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Abstract

Recently a new dependence measure, the distance correlation, has been proposed to measure the
dependence between continuous random variables. A nice property of this measure is that it can be
consistently estimated with the empirical average of the products of certain distances between the
sample points. Here we generalize this quantity to measure the conditional dependence between
random variables, and show that this can also be estimated with a statistic using a weighted empirical
average of the products of distances between the sample points. We demonstrate the applicability of
the estimators with numerical experiments on real and simulated data sets.

1. Introduction

Measuring conditional dependencies is crucial in many applications of machine learning and statistics.
There are many problems where we want to know how the dependence of two random variables
changes if we observe other random variables. Correlated random variables might become inde-
pendent when we observe a third random variable, and the opposite situation is also possible when
independent variables become dependent after observing other random variables.

The estimation of certain dependence and conditional dependence measures are easy in a few
cases: For example, (i) when the random variables have discrete distributions with finite possible
values, (i1) when there is a known simple relationship between them (e.g. a linear model describes
their behavior), or (iii) if they have joint distributions that belong to a parametric family that is easy
to estimate (e.g. Gauss distributions). In this paper we consider the more challenging nonparametric
estimation problem when the random variables have continuous distributions, and we do not know
have any other information about them.

A simple and elegant method, the distance variance and correlation, has been introduced recently
to measure dependence between continuous vector-valued random variables (Székely et al., 2007).
These quantities can be efficiently estimated using only certain Euclidean distances between the
sample points. The main contribution of this paper is to generalize these quantities for the conditional
case and provide consistent estimators for them. We will define the conditional covariance V(X,Y|Z)
and conditional correlation R (X, Y|Z) quantities between X, Y, and Z random variables. These
quantities are nonnegative and achieve zero if and only if X and Y are conditionally independent
given Z. We will also show that R(X,Y|Z) < 1, and it achieves this upper bound when there is
a conditional linear relationship between X and Y given Z. Our goal is to consistently estimate
these quantities. We will see in the subsequent sections that the problem is quite challenging. In the
‘unconditional’ case, it is enough to plug the empirical characteristic functions into the definition of
distance covariance V' (X, Y). In the conditional case, however, it is not obvious if there are simple
estimations for the conditional characteristic functions. Moreover, even if we could replace the
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Fx,y|z==(t, ) conditional characteristic functions with an appropriate estimate F X,v|z==(t,5), we
will still need to calculate its multidimensional integral with respect to w(t, s)dt ds, where w(t, s) is
a weight function. Even if the joint, conditional, and marginal densities of the random vectors were
known, the problem would be still challenging because we need to calculate this integral. We also
want to develop an estimator that is simple and uses only Euclidean distances between the sample
points. In this paper we will show that all of these requirements are possible.

The derived estimators have several potential applications. In many scientific areas (e.g., epidemi-
ology, psychology, pharmacoinformatics, econometrics) it is crucial to detect confounding variables
and not to infer causation from apparent correlations (Pearl, 1998; Montgomery, 2005; Baumgarten
and Olsen, 2004). Conditional dependencies play a central role in Bayesian network research as well.
The structure learning algorithms of Bayesian nets need to fit a graph to a set of random variables in
such a way that this graph satisfies the local Markov property, that is, each variable is conditionally
independent of its non-descendants given its parent variables. To asses how well the local Markov
property is satisfied in the fitted graph, we need to estimate the conditional dependencies of the
nodes.

In our daily life we can also easily encounter examples when people infer causation from observed
correlations. Many times, however, there is a hidden factor that is responsible for this correlation.
A famous example from introductory statistical books is that there is nonzero correlation between
the reading skills of children and their shoe size. Here the underlying common factor is obviously
the age. We can find several similar examples in our daily life and in many ancient legends too.
According to a northern European legend, the stork is responsible for delivering babies to parents.
Indeed, one can show that highly statistically significant correlation exists between stork populations
and human birth rates across Europe (Matthews, 2000). Conditional dependence estimators can help
us to reveal the underlying hidden factors.

The paper is organized as follows. In the next section we summarize some related work. In
Section 3 we review the definitions and properties of distance based variance, covariance, and
correlation. We generalize them for the conditional case and formally introduce our estimation
problem in Section 4. The proposed estimator is derived in Section 5; here we also discuss some of its
theoretical properties and prove the consistency of the estimator. We demonstrate the consistency of
the estimator by numerical experiments in Section 6 and also show the applicability of the estimator
in real data sets. We finish the paper with a short discussion and draw conclusions. The proofs of the
lemmas and theorems can be found in the Appendix, and there we also provide a few more numerical
experiments.

Notation: Let B(x, R) denote a closed ball around # € R? with radius R, and let
Vol (B (, R)) = AR be its volume, where ) stands for the volume of a d-dimensional unit ball. For
brevity, B will denote the unit ball centered at 0 € R?, and B¢ = R? \ B stands for the complement
of B. For x,t € R%, (t, ) denotes their inner products, and |z| stands for the Euclidean norm of z.
We use X,, —, X to denote convergence of random variables in probability. If y € R%, » € R%
are column vectors, then = = [y; z] € R%+4= s a column vector with components 3 and z.

2. Related work

Although the estimation of conditional dependence is a fundamental problem in statistics and machine
learning, we know very little about how to estimate it efficiently. Recently, Fukumizu et al. (2008)
proposed a new method for estimating conditional dependence based on reproducing kernel Hilbert
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spaces (RKHS). There also exist methods for conditional independence tests (see e.g., Bouezmarni
et al. (2009); Su and White (2008)); however, the goal of these methods is simply to reject or accept
the hypothesis that the random variables are conditionally independent, and their primary goal is not
to measure the strength of this dependence.

For the estimation of conditional dependence, we will use distance based statistics between
the sample points and generalize the estimator of Székely et al. (2007). There are other estimators
of information theoretic quantities that use similar statistics. Hero and Michel (1999) derived a
strongly consistent estimator for the Rényi entropy using Euclidean functionals (Steele, 1997; Yukich,
1998). Péczos et al. (2010) and Pal et al. (2010) combined these ideas with copula methods and
proposed tools for Rényi mutual information estimation. Leonenko et al. (2008) and Goria et al.
(2005) applied k-nearest neighbor based statistics for Shannon and Rényi-« entropy estimation.
Inspired by these results, Wang et al. (2009) and Pérez-Cruz (2008) provided an estimator for the
KL-divergence. These estimators use power weighted Euclidean distances. In contrast, our method
applies the standard Euclidean distances. Hero et al. (2002a,b) also investigated the Rényi divergence
estimation problem but assumed that one of the two density functions is known. Recently, Sricharan
et al. (2010) proposed k nearest neighbor based methods for estimating non-linear functionals of
density. Other interesting nonparametric dependence measures include the kernel mutual information
(Gretton et al., 2003) and the Schweizer-Wolf measure (Schweizer and Wolff, 1981). Nonetheless,
none of these above mentioned papers consider the conditional dependence estimation problem.

3. Distance Covariance and Correlation

To be able to define the distance variance and correlation, we will need the following lemma (Székely
and Rizzo, 2005).

Lemmal If + € RY and 0 < o < 2, then fRdllf‘ZiﬁMdt = C(d,a)|x|® where
Cld,a) = %. The integral is defined in the principal value sense, i.e.,

2(+d)/2

lim€_>o fRd\{GBU(Rd\e_lB)} f(t)dt When o = 1, then Cd = C(d, 1) = W

We will also need the following related lemma.

Lemma 2 [fz € RY, then f|t|<y H;OTSW dt =

function, hmyﬁOO G(y) = cq, and hmy%o G(?/) =0.

|z|G(|x|y), where G < cq is a bounded continuous

The following lemma states that although |¢|~9~ is not integrable on R, it is integrable on the
{t: |t| > y} domain for all y > 0.

Lemma3 Let 0 < aand 0 < y. Then ||

>y e 4 < 00,

Now we are ready to define the distance covariance quantity. Let (X,Y) ~ px y be random
variables, where X € R%, Y € R%, Suppose that we have N i.i.d. samples drawn from the px y
distribution; they are denoted by {(X.,; Yy,)}Y_ |, where (X,,;Y,) € R, d,, = d, +d,. Using this
{(Xy; Yn) }2_ | sample, our goal is to estimate the distance covariance V(X Y'), which is defined as
follows.

Definition 4 (Distance covariance) LetV X,Y) = [[w(t,s)|Fxy(t,s) — Fx(t)Fy(s)]* dt ds.
Here w(t, s) = (cdmcdy\t\HdﬂS]de) ,and Fx y(t,s) = E[e’ i{t, X)+i(s, Y>], Fx(t) = E[ei<t’X>],
Fy(s) = E[e“s ’Y>] denote the joint and marginal characteristic functions, respectively.
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V(X,Y) is a measure of dependence: V(X,Y) > 0,and V(X,Y) = 0 if and only if X and Y’
are independent. Here w(t, s) is a non-integrable, nonnegative weight function. V(X,Y’) measures
how far Fx y is from Fx Fy with respect to this weight function.

Recently, Székely et al. (2007) proposed an elegant estimator for V(X Y'). We review this
estlmator brleﬂy Let ]-'Xy(t 5) = § Z W Xn)ilsYn) FH() = L Zn LettXn) FN(s) =
~ Z ¢i{s:¥n) denote the empirical Characterlstlc functions of px y, px, and py. By plugging
them 1nt0 the definition of V(X,Y"), we arrive at the following estimator:

Pa(X,Y) = //w(t,s) FY (b 5) — FN (@6 FY ()] deds. )

Thanks to the cleverly chosen weights w(t, s) and Lemma 1, Székely et al. (2007) proved that
the integral in (1) has a closed form solution and VN(X Y') can be calculated using the distances
between the sample points: Vi (X,Y) = N2 Zkl 1 Ak, sz 1> Where Ay = akl —ag. — a.g +a..,
B = b —be. — by + by ag = [ X — Xl @ = %0 aw. @q = % Ypq Qs G =
o ng{l:l at, bry = |Yi — Y|, and similarly define the by, b, b.. quantities too.

For brevity, introduce the V(X) = V(X, X), Vn(X) = Vn (X, X) shorthands. V(X) is called
distance variance, and Vy (X)) is its estimation:

Definition 5 (Distance variance)

)= [ ) P9 - FO 7
The distance correlation is defined by the distance covariance and distance variance as follows:

Definition 6 (Distance correlation) Ler R(X,Y) = \/Xiy) FY(X)VY) > 0, and let
R(X,Y) = 0 otherwise. Similarly, Ry(X,Y), the estimator of R(X,Y), is defined by

Ry(X,Y) = \/% if Vy(X)Vn(Y) > 0, and Ry (X,Y) = 0 when Vy(X)Vy(Y) = 0.

One can prove that if E[|X | + |Y|] < oo, then 0 < R(X,Y) < 1,and R(X,Y) = 0 if and only
if X and Y are independent. If R 5 (X,Y) = 1, then there exist a real vector a, a real number b, and
an orthogonal matrix C' such that Y = a 4+ bX C (Székely et al., 2007).

4. Formal Problem Setup

Now we are ready to formally define the goal of this paper. Our goal is to generalize Definition 5 and
Definition 6 for measuring conditional dependencies. Let (X,Y,Z) ~ p X,v,z be random variables,
X €R%, Y € R%, Z € R%, Suppose we have N i.i.d. samples from the distribution of px y, 7.
They are denoted by {(X,; Yn; Z) }. n_1, Where (X,,;Y,: Z,,) € Ry dyy> = dy +dy + d.. To
avoid more cumbersome notations and to simplify the problem somewhat, we will also assume that we
have an additional Z; (t = 1,2,...,T) ii.d. sample from pz(z).! Using these {(X,,; Yy; Zp)} 1>
{Z}thl samples, our goal is to estimate the conditional distance covariance V(X, Y| Z), variance
V(X|Z), and correlation R(X,Y|Z). These quantities are defined as follows.

1. For brevity, we will omit the subscript Z and simply write p(z)
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Definition 7 (Conditional distance covariance) Let
) 2
VYIZ = 2) = [ [ w0it,) | Fuyize(ts) = Fizea) Frizos(o) deds,

and let V(X,Y|Z) = [p(2)V(X,Y|Z = z)dz. Here Fx y|z-.(t,s) = E[etX)+isY) | Z = 2,
Fx|z==(t) = E[e!tX)|Z = 2], Fyz==(8) = E[e!*Y)|Z = 2] denote the joint and marginal
conditional characteristic functions.

The next lemma states that under certain conditions V(X,Y|Z = z) is well-defined and finite. This
is not immediately obvious, since [[ w(t,s)dtds = oo

Lemma 8 (V(X,Y|Z = z) is well-defined) IfE [X|Z = z|, and E Y |Z = z] exist and are finite,
then V(X,Y|Z = z) also exists and is finite.

Definition 9 (Conditional distance variance) Let

V(X|Z=2)= // (t,s) / Wttsm) (2] 2)de — [/e“t’”p(ﬂz)dx} [/ei<s7w>p(xz)dx]

The conditional distance variance is defined as V(X|Z) = [ p(z)V(X|Z = z)d=.

2
dtds.

Definition 10 (Conditional distance correlation) If V(X|Z = 2)V(Y|Z = z) > 0, then

— - V(X,Y|Z=z) ; — - -
R(X,Y|Z = z) = AR Otherwise, R(X,Y|Z = z) = 0. Let R( ) =

JP()R(X,Y|Z = z)dz.

Since 0 < R(X,Y) < 1, thus it is easy to see that 0 < R(X,Y|Z = z) < 1 under some slight
conditions, and therefore 0 < R(X,Y|Z) < 1. Suppose that p(z) > 0and V(X |Z = 2)V(Y|Z =
z) > Oforall z. In this case, 0 = R(X,Y|Z) = V(X,Y|Z) if and only if X and Y are conditionally
independent given Z.

Our goal is to consistently estimate V(X,Y|Z), V(X|Z), and R(X,Y|Z). We are faced
with a couple of problems. In the “unconditional” case, it was enough to plug the empirical
characteristic functions into Definition 4. In the conditional case, however, it is not obvious if there
are simple estimations for Fy y|z—.(t, s), Fx|z=.(t), and Fy|z_.(s). Even if we could replace
the Fx y|z—-(t, s) characteristic function with an estimate 7 é(v Y|Z=2 (t,s), it is still not obvious
how its multidimensional integral can be calculated with respect to w(t, s)p(z)dz dt ds. Similarly,
the problem would still be quite challenging if we knew the underlying densities, because we need
to efficiently calculate the multidimensional integral with respect to w(t, s)dt ds. We also want to
develop a simple estimator that uses only distances between the sample points. In the following
sections we will show that these requirements are all possible.

5. Estimation

In this section we derive estimators for V(X,Y|Z), V(X, Y]Z ) (X]Z) V(X|Z = z),
R(X,Y|Z), and R(X,Y|Z = z). By definition, V(X,Y|2) = [ p(z) [[ w(t,s)A(t, s)dt dsdz,
where

Alt,s) = \ [ et e, iz - ( / ei<tvz>p<x|z>dx) ( / ei<57y>p<y\z>dy)

5

2
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Assume that we already have a p = ppy density estimator for density p. For each given
Z = zy, thanks to the law of large numbers A (¢, s) can be estimated with the following quantity (see
Appendix C for details). The quality of this estimation will be discussed in Lemma 11.

AN(t, S) =

N R N 5
{;] Zcos(<t,Xn> + <S,Yn>)w - % [Z cos(t, Xn) p ZO|X” ] [Z cos(s, Y,) |Y )

ne1 P(Zo) 20

1 [ BlzolXn) | [ p20] V)
+ e lz n(t, X >OZO)] [ZSIH<57YH> 0

(

N ~
+{NZ ({1, X,) + (s, v Lo ) L

1 p(z0)

1 p(z0)

Introduce the following shorthand notations.

1 = cos({t, Xo) + (s, ¥o)) PET2) 0y = ffcos <5,
by, = sin((t, Xp) +

(s, >>ﬁ—<ZOJ§§g)7Y">, = [ sin( (s,y

)p ZO: ,y dxdy,
)P 207 ,y dxdy,

Y)
Y)

, ag = [cos(t x> (fo’))dx as, = cos(s,
(

as,n = cos(t, Xn>p(;‘()LX” >P(207|Y)n)’
ag = [ cos(s y>p(fo’g)dy, a4, = sin(t, X >%, ag = [ sin(t, x> Z07 )d:c
a5, = sin(s,Yy) (;E’Z'z/)”), = [ sin(s,y) (fo,g)dy

Similarly, let

b2n = sin(t, X >%7 by = fSin<tafE>p]§z§f)d% b3n = cos(s, Yy,) (zFlzgn),

¢ G
= [ cos(s, y) (»(Zgoz,)l)d% by = coslt, Xn>P(;((>Z§n)7 = [ cos(t, x) (?o,i)dx

b5n = sin(s, Yy,) (Z(Ozlzf)”), bs = [ sin(s, y>p}g'(22£) dy,

and let a; Ny = Zi:l Qi n/N and b; n = Zf\il EM/N The following lemma states that Ay (¢, s) is
a good approximation of A(¢, s) when N is large enough.

Lemma 11 (Bounding [Ay (¢, s) — A(t, s)|) Assume that there exist 0° < 0o and K < 0o such
that for all t, s, i it holds that max(Var(a; ), Var[b; n]) < 0? < oo, and max(a;,b;) < K < oc.
Let pn be a density estimator such that almost surely limy_, o sup,, |pn(x) — p(x)| = 0. Then for
all €,0 > 0, there exists Ny = No(€,d) such that Pr(max; s [A(t,s) — An(t,s)] <€) >1—6if
N > Nj.

Proof The proof can be found in Appendix D. |
For brevity, let an = [cos(t, X} — Xy) cos(s, Y}, — V) — sin(t, X — Xj) sin(s, ¥y, — V7)),

ag = [cos(t, X, — Xj) cos(s, Y, — Y}) —sin(t, X,, — X)) sin(s, Y,, — Y;)]. After some algebraic
manipulation (see the the Appendix E for details), we have that Ay = S + So — 253, where

N
1 P(20| Xk, Yi)p(20 X1, Y1)
S = —
1= N2 Z 2(z0) a
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N
p X X
ZP 20\ k Zo| l) os(t, Xi, — Xi)

N i
[Z P20V )P0 Vim) cos(s, Y, — Yo) |,

Ni ) p*(20)
N
P(20]Xn, Yn)P(20| Xx)P(20|Y1)
— = 9.
BE Zk: p*(20) ’
The next step is to calculate Qn(z0) = [[w(t,s)Andtds, which is an approximation of

V(X,Y|Z = zp). The problem is that w(t, s) is not integrable on the whole R% x R% domain, thus
it is not even obvious if this quantity exists. To deal with this issue, we will integrate it on the smaller
D(y) ={(t,s) : |t| > ¢,|s| > 1} domain and then study its behavior as 1) — 0. Therefore, we
have that Q (20) = limy_,0 Q¢ ~(20), Where

Qy N (20) // w(t,s)Aydtds = //Dw)w(t,s)(Sl + Sy — 253) dtds. 2)

To calculate this quantity, we exploit the facts that || D) w(t, s)sin((¢, u)) sin((s,v))dtds = 0,
cosucosv =14 (1 —cosu)(1—cosv) — (1 —cosu) — (1 — cosv), and apply Lemma 2. One can
see that the following statement holds.

Lemma 12
/ / w(t, s)(1 — cos(t,z))(1 — cos(s, y)) = [£](1 — G(|z)/ea) yl(1 — G(lyl$)/ca),
D()

where cq and G were defined in Lemmal, and Lemma 2.

For brevity, introduce the following shorthands: p(k, 1) = p(z0| Xy, Y2 )P (20| X1, Y7)/P%(20). Now,
we have that

Lemma 13
// w(t, s)Sy dtds
D(¥)
N
=Vin+ Z (b, DXk — Xa| [V = Vi|(1 = G(| Xk, — Xa[h) [ea) (1 — G(|Yy, — Yi[h) [ca),
k,l

Xk) X Y, Yi)
// w(t, S)Szdtds—VgNJr Z sz| k) (201 X1) (20 Yn) P(20]
by) k l,m,n ZO p(Zo) p(Zo) p(ZQ)

X X = Xl [V = Yo |(1 = G(| Xy = Xal) /ca)(1 = G([Yin — Yal¢) /ca),

1L a0l X, Ya) 20l Xi) 20]YD)
Jf gyt spatan = Vi + % o) Blo)  A(e0)

X | X = X[ [Yo = Yi|(1 = G(| X — Xi[9h) /ca) (1 = G([Yn = Yi[¢)/ca).

For each 1, limn_,oo V1 N+Vo N —2V3 N = 0 almost surely, and thus asymptotically the contribution
of the sum of Vi N, Vo N and V3 n terms is negligible.

Proof The proof can be found in Appendix F. |
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. 2

Let V¢(X,Y|Z == Z) = ffD(d’) w(t,s) ‘”FX,Y|Z:Z(t7S) - FX\Z:z(t)fY|Z=z(S)| dt ds. Note
that by definition limy_,o Vy (X, Y |Z = 2) = V(X,Y|Z = z). Below we show that V,(X,Y|Z =
z) can be consistently estimated for each ).

Lemma 14 Assume that conditions of Lemma 11 hold. Then for all €,6,7p > 0, there exists
No = Ny(e, d,v) such that if N > Ny, then

o

Let H(x) = z(1 — G(xv)/cq) and introduce the following estimator for Vy, (X, Y |Z = zp):

Vo (X, Y|Z = 2) —/ An(t, s)w(t,s)dtds
D(¥)

<e)21—5.

Qy v (20) H(| Xy — Xi|) H(|Yx — Y1)

N .
Zp ZO7Xk7Yk (207Xl7)/l)
v P( Xk, Yi)p( Xy, Y1)P?(20)

Z‘H

N A
k,l

N
ﬁ(ZO; Yn)ﬁ(Zo, Ym) B
[Z p(Yn)p Ym)ﬁQ(zo)H(Wm Vo)

m,n

H(|Xn — Xi|) H(|Yn = Yi).

il \

o~ P20, X, Ya)p(zo, Xi)p(z0, YD)
Zk DX, Y DX (VDD (20)

We have the following weak consistency theorem for this estimator.
Theorem 15 (Weak-consistency) Under the conditions of Lemma 11, for all €, 0,1 > 0, there exists
No = No(€, 0,) such that if N > Ny, then Pr(|Qy v (20) — Vo (X, Y[Z = 29)| <€) > 1—4.

Proof limpy_, §w7N(20) = limy§_eo ffD(w) An(t, s)w(t, s) dt ds almost surely (since in the limit
Vi,n + Vo v — 2V3 n diminishes), and we use Lemma 14 above. |

In practice, we are mostly interested in the limy,_,o Vi (X, Y|Z = 29) = V(X,Y|Z = %) limit
case. In this case, the estimator has a simple form:

P(20, Xk, Yi)p(20, X1, Y7)
X, Y|Z = X XY =Y, 3
Vn ( | 20) N2 E (X, Vo) (X0, YR (2 )\ k= Xi| Y 1 3)
1
TN

2 XN:ﬁ(zO,Xn,Yn)A(zo,ka(zO,yl)
= (X, Yo )D(Xk)D(Y1)P? (20)

3
Note that Vi (X, Y |Z = zy) can be calculated in O(N2) time if the densities (i.e. the { terms in (3))
are already estimated. To see this, introduce the following notations:

ZO|XrLaYn) (ZO‘Xk) 7 ZO|Xnayn) (Z()D/l)
an X, — X, bn, = Y, - Y.
NZ B T NZ i)

pleo, Xi)p(z0, X0) P20, Ya)B(20, Yim) |\,
2 SR Xl] lzm D)

| Xy — Xi| Y — Y.

=

Now, the last term in Vy (X, Y |Z = z) is simply + anl Gnbn. VN(X,Y|Z = z) has a simple
form; it is a weighted average of the product of sample distances. In the next section we show that
these weights can be calculated using sample distances as well.
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5.1. k-NN Based Density Estimators

Let Xi.ny = (Xi,...,Xxn) be an i.i.d. sample from a distribution with density p, and let py(x)
denote the Euclidean distance of the kth nearest neighbor of x in the sample X7.y \ x. k-NN density
estimators operate using only distances between the observations in a given sample (X;.x) and their
kth nearest neighbors (breaking ties arbitrarily). Loftsgaarden and Quesenberry (1965) define the
k-NN based density estimators of density p as follows.

Definition 16 (k-NN based density estimators)
k/N B k
Vol(B(x, pi(x))) ~ Npi(x)

The following theorems show the consistency of these density estimators.

Pr(z) = 4

Theorem 17 (k-NN density estimators, convergence in probability) If k() denotes the number
of neighbors applied at sample size N, limy_,oc k(N) = oo, and limy_,oo N/k(N) = oo, then
Pr(vy(x) —p p(x) for almost all .

Theorem 18 (k-NN density estimators, a. s. convergence in sup norm) /f limy_, % = 00

and limpy oo % = 00, then limy_, 00 supx‘ﬁk(N) (z) — p(x)‘ = 0 almost surely.

If we apply k-NN density estimators for p(Z), p(X), p(Y), p(X,Y), p(Z, X), p(Z,Y), and
p(Z,X,Y), then we arrive at an estimator that uses only sample distances for the estimation. Note,
however, that we need to consider different concatenations of the original Xi.n, Y1.n, Z1.n, 20
samples. For example, the estimation of p(Z, X) is a d, + d, dimensional problem that uses the
{[Zn; Xu]}N_, sample set, where [Z,,; X,,] € R%%4 In Equation (3), Vn(X,Y|Z = z) is an
estimator for V(X,Y|Z = zg). V(X,Y|Z) can be estimated as follows:

Vnr(X,Y|Z) = ZVN X,Y|Z = Z) (5)

This estimator can be calculated in O(T'N?) time. Similarly, we can derive estimators for V(X |Z =
20) too.

2

N N

“z,X z,X AZ,X Z7X

P(X1Z = ) =gy > BT My ey L | S0 B SRRy,

v p(X P?(20) " (X p*(20)
2 iﬁZO, ZO,Xk) (207Xl)|X X ||X X‘ (6)
e n — Ak n — <[]
T2 X7 (o)

The estimator of V(X|Z) is given by VNT(X\Z) = LT Vn(X|Z = Z,). Similarly,
the estimation of R(|X,Y[Z = 2), ’RN(X Y|Z = z), can be calculated by plugging the
1A)N(X Y|Z = zo) VN(X\Z = 2zp), and VN(Y]Z = zp) estimates into Definition 10. Finally,
Ry T(X,Y|Z) = % Zt 1 Rn(X,Y|Z = Z;). We note that these estimators are not robust. If the
densities (and hence the weights of the sample distances) are estimated poorly, then this might result
in bad Vy (X|Z = Z,), Ry(X,Y|Z = Z;) estimates. To have a more robust estimator, we might
use a robust mean by removing outliers, or even using the median instead of the simple empirical
average (7 Zt T R(X,Y|Z = Z4)) can result in a more robust estimation.



P6Cz0S SCHNEIDER

5.2. Semiparametric Estimation

If we knew that the underlying X, Y, Z variables belong to a parametric distribution family, then
we can achieve a faster estimation compared to the totally nonparametric case. In this case, we can
estimate the parameters of these densities first and then use them to calculate the weights of the
sample distances in (3). We call this problem “semiparametric estimation”, because a part of the
estimation problem is parametric, but we still use nonparametric methods to calculate the integral in
Definition 7 with respect to w(t, s)dt ds.

6. Numerical Experiments to Demonstrate Consistency

In this section we demonstrate the consistency of the estimators with numerical experiments. Even
for known density functions, generally it is difficult to calculate the conditional distance covariance
and correlation in closed forms. However, when X and Y are 1-dimensional Gaussian variables,
then this is possible.

Let p(z,y, z) denote the joint density of A/(u, 32), Gaussian distribution with expected value 4
and covariance matrix . Its characteristic function is given by F(a) = eia’ mta’Sa It is known
that in this case the p(X, Y |Z = z) distribution is also Gaussian. Its mean and covariance matrix is
denoted by f1xy |, and X xy|., respectively. Using these notations, V(X,Y|Z) can be calculated as
follows.

Lemma 19

V(X,Y|Z) =

s

PN
where X xy|z = (Piji pﬁ(;‘z
2 z

matrix of p(X,Y|Z = z) distribution does not depend on the actual value of z.

—1
1+d, 4T _sT . oy T . T )
s ,/) et Exjst—s By.s (1 e 2t7 pxy|=S 2¢~t IJXY|26) dtdsdz,
Yy

> . Interestingly, for Gaussian variables the X xy|7 covariance

Lemma 20 In the d, = d, = 1 special case, V(X,Y |Z) has a simple form:

(X Y|Z |:\/EX|22Y\7; pxy| \/EX\ZEY|Z + PXY|z arcsin (pXY|z/\/ 2X|22Y|Z) ]
- p [\/4EX|zZY|z - p%gy‘z - \/42X\zEY|z + PXY|z arcsin (pXY|z/\/ 4EX|ZEY|Z) } .

Similarly, we can calculate the V(X |Z), R(X, Y|Z) quantities in closed form too. For the details,
see Appendix G.

6.1. Gaussian Distributions

The following experiment demonstrates that the proposed estimator (5) can consistently estimate
V(X,Y|Z). In Figure 1(a) we display the performances of the proposed )7N(X ,Y'|Z) estimator
when the joint density of (X, Y, Z) is zero-mean Gaussian with a randomly chosen 3-dimensional
nonsingular covariance matrix. Our results show that when we increase the sample size N, then
Vn(X,Y|Z) converges to V(X, Y |Z). The number of instances were varied between 50 and 2 500.

10
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The means and standard deviations of the estimations are shown using error bars calculated from
10 independent runs. The number of nearest neighbors in then k-NN denisty estimator was set to
k = |V/N]. We also show results for the case when the densities—and thus the weights of the
sample distances in (3)—are known. We can observe that in this case, when we do not need to
estimate the densities, the convergence is faster.

We were also interested in studying the case when V(X,Y) > 0, but V(X,Y|Z) = 0. In other
words, there is dependence between X and Y, but X and Y are independent given Z. To study this
problem, we repeated the previous experiment with the exception that in this case we sampled A, B,
Z random variables from the 1-dimensional standard normal distributions, and then set X = A + Z,
Y = B + Z. Itis easy to verify that in this case V(X,Y) > 0, but V(X,Y|Z) = 0. In Figure 1(b)
we show five independent experiments. The results demonstrate that when we increase the sample
sizes N, then the estimator converges to the true V(X,Y|Z) = 0 value.

6.2. Nongaussian case

In this section we show that the proposed estimators can be used in the non-Gaussian case too.
Generally, it is difficult to find a closed form expression for V(X,Y|Z). However when X and Y
are conditionally independent given Z, then we know that V(X,Y|Z) = 0. We set A, B, C' to be
independent Beta(1,3) variables and then set Z = 5C, X =54+ 5Z,and Y = 5B + 5Z. In this
case V(X,Y) > 0,but V(X,Y|Z) = 0. Figure 1(c) shows that as we increase the sample size, the
estimator converges to the right quantity.

6.3. Semiparametric estimation

In Figure 1(d) we demonstrate the semiparametric approach. In this experiment we knew that the
samples had joint Gaussian distribution, and we estimated their covariance matrices using maximum
likelihood estimations. We plugged these parameters into their densities and then used these estimated
densities to calculate the weights of the sample distances in (5).

7. Experiments on Medical Data

The next experiment demonstrates that the proposed estimator might be useful to detect confounder
variables in medical data too. 2 We used the medical data published in Edwards (2000) (Section
3.1.4.). The data were taken from 35 patients and consist of three variables: digoxin clearance (X),
urine flow (Y"), and creatinine clearance (Z) (Fig. 2(a)). From medical knowledge we know that X
should be independent of Y given Z. It was presented in Fukumizu et al. (2008) that there is a strong
linear correlation between X and Y (Fig. 2()), and a partial correlation based test was not able to
show the conditional independence of X and Y given Z. Fig. 2(c) shows that the distance covariance
estimator was able to detect the large dependence between variables X and Y, but the conditional
distance covariance estimator also shows that this dependence vanishes when we observe variable Z.

2. Note, however, that we do not have hypothesis tests yet that could determine if the variables are conditionally
independent with some significance level.

11
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Unknown weights
Known weights 3T
15 — V(X,Y|2) 0.2 0.8

I U , 3 dl
T [ et DS

10 10 10 10° 10° 10 10° 10
sample size sample size sample size sample size

(@) (b) (c) (d)

V(X';V|Z)
V(XSYIZ)
V(X,Y|2)
R(xgﬂz)

3

Figure 1: Estimated vs. true V(X,Y|Z) and R(X,Y|Z) as a function of the sample size. X,Y, Z
were chosen to be 1d Gaussian variables. The red line indicates the true values. (a) We
chose X, Y, Z such that V(X,Y|Z) > 0. The means and standard deviations of the
estimations are shown using error bars calculated from 10 independent runs. When the
densities (and therefore the weights in (3)) are known, then the convergence is faster
(green line). (b) X,Y, Z were chosen to be 1d Gaussian variables such that X and Y
are are conditionally independent given Z. We show five independent experiments. (c).
A, B, C were chosen to be independent Beta(1, 3) variables, and then we set Z = 5C,
X =50A+7ZY =5B+Z,soV(X,Y) > 0,but V(X,Y|Z) = 0. (d) Estimated vs.
true R(X,Y|Z) as a function of the sample size.

100

150 * 300

100 Fx
N N ;;ﬁ * 200

50 M *

*
0 100
50 0 100 200
0 100 200
Y X 0 VIX.Y) VIX.YIZ)

(@) Medical data (X, Y, 2) (b) Medical data (X,Y) (c) V(X, Y), lA)(X, Y|Z)

Figure 2: (a) The medical data set. (b) There is dependence between X and Y. (c) Estimated
V(X,Y)and V(X,Y|Z) values.

8. Conclusion

We proposed new nonparametric estimators for the conditional distance covariance, variance and
correlation. We proved the weak consistency of the estimators and demonstrated their consistency
and applicability by numerical experiments on real and simulated datasets. There are several open
questions left waiting for answers. Currently we do not know the convergence rates of the estimators,
and how they depend on the parameters such as k, the dimension, and the densities. We do not
know the asymptotic distributions of the estimators, and do not have conditional independence tests
yet. Gretton et al. (2009) have shown recently that there is a connection between kernel methods
and distance covariances. It is also known that certain conditional dependencies can be estimated
with kernel methods (Fukumizu et al., 2008). However, it is still unknown if kernel methods and
conditional distance covariance can be related to each other.

12
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Supplementary Material-Appendix
Appendix A. Other Numerical Experiments

In this section we study the behavior of the estimator and demonstrate its applicability on real data
sets. Below we illustrate with image data that the conditional distance covariance and correlation
can either be larger or smaller than the standard unconditional distance covariance and correlation.
In other words, extra knowledge can either increase or decrease the dependence between random
variables.

Increasing/decreasing conditional covariance

We chose a gray-scale image (Fig. 3(c)) of size 75 x 100 and considered its pixel values (Z € [0, 255])
as if they were samples from a distribution. We also constructed two noisy versionsof Z: X = Z+ A
(Fig. 3(a)) and Y = Z + B (Fig. 3(b)), where A and B were independent random noise variables with
uniform U[—5, 5] distributions. By construction, V(X,Y) > 0, R(X,Y) > 0,but V(X,Y|Z) = 0,
R(X,Y|Z) = 0, that is, the observation of Z eliminates the dependence between X and Y. This is
also confirmed by the estimated V(X, Y|Z) value, which is much smaller than V(X,Y") (Fig. 3(d)).

500

400

200

0 V(XYY V(X.YIZ)

(@) X b)Y () Z @ V(X,Y),
V(X,Y|Z)

Figure 3: Demonstration that conditioning to a third variable (Z) can decrease the dependence
between X and Y. (a), and (b): Noisy versions of the picture in (c). (d): Estimated
V(X,Y) and V(X,Y|Z) values.

The following experiment demonstrates that the opposite situation can also occur. Similarly to the
previous case, we chose two noisy images (Fig. 4(a) and Fig. 4(b)). We considered their pixel values
as they were i.i.d. samples from two random variables X and Y, and then constructed their noisy
sum: Z = X +Y + A, where A played the role of noise and it had uniform U|[—5, 5] distribution.
Fig. 4(d) shows that 17(X ,Y) =~ 0 (i.e. the two original images were almost independent), but
17(X ,Y|Z) > 0 (i.e. having information about their sum increases the mutual information).

15
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Nt =]

0

VIX.Y) VIX.YIZ)
(@) X b)Y (0 Z d) V(X,Y),
V(X,Y|Z)

Figure 4: Demonstration that conditioning to a third variable (Z) can increase the dependence
between X and Y. (c): Noisy sum of pictures in (a) and (b). (d): Estimated V(X,Y") and
V(X,Y|2).

Appendix B. Proofs of Lemmas
Proof of Lemma 2

Proof Letz = R,e,, where R, > 0, || = R,, and e, € R is a unit vector (|e,| = 1). Introduce
the following G : Ry x R4 — R function.

) 1 — cos(t, x)
Gi(y,z) = / ———"dt.
<y (L]

From Lemma 1, we can see that G (y, z) < ¢q4, and limy,_,oc G1(y, ) = cq4. Since |z| = R, after
the ¢’ = R,t integral transformation we have that

1 —cos(t'/Ry, Ryey) 1,
Rt - [ E
wl<yh.  [FHY/RETT O RG

1 —cos(t’, ex) ,
= — R, dt". 7
Jocpn, e 7

Let ;. be an orthonormal transformation that transforms e, to a canonical unit vector eg (i.e,
eo = Qzey). After the t” = Q,t' integral transformation and exploiting that (t', e,) = (Q.t', Qz€z),
we have that

1 —cos(t”, ep)
Gl = [ IS
5 7| <y Ra |t”’d+1

Since G1(y, x) does not depend on e, (only on yR;), thus G (y,x) = G(yR.) = G(y|z|). [ |

Proof of Lemma 3

Proof After d-dimensional spherical integral transformation, we have that

1
——dt
/|t|>y ’t’d—i—a

16



CONDITIONAL DISTANCE VARIANCE AND CORRELATION

/ /¢ » /q5 0/¢ » rd+a “tsin® 2 (¢y) - - sin(Bg_z) drdey - ddg_y
r>y 1= n—2= n—1=

SC/ I dr < oo, where C < oc.
rlto
>y

Proof of Lemma 8§

Proof

\Fxy|z==(t,8) — ]:X|Z—z(t)fY|Z:z(S)’2

\ / [ ) [ it @rz)daz] {e““ﬂ— / ei<s’ﬂ>p@|z>dg] Pz, y|2)dedy

2

2 2
< [ / eitte) — / BT p(F|z)dE p(wIZ)dw] [ / bl — / e p(l2)dg p(yIZ)dy]
=(1- |]:X\Z=z(t)|2) (1- |]:Y|Z:z(8)|2) .
Here we used the Cauchy-Bunyakowsky inequality, and the following identity
. . ~ 2
/ i) /ez<t"”> (Z|z)dz| p(z|z)dx =
E [(cos(t,X) — E[cos(t, X)|Z = 2])® + (sin(t, X) — E[sin(t, X)|Z = 2])?|Z = z]

=1 — (Elcos(t, X)|Z = z])* — (E[sin(t, X)|Z = z])?
=1- |~FX\Z:z(t)|2'

Now we have that
VXYIZ=2) = [ [wits) | Fryizeatts) = Fizea©Frzes(o) deds
< [[ 0t~ 1Pz 0PI = [Frizes (o))t ds
// L= Pxiz=0P 1 = [Fyiz=6)P

Ca, [t Ca, ||+

ds

:/I—E [cos<t,X—X>\Z=z} Ny / 1-F [cos(t,Y—f/HZ:z}

ca, [t[1F Cdy|s|1+dy

1 —cos(t, X — X)
dt|Z =
/ Ca [t '

1— Y -Y
=E E / cos(t, >ds’Z =z

Cd, |s[1Fd

:E[|X—)~(|)Z:z} E“Y—?\‘Z:z] < .
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Here X, Y denote random variables sampled from p(X|Z = z) and p(Y'|Z = z), respectively, and
independently from X and Y. In the derivation we used Lemma 1, and Lemma 21, Lemma 22 below.
|

Lemma21 [ ELo®X-0iZ=2]p [ J Wdt‘Z - z}

Cag [t]'Te Cag [t e

Lemma 22 |Fx|;_.(t)? =E [cos(t,X - X)|Z = z] .

Proof of Lemma 21

Proof

dt

1-E [COS@vX - X)|Z = Z] Qi — 1— [[cos(t,x — &)p(z, Z|z)dzdz
[T+ t= |1+

dt

_ / JJ (1 = cos(t,x — 7)) p(x, 7|2)dwdz

’t’1+d:c

] s ket g

— | [ = alz =
|
Proof of Lemma 22
Proof
E [cos(t, X — X)|Z = z} =E [cos(t7X> cos(t, X) + sin(t, X) sin(t, X)|Z = z
= E?[cos(t, X)|Z = 2] + E?[sin(t, X)|Z = 7]
= |Fxz=-(t)*.
|
Proof of Lemma 12
Proof The statement follows from Lemma 1 and Lemma 2:
[ ) g (1 ),
|
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Proof of Lemma 14

Proof
Pr([Vy (X, Y|Z = 2) — //W An(t, $)w(t, s) dtds| < )
— Pr(| //Dw IA(E 5) — An(t s)w(t, s) dt ds| < ¢)

From Lemma 11 we have that for all x, > 0 there exists No = Ny(k, d) such that Pr(|A(¢, s) —
An(t,s)| < k) > 1—0 (forall ¢,s) if N > Ny. In turn, for each ¢ > 0 with probability at least

1-0
// A(t,s) — An(t, s)|w(t, s) dt ds| <I€// w(t,s)dtds <,

if N > Ny(k,0), and0</<;<e/ffD w(t, s) dt ds. [ |

Appendix C. Rewriting V(X,Y|Z)

A(t, s) can be rewritten as follows :

A(m)&] i e“t»@*“s’wp(m,y|20>dxdy—( ¢ p(a]20) dx) ( JECE )
(oo [ e,

[y e gro)

2

+{//sm )+ (s, ) P82 20) o) 220) gy — U sin tf(%(x 1 20) 4 ] [/ COS((‘S;DZZ?ZZ];(ZJ»ZO)dy

[t g

Assume that a p = p estimator is available for density p. Using the law of large numbers, we
can approximate the integrals in this equation with the following quantities:

N .
//cos ((t,z) + (s y)) P, y,zo)d dy ~ NZ os({t, X,,) + @J@))M, ®)
N

plzo) n=1 p(z0)
p(z, 20) NERSNCI O
/ pl) NI anl gy b &n), ©)
p(y, 20) 1 plzolYa) .
/ p(20) cos{s,y)dy ~ N,; D(20) (8, Yn). (10)
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We do similar approximations with the sin function too. By plugging these approximations into the
formulas above, we arrive at the following equations:

ﬁ(ZO|XnaYn)
{ ZCOb ({t, Xn) + (s, Yn>)7ﬁ(20)

Zo|Y )
[Z cos(s, Y,) 5(20) ]

N 2

+ % lz sin(t, X,,) ] lz sin(s, Y,,) f(()z!z;) }
i N i (ZO|XTL5YTL)
+ {N ; in((t, X,) + ( Yn>)7ﬁ(zo)

vx.Y12) = [[wlt) [ | [ [ e0rompia ooty
- < / ei<t’r>p(:17|z)dx> < / ei<8»y>p(yz)dy) zdzdtds
= //w(t,S)/p(z) // e“t’z”“s’”p(;’é;z)dxdy
- (/ ei<t’z>p]()‘?;)z)dx) </ ei<5’y>p](£’z';)dy> Fdzdtds.

The absolute value term inside the integral can be rewritten:
D
p(2) p(2) (2)
’//cos (t,z) + (s,y) —|—zsm(<tx>+<sy>)p(())d dy

= ([ eostton + isin(tt ) P2 ) ([ eostis) + isintlon ) "2y
:’ //cos<<t,x>+p<é)y> <xyz>+sm<< z) p<z)y>>< )dmy

([ ates) ) (o) et
_ ’// COS((t,w>+<s7y> py,2) Sm(< ) + (s,9))p(x, Y, Z)d dy
p(2)

e e o
o[y [ty
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e,
p  2) sin((s, y))p(y; 2)
o [/ S | [ e
()= i’w’y’”dfdy - | e [ [ e
)

N {Sin(<t,w> Py 2) g g U si

p(z)
- / COS(<t7p ﬂii))p(x,Z) dx] [ / Sin(<8;jy(>z))p(y7Z) dy]} .

Appendix D. Proof of Lemma 11

The lemma follows from the Chebysev’s inequality (weak law of large numbers) by bounding the
errors of the approximations in (8)—(10). Assume that there exist 0% < oo and K < oo such that for
all ¢, s it holds that max(Var[a; 1], Var[b; 1]) < 0 < oo, and max(a;, b;) < K < oc. First we prove
that for all ¢ > 0,9 > 0 there exists Ny = Ny(€,d) < oo such that if N > Ny, then for all ¢, s, i
Pr(la;ny —ai| >€) <6
Pr(lbiy —bi| >€) <6

This is easy to see. For example, for a1 y we have that

S (20| X, Vi) (20,2,9)
oy = an| = |5 32 cos({t, o) + (5, Y, T [ eosttta + (5.9 P azay
S ol X Ya) 1 P20/ X0, Vo)
01%n, “n S FA%01Any In)
< N P COS(<t,Xn> + <57Yn>)W — N gCOb(<t7Xn> + <57Yn>) p(ZO)
N
+ ;/vnz_:lcos(@‘,Xn) + (5, Y, ) p(% X”’Y // cos( y>)wd$dy
N
< ]1/.7;008(@,)(71) +(s,Y, >) (ZO‘X”’Y // cos( Z/>)(;0(7;§;y)d$dy
(1D
AN
LS|t et | )
N n=1 ( X"7Y) p(zo)p(Xn,Yn)
(11) can be upper bounded by the Markov inequality. For all ¢, s, we have that
N
1 ZO|X”’Y p( 20, 7y) 0'2
Pr <‘N;COS(<t,Xn> +(s,Y, >) //cos t,x) + (s,y)) ———== (o) dzdy| > < N

Since lim 0 sup(x)|p(z) — p(x)|=0 by the assumptions on the density estimator p, thus with high
probability (12) also becomes arbitrarily close to zero if NV is large enough.

An(t,8) = (a1,n — azvaz N + agnas n)? + (b1y — banbs N + banbs N)?,
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A(t, S) = (a1 — asas + a4a5)2 + (bl — bobsg + b4b5)2.
Therefore,

IAN(t,s) — A(t,s)| < [(a1,v — az,nvas N + as,nas ) — (a1 — azas + asas)?|
+ | (b1,§ — ba,Nb3,n + banbs n)® — (b1 — babs + babs)?|
<(lai,n — a1]| + |ag, yaz N — azaz| + |as nas N — asas])
X (la1,n + a1| + |az, nva3 N + azas| + |ag,vas N + agas))
+ ([b1,n — b1| + [b2,nb3, N — b2b3| + |by, b5 N — babs|)
X (|by,N + b1| 4 |bo,nb3 N + D2b3| + by b5 N + babs|)

From the triangle inequality we have that

az — ag n)as| + [(a3 — a3 n)(az,n — a2)| + (a3 — a3 n)az]
ay — ag,N)as| + [(as — a5 n)(as,n — as)| + (a5 — a5 n)a4
by — ba N)bs| + (b3 — b3 ) (b2, N — b2)| + (b3 — b3 N )b2]
by — by N)bs| + [(bs — b5 ) (ba,n — ba)| + (b5 — b5 N )b4]

lag, nvas N — azas] < |
lag,Nas N — agas| < |
|ba, N3 N — babs| < |
|ba,Nbs5 N — babs| < |

P

Since a;,b; < K for all ¢, s, one can see that for each €¢,d > 0 there exist Ny(e, d), such that if
N > Ny, then

Pr(lai,ny — a1| + |ag,nvas N — agas| + |as, nas N — agas| > €)

<4
Pr(la1,n + a1]| + |az,nvaz N + agas| + |as, vas N + asas| > 10K +€) < 9).

It immediately follows from this that with high probability |Ax (¢, s) — A(t, s)| can be arbitrarily
small if N is large enough.

Appendix E. Rewriting A
We already know that

ﬁ(ZO|Xn7KL)
Ay = { g cos({t, Xp) + (s, Y, ))7]5(20)
Ly Pz |X 5 Plz0lYs)
- Nz L_lcos<t,X 0 ] [ cos(s, Yy) (o)
1 [& Bz |X il 1)
+ N 7;:1 sin(t, X,,) O ] [E sin(s, Y,,) (o) }

N A
* { > sin({t, Xp) + (s,Y@)M




CONDITIONAL DISTANCE VARIANCE AND CORRELATION

It can be rewritten as follows.

Ay =
1 P(20] X, Yi)p(20| X1, Y1)
] %:cos(<t,xk> + (s, Y3)) cos((t, X)) + (s, V1)) 05 ) (13)
NESE B0l Xu)p(0lX0) | [ & , P(z0]Yi)p(20[11)
+ ;COb(<t,Xk>)cos(<t,Xl>) SENT e ] ;COS(<57YI€>)COS(<&Y1>)Z§(ZO)M]
) (14)
IRES . Pl X0l X0) | [ ) P(z0[Yi)p(z0l YD)
+ N4 ;bln(@a){k»bln(@wxl» p(zo)p(zo) ] |:%l:bln(<svyk>)bln(<s75/l>) ﬁ(zo)ﬁ(ZO) ]
) (15)
2 5 B(20] X, Ya) p20] Xk) P0]D)
3 7%; cos((t, X,,) + (5,Y,,)) cos({t, X)) cos((s,Yl>) 0) o) Pl (16)
2 . . (201X, Yn) (20| Xr) H(20[Y1)
+ 33 T;IC%(@,X@+<s,Yn>)bln(<t,Xk>)s ((s,Y7)) o) o) plzo) A7)

20| Xm) p(20|Yn) P(20 Xk) P(20|Y7)
p(20)  Plz0)  P(20)  P(20)

—% Z cos((t,Xm>)cos((s7Yn>)sin((t,Xk>)sin((s,Y>) il

m,n,k,l
(18)
1 Al . P(20| X, Yi)p(20] X1, V1)
+ 3 ;sm((t,X;Q + (s, Yy)) sin({(t, X;) + (s, Y)) 5(20)p(20) (19)
[ ol X)p(zo¥) | [ 5 Pz0| Xa)p(z0Y1)
+ 37 ;sm(@,xkncos«s,m)m %l:sm(@,Xk))cos((S7Yl>)—ﬁ(ZO)ﬁ(ZO)
o (20)
1 [ . Pl Xp(zol¥D) | [ . P(z0[Yi)p(z0[Y1)
+ 51 ;cos(@,Xk))sm((s,Y))W ;cos(<t,Xk>)81n((s,)ﬁ>)W
) T Q1)
N
. P(20] X, Yn) D(20| X&) D(20]Y7)
Zk (s, Y,)) sin({t, X3,)) cos({(s, Vi) 2 Hen) ) pCe0) (22)
N
Z T {5, Ya)) cos(t, X)) sin((s, viy) P EKn: ¥n) PL20|X) plz0[YD) 23)

p(20) p(20)  P(20)

P20/ Xm) P(20]Yn) P(20|Xk) P(20|Y7)
pz0)  Pl20)  Blzo)  Blz0)
24)

5 N
7 Z )) cos((s, Yy,)) cos({t, Xi)) sin({s,Y}))

Observe the (18)+(24)=0. Now, let S; = (13) + (19).

p( ZO|Xk Y3 )p(20| X1, Y1)
=3 Z

B cos({t, X} + (s, Yi) cos((t, X1) + (s, Y1)
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+ sin((t, Xx) + (s, Y)) sin((¢, Xi) + (s, ¥1))

N
_ b Z P(20| Xk, Yi)P(20] X1, V1) [cos((t, Xi) + (s, Yi) — (t, X1) — (s, ¥1))]
k

7 P(20)p(20)

N
— i Zp(’zO'Xk;Yk) (ZO|XlaYi) [COS(<t,Xk . Xl> + <S,Yk - le>)]
k

N2 4 P(20)p(20)
1 = 920/ X, Yi)p(20) X . .
= o 3 P (00— X s Ve = 0) i Xe — X0) i Vi3

Similarly, let So = (14) + (15) 4+ (20) + (21). We have that
_1 ZN3 B(z0| Xk) P20 X1) p(z01Yin) H(201Yn)
. plz0)  plz20)  P(z20)  P(20)

x [cos((t, X)) cos((t, X1)) cos((s, Ypn)) cos({s, Yn.)) + sin((¢t, Xj)) sin((¢, X;)) sin((s, Yo, )) sin({(s, Y,,))
+ sin((t X)) sin((t, X7)) cos((s, Yin)) cos((s, Yy)) + cos({t, X)) cos((t, X)) sin((s, Yin)) sin((s, ¥,))]

=N Z POIR0) P00 o1, X)) cos (. X))+ sin 1 X, sin( (1 X0)

Zp Z(’Z/ Z(Olz; ) cos((s, Vin)) cos({s, Vo)) + sin((s, Yin)) sin((s, Ya))]

pZO‘Xk) (ZO|XZ) S _ pZO|Ym ZO‘Y)Cos S _
“m Z o) o) O Xl] LZ Ba) B Ym0

Finally, let =253 = (16) + (17) + (23) 4 (22).

Y P20 X, Y2) P20l Xi) Plz01%2)
28 =- 5 §l008(<t,Xn>+(S,Yn>)cos(<t,Xk))cos((s,Y)) Hen) ) )

. : P(20Xn, Yn) P(20|Xk) P(20|Y2)
zk: cos( (s, Y, ))51n(<t,Xk>)81n((s,Y>) 5020) 50 p(z0)
N

. P(20|Xn, Yn) P20 Xk) P(20]Y1)
Zk (s,Yn)) sm((t,Xk>)c0s(<s,Yl>) 5(20) 5(z0)  pz0)
N

S sin((s P20 Xn, Yn) P(20| Xk) P(20|Y7)
zk: sin((t, Xp) + (s, Yn)) cos({t, X)) sin({ 7Yl>) (o) o) o)

2 O (200X, Ya) 20| Xk) B(20/Y1)

3 i P(20) P(20) P(20)

X { — [cos((t, X)) cos((s,Y,)) — sin({(t, X,,)) sin((s, Yy,))] cos((t, Xi)) cos({s, ¥7))
+ [cos({t, X,,)) cos((s, Yy)) — sin({t, X,,)) sin({s, Y;,))] sin((t, Xx)) sin((s, Y}))
— [sin((¢, X)) cos((s, Yy,)) + cos({t, Xp,)) sin((s, Yy, ))] sin({t, Xi)) cos({s, ¥7))
— [sin((¢, X)) cos((s, Yy,)) + cos({t, X;,)) sin((s, ¥y,))] cos((¢t, Xi)) sin({s, Yl>)}
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2 8 (201X, Ya) D20/ Xk) Blz0Y2)
N3 %l P(20) P(z0)  P(20) .

{ — [cos((t, X)) cos((t, X)) + sin((t, X,,)) sin({t, Xx))][cos((s, Y,)) cos({s, ¥1}) + sin((s, ¥3,)) sin((s, Y}))]

+ [cos((t, X)) sin((t, X)) — sin({t, X,,)) cos({t, Xi))][cos({s, Yy,)) sin((s, V7)) — sin({s, ¥},)) cos((s, Y}))]}

(20| X, Yn) D(20| X&) D(20]Y7)
- 31%:1 P(20) p(20)  p(20)

x { — cos({t, Xn — X3)) cos((s, Yy — Vi) + sin({t, Xj, — X)) sin((s, Y} — Yn>)}.

Appendix F. Integrals of 5, S5, S5

Proof of Lemma 13

For brevity, let Cy (X — X;) = cos(t, Xi — Xj), and Sy (X, — X;) = sin(t, X — X)).
Proof

// w(t,s)S; dtds =
D(y)

N
1
=  8)~ Y Pk, D[CL(Xy — X))Cs (Vi = Y1) = Se( Xy — X1) S (Vi — Y1) dt ds
by N v

Bk, 1) //Dw) w(t, $)Co(Xp — X1)Cs (Y — Vi) dtds

Mz z[M)=

p(k,1) // dtdsw(t,s){ — 1+ Cy(Xi — X)
D(¥)

N2
+C (Yk—Yl) (1= Cu( Xy — X1))(1 = Cs(Yi = Y1) }
1
N2

N
=Vin+ Z (k, DX — Xi| [Ye = Y| (1 = G(| Xy = Xi|¢p)/ca) (1 = G(|Yk = Yi|¢h)/ca).
k,l

N . R
// w(t,s)S; dt ds :// w(t, 5)% 3 p(zoleJA;k)p(zole,Yl)
D(¥) D(+) N "l P (20)
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X [cos(t, Xy, — X;) cos(s, Yy — Y}) — sin{t, X}, — X;) sin(s, Y, — V)] dt ds,

_ 1 iv: P(20] Xk, Yi)P(20] X1, Y1)
k

// w(t, s) cos(t, X — X;) cos(s, Yy — V)dt ds
D(¢)

2= P*(20)
N
- LZ P(20] X, Yk Zo|Xz [// wit.s)
2 Kl D(y)

x {1 —(1—cos(t,Xr — X;)) — (1 —cos(s, Y, — V1)) + (1 — cos(t, Xx. — X;))(1 — cos(s, Yy, — Y;))} dt ds]

P(20| Xk, Yi)p(201 X1, Y
N2 Z p (ZO

// (t,8){1 — (1 —cos(t, X — X;)) — (1 — cos(s, Yy — Y}))dtds}}
D(¢)

ZP (20| Xk, Yi)P(20| X1, Y1)
D (Zo)

// w(t,s) {(1 —cos(t, X — X;))(1 — cos(s, Yy, — V) } dt ds]
D(¥)

(20| Xk, Yi)p(20| X1, V1)
=Vin
LN Z 52(20)

| X — X[ |V = Yi|(1 = G(| Xk — Xi[2p)/ca)(1 = G(|Yi — Yi|2p) /ca)-

// w(t, s)Sy dtds
D(¢)

P(20| Xk)P(20]X1) P(20] Y5 )D(20[Yim)
(t,s) cos(t, X}, — cos(s, Y, — Y,)| dtds
= [, o Z (20) o X mZ 7(z0) 18 Y = ¥
p 20|Xk ZO|XI) (ZO|Y ZO\Y
N4 Z 2(20) 2 (20) w(t, s) cos(t, X, — X;) cos(s, Y, — Y, )dtds

k,l,m,n

P20 X1)P(20|1X1) P(20|Yn)P(20|Yom)
N4 Z P*(20) P*(20)

k,l,m,n

[// w(t,s) {1 — (1 —cos(t, X, — X)) — (1 — cos(s, Yo, — Y,J)dtds}]

Z P(201X%)P(20]X1) P(20|Yn)P(20]Yim)
N4

k.lm,n P*(20) P*(20)
[// {(1 = cos{t, Xk, —Xl>)(1—cos(&Ym—Yn))}dtds]
=Van + — DP(20| Xk)DP(20|X1) P(20|Y0n)P(20|Yom)

N4 $%(20) $*(20)
x | X — X |Y Yol(1 = G(| Xk — Xaltp) /ca)(1 = G(|Yon — Yaltb) /ca).

wit. s o it oL S B0l X, )P0 Xi)p (20 V)
//D<w> (o) drd _//D«m . )N3Z P*(20)

n,k,l
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x [cos(t, X, — X) cos(s,Y,, — V1) + sin(t, X, — Xi)sin(s, Y, — V)] dt ds.

// w(t, s)Ss dtds
D(4)

N . .
_ 1 Z P(20| X, Yn)P(20| X1 )p(20]Y7)

// w(t, s) cos(t, X,, — Xy) cos(s, Y, — Yl>dtd81
D(¢)

N® o= p%(20)
_ i EN: ]5(20|me )ﬁ(zo\Xk;) (Z()|Yl)
N3 oy 73(20)

X [// w(t,s) {1 — (1 —cos(t, X,, — X)) — (1 — cos(s,Y,, — Y}})dtds}}

D(y

~

1L =01, Ya)plz0 Xi)p(z0|Y2)
+ N3 n’zk;l ﬁ ( )

X

// w(t, s) {(1 = cos(t, X, — Xe))(1 — cos(s, Y — Y1)} dt ds]
(111)

P(20| Xn, Y0 )P(20] X1 )D(20[Y1)
= Vaw + N3 Z p*(20)
n,k,l

X X = Xp[ Yo = Yi|(1 = G(|1 X0 = Xi[t))/ca) (1 = G(|Yn = Yi[9)/ca).
We will need the following lemma.

Lemma 23 If f is a nonnegative bounded function and imy _, . sup,, |pn(z) — p(x) = 0, then

N
1 .
i D Gl (0.0 = [ 0.2 @ .

Proof
1 N
ngnoo—szaXz, (X, Y) = 15an;[pwxl,m—p(zO|Xl,Yl>}f<Xz,m

+ lim *ZP 20| X1, Y1) f (X3, V7).

N—ooo N

The first term becomes negligible when N is large, since

Jim —leN 20| X1, Y1) — p(20| X1, V)| f(X1, Y1) =0 (almost surely),

thanks to the limy_, o sup, |pn(z) — p(z)| = 0 assumption and the boundedness of f. [ |

It is easy to see that the following lemma holds.
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Lemma 24 For each v, limy_,oo Vi N + Vo n — 2V3 n = 0 almost surely, and thus asymptotically
the contributions of Vi N, Vo N and V3 n terms are negligible.

Proof

- 1 < v (20| Xk, Yi)p (20| X1, Vi)
LN *]\Tz 52
kol Py (20)

X [// w(t,s) {1 — (1 —cos{t, X — X;)) — (1 — cos(s, Yy, — Yﬁ)dtds}]
D(¢)

N

N .
:inN(ZO|Xk7Yk Z Zolxz,
N pn(20) p P (20)

X U/D(w w(t,s) {1 — (1 —cos(t, X — X;)) — (1 — cos(s, Y — V7))dt ds}} .
Since
//w(t, s) {1 = (1 —cos(t, X — X;)) — (1 — cos(s, Yy, — V7))dt ds} < oo,

thus

) D ( Zo\Xk,Yk ZO|9€ y)
1 = li —
Noase Vin N N Z P (20) //

X

[// w(t,s) {1 —(1—cos(t, Xy —)) — (1 — cos(s, Y — g})dtds}] dz dy
D(y)

X [//D w(t,s) {1l — (1 —cos(t,& —Z)) — (1 — cos(s,g — y})dtds}] dgdz dy

// (&, l%) // (%3l V/ ) {1 — (1 — cos(t, & — 7)) — (1 — cos(s,§ — §)) dtds}] di dj di dj.

Here we used Lemma (23). Similarly,

1L Azl X)B(0lX1) P20l Ya)Pz0] Van)
Von Z 7(z0) 7 (20)

klmn

X V/Dw w(t,s) {1 — (1 — cos(t, X — X;)) — (1 — cos(s, Vs, — Y,))dtds}] .
N V2N = / / / / p(#]20)p(d70)p(z0)p(d]20)
X [//D(w) w(t,s) {1 — (1 —cos(t,& — %)) — (1 —cos(s,§ — §))dt ds}} dz dgdz dy.
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N
Vo = L 30 20l Vo) ol Xu)iCol¥D)
N S, p3(zo)

x V/Dw)w(t,s)ﬂ—(1—cos<t,Xn—Xk>)—(1—cos<s,m—yl>)dtds}].

Jim Vi = / / / / (, §120)p(&]20)p(§]20)

[ w(t,s){1 — (1 —cos(t,& — %)) — (1 — cos(s,§ — g>)dtds}1 dz dg dz dg.
D(¢)

Therefore,

lim VvLN + ‘/271\[ — 2‘/:37]\7 =0 (a.s.).
N—o0

Appendix G. Gaussian

Proof of Lemma 19

Proof

V(X,Y|Z) =

_ (elt Bx|z—3t EX\zt> (e“ py|z—5s" Sy zs )

—1
/ // Ca,ca, |t|1+d |s |1+dy) ‘6—5[75 i8] T S xy 2 [ts]T —e —5tTEx )t = 5T Sy s
T T T T
:///p(z ca,ca, |t|1+d | |1+d ) e—t Ex|t—s" By|.s (1+€—2t PXY|2S _2€—t pxy|zS) dtdeZ,

l[t s] pxy == 58] T Sxy 2 [tss] T

dtdsdz

dt dsdz

1D Gaussian
Székely et al. (2007) calculated V(X Y') for the 1-dimensional Gaussian case. We can use the similar
tools to calculate V(X,Y|Z).

V(X,Y|Z) = /// 2t2 e Um0 (1 e 2eexvis 9T tPxYIE) 4t ds dz,
S
Let

S(pxyiz) = // et Px s B s 2sx vl 4t s
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1T 2ExIE 2Pxv1s g,
://6 3 [t;s] <2pxy\z Dy. >[t7 ]dtdS

_1|Y2
28 x| 2pxv|2 !
2pxy|: 2v|z

— (2m)

™

= ;
\/EX\ZEY|Z - p%{y‘z

where we used the fact that [ exp(—3272 7 1z) = |27 %72,
Let

G(pxy|=) // t232 et Ex1= TS s (1 4 e 2epxvis 9o t9PxvIs) i ds dz,
VIXY1Z) = [ ) 56 pxo)d

Now,

L2 .2 0? _ s
a2 Cloxvi:) // il Ex1am By (14 emHPxvIs — 2e7tPxYIE) dtds dz,
pXY\ Pxy|-

// 3 2 _t2EX\z_522Y\z (e—2tspxy|z(4t282) _ 2€_tstY‘z(t282)) dtdeZ,
S
— // e_t Sx|.—8 Sy, (4 —2tspxy|. _ Qe—tpry\z) dtdsdz,

=4S(pxvy|.) — 2S(pxv|2/2)

- 4 s
NGy S x-Sy le — phu /4
X|z2Y|z T Pxy|z X|z2Y |z 7 Pxy|z
47 47

\/EX\ZEY|Z _pigy‘z \/4ZX|ZZY\Z _p§(y|z

Therefore,

47

PXY |z A
G(pxy|2) :/ / -
0 0 VEx|:Xy: — K2 /4Ex). Ny, — K2

drdA

arcsin(

/ny\z ( A ) A )d)\
=A4r arcsin(——) — —_—
0 VEX)22Y |2 512y
. PXY|z
=4 Yx10 — 2 — | —.\/2x2
W(\/ X|229Y |2 pxy|z+pXY|zarC51n< 2X|ZEY|Z) \/ Xz Y|z>

. PXY|z
— 47 <\/4EXZEylz - P%gy\z + pxy|. arcsin (42XEY|> — 4EXZEy|z> .
z z

Above we used the following facts:

/ \/1—11'—2/l)2d$ = barcsin(x/b),
1
/ Nz

dz = arcsin(z/b),
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A
1 A
/ dk = arcsin(
0

—e———):
’/2X|ZZY|Z — K2 V Ex|22y|z

b
/ arcsin(xz/a)dz = a? — b2 + barcsin(b/a) — a.
0
Hence, we have that

VIXY1Z) = [ ) 56 o)

4 . PXY|z
= [ p(z)= \/EX Xyl = Pxy. T Pxyzarcsin | —=———=— | — {/Zx:Zy|. | dz
/ T ( | ‘ XY| | ZX\ZEY|Z ‘ |
— /p(z)é \/4ZX‘ZEy|z — p?xy‘z + pxv)|. arcsin o PxXvie ) /42X 2y, | dz.
T VAYx -2y,

Interestingly, when we deal with normal distribution, then these conditional covariances do not
depend on the actual value of Z = z. In turn, we can treat them as constants in the integral above.

4 . PXY|z
V(X,Y|Z) = p (\/ZX|ZEYIZ — Pxy|. + PxY|s arcsin <EXIEY|> - \/EX|ZZYZ>
4 . PXY|z
T r <\/4EX|zEYz - P§(Y|z + pxy|z arcsin (42X|22Yz> 1/ 4EX|ZEYZ> .

Introduce the following notation for the joint covariance matrix of X, Y, Z:

YXx Xxy Xxz
Yxviz= | Zyx Xy Xyz
Yzx Yzy Xz

Let
. Lx &
211 = E[X7Y] = (EYXX EXYY> )
X1z = (g};;) , Yo1 = (Bzx Tzv ),
Y99 = 27,

NO“a we ha\/e thal
E = - E — by o
[X,Y”z 2]] ]25 E 91 = ( X|z PXY| ) .

PYX|z Zy|z

Using these formula we can easily calculate V(X |Z = z), too.

// ei<t’x>+i<s’”>p(x|z)da: — (/ ei(t””>p(x|z)dx) (/ ei<s’x)p(a:|z)dx)

ei(t+s)T;LX‘zf%(tJrs)TZ;qz(tJrs) . (eitTp‘X‘zfétTZ)qzt) (eisT;LX‘zfésTqus)

V(X|Z = z)

- Jfves
= //w(t,s)

2
dtds

2
dtds

31



P6Cz0S SCHNEIDER

2
dtds

= //w(t,s) ‘e—%(t+s)T2X|z(t+s) _ e 3tTSxst— 55T Sx s
//w(t,s)
4 \/ . PXY|z
= | \/Ex12Ev): = Pxy). T PxY|aresin | —————= | — \/Zx:Zv]:
T ( | ‘ XY| | ZX\ZEYLZ ‘ |
4 . PXY|z /
- — 4% zZ z 2 z Y < - 4% zZ z |
T <\/ X[z2Y|e T Pxy|s T PXY arcsm( 42X|zEY|Z> K=oyl )

where PXY|z = EX|z = EYlZ

2
dtds

z P
lt; T Xz X|z t:
e 2[tss] Yx|z x|z [t:5) e*%tTEXpt*%STEX\zS
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