphone hybrid system in
the 5k task; even if graphone length is as short as 2, there are
still more than 1000 graphones. However, given the size of the
training corpus, a distribution over such a large inventory can-
not be well estimated. So it is not surprising that the graphone
hybrid system catches up with the subword hybrid system in the
20k task. Meanwhile, the growth of the training data also leads
to a significant improvement over the phone hybrid system rel-
ative to the subword and graphone systems.
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Figure 3: OOV detection for the graphone hybrid system.
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Figure 4: OOV detection for different systems.

The OOV recovery results of different systems are given in
Fig. 5 and Fig. 6, in which the solid line is the WER before
recovery and the dashed line is the WER after recovery. First,
we only compare the WER of the three systems before recov-
ery. The subword hybrid system is the best in the 5k task and
the graphone hybrid system in the 20k task. And they are both
better than the phone hybrid system in either task. We can also
learn that when recall is low, the difference among those sys-
tems is small. In fact, given low recall, the WER of all the three
systems almost remains the same as the baseline word recog-
nition result, sometimes even lower. This implies that we can
detect OOVs without affecting WER. Similar to the detection
task, with more training data, the advantage of the subword and
graphone hybrid systems over the phone hybrid system is more
pronounced.

Now, we focus on the OOV recovery performance in Fig.
5 and Fig. 6. We can notice that, as mentioned in each indi-
vidual system, OOV recovery is more effective when recall is
high. Moreover, the best overall performance is obtained by
the subword hybrid system in the 5k task and by the graphone
hybrid system in the 20k task. In both tasks, we achieved the
largest relative improvement after recovery from the graphone
hybrid system. This is because in the phone and subword hy-
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Figure 5: The OOV recovery results on the 5k task.
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Figure 6: The OOV recovery results on the 20k task.

brid systems, the spellings are recovered through the phoneme-
to-grapheme conversion, which may involve additional errors.
However, in the graphone hybrid system, letters and phones are
aligned and simultaneously modeled as a pair. So during decod-
ing, the pronunciation and the written form of an OOV word are
found at the same time. Hence, the phoneme-to-grapheme con-
version is not necessary.

5. Conclusion
We compared OOV detection and recovery performance for
three fragment-word hybrid systems, phone, subword, and gra-
phone. For each system, the configuration, such as the number
of subwords or the length of graphone, was varied. We com-
pared performance on two different datasets - the WSJ 5k and
20k tasks. We found that the subword and graphone hybrid sys-
tems are significantly better than the phone hybrid system for
both OOV detection and recovery tasks. Furthermore, for the
subword and graphone hybrid systems, 1) more training data
allows more fragments thus better coverage; 2) provided suffi-
cient training data are available, longer subwords or graphones
are preferable to shorter ones; 3) the graphone hybrid system
provides a larger relative improvement in the recovery task.
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