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Abstract

Low-dimensional embedding, manifold learning, clustering, classification, and anomaly
detection are among the most important problems in machine learning. Here we consider
the setting where each instance of the inputs corresponds to a continuous probability distri-
bution. These distributions are unknown to us, but we are given some i.i.d. samples from
each of them. While most of the existing machine learning methods operate on points,
i.e. finite-dimensional feature vectors, in our setting we study algorithms that operate
on groups, i.e. sets of feature vectors. For this purpose, we propose new nonparametric,
consistent estimators for a large family of divergences and describe how to apply them for
machine learning problems. As important special cases, the estimators can be used to esti-
mate Rényi, Tsallis, Kullback-Leibler, Hellinger, Bhattacharyya distance, L2 divergences,
and mutual information. We present empirical results on synthetic data, real word images,
and astronomical data sets.

1. Introduction

Consider the following problem where we have several independent groups of people, and
the groups might have different size. In each group we make some measurements of the
people, for example we measure their blood pressure. Suppose that in each group there is a
well-defined distribution of blood pressure, and each measurement is an i.i.d. sample from
this distribution. The question we want to study is how different these groups are from
each other. In particular, is it possible to arrange the groups into some natural clusters
using the measurements? Can we embed the distributions (i.e. the groups) into a small-
dimensional space preserving proximity where they would reveal some structure? Can we
detect interesting, unusual groups? It can happen that each measurement in a group looks
normal, that is the blood pressure values are in the same normal range, but the distributions
of these values might be different from those of other groups. Can we detect these anomalous
groups? The standard anomaly/novelty detection only focuses on finding individual points
(Chandola et al., 2009). Our group anomaly detection task, however, is different; we want
to find anomalous groups of points in which each individual point can be normal.
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Similar questions arise in many other scientific research areas. Contemporary observa-
tories, such as the Sloan Digital Sky Survey, produce a vast amount of data about galaxies
and other celestial objects. It is an important question how to find anomalous clusters of
galaxies, where each galaxy in the cluster is normal, but the cluster members together ex-
hibit unusual behavior, i.e., the distribution of the feature vectors in the cluster is different
than the feature vectors in other clusters, although each feature vector is normal.

Low-dimensional embedding and manifold learning are well-studied problems; several
different algorithms have been proposed for this problem (Roweis and Saul, 2000; Borg and
Groenen, 2005; Tenenbaum et al., 2000; Sun et al., 2010; Zhang and Zha, 2004; Belkin
and Niyogi, 2003; Donoho and Grimes, 2003). These methods usually consider a fixed-
dimensional feature representation and try to embed these feature vectors into a lower-
dimensional space. In this paper we generalize this problem and propose a method that is
able to embed distributions into lower-dimensional space. In this case the original large-
dimensional space is the space of distributions. In contrast to standard manifold learning
problems, here the original instances (i.e. distributions) are not known either, only a few
i.i.d. samples are given from them. Our goal is to embed them into a lower-dimensional
space.

Clustering and classification are also among the most frequent machine learning prob-
lems. The most well-known algorithms can only deal with fixed, finite-dimensional repre-
sentations, and they are not developed to work on sets and distributions. We will show how
these problems can be solved using our methods.

To study these kind of questions we need to estimate the distance between distributions.
We will show a method that can estimate these “distances” for a large family of diver-
gences including the Rényi-α (Rényi, 1961, 1970), Tsallis-α (Villmann and Haase, 2010),
Kullback-Leibler, Hellinger, Bhattacharyya, and L2 divergences. While the question of how
far distributions are from each other is an important and very basic statistical problem,
interestingly, we know very little about how to estimate it efficiently. If the distributions
are Gaussian mixtures, then there is a closed form expression for the L2 divergence between
them. Nonetheless, we do not have closed form expressions for Rényi, Kullback-Leibler, or
many other divergences.

An indirect way to obtain the desired estimates would be to use a “plug-in” estima-
tion scheme—first, apply a consistent density estimator for the underlying densities, and
then plug them into the desired formula. The unknown densities, however, are nuisance
parameters in the case of divergence estimation, and we would prefer to avoid estimating
them. Furthermore, density estimators usually have tunable parameters, and we may need
expensive cross validation to achieve good performance. Our proposed estimators, in con-
trast, avoid density estimation completely, estimating the divergences directly using only
simple k-nearest-neighbor statistics. We are nonetheless able to prove that the estimators
are consistent under certain conditions. We also describe how to apply these estimators to
mutual information.

The main contribution of our work is to introduce new, consistent, nonparametric diver-
gence and mutual information estimators. We also propose new algorithms for clustering,
classification, low-dimensional embedding, and anomaly detection when the input consists
of distributions or i.i.d. sample sets (groups of points), rather than finite dimensional vectors
(points) as it is the case most machine learning algorithms.
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This work is an extended version of the Póczos et al. (2011) and Póczos and Schneider
(2011) conference papers, where some of these results have been presented without proofs.
Here we study the estimation of slightly more general density functionals, and also provide
the detailed proofs of the consistency theorems.

Notation: We use the Xn →p X and Xn →d X notations for the convergence of
random variables in probability and in distribution, respectively. Fn →w F will denote the
weak convergence of distribution functions. V(M) and cl(M) stand for the volume and the
closure of set M, respectively. L1(M) denotes the set of Lebesgue measurable functions
defined on the domainM and have finite integral overM. We will use the X1:n\i notation
to denote the set {X1, . . . , Xi−1, Xi+1, . . . , Xn}.

Organization: In the next section we review some related work. The estimation prob-
lem is defined formally in Section 3. There we introduce several different divergence mea-
sures, and explain their most important properties. Section 4 proposes estimators for the di-
vergences, and we also present our most important theoretical results about the asymptotic
unbiasedness and consistency of the estimators. These theorems are proven in Section 5.
The consistency of the estimators are illustrated in Section 6. Section 7 demonstrates the
effectiveness of our proposed algorithm on several machine learning problems including clus-
tering, classification, and low-dimensional embedding problems. For the demonstration we
use syntectic data, real word images, and astronomical data sets. Finally, we conclude with
a discussion of our work. Many details of the proofs can be found in the Appendix. To
help understand the proofs, in the Appendix we also provide dependence charts of the main
theorems and lemmas.

2. Related Work

Under certain conditions, divergence estimators can also be used to estimate entropy and
mutual information. Entropy estimators are important in goodness-of-fit testing (Vasicek,
1976; Goria et al., 2005), parameter estimation in semi-parametric models (Wolsztynski
et al., 2005), studying fractal random walks (Alemany and Zanette, 1994), and texture
classification (Hero et al., 2002b,a). Mutual information estimators have been used in
feature selection (Peng and Dind, 2005), clustering (Aghagolzadeh et al., 2007), causality
detection (Hlaváckova-Schindler et al., 2007), optimal experimental design (Lewi et al.,
2007; Póczos and Lőrincz, 2009), fmri data processing (Chai et al., 2009), prediction of
protein structures (Adami, 2004), and boosting and facial expression recognition (Shan
et al., 2005). Both entropy estimators and mutual information estimators have been used
for independent component and subspace analysis (Learned-Miller and Fisher, 2003; Póczos
and Lőrincz, 2005; Hulle, 2008; Szabó et al., 2007), as well as for image registration (Kybic,
2006; Hero et al., 2002b,a). For further applications, see Leonenko et al. (2008a); Wang
et al. (2009a). A nice introduction to the Rényi divergence and its applications can be
found in van Erven and Harremoës (2010).

The closest existing work most relevant to the topic of this paper is the work of Wang
et al. (2009b), who provided an estimator for the kl-divergence.1 Hero et al. (2002a,b)

1. We note that there is an apparent error in their work; they applied the reverse Fatou lemma under
conditions when it does not hold. It is not obvious how this portion of the proof can be remedied.
This error originates in the work of Kozachenko and Leonenko (1987) and can also be found in other
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also investigated the Rényi divergence estimation problem but assumed that one of the
two density functions is known. Gupta and Srivastava (2010) developed algorithms for
estimating the Shannon entropy and the kl divergence for certain parametric families.

Recently, Nguyen et al. (2009, 2010) developed methods for estimating f -divergences
using their variational characterization properties. They estimate the likelihood ratio of
the two underlying densities and plug that into the divergence formulas. This approach
involves solving a convex minimization problem over an infinite-dimensional function space.
For certain function classes defined by reproducing kernel Hilbert spaces (rkhs), however,
they were able to reduce the computational load from solving infinite-dimensional problems
to solving n-dimensional problems, where n denotes the sample size. When n is large, solving
these convex problems can still be very demanding. Furthermore, choosing an appropriate
rkhs also introduces questions regarding model selection. An appealing property of our
estimator is that we do not need to solve minimization problems over function classes;
we only need to calculate certain k-nearest-neighbor (k-nn) based statistics. Recently,
Sricharan et al. (2010) proposed k-nearest-neighbor based methods for estimating non-
linear functionals of density, but in contrast to our approach, they were interested in the
case where k increases with the sample size.

Our work borrows ideas from Leonenko et al. (2008a) and Goria et al. (2005), who
considered Shannon and Rényi-α entropy estimation from a single sample.2 In contrast,
we propose divergence estimators using two independent samples. Recently, Póczos et al.
(2010); Pál et al. (2010) proposed a method for consistent Rényi information estimation,
but this estimator also uses one sample only and cannot be used for estimating divergences.
Further information and useful reviews of several different divergences can be found, e.g.,
in Villmann and Haase (2010), Cichocki et al. (2009), and Wang et al. (2009a).

Machine learning on distributions have been studied for example in Jebara et al. (2004),
who introduced the probability product kernels to define kernels on distributions. Here a
parametric family ( e.g.exponential family) is fitted to the densities, and these parameters
are used to estimate inner products between distributions. The Fisher kernel (Jaakkola
and Haussler, 1998) also works on parametric families only. In contrast, the estimator we
are going to study is completely nonparametric. Kernels on finite sets have been studied
in computer vision problems as well. For example, Lyu (2005) constructed composite set
kernels from simpler kernels defined on local features. It has not been studied, however, if
these methods can be related to divergences between distributions.

3. Divergences

For the remainder of this work we will assume thatM⊂ Rd is a measurable set with respect
to the d-dimensional Lebesgue measure and that p and q are densities onM. The set where
they are strictly positive will be denoted by supp(p) and supp(q), respectively. We will need
the definition of Csiszár’s f divergence (Csiszár, 1967; Liese and Vajda, 2005).

works. Recently, Pérez-Cruz (2008) has proposed an other consistency proof for this estimator, but it
also contains some errors: he applies the strong law of large numbers under conditions when it does not
hold, and also assumes that convergence in probability implies almost sure convergence.

2. The original presentations of these works contained some errors; Leonenko and Pronzato (2010) provide
corrections for some of these theorems.
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Definition 1 (Csiszár’s f-Divergence) Let p, q be Rd ⊇M→ R density functions, and
let f : [0,∞) → R be a convex function such that f(1) = 0. The Csiszár’s f -divergence is
defined as

Df (p‖q) .
=

∫
M
f

(
q(x)

p(x)

)
p(x)dx, (1)

with definitions 0 · f(0
0) = 0, 0 · f(a0 ) = limx→0 xf(ax) and assuming that the integral in (1)

exists.

Lemma 2 (Csiszár’s f-Divergence) For any convex function f such that f(1) ≥ 0 and
the integral in (1) exists, we have that Df (p‖q) ≥ 0.

Proof

0 ≤ f(1) = f

(
EX∼p

[
q(X)

p(X)

])
≤ EX∼p

[
f

(
q(X)

p(X)

)]
= Df (p‖q),

where in the last inequality we used the Jensen inequality for the convex function f .

An important subset of these f -divergences are the so-called α-divergences (Cichocki
et al., 2008, 2009):

Definition 3 Let p, q be Rd ⊇ M → R density functions, and α ∈ R \ {0, 1}. The α-
divergence D̃α(p‖q) is defined as

D̃α(p‖q) .
=

1

α(1− α)

[
1−

∫
M
pα(x)q1−α(x)dx

]
(2)

assuming the integral exists.

One can see that this is indeed a special case of the Csiszár divergence by choosing the

f(z)
.
=

1

α(1− α)
(α+ (1− α)z − z(1−α)), z ≥ 0

convex function, and hence D̃α(p‖q) is always nonnegative. We have to be careful with the∫
pα(x)q1−α(x)dx term in (2), since this quantity can easily be infinity for certain αs with

large absolute values, even if p and q are strictly positive on the whole domain M. To
see this consider e.g., two zero mean Gaussian distributions (Section 6.1). Closely related
divergences (but not special cases) to (2) are the Rényi-α (Rényi, 1961), and the Tsallis-α
(Villmann and Haase, 2010) divergences.

Definition 4 Let p, q be Rd ⊇ M : → R density functions and let α ∈ R \ {1}. The
Rényi-α divergence is defined as

Rα(p‖q) .
=

1

α− 1
log

∫
M
pα(x)q1−α(x)dx. (3)

The Tsallis-α divergence is defined as

Tα(p‖q) .
=

1

α− 1

(∫
M
pα(x)q1−α(x)dx− 1

)
. (4)

Both definitions assume that the corresponding integral exists.
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One can see that as α → 1 these divergences converge to the kl-divergence. The
following lemma summarizes the behavior of these divergences.

Lemma 5

α < 0⇒ Rα(p‖q) ≤ 0, Tα(p‖q) ≤ 0

α = 0⇒ Rα(p‖q) = Tα(p‖q) = 0

0 < α⇒ Rα(p‖q) ≥ 0, Tα(p‖q) ≥ 0

α = 1⇒ Rα(p‖q) = Tα(p‖q) = KL(p‖q) ≥ 0

We mention two other important divergences that are distances too, i.e. they are sym-
metric and satisfy the triangle inequality as well.

Definition 6 L2 distance

L2(p‖q) .
=

(∫
M
p2(x)− 2p(x)q(x) + q2(x)dx

)1/2

.

Definition 7 Hellinger distance

H(p‖q) .
= 1−

∫
M

√
p(x)q(x)dx.

A closely related divergence to the Hellinger distance is the Bhattacharyya divergence.
This, however, does not obey the triangle inequality.

Definition 8 Bhattacharyya divergence

B(p‖q) .
= − log

∫
M

√
p(x)q(x)dx.

In all of these divergences and distances the most difficult problem is the estimation of
the quantity Dα,β(p‖q) .

=
∫
M pα(x)qβ(x)p(x)dx for some α, β ∈ R. Given two independent

i.i.d. samples from distributions with densities p and q, respectively, we will provide an
L2-consistent estimator for Dα,β(p‖q).

4. Divergence Estimation

In the remainder of this paper we will heavily exploit some properties of k-nn based density
estimators. In the following section we define these estimators and briefly summarize their
most important properties.

4.1 k-NN Based Density Estimators

k-nn density estimators operate using only distances between the observations in a given
sample and their kth nearest neighbors (breaking ties arbitrarily). Let X1:n

.
= (X1, . . . , Xn)

be an i.i.d. sample from a distribution with density p, and similarly let Y1:m
.
= (Y1, . . . , Ym)

be an i.i.d. sample from a distribution having density q. Let ρk(i) denote the Euclidean
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distance of the kth nearest neighbor of Xi in the sample X1:n\i, and similarly let νk(i) denote
the distance of the kth nearest neighbor of Xi in the sample Y1:m. Figure 4.1 illustrate these
random variables. Let B(x,R) denote a closed ball around x ∈ Rd with radius R, and let
V
(
B(x,R)

)
= c̄Rd be its volume, where c̄ stands for the volume of a d-dimensional unit

ball. Loftsgaarden and Quesenberry (1965) define the k-nn based density estimators of p
and q at Xi as follows.

Definition 9 (k-NN based density estimators)

p̂k(Xi)
.
=

k/(n− 1)

V
(
B(x, ρk)

) =
k

(n− 1)c̄ρdk(i)
, (5)

q̂k(Xi)
.
=

k/m

V
(
B(x, νk)

) =
k

mc̄νdk(i)
. (6)

The following theorems show the consistency of these density estimators.

Theorem 10 (k-NN estimators, convergence in probability) If k(n) denotes the
number of neighbors applied at sample size n, limn→∞ k(n) =∞, and limn→∞ n/k(n) =∞,
then p̂k(n)(x)→p p(x) for almost all x.

Theorem 11 (k-NN estimators, convergence in sup norm) If limn→∞ k(n)/ log(n) =
∞ and limn→∞ n/k(n) =∞, then limn→∞ supx

∣∣p̂k(n)(x)− p(x)
∣∣ = 0 almost surely.

Note that these estimators are consistent only when k(n) → ∞. We will use these
density estimators in our proposed divergence estimators. However, we will keep k fixed,
which implies that the density estimators are not consistent, but we will still be able to
prove the consistency of the divergence estimators.

Figure 1: Calculating ρk(i) and νk(i). Blue dots and red squares are i.i.d. samples from p
and q respectively. We set k = 2 in this example.
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4.2 Estimator for Dα,β(p‖q)

In this section we introduce our estimator for Dα,β(p‖q) and claim its L2 consistency.

Dα,β(p‖q) .
=

∫
M
pα(x)qβ(x)p(x)dx, (7)

where M = supp(p). If we simply plugged (5) and (6) into (7), then we could estimate
Dα,β(p‖q) with

1

n

n∑
i=1

kα+β

c̄α+β
(n− 1)−αm−βρ−dαk (i)ν−dβk (i);

however, this estimator is asymptotically biased. We will prove that by introducing a mul-
tiplicative term the following estimator is asymptotically unbiased under certain conditions:

1

n

n∑
i=1

(n− 1)−αm−βρ−dαk (i)ν−dβk (i)Bk,α,β; (8)

where Bk,α,β
.
= c̄−α−β Γ(k)2

Γ(k−α)Γ(k−β) . Notably, this multiplicative bias does not depend on p

or q. The following theorems of this section contain our main results: D̂α,β(X1:n‖Y1:m) is an
L2-consistent estimator for Dα,β(p‖q), i.e., it is asymptotically unbiased, and the variance
of the estimator is asymptotically zero.

In our theorems we will assume that almost all points of M are in its interior and that
M has the following additional property:

inf
0<δ<1

inf
x∈M

V
(
B(x, δ

)
∩M)

V
(
B(x, δ)

) .
= rM > 0;

we will explain why this condition is needed later. IfM is a finite union of bounded convex
sets, then this condition holds.

Theorem 12 (Asymptotic unbiasedness) Let −k < α, β < k. If 0 < α < k, then let p
be bounded away from zero and uniformly continuous. If −k < α < 0, then let p be bounded.
Similarly, If 0 < β < k, then let q be bounded away from zero and uniformly continuous. If
−k < β < 0, then let q be bounded. Under these conditions we have that

lim
n,m→∞

E
[
D̂α,β(X1:n‖Y1:m)

]
= Dα,β(p‖q),

i.e., the estimator is asymptotically unbiased.

The following theorems provide conditions under which D̂α,β is L2 consistent. In the pre-
vious theorems we have stated conditions that lead to asymptotically unbiased divergence
estimation. In the following theorem we will assume that the estimator is asymptotically un-
biased for (α, β) as well as for (2α, 2β), and also assume that Dα,β(p‖q) <∞, D2α,2β(p‖q) <
∞.
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Theorem 13 (L2 consistency) Let k ≥ 2 and −(k− 1)/2 < α, β < (k− 1)/2. If 0 < α <
(k− 1)/2, then let p be bounded away from zero and uniformly continuous. If −(k− 1)/2 <
α < 0, then let p be bounded. Similarly, If 0 < β < (k − 1)/2, then let q be bounded away
from zero and uniformly continuous. If −(k − 1)/2 < β < 0, then let q be bounded. Under
these conditions we have that

lim
n,m→∞

E
[(
D̂α,β(X1:n‖Y1:m)−Dα,β(p‖q)

)2
]

= 0;

that is, the estimator is L2 consistent.

5. Analysis of the Estimators

The proofs of these main theorems will require a couple of lemmas. The next section collects
these tools.

5.1 Limit of Moments and Lebesgue Approximation

By the Portmanteau lemma (van der Wart, 2007), we know that the weak convergence of
Xn →d X implies that E

[
g(Xn)

]
→ E

[
g(X)

]
for every continuous bounded function g.

However, it is in general not true that if Xn →d X, then E[Xγ
n ] → E[Xγ ]. The following

lemma provides a sufficient condition under which this does hold.

Lemma 14 (Limit of moments, (van der Wart, 2007)) Let Xn →d X, 0 ≤ Xn,

0 ≤ X, and γ ∈ R. If there exists an ε > 0 with lim supn→∞ E
[
X
γ(1+ε)
n

]
< ∞, then

lim
n→∞

E [Xγ
n ] = E [Xγ ].

The following lemma of Lebesgue states that any function in L1(Rd) restricted to a very
small ball approximately looks like a constant function.

Lemma 15 (Lebesgue (1910)) If g ∈ L1(Rd), then for any sequence of open balls
B(x,Rn) with radius Rn → 0, and for almost all x ∈ Rd,

lim
n→∞

∫
B(x,Rn) g(t)dt

V
(
B(x,Rn)

) = g(x). (9)

This implies that ifM⊂ Rd is a Lebesgue-measurable set, and g ∈ L1(M), then for any
sequence of Rn → 0, for any δ > 0 and for almost all x ∈ M, there exists an n0(x, δ) ∈ Z+

such that if n > n0(x, δ), then

g(x)− δ <

∫
B(x,Rn) g(t)dt

V(B(x,Rn))
< g(x) + δ. (10)

We will later require a stronger property; namely, we will need this to hold uniformly over
x ∈ M. However, for this requirement to hold we must put slight restrictions on the
domain M to avoid effects around its boundary. We will consider only those domains M
that possess the property that the intersection of M with an arbitrary small ball having
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(a) feasible (b) not allowed

Figure 2: A possible allowed and a not-allowed domain M under the property in (11).

center in M has volume that cannot be arbitrary small relative to the volume of the ball.
To be more formal, we want the following inequality to be satisfied:

inf
0<δ<1

inf
x∈M

V
(
B(x, δ) ∩M

)
V
(
B(x, δ)

) .
= rM > 0. (11)

Figure 2 illustrates this notion by showing example domains that satisfy and violate this
constraint. When the following property holds uniformly over x ∈ M, we say that the
function g is uniformly Lebesgue approximable.

Definition 16 (Uniformly Lebesgue-approximable function) Let g ∈ L1(M). g is
uniformly Lebesgue approximable on M if for any series Rn → 0 and any δ > 0, there
exists an n = n0(δ) ∈ Z+ (independent of x) such that if n > n0, then for almost all x ∈M,

g(x)− δ <

∫
B(x,Rn)∩M g(t)dt

V
(
B(x,Rn) ∩M

) < g(x) + δ. (12)

This property is a uniform variant of (10). The following lemma provides examples of
uniformly Lebesgue-approximable functions.

Lemma 17 If g is uniformly continuous onM, then it is uniformly Lebesgue approximable
on M.

Finally, as we proceed we will frequently use the following lemma:

Lemma 18 (Moments of the Erlang distribution) Let

fx,k(u)
.
=

1

Γ(k)
λk(x)uk−1 exp(−λ(x)u)

be the density of the Erlang distribution with parameters λ(x) > 0 and k ∈ Z+. Let γ ∈ R
such that γ + k > 0. The γth moments of this Erlang distribution can be calculated as∫∞

0 uγfx,k(u) du = λ(x)−γ Γ(k+γ)
Γ(k) .
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5.2 Proof Outline for Theorems 12-13

We can see from (5) that the k-nn estimation of 1/p(x) is simply (n − 1)c̄ρdk(x)/k. Using
Lemma 15, we can prove that the distribution of (n−1)c̄ρdk(x) converges weakly to an Erlang
distribution with mean k/p(x), and variance k/p2(x) (Leonenko et al., 2008a). In turn, if we
divide (n− 1)c̄ρdk(x) by k, then asymptotically it has mean 1/p(x) and variance 1/(kp2(x)).
It implies that indeed (in accordance with Theorems 10–11) k should converge to infinity
in order to get a consistent estimator, otherwise the variance will not disappear. On the
other hand, k cannot grow too fast: if say k = n − 1, then the estimator would be simply
c̄ρdk(x), which is a useless estimator since it is asymptotically zero whenever x ∈ supp(p).

Luckily, in our case we do not need to apply consistent density estimators. The trick is
that (7) has a special form;

∫
p(x)pα(x)qβ(x)dx form. In (8) this is estimated by

1

n

n∑
i=1

(p̂k(Xi))
α (q̂k(Xi))

β Bk,α,β, (13)

where Bk,α,β is a correction factor that ensures asymptotic unbiasedness. Using Lemma 15,
we can prove that the distributions of p̂k(Xi) and q̂k(Xi) converge weakly to the Erlang
distribution with means k/p(Xi), k/q(Xi) and variances k/p2(Xi), k/q

2(Xi), respectively
(Leonenko et al., 2008a). Furthermore, they are conditionally independent for a given Xi.
Therefore, “in the limit” (13) is simply the empirical average of the products of the αth (and
βth) powers of independent Erlang distributed variables. These moments can be calculated
by Lemma 18. For a fixed k, the k-nn density estimator is not consistent since its variance
does not vanish. In our case, however, this variance will disappear thanks to the empirical
average in (13) and the law of large numbers.

While the underlying ideas of this proof are simple, there are a couple of serious gaps
in it. Most importantly, from the Lebesgue lemma (Lemma 15) we can guarantee only the
weak convergence of p̂k(Xi), q̂k(Xi) to the Erlang distribution. From this weak convergence
we cannot imply that the moments of the random variables converge too. To handle this
issue, we will need stronger tools such as the concept of asymptotically uniformly integrable
random variables (van der Wart, 2007), and we also need the uniform generalization of the
Lebesgue lemma (Definition 16). As a result, we need to put some extra conditions on the
densities p and q in Theorems 12–13. We provide the details in the subsequent sections.

5.3 Proving Asymptotic Unbiasedness

The following section contains several specific lemmas and theorems that we will use for
proving the consistency of the proposed estimator (8).

5.3.1 Preliminaries

Remember that ρk(j) is a random variable which measures the distance between Xj and
its kth nearest neighbor in X1:n\j .

11
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Lemma 19 Let ζn,k,1
.
= (n − 1)ρdk(1) be a random variable, x ∈ Rd, and let Fn,k,x(u)

.
=

Pr(ζn,k,1 < u|X1 = x) denote its conditional distribution function. Then

Fn,k,x(u) = 1−
k−1∑
j=0

(
n− 1
j

)
(Pn,u,x)j(1− Pn,u,x)n−1−j , (14)

where Pn,u,x
.
=
∫
M∩B(x,Rn(u)) p(t) dt, and Rn(u)

.
= (u/(n− 1))1/d.

Here x ∈ Rd, i.e. the lemma is valid in the x /∈M = supp(p) case too. The limit distribution
of Fn,k,x is described by the following lemma, (Leonenko et al., 2008a).

Lemma 20 For almost all x ∈M, Fn,k,x →w Fk,x, where Fk,x(u)
.
= 1− exp(−λu)

k−1∑
j=0

(λu)j

j!

is the cdf of the Erlang distribution with λ = c̄p(x).

We use the Lebesgue approximation in the proof of this lemma, that is the reason why
we can only talk about almost all x ∈M (and not all x ∈M).

Lemma 21 The Lemma 20 holds for almost all x /∈ M too, i.e. when p(x) = 0. In this
degenerate case, limn→∞ Fn,k,x(u) = Fk,x(u) = 0 for all u.

Lemma 22 Let ξn,k,x and ξk,x be random variables with Fn,k,x and Fk,x distribution func-
tions, and let γ ∈ R be arbitrary. Then for almost all x ∈ M ξγn,k,x →d ξ

γ
k,x. If x /∈ cl(M),

then ξn,k,x →∞ almost surely.

From Lemma 22 we have that ξn,k,x → ∞ almost surely when x /∈ cl(M). This imme-
diately proves the following theorem.

Theorem 23 If x /∈ cl(M), then

lim
n→∞

E
[
(n− 1)γρdγk (1)|X1 = x

]
=


0 if γ < 0
1 if γ = 0
∞ if 0 < γ

Similarly, if x /∈ cl(supp(q)), then

lim
m→∞

E
[
mγνdγk (1)|X1 = x

]
=


0 if γ < 0
1 if γ = 0
∞ if 0 < γ

Theorem 24 For almost all x ∈ M the following statements hold. If (i) −k < γ < 0, or
(ii) 0 ≤ γ, and

∫
M ‖x− y‖

γp(y)dy <∞, then

lim
n→∞

E
[
(n− 1)γρdγk (1)|X1 = x

]
= (c̄p(x))−γ

Γ(k + γ)

Γ(k)
.

Similarly, if (i) −k < γ < 0, or (ii) 0 ≤ γ, and
∫
M ‖x− y‖

γq(y)dy <∞, then for almost
all x ∈ supp(q) we have that

lim
m→∞

E
[
mγνdγk (1)|X1 = x

]
= (c̄q(x))−γ

Γ(k + γ)

Γ(k)
.

12
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Note that the conditions here are different from those given in Leonenko et al. (2008a),
Leonenko et al. (2008b), Goria et al. (2005) and Wang et al. (2009b).

Proof We already know from Lemma 22 that ξγn,k,x →d ξ
γ
k,x, for almost all x ∈M. If from

this it follows that E[ξγn,k,x]→ E[ξγk,x], then

lim
n→∞

E
[
(n− 1)γρdγk (1)|X1 = x

]
= lim

n→∞
E
[
ξγn,k,x

]
= E

[
limd
n→∞ξ

γ
n,k,x

]
= E

[
ξγk,x

]
=

∫ ∞
0

uγfx,k(u) du = (c̄p(x))−γ
Γ(k + γ)

Γ(k)
,

assuming k + γ > 0 and using Lemma 18.

For brevity introduce the following notation:

fn(x)
.
= E

[
(n− 1)−αρ−dαk (1)

∣∣∣X1 = x
]

(15)

gm(x)
.
= E

[
m−βν−dβk (1)

∣∣∣X1 = x
]
. (16)

Theorem 23 and Theorem 24 together describe the limit properties of fn(x) and gm(x)
for almost all x ∈ Rd. All that remained is to prove that if (ξγn,k,x →d ξγk,x), then

(E[ξγn,k,x] → E[ξγk,x]). We are going to prove this in Theorem 26. To see this, it is enough
to show (according to Theorem 14) that for some ε > 0, and c(x) < ∞ it holds that

lim supn E[ξ
γ(1+ε)
n,k,x ] < c(x). We do not need to calculate explicitly E[ξ

γ(1+ε)
n,k,x ]; we simply need

to find a finite upper bound.

5.3.2 Properties of Fn,k,x

In what follows we will need a couple of properties of the Fn,k,x distribution functions. In
this section we summarize these properties. Let γ > 0, x ∈ M = supp(p), and define the
following functions:

H(x, p, δ, ω)
.
=

k−1∑
j=0

(
1

j!

)ω
Γ(γ + jω)

(
1 +

2δ

p(x)− δ

)jω (
p(x)− δ

)−γ(
(1− δ)ω

)−γ−jω
. (17)

L(x, ω, k, γ, p, δ, δ1)
.
= δ1 + δ1

∫
M
‖x− y‖γp(y)dy + (c̄rM)−γ H(x, p, δ, ω). (18)

Let p be bounded away from zero, and let p > 0 and δ > 0 so small such that infx p(x) >
p > δ > 0. Since p is bounded away from zero, therefore M = supp(p) is bounded and
thus

∫
M ‖x − y‖γp(y)dy and L are bounded functions of x. It implies that there exists

L̄ = L̄(ω, k, γ, p, δ, δ1) such that supx∈M L(x, ω, k, γ, p, δ, δ1) < L̄ <∞.

Theorem 25 (Properties of Fn,k,x)

13
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1. Let γ > 0, and let p be uniformly continuous on M and bounded away from zero. Let
δ > 0 so small that p(x)− δ > 0 for all x ∈ M. If δ1 > 0, and ω ∈ (0, 1], then there
exists n0 = n0(ω, k, γ, p, δ, δ1) ∈ Z+, which is independent of x such that when n > n0,
then for almost all x ∈M∫ ∞

0
(1− Fn,k,x(u))ωuγ−1du ≤ L̄(ω, k, γ, p, δ, δ1) <∞. (19)

For the ω = 1 special case choosing γ = −α > 0, we have that

fn(x)
.
=

∞∫
0

uγFn,k,x(du) = γ

∞∫
0

uγ−1(1− Fn,k,x(u))du ≤ γL̄(1, k, γ, p, δ, δ1) <∞.

(20)

For brevity, we will simply write fn(x) ≤ K(p, γ) <∞.

2. [Non-unifrom version in x ] Let γ > 0, and let δ(x) > 0 so small that p(x)− δ(x) > 0
for all x ∈ M. [We do not require p to be bounded away from zero this time!] Let
furthermore δ1 > 0, and ω ∈ (0, 1]. Then there exists n0(x) ∈ Z+ such that for almost
all x ∈M, when n > n0(x) then∫ ∞

0
uγ−1(1− Fn,k,x(u))ωdu < L(x, ω, k, γ, p, δ(x), δ1) <∞, (21)

3. If p is bounded above by p̄ on Rd, 0 ≤ u ≤ b, then for all n ∈ Z+, and for all x ∈ Rd

Fn,x,k(u) ≤ ukL̂(p̄, b), (22)

where L̂(p̄, b)
.
= p̄k c̄k exp(p̄c̄b). This implies that if 0 < γ < k, then for all x ∈ Rd

lim
u→0

1

uγ
Fn,k,x(u) = 0. (23)

4. If γ < 0 < b, and ω ∈ (0, 1], then for all x ∈ Rd∫ ∞
b

uγ−1(Fn,k,x(u))ωdu ≤ −b
γ

γ
. (24)

5. Let −k < γ < 0. If p is bounded above by p̄ on Rd, 0 < b, ω ∈ (0, 1], and 0 < kω + γ,
then for all n ∈ Z+, and for all x ∈ Rd∫ b

0
uγ−1(Fn,k,x(u))ωdu ≤ L̂ω(p̄, b)

bkω+γ

kω + γ
. (25)

Using this and (24) with b = 1 and ω = 1, we have that for all x ∈ Rd

fn(x)
.
= (−γ)

∞∫
0

uγ−1Fn,k,x(u)du ≤ (−γ)

[
L̂(p̄, 1)

k + γ
− 1

γ

]
< ∞. (26)

For brevity, we will simply write fn(x) ≤ K(p, γ) <∞.

14
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Theorem 26 For almost all x ∈ M we have that (i) if 0 ≤ γ,
∫
M ‖x − y‖

γp(y)dy < ∞
and ξγn,k,x →d ξ

γ
k,x, or (ii) if −k < γ < 0, and ξγn,k,x →d ξ

γ
k,x, then lim

n→∞
E[ξγn,k,x] = E[ξγk,x].

Proof
Case (i) of Theorem 26. Let γ > 0. We need to prove that there exists ε > 0 such

that lim supn E[ξ
γ(1+ε)
n,k,x ] <∞. Thanks to Lemma 41, this can be rewritten as

lim sup
n

∫ ∞
0

γuγ(1+ε)−1(1− Fn,k,x(u))du < ∞.

This, however, follows directly from (21) using ω = 1. (21) holds for any γ > 0, and thus
for γ(1 + ε), too, with any ε > 0.

Case (ii) of Theorem 26. Let −k < γ < 0. We need to prove that there exists ε > 0

such that lim supn E[ξ
γ(1+ε)
n,k,x ] <∞. Thanks to Lemma 42, this can be rewritten as

lim sup
n

∫ ∞
0

(−γ)uγ(1+ε)−1Fn,k,x(u)du < ∞.

This follows from (26) by choosing an appropriate ε > 0 such that γ(1 + ε) < 0, and k +
γ(1 + ε) > 0.

Now, we are ready to put the pieces together and prove our main theorems on the
asymptotic unbiasedness of the estimator (8).

5.3.3 The Proof of Theorem 12

Proof We want to prove that

Dα,β(p‖q)
Bk,α,β

= lim
n,m→∞

E

[
1

n

n∑
i=1

(n− 1)−αm−βρ−dαk (i)ν−dβk (i)

]
= lim

n,m→∞
E
[
(n− 1)−αm−βρ−dαk (1)ν−dβk (1)

]
.

By exploiting the fact that ρk(1) and νk(1) are independent if X1 is given, we can see
that the r.h.s. can be rewritten as

lim
n,m→∞

EX1∼p

[
E
[
(n− 1)−αρ−dαk (1)

∣∣∣X1

]
E
[
m−βν−dβk (1)

∣∣∣X1

]]
= lim
n,m→∞

EX1∼p [fn(X1)gm(X1)]

If we could move the limit inside the expectation, then we could apply Theorem 24 to
continue the derivation as follows.

EX1∼p

[
lim
n→∞

E
[
(n− 1)−αρ−dαk (1)

∣∣∣X1

]
lim
m→∞

E
[
m−βν−dβk (1)

∣∣∣X1

]]
= EX1∼p

[
(c̄p(X1))α(c̄q(X1))β

] Γ(k − α)

Γ(k)

Γ(k − β)

Γ(k)
.

This would complete the proof of Theorem 12. In the next section we will discuss conditions
under which the outer limit can be moved inside the expectation above.
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5.3.4 Switching Limit and Expectation

Our goal is to prove that

lim
n,m

∫
M
fn(x)gm(x)p(x)dx =

∫
M

lim
n,m

fn(x)gm(x)p(x)dx, (27)

lim
n,m

∫
M
fn(x)gm(x)p(x)dx

= lim
n,m

∫
supp(p)\supp(q)

fn(x)gm(x)p(x)dx+ lim
n,m

∫
supp(p)∩supp(q)

fn(x)gm(x)p(x)dx

If β = 0, then gm(x) = 1 for all x. If α = 0, then fn(x) = 1 for all x. These degenerate
cases are easy to analyze, thus in what follows we will assume that α 6= 0 and β 6= 0.
Let M∗ = supp(p) \ supp(q). First we prove that under the conditions of Theorem 12 the
first term, limn,m

∫
M∗ fn(x)gm(x)p(x)dx =

∫
M∗ limn,m fn(x)gm(x)p(x)dx, is either zero or

infinity. If it is infinity, then Dα,β =∞. If it is zero then this term has no contribution to
Dα,β and it is enough to calculate the integrals on supp(p) ∩ supp(q).

Under the conditions of Theorem 12 we have that 0 ≤ fn(x) ≤ K(p,−α) < ∞ for
almost all x ∈ M. When 0 < α = −γ < k, then this is true because of (20). When
−k < α = −γ < 0 then this follows from (26). When α = 0 then fn(x) = 1 for all x ∈ Rd.

Let 0 < β < k. From (26), we have that gm(x) ≤ K(q,−β) < ∞ for all x ∈ Rd
Therefore, fn(x)gm(x) ≤ K(p,−α)K(q,−β) < ∞ for all n,m and for almost all x ∈ M∗.
We can use the dominated convergence theorem to switch the limit and the integral:

lim
n,m

∫
M∗

fn(x)gm(x)p(x)dx =

∫
M∗

lim
n,m

fn(x)gm(x)p(x)dx

≤ K(p,−α)

∫
M∗

lim
m
gm(x)p(x)dx = 0,

where in the last inequality we used Theorem 23.
If β < 0, then by the Fatou lemma and Theorem 24 we have that

lim inf
n,m

∫
M∗

fn(x)gm(x)p(x)dx ≥
∫
M∗

lim inf
n,m

fn(x)gm(x)p(x)dx

=

∫
M∗

(c̄p(x))α
Γ(k − α)

Γ(k)
lim inf

m
gm(x)p(x)dx =∞,

assuming
∫
M∗ p

α+1(x)dx > 0 and using the fact that lim infm gm(x) = ∞ for almost all
x ∈M∗ thanks to Theorem 23.

Now, using (20) and (26) again, we have that fn(x)gm(x) ≤ K(p,−α)K(q,−β) < ∞,
for almost all x ∈ supp(p)∩ supp(q). Applying Lebesgue’s dominated convergence theorem
shows that

lim
n,m

∫
supp(p)∩supp(q)

fn(x)gm(x)p(x)dx =

∫
supp(p)∩supp(q)

lim
n,m

fn(x)gm(x)p(x)dx,

which finishes the proof of (27), and thus the proofs of Theorem 12 as well.
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5.4 The Asymptotic Variance

In this section we prove Theorem 13 by analyzing the asymptotic squared deviation between
the estimator D̂α,β(X1:n‖Y1:m) and the true quantity Dα,β.

5.4.1 Preliminaries

We want to show that limn,m→∞ E[(D̂α,β(X1:n‖Y1:m)−Dα,β)2] = 0. For the sake of brevity,

let τ(i)
.
= (n− 1)−αρ−dαk (i)m−βν−dβk (i).

E[(D̂α,β(X1:n‖Y1:m)−Dα,β)2] = E

( 1

n

n∑
i=1

τ(i)Bk,α,β −Dα,β

)2


=
1

n2
E

 n∑
i 6=j

(τ(i)Bk,α,β −Dα,β) (τ(j)Bk,α,β −Dα,β)

+
1

n
E
[
(τ(1)Bk,α,β −Dα,β)2

]
.

Thus, it is enough to prove that

lim sup
n,m→∞

E
[
(τ(1)Bk,α,β −Dα,β)2

]
<∞, (28)

and

lim
n,m→∞

1

n2
E

 n∑
i 6=j

(τ(i)Bk,α,β −Dα,β) (τ(j)Bk,α,β −Dα,β)

 = 0. (29)

Investigating (28) we have that

E
[
{τ(1)Bk,α,β −Dα,β}2

]
= D2

α,β + E
[
(n− 1)−2αρ−2dα

k (1)m−2βν−2dβ
k (1)B2

k,α,β

]
− 2Dα,βE [τ(1)]Bk,α,β.

We already know that the estimator is asymptotically unbiased (i.e., limn,m→∞ E [τ(1)]Bk,α,β =
Dα,β). To see that (28) holds, it is enough to show that the following lemma is true.

Lemma 27

lim sup
n,m→∞

EX1∼p

{
E

[
(n− 1)−2αρ−2dα

k (1)m−2βν−2dβ
k (1)

∣∣∣∣∣X1

]}
<∞.

Proof We can use the same techniques that we used for proving Theorem 12. We just
have to replace α and β with 2α and 2β and assume that D2α,2β(p‖q) <∞.

To see that limn,m→∞ E[(D̂α,β(X1:n‖Y1:m) −Dα,β)2] = 0, all that remained is to prove
(29). To be able to prove it, we need to make a couple of observations. We discuss them in
the next section.
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5.4.2 Properties of Fn,k,x1,x2 Joint Distribution Function

Introduce the ζn,k,1
.
= (n− 1)ρdk(1), ζn,k,2

.
= (n− 1)ρdk(2) random variables, and let

Fn,k,x1,x2(u, v)
.
= Pr(ζn,k,1 < u ∧ ζn,k,2 < v|X1 = x1, X2 = x2) (30)

denote their joint distribution for x1, x2 ∈ Rd. In order to see (29), we will need a couple
of more lemmas that we list below.

Lemma 28 (Generalization of Lemma 19) Let x1, x2 ∈ Rd. For brevity let

Sn,j,l
.
= (Pn,u,x1)j(Pn,v,x2)l(1− Pn,u,x1 − Pn,v,x2)n−2−j−l.

If max(Rn(u), Rn(v)) ≤ ‖x1 − x2‖, then

Fn,k,x1,x2(u, v) =
n−2∑
j=k

n−2−j∑
l=k

(
n− 2
j

)(
n− 2− j

l

)
Sn,j,l. (31)

It is easy to see that there exists n0(x1, x2, u1, u2) ∈ Z+ such that for all n > n0 we have
that B(x1, Rn(u)) ∩ B(x2, Rn(v)) = ∅, and thus (31) holds. The following lemma claims
that in this case Fn,k,x1,x2 can be rewritten.

Lemma 29 If (31) holds, then Fn,k,x1,x2 can be rewritten as

Fn,k,x1,x2(u, v) = F̃n−1,k,x1(u) + F̃n−1,k,x2(v)− 1 +
k−1∑
j=0

k−1∑
l=0

(
n− 2
j

)(
n− 2− j

l

)
Sn,j,l,

where

F̃n−1,k,x1(u)
.
= 1−

k−1∑
j=0

(
n− 2
j

)
(Pn,u,x1)j(1− Pn,u,x1)n−2−j .

Note that limn→∞ F̃n−1,k,x1(u) = limn→∞ Fn,k,x1(u).

Lemma 30 (Generalization of Lemma 20) For almost all x1, x2 ∈ M when x1 6= x2,
then

lim
n→∞

Fn,k,x1,x2(u, v) = Fk,x1(u)Fk,x2(v).

Lemma 31 (Generalization of Lemma 21) The Lemma 30 holds for almost all
x1, x2 ∈ Rd (even when they are not inM) In this degenerate case, limn→∞ Fn,k,x1,x2(u, v) =
Fk,x1(u)Fk,x2(v) = 0 for all u, v.

Proof If x1 /∈ cl(M), then there exist ε > 0 such that ρdk(1) > ε > 0. In turn, Fn,k,x1,x2(u, v)
becomes zero for all fixed u, v if n is large enough thanks to the definition (30).

18



Nonparametric Divergence Estimation

Lemma 32 (Generalization of Lemma 22) Let γ ∈ R be arbitrary, (ξn,k,x1 , ξn,k,x2) ∼
Fn,k,x1,x2(u, v), and (ξk,x1 , ξk,x2) ∼ Fk,x1(u)Fk,x2(v). Then for almost all x1, x2 ∈ M
ξγn,k,x1ξ

γ
n,k,x2

→dξ
γ
k,x1

ξγk,x2. If x1 /∈ cl(M) or x2 /∈ cl(M), then ξn,k,x1ξn,k,x2 → ∞ almost
surely.

Proof Thanks to Lemma 30, we have that Fn,k,x1,x2(u, v)→Fk,x1(u)Fk,x2(v) for almost all
x1, x2 ∈ M, and thus (ξn,k,x1 , ξn,k,x2)→d(ξk,x1 , ξk,x2), and ξγn,k,x1ξ

γ
n,k,x2

→dξ
γ
k,x1

ξγk,x2 by the
continuous mapping theorem van der Wart (2007).

(ξn,k,x1 , ξn,k,x2) ∼ Pr((n− 1)ρdk(1) < u ∧ (n− 1)ρdk(2) < v|X1 = x1, X2 = x2).

If x1 /∈ cl(M), then there exists ε > 0 such that ρdk(1) > ε > 0 almost surely, and thus
ξn,k,x1→∞ (a.s.). ξn,k,x2 converges to ξk,x2 when x2 ∈ M, which has Erlang distribution,
or it diverges to infinity when x2 /∈ cl(M). Now, we have that Pr(ξn,k,x1ξn,k,x2 > u) ≤
Pr(ε(n− 1)ξn,k,x2 > u) = Fn,k,x2(u/((n− 1)ε))→ 1 for all u ≥ 0.

Introduce the following shorthands: F (u,∞)
.
= lim

a→∞
F (u, a), and F (∞, v)

.
=

lim
a→∞

F (a, v). The following lemma describes the the marginal distributions of Fn,k,x1,x2 .

Lemma 33 (The marginal distributions of Fn,k,x1,x2)

Fn,k,x1,x2(u,∞) =


Fn−1,k,x1(u); if ‖x1 − x2‖ > Rn(u)
Fn−1,k−1,x1(u); if ‖x1 − x2‖ ≤ Rn(u), and k ≥ 2
1; if ‖x1 − x2‖ ≤ Rn(u), and k = 1.

Similarly,

Fn,k,x1,x2(∞, v) =


Fn−1,k,x2(v); if ‖x1 − x2‖ > Rn(v)
Fn−1,k−1,x2(v); if ‖x1 − x2‖ ≤ Rn(v), and k ≥ 2
1; if ‖x1 − x2‖ ≤ Rn(v), and k = 1.

Proof By definition,

Fn,k,x1,x2(u, v)
.
= Pr(ζn,k,1 < u ∧ ζn,k,2 < v|X1 = x1, X2 = x2).

Introduce the following notation:

fn(x1, x2)
.
= E

[
(n− 1)−2αρ−dαk (1)ρ−dαk (2)

∣∣∣X1 = x1, X2 = x2

]
,

gm(x1, x2)
.
= E

[
m−2βν−dβk (1)ν−dβk (2)

∣∣∣X1 = x1, X2 = x2

]
.

The next theorem generalizes Theorem 25.

Theorem 34 (Properties of fn(x1, x2)) Let α = −γ in the definition of fn(x1, x2).
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Póczos and Xiong and Schneider

1. Let γ > 0, δ1 > 0, and let p be uniformly continuous on M, and bounded away
from zero. Let δ > 0 so small that p(x) − δ > 0 for all x ∈ M. Then there exists
n0 = n0(k, γ, p, δ, δ1) ∈ Z+, which is independent of x1, x2 such that when n > n0,
then for almost all x1, x2 ∈M we have that

fn(x1, x2) ≤ 2γ2L(x1, 1/2, k, γ, p, δ, δ1)L(x2, 1/2, k, γ, p, δ, δ1)

≤ 2γ2L̄(1/2, k, γ, p, δ, δ1)2 <∞. (32)

2. [Non-unifrom version in x ] Let γ > 0, δ1 > 0, and let δ(x) > 0 so small that
p(x)−δ(x) > 0 for all x ∈M. [Here we do not require p to be bounded away from zero.]
Then for almost all x1, x2 ∈ M, there exists n0 = n0(x1, x2, k, γ, p, δ(x1), δ(x2), δ1) ∈
Z+ such that when n > n0, then

fn(x1, x2) ≤ 2γ2L(x1, 1/2, k, γ, p, δ(x1), δ1)L(x2, 1/2, k, γ, p, δ(x2), δ1). (33)

3. If k ≥ 2, −(k − 1)/2 < γ < 0, and p is bounded above by p̄, then for all x1, x2 ∈ Rd

fn(x1, x2) ≤ K1(p̄, γ) <∞. (34)

where

K1(p̄, γ) =

[
L̂1/2(p̄, 1)

(k − 1)/2 + γ
− 1

γ

]2

+ 2

[
L̂1/2(p̄, 1)

(k − 1)/2 + γ
− 1

γ

][
L̂1/2(p̄, 1)

k/2 + γ
− 1

γ

]

+

[
L̂1/2(p̄, 1)

k/2 + γ
− 1

γ

]2

.

4. If −1/2 < γ < 0, k = 1, p is bounded above by p̄, then for all x1, x2 ∈ Rd

fn(x1, x2) ≤ K2(x1, x2, p̄, γ), (35)

where

K2(x1, x2, p̄, γ)

=

[
L̂1/2(p̄, 1)

k/2 + γ
− 1

γ

]2

+
1

γ2
‖x1 − x2‖2dγ −

2

γ
‖x1 − x2‖dγ

[
L̂1/2(p̄, 1)

1 + γ
− 1

γ

]
.

Theorem 35 (Generalization of Theorem 23) If x1 /∈ cl(M) or x2 /∈ cl(M), then

lim
n→∞

fn(x1, x2) =


0 if 0 < α
1 if α = 0
∞ if α < 0

If x1 /∈ cl(supp(q)) or x2 /∈ cl(supp(q)), then

lim
m→∞

gm(x1, x2) =


0 if 0 < β
1 if β = 0
∞ if 0 < β

20



Nonparametric Divergence Estimation

Proof From Lemma 32 we have that ξn,k,x1ξn,k,x2 →d ∞.

We will need the lemma below for the generalization of Theorem 24.

Lemma 36

(i) If 0 < γ, and
∫
M ‖x− y‖p(y)dy <∞,

(ii) or −(k − 1)/2 < γ < 0, k ≥ 2, and p is bounded above by p̄,

then there exists ε > 0 such that for almost all x1, x2 ∈M we have

lim sup
n

∫ ∞
0

∫ ∞
0

uγ(1+ε)vγ(1+ε)Fn,k,x1,x2(du,dv) <∞.

Proof The case (i) follows from (33) and using the definition fn(x1, x2) =∫∞
0

∫∞
0 uγvγFn,k,x1,x2(du,dv). We can see that under these conditions we can always in-

crease γ to γ(1 + ε) with an appropriate ε such that
∫∞

0

∫∞
0 uγ(1+ε)vγ(1+ε)Fn,k,x1,x2(du,dv)

will be bounded above by a number independent of n. Case (ii) follows from (34) using the
same argument.

Theorem 37 (Generalization of Theorem 24) If there exists ε > 0 such that

lim sup
n

∫ ∞
0

∫ ∞
0

uγ(1+ε)vγ(1+ε)Fn,k,x1,x2(du,dv) = lim sup
n

E[(ξγn,k,x1ξ
γ
n,k,x2

)1+ε] <∞,

then

lim
n→∞

E
[
(n− 1)2γρdγk (1)ρdγk (2)

∣∣∣X1 = x1, X2 = x2

]
= (c̄p(x1))−γ(c̄p(x2))−γ

Γ2(k + γ)

Γ2(k)
. (36)

Proof According to Lemma 14 we have that E[ξγn,k,x1ξ
γ
n,k,x2

]→E[ξγk,x1ξ
γ
k,x2

], and thus

lim
n→∞

fn(x1, x2) = lim
n→∞

E
[
(n− 1)2γ(ρk(1))dγ(ρk(2))dγ |X1 = x1, X2 = x2

]
= lim

n→∞
E
[
ξγn,k,x1ξ

γ
n,k,x2

]
= E

[
lim
n→∞

ξγn,k,x1ξ
γ
n,k,x2

]
= E

[
ξγk,x1ξ

γ
k,x2

]
=

[∫ ∞
0

uγfk,x1(u)du

] [∫ ∞
0

vγfk,x2(v)dv

]
= (c̄p(x1))−γ(c̄p(x2))−γ

Γ2(k + γ)

Γ2(k)
.

Here we also used Lemma 18 and Lemma 30.

Now we are ready to put the pieces together and prove the L2 consistency
of the estimator D̂α,β. To see that limn,m→∞ E[(D̂α,β(X1:n‖Y1:m) − Dα,β)2] = 0,
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all that remained is to prove (29). We assumed that Dα,β(p‖q) < ∞, and

limn,m→∞ E[D̂α,β(X1:n‖Y1:m)] = Dα,β(p|q), that is the estimator is asymptotically unbiased.
To see (29) holds it is enough to prove that

lim
n,m→∞

E [τ(1)τ(2)]B2
k,α,β +D2

α,β − lim
n,m→∞

2E [τ(1)]Bk,α,βDα,β = 0. (37)

In turn, it is enough to prove that limn,m→∞ E[τ(1)τ(2)]B2
k,α,β = D2

α,β, that is,

lim
n,m→∞

E
[
(n− 1)−αρ−dαk (1)m−βν−dβk (1)(n− 1)−αρ−dβk (2)m−βν−dβk (2)B2

k,α,β

]
= D2

α,β.

In other words, we want to prove that

D2
α,β

B2
k,α,β

= lim
n,m→∞

EX1∼p
X2∼p

[fn(X1, X2)gm(X1, X2)] .

In the same way as we did for proving asymptotic unbiasedness, using Theorem 34 we
can uniformly upper bound fn(x1, x2)gm(x1, x2) by a finite quantity. The application of
the Lebesgue’s dominated convergence theorem enables us to move the limit inside the
expectation, which completes the proof of Theorem 13.

6. Illustration of Consistency

In this section we present a few numerical experiments to demonstrate the consistency
of the proposed divergence estimators. We run experiments on beta distributions, where
the domains are bounded, and we also study normal distributions, which have unbounded
domains. We chose these distributions because in these cases the studied divergences have
known closed-form expressions, and thus it is easy to evaluate our methods. We will also
demonstrate that the proposed divergence estimators can be applied to estimate mutual
information.

6.1 Normal Distributions

We begin our discussion by investigating the performance of our divergence estimators
on normal distributions. Note that when α /∈ [0, 1], the divergences can easily become
unbounded; see the Appendix for the details.

In Figure 3(a) we display the performances of the proposed R̂α Rényi-α divergence
estimator when the underlying densities were zero-mean Gaussians with randomly chosen
5-dimensional covariance matrices. Our results demonstrate that when we increase the
sample sizes n and m, then the R̂α value converges to the true value. For simplicity, in
our experiments we always set n = m. The figure shows five independent experiments; the
number of instances were varied between 50 and 25 000. The number of nearest neighbors
k was set to 8, and α to 0.8.

In Figure 3(b) we show results for the L2 divergence estimators when the underlying
densities were zero-mean 1-dimensional Gaussians with randomly chosen covariance matri-
ces. As we can see from the figure, the estimator converges to true value when we increase
the sample sizes n and m.
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Figure 3: Estimated vs. true divergence as a function of the sample size. The plots show
the results of five independent experiments converging to Rα(p‖q) and L2(p‖q),
respectively.

The next experiment (Figure 4) demonstrates that even when f and g are normal dis-
tributions with zero means, the difficulty of the estimations of Rα(f‖g) can be significantly
different for the different values of α, depending on the structure of the covariance matrices
of f and g. In this experiment we set f and g to 2-dimensional Gaussians with zero means
and different covariance matrices. Their contour plots are shown in the left column of Fig-
ure 4. The right column shows the estimation of Rα. We varied both α and the number
of instances n = m. The first row show a case with randomly chosen covariance matrices,
while in the second row we simply switched f and g from the first row. Our results indicate
that depending on the structure of the covariance matrices of f and g, the parameter α
which gives the fastest rate for the estimation of Rα can be anywhere in the interval [0,1].

6.2 Beta Distributions

We were also interested in examining the performance of our estimators on beta distribu-
tions. To be able to study multidimensional cases, we construct d-dimensional distributions
with independent 1-dimensional beta distributions as marginals. For a closed-form expres-
sion of the true divergence in this case, see the Appendix.

Our first experiment (Figure 5(a)) demonstrates that the estimators are consistent when
d = 2. As we increase the number of instances, the estimators converge to the true Rα(f‖g)
value. The figures show five independent experiments. We varied the sample sizes between
100 and 10 000. α was set to 0.4, and we used k = 4 nearest neighbors in the estimators.
The parameters of the beta distributions were chosen independently and uniformly random
from [1, 2]. We repeated this experiment in 5d as well. The 5d results, shown in Figure 5(b),
show that the estimators were consistent in this case as well.
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Figure 4: Estimated vs. true divergence in the number of observations. The left column
shows the contour plots of two 2-dimensional normal distributions with different
covariance matrices and zero means. The right column displays results of estimat-
ing Rα(f‖g). We varied α in [0, 1] and also used different sample sizes between
(100, 20 000). k was always set to 8. Each curve shows one single experiment.

6.3 Mutual Information Estimation

In this section we demonstrate that the proposed divergence estimators can also be used to
estimate mutual information. Let f = (f1, . . . , fd) ∈ Rd be the density of a d-dimensional
distribution. The mutual information Iα(f) is the divergence between f and the product of
the marginal variables. For the Rényi divergence we have Iα(f) = Rα(f‖

∏d
i=1 fi). There-

fore, if we are given a sample X1, . . . , X2n from f , we may estimate the mutual information
as follows. We form one set of size n by setting aside the first n samples. We build another
sample set by randomly permuting the coordinates of the remaining n observations inde-
pendently for each coordinate. They can be considered as n independent instances sampled
from

∏d
i=1 fi. Using these two sets, we can estimate Iα(f). Figure 6(a) shows the results of

applying this procedure for a 2d Gaussian distribution with a randomly chosen covariance
matrix.3 The subfigure shows the true Rα values, as well as their estimations using different
sample sizes. k was set to 8, and α was 0.8.

Figures 6(b)–6(c) show the results of repeating the previous experiment with two al-
terations. In this case we estimated the Shannon (rather than Rényi) information, and for
this purpose we selected a 2d uniform distribution on [−1/2, 1/2]2 rotated by π/4. Due to
this rotation, the marginal distributions are no longer independent. Because our goal was

3. Σ = CCT , where Ci,j ∼ U [0, 1].
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Figure 5: Estimated vs. true divergence for the beta distribution experiments as a function
of the number of observations. The figures show the results of five independent
experiments for estimating the Rα(f‖g) divergence. (a): f and g were the den-
sities of two 2d beta distributions—the marginal distributions were independent
1d betas with randomly chosen parameters. (b): The same as (a), but here f and
g were the densities of two 5d beta distributions with independent marginals.
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Figure 6: Estimated vs. true Rényi information as a function of sample size. (a) MI esti-
mation for Gaussian distribution (b-c) MI estimation for rotated uniform distri-
bution. (c) The error bars are calculated from 50 independent runs.

to estimate the Shannon information, we set α to 0.9999. The number of nearest neighbors
used was k = 8, and the sample size was varied between 500 and 40 000. The estimators
gave satisfactory results for the Shannon mutual information. Figure 6(b) shows the original
samples as well as the independent samples from the product of the marginal distributions.
Figure 6(c) demonstrates the consistency of the algorithm; as we increase the sample size,
the estimator approaches the Shannon information.
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7. Machine Learning on Distributions

In this section, we test the performance of the proposed divergence estimators on several
machine learning problems. In these experiments, we first estimate the divergences and
then use them for machine learning tasks including embedding, clustering, classification,
and group anomaly detection.

We mainly compare our nonparametric (NP) methods to the alternative in which we
first fit a parametric Gaussian mixture model (GMM) to each group, and then calculate
the divergences between these GMMs. This alternative method is called GMM estimation.
An even simpler method is to fit a single Gaussian to each group and then calculate the
divergences between these Gaussians. We call this method Gaussian estimation. For GMMs,
we have the analytical result for their L2 divergences (Jian and Vemuri, 2005). However,
there is no closed formula for the Rényi divergence between two GMMs, hence we resort to
MCMC methods to approximate this quantity. In all of our experiments we use α = 0.5 for
the Rényi divergence. We also symmetrize both the Rényi and L2 divergences by taking
the average of the two way estimations: Dsym(p|q) = (D(p‖q) +D(q‖p))/2.

7.1 Embedding of Distributions

In this experiment we use synthetic data to demonstrate how the proposed estimators can be
used to embed simple distributions including uniform, beta, and 1-dimensional Gaussian.
For each type of distribution, we realize many distributions using different parameters,
and each realization generates a group of data. Then we estimate divergences between
these groups and embed them into a low-dimensional space using multidimensional scaling
(Borg and Groenen, 2005). Finally, we visualize the embedded groups. As we will see, the
underlying structure of the parameters are captured by the embedding.

For uniform and Gaussian distributions, the parameters are the mean and standard
deviation. We selected the parameters from a uniform 10 × 10 grid, where the mean and
standard deviation vary within [0, 1] and [0.3, 0.7] respectively. For beta distributions, we
use the canonical parametrization with parameters α, β, and select their values from a
uniform 10 × 10 grid on [0.7, 3] × [0.7, 3]. To visualize the results, we color the embedded
groups according to the above parameters. For each group we generate 2 000 samples. For
the nonparametric estimators we use k = 20 nearest neighbors.

We compare our NP estimators to the Gaussian estimations. As the ground truth,
we also calculate the embedding using the true divergences between the underlying dis-
tributions. Results using both the L2 divergence (Figure 7 (a)-(c)) and Rényi divergence
(Figure 7 (d)-(f)) are shown. We can see that the NP estimator can reveal the structure of
the underlying parameters, and always produces embeddings that are similar to the ground
truth. On the other hand, the embeddings by simple Gaussian estimation can be quite poor
when the distribution is very different from Gaussian.

Next we show how embedding can reveal the structure of more complex distributions.
To generate the data for groups, we first uniformly sample 3 000 points from sine curves
y = sin(θx), where x ∈ [0, 2π], and θ is selected uniformly over [2, 4]. Then we added
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(a) Uniform - L2

(b) Gaussian - L2

(c) Beta - L2

(d) Uniform - Rényi

(e) Gaussian - Rényi

(f) Beta - Rényi

Figure 7: (a)-(c): Embeddings of Uniform, Gaussian and Beta distributions using L2 diver-
gence. (d)-(f): Results using Rényi divergence. Gaussian and Uniform distribu-
tions are colored by their means and variances (the red and green color component
respectively). Beta distributions are colored by the two parameters. From left to
right, the embeddings are produced by the Gaussian estimation, NP estimation,
and the true divergence.
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Figure 8: Two groups of the simulated noisy sine data.

GMM−1−L2 GMM−3−L2 GMM−5−L2 GMM−7−L2 NP−L2

GMM−1−Renyi GMM−3−Renyi GMM−5−Renyi GMM−7−Renyi NP−Renyi

Figure 9: Embeddings of the 2-dimensional noisy sine data using GMMs and our nonpara-
metric estimators. Points are colored by their underlying frequency. Column 1
to 4 show the embeddings by GMMs with increasing number of Gaussian compo-
nents. The last column shows the embedding by our nonparametric estimators.
The first row uses the L2 divergence and the second row uses the Rényi divergence.

Gaussian noise from N (0, 0.32) to each (x, y) pair we sampled. Two groups of data are
shown in Figure 8.

We embedded the groups into a 2D space using the proposed estimators with k = 20
nearest neighbors. We also performed the embedding using GMM estimations. Results
using both methods are shown in Figure 9. The nonparametric approach correctly reveals
the 1-dimensional nature of these distributions and orders the groups by their frequency. On
the other hand, GMM estimation fails when the number of components is small. Although
with enough components GMM can eventually work, it involves excessive computation and
parameter tuning that are not needed in NP estimators.

7.2 Image Clustering and Classification

We can also use the proposed estimators to facilitate clustering and classification tasks by
feeding the estimated divergences to algorithms that only need the dissimilarities between
instances. In our experiments we use k-nearest-neighbors (k-nn) based clustering algorithms
and classifiers.

We test the performance on the image data from Fei-Fei and Perona (2005). We adopt
the “bag-of-words” representation for the images. Each image is a group of local patches,
and each patch has a feature vector. We assume that each image has an inherent distri-
bution to generate its patches, and these patches are i.i.d. In other words, each image is
a distribution, and its patches are samples from this distribution. Then, we can measure
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the dissimilarity between images by estimating the divergences between the corresponding
distributions. Note that we do not quantize the patches as in Fei-Fei and Perona (2005),
but rather use the original real-valued features and deal with their distributions directly.

In this experiment, we use the categories “MITmountain”, “MITcoast”, “MIThighway”,
and “MITinsidecity” from the data set. From each category we randomly select 50 images.
Features are extracted as in Fei-Fei and Perona (2005): Points are sampled on a uniform
grid with interval 5, and then at each point we extract the 128-dimensional SIFT features
(Lowe, 2004) and then reduce their dimension to 2 using PCA. In the end, we have 200
groups (images), each of which contains about 1 600 2-dimensional points (patches).

We compare the NP estimators to the Gaussian estimator and the 5-component-GMM
estimator. We also compare them to the algorithm described by Bosch et al. (2006), which
reflects the performance of a conventional “bag-of-word” (BoW) approach. In this BoW
method, patches are quantized to 100 “visual words”, and each image is represented as
a 100-dimensional histogram of these words. Then probabilistic latent semantic analysis
(pLSA) by Hofmann (1999) is applied to embed the images into a latent semantic space to
get low-dimensional representations called topic distributions (here 20 topics are used, and
thus each image is converted to a 20-dimensional probability vector). Finally, Euclidean
distances between these topic distributions are used to measure the dissimilarities between
images.

To cluster these images, we feed the divergences to the spectral clustering algorithm
by Zelnik-Manor and Perona (2004). To evaluate the clustering results, we first form a
confusion matrix from the category labels and the cluster labels, then permute the columns
to maximize the trace of this matrix, which is equal to the number of correctly identified
groups. We repeat 20 random runs and report the results in Figure 10(a).

We can observe that the Rényi divergence performs better than the L2 divergence for
this data set. We can also see that the Gaussian estimator is clearly inadequate. The GMM
estimator improves over the single Gaussian one but is still slightly worse than the NP. The
standard BoW approach also produces a slightly worse results than NP. Paired t-tests show
that the difference between GMM and NP is significant, but the difference between NP and
BoW is not significant (p-value is 6 × 10−3 for GMM-Rényi vs. NP-Rényi, and 0.94 for
NP-Rényi vs. BoW).

We can also use the divergences for classification of distributions. Here we adopt a
simple k-nn strategy: a group’s label is predicted based on votes from the labeled groups
that are closest, i.e., have the smallest divergence. We use k = 11 nearest neighbors for this
classifier. In each run, we conduct 10-fold cross-validation on the randomly selected images
and report the classification accuracy. The results from 20 random runs are reported in
Figure 10(b). Similar results can be observed as in the clustering task; the nonparametric
Rényi divergence estimator achieves the best performance among the competitors. Paired
t-test gives p-value 5.33× 10−4 for the difference between GMM-Rényi and NP-Rényi, and
0.15 for NP-Rényi vs. BoW. We also note that the nonparametric L2 estimators produced
poor results in this experiment. As Figure 3(b) demonstrates, for small sample size the
L2 estimator might have larger bias and variance than the that of the Rényi divergence
estimator. This can result in poor performance.
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(a) Spectral clustering performance.
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(b) k-nn classification performance.

Figure 10: Clustering and classification performance using different divergence estimators.
The columns correspond to the Gaussian estimation (G), GMM estimation, and
nonparametric divergence estimation (NP) using Rényi and L2 divergences, re-
spectively. Finally, the column on the right displays the performance of the
BoW method.

7.3 Group Anomaly Detection

One novel application of our divergence estimators is the detection of anomalous groups of
data points. Note that unlike traditional anomaly detection methods that focus on unusual
points, a group may have an anomalous distribution of points even if none of the individual
points are unusual.

We use a simple detection algorithm based on nearest neighbors (Zhao and Saligrama,
2009). In this case the anomaly score of a group (distribution) is just the divergence
between this group and its kth nearest neighbors. We apply this detector and compare the
performance of different divergence estimators. The performance is measured by the area
under the ROC curve (AUC).

We experimented with the different divergence estimators on the images we used before.
The normal data was defined to be images from the categories in the previous experiment.
In addition, we used images from two other categories “MITforest” and “livingroom” as
anomalies. We used a random 75% of the normal images as training data and the rest 25%
for testing. We also add some anomalous images to the test set to make it half normal and
half abnormal. Then we asked the anomaly detector to find the anomalies, i.e., “livingroom”
and “forest” images from this mixture. Those test groups that were the furthest away from
their nearest neighbors in the training set were selected as anomalous groups.

We again compare the NP, Gaussian, and GMM estimators in this task. We use 5
Gaussian components in the GMM. The anomaly score of a test group is the divergence
between the group and its 5th nearest neighbor in the training set. The results from 100
random runs are shown in Figure 11. Our NP estimator for Rényi divergence produces the
best results, and the L2 divergence again performs poorly. It is also interesting to see that
the GMM estimator failed as well. Various reasons can cause this result, e.g., the inherent
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Figure 11: Anomalous image detection performance.

difference between normal and abnormal images can influence the estimators, and the GMM
may overfit the data.

In the next experiment, we detect anomalous galaxy clusters in the astronomical data
set from Sloan Digital Sky Survey4 (SDSS). SDSS contains about 7× 105 galaxies, each of
which has a 4 000-dimensional continuum of the spectrum. We downsampled the continuum
to get a 500-dimensional feature vector for each galaxy.

The “friends-of-friends” method (Garcia, 1993) was used to find spatial clusters (groups
of nearby galaxies). 505 groups (7 530 galaxies) were found, each of which contains about
10–50 galaxies. In each group we used PCA to reduce the 500-dimensional continuum to
2-dimensional features preserving 95% of the variance. Note that this data set could be
difficult for the NP estimators since the group sizes are small.

Due to the lack of labels, we use artificially injected anomalies to get statistically mean-
ingful results. These injected groups are synthesized in the way such that each group
consists of normal galaxies, but the distribution of the galaxies’ features are rare in real
galaxy clusters. In each run we injected 10 such random anomalies, and the whole data set
contained 515 groups.

The AUC results from 20 random runs are shown in Figure 12. In this problem, the NP
L2 estimator achieves the best performance, and the NP estimators clearly outperform the
parametric alternatives.

8. Discussion and Conclusion

We developed a new framework and proposed algorithms for several machine learning prob-
lems defined on the space of distributions. These problems include low-dimensional embed-
ding, clustering, classification and outlier/anomaly detection. Most of the machine learning
algorithms operate on fixed finite-dimensional feature representation. Kernel methods might
transform the instances temporarily to an infinite-dimensional space, but the ultimate goal
is still the same: to solve the classification, clustering, outlier detection, low-dimensional
embedding problems in the original finite-dimensional feature space. In our setting, the

4. http://www.sdss.org
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Figure 12: Anomalous galaxy cluster detection performance.

space of our features (continuous distributions) is infinite-dimensional. Furthermore, in
contrast to standard machine learning problems we cannot observe them directly, only a
few i.i.d. samples are available for us to represent these distributions.

In this paper we used nonparametric Rényi, Tsallis, Hellinger, Bhattacharyya, and L2

divergence estimators to estimate the deviation between distributions. Under certain condi-
tions we showed the consistency of these estimators and how they can be applied to estimate
mutual information.

This new framework has many potential applications from bioinformatics to astronomy.
It is useful anywhere where we take measurements of objects and our goal is to differentiate
the divergences between the distributions of these measurements. We demonstrated the
applicability of our framework both on synthetic toy problems and on real world problems
including computer vision and anomaly detection in astronomical data.

We also compared our nonparametric estimators with a few competitors including a
parametric estimator that assumes the distributions to be Gaussians, and a more complex
estimator that first fits a mixture of Gaussian to the data and then estimates the divergences
between these mixtures. We found that our nonparametric estimators outperform the com-
petitors under various conditions. If the data does not match the parametric assumptions,
then parametric approaches can lead to poor divergence estimators. Even though many dis-
tributions can be well-approximated by mixture of Gaussians, this approach might be too
slow and sensitive to the number of Gaussian components in the model. The L2 divergence
can be easily calculated between two mixtures of Gaussians; however, it is challenging to
calculate the Rényi divergence between them. Empirically we observed that the L2 and
Rényi estimators exhibit different behaviors and their performances depend on the actual
distributions. We also found that the Rényi divergence is usually easier to estimate than
the L2 divergence, in which case the estimator seems to have higher variance.

There are several open questions left waiting for answers. Currently, the convergence
rates of our divergence estimators are unknown, and we also do not know if the estimators
are asymptotically normal.
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Appendix A. Dependency Charts of the Main Theorems and Lemmas

Proving Theorem 12

Theorem 12

Theorem 24 lim
∫

=
∫

lim

Lemma 22

Theorem 26

Lemma 18 Theorem 25Theorem 23

Lemma 41 Lemma 42

Lemma 14

Lemma 20 Lemma 19

Lemma 15

Proving Equation (19) of Theorem 25
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Equation (44) Equation (45)

Lemma 18Lemma 48 Equation (46) Lemma 47

Definition 16

Lemma 17

Lemma 19 Lemma 39

Equation (11)
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Póczos and Xiong and Schneider

Proving Theorem 13

Theorem 13
Equation (29) Equation (28)

Lemma 36 Theorem 37

Theorem 34

Lemma 14 Lemma 32 Lemma 30

Lemma 18

Lemma 29 Lemma 28

Lemma 50

Lemma 27 Theorem 12

Proving Equation (32) in Theorem 34

Equation (32)

Equation (19) Lemma 45

Lemma 33 Lemma 38Lemma 49

Appendix B. General Tools

Lemma 38 If a, b ∈ [0, 1], then min(a, b)− ab ≤
√

1− a
√

1− b.

Proof Without restricting the general case let a ≤ b. We need to prove that

a− ab ≤
√

1− a
√

1− b
a(1− b) ≤

√
1− a

√
1− b

√
1− b ≤

√
1− a
a

1− b ≤ 1− a
a2
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1− 1− a
a2

≤ b.

Since a ≤ b, thus it enough to prove that

1− 1− a
a2

≤ a

a2 − 1 + a ≤ a3

(1− a2)(a− 1) ≤ 0,

which is true since 0 ≤ a ≤ 1 by assumption.

Lemma 39 (Minkowski inequality) If 0 ≤ a, b and 0 ≤ ω ≤ 1, then (a+ b)ω ≤ aω + bω.

Proof It is enough to prove that

a+ b ≤ (aω + bω)1/ω(
aω

aω + bω

)1/ω

+

(
bω

aω + bω

)1/ω

≤ 1.

When 0 ≤ c, d, and c+ d = 1, then c1/ω ≤ c ≤ 1, d1/ω ≤ d ≤ 1, thus c1/ω + d1/ω ≤ 1.

Lemma 40 (Reverse triangle inequality) If 0 ≤ a, b, and 0 ≤ α ≤ 1, then |aα − bα| ≤
|a− b|α

Proof It is enough to prove the a ≥ b case, that is

aα ≤ (a− b)α + bα

(c+ b)α ≤ cα + bα,

using the c = a− b > 0 notation. This immediately follows from Lemma 39.

Lemma 41 Let γ > 0, F : R→ [0, 1] distribution function. Then∫ ∞
a

uγF (du) = aγ(1− F (a)) +

∫ ∞
a

γuγ−1(1− F (u))du, (38)

In the a = 0 case: ∫ ∞
0

uγF (du) = γ

∫ ∞
0

uγ−1(1− F (u))du, (39)

in the sense that the integral of either side exists and finite iff the integral on the other side
exists and finite, too.
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Póczos and Xiong and Schneider

Proof The proof can be found in (Feller, 1965), here we just give a sketch. Integrate by
parts. We have that for all λ ∈ R the equations below hold:∫ b

a
uγ F (du)︸ ︷︷ ︸

f(u)du

= [uγF (u)]ba − [uγλ]ba + [uγλ]ba︸ ︷︷ ︸∫ b
a λγu

γ−1du

−
∫ b

a
γuγ−1F (u)du

= bγ(F (b)− λ)− aγ(F (a)− λ) +

∫ b

a
γuγ−1(λ− F (u))du.

Now, we can choose λ = 1 and analyze the behavior of the integrals when a→ 0 and b→∞.

Lemma 42 Let γ > 0, F : R→ [0, 1] distribution function. Then∫ ∞
a

u−γF (du) = −a−γF (a) + γ

∫ ∞
a

u−γ−1F (u)du.

In the a = 0 case: ∫ ∞
0

u−γF (du) = γ

∫ ∞
0

u−γ−1F (u)du. (40)

Proof The proof can be found in Leonenko et al. (2008a).

We will also need the 2-dimensional generalizations of Lemmas 41–42. They can be
proved in the same way.

Lemma 43 If γ > 0, then∫ ∞
0

∫ ∞
0

u−γv−γF (du,dv) = γ2

∫ ∞
0

∫ ∞
0

u−γ−1v−γ−1F (u, v) du dv.

Lemma 44 Let F (u, v)
.
= FU,V (u, v) be a 2-dimensional distribution function with

f(u, v)
.
= fU,V (u, v) density and FU (u) = FU,V (u,∞), FV (v) = FU,V (∞, v) marginal distri-

bution functions. For γ > 0, λ ∈ R arbitrary, the following equation holds:∫ b

a
uγf(u, v)du = bγ

(
∂F (b, v)

∂v
− λ
)

+ aγ
(
λ− ∂F (a, v)

∂v

)
+

∫ b

a
γuγ−1

(
λ− ∂F (a, v)

∂v

)
du.

Hence, when we study the b → ∞ limit case, then λ
.
= λ(v) = ∂F (∞,v)

∂v = fV (v) will be a
useful choice: ∫ ∞

0
uγf(u, v)du =

∫ ∞
0

γuγ−1

(
fV (v)− ∂F (a, v)

∂v

)
du. (41)
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Lemma 45 Let γ > 0, and let F (u, v)
.
= FU,V (u, v) be a 2-dimensional distribution function

with f(u, v)
.
= fU,V (u, v) density and FU (u), FV (v) marginal distributions. The following

equation holds:∫ ∞
0

∫ ∞
0

uγvγF (du,dv) =

∫ ∞
0

∫ ∞
0

γ2uγ−1vγ−1[1− FU (u)− FV (v) + F (u, v)]dudv.

Proof ∫ ∞
0

∫ ∞
0

uγvγf(u, v)dudv

= lim
d→∞
c→0

∫ d

c
vγ
[∫ ∞

0
uγf(u, v)du

]
dv

= lim
d→∞
c→0

∫ d

c
vγ
[∫ ∞

0
γuγ−1

(
fV (v)− ∂F (a, v)

∂v

)
du

]
dv

=

∫ ∞
0

γuγ−1

[
lim
d→∞
c→0

∫ d

c
vγ
(
fV (v)− ∂F (a, v)

∂v

)
dv

]
du

=

∫ ∞
0

γuγ−1


∫ ∞

0
vγfV (v)dv︸ ︷︷ ︸∫∞

0 γvγ−1(1−FV (v))dv

−
∫ ∞

0
vγ
∂F (a, v)

∂v
dv︸ ︷︷ ︸∫∞

0 γvγ−1(FU (u)−F (u,v))dv

du.

Here we chose λ = FU (u) = F (u,∞) and applied the lemmas above.

Appendix C. Proofs of Section 5.1

Proof of Lemma 14

Proof We want to prove that Xγ
n is asymptotically uniformly integrable, that is

lim
M→∞

lim sup
n→∞

E[Xγ
n1{Xγ

n>M}] = 0.

This follows from the observation that for all M > 0

E[Xγ
n1{Xγ

n>M}] ≤ E
[
(Xγ

n)
(Xγ

n)ε

M ε
1{Xγ

n>M}

]
≤ 1

M ε
E[(Xγ

n)1+ε].

For all ε > 0 we have that lim
M→∞

1
Mε = 0, and by assumption lim sup

n→∞
E
[
X
γ(1+ε)
n

]
= K <∞,

thus

0 ≤ lim
M→∞

lim sup
n→∞

E[Xγ
n1{Xγ

n>M}] ≤ lim
M→∞

lim sup
n→∞

1

M ε
E[(Xγ

n)1+ε]

≤ lim
M→∞

1

M ε
K = 0.
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Proof of Lemma 17

Proof If g is uniformly continuous onM then for all δ > 0 there exists Rδ > 0 such that if
x, y ∈M, ‖x−y‖ < Rδ, then |g(x)−g(y)| < δ. Thus, g(x)−δ < g(B(x,Rδ)∩M) < g(x)+δ,
and furthermore if Rn < Rδ, then

(g(x)− δ)V(B(x,Rn) ∩M) <

∫
B(x,Rn)∩M

g(t) dt < (g(x) + δ)V(B(x,Rn) ∩M).

Proof of Lemma 18

Proof By the definition of the Gamma function we have that∫ ∞
0

uβ−1 exp(−λu)du = λ−βΓ(β). (42)

Thus, ∫ ∞
0

uγfx,k(u) du =

∫ ∞
0

uγ
λkuk−1 exp(−λu)

Γ(k)
du

=
λk

Γ(k)

∫ ∞
0

uγ+k−1 exp(−λu) du

=
λk

Γ(k)

1

λ

∫ ∞
0

(y
λ

)k+γ−1
exp(−y) dy

=
λ−γ

Γ(k)

∫ ∞
0

yk+γ−1 exp(−y) dy = λ−γ
Γ(k + γ)

Γ(k)
.

Here we used the y = λu, dy = λdu integral transform.

Appendix D. Proving Asymptotic Unbiasedness

Proof of Lemma 19

Proof Calculate this distribution in a “closed” form.

Fn,k,x(u)
.
= Pr(ζn,k,1 < u|X1 = x) (43)

= Pr((n− 1)ρdk(1) < u|X1 = x)

= Pr
(
ρk(1) < (u/(n− 1))1/d

∣∣X1 = x
)

= Pr (ρk(1) < Rn(u)|X1 = x)

= Pr(k elements or more in{X2, . . . , Xn} ∈ B(x,Rn(u)) ∩M|X1 = x)

= Pr(k elements or more in {X2, . . . , Xn} ∈ B(x,Rn(u)) ∩M)
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=
n−1∑
j=k

(
n− 1
j

)
(Pn,u,x)j(1− Pn,u,x)n−1−j

= 1−
k−1∑
j=0

(
n− 1
j

)
(Pn,u,x)j(1− Pn,u,x)n−1−j .

Corollary 46 Fn,1,x(u) = 1− (1− Pn,u,x)n−1.

Proof of Lemma 20

Proof

Let u > 0 be fixed, and Rn(u)
.
= (u/(n− 1))1/d. Let x ∈ M = supp(p), and let δ > 0

be so small such that p(x) > δ > 0 holds. From (10), we know that for all δ > 0 and almost
all x ∈ M, there exists n0(x, δ, u) ∈ Z+ such that if n > n0(x, δ, u), then B(x,Rn(u)) =
M∩B(x,Rn(u)) (since almost all points are inner points in M and lim

n→∞
Rn(u) = 0), and

p(x)− δ <

∫
B(x,Rn(u)) p(t) dt

V(B(x,Rn(u)))
< p(x) + δ,

p(x)− δ < Pn,u,x
uc̄
n−1

< p(x) + δ.

Introduce the following shorthands: s̄
.
= (p(x) + δ)c̄, s

.
= (p(x) − δ)c̄ > 0. Now, if

n > n0(x, δ, u), then

Fn,k,x(u)
.
= 1−

k−1∑
j=0

(
n− 1
j

)
(Pn,u,x)j(1− Pn,u,x)n−1−j

≥ 1−
k−1∑
j=0

(
n− 1
j

)(
us̄

n− 1

)j (
1− us

n− 1

)n−1−j

= 1−
k−1∑
j=0

(n− 1)!

j!(n− 1− j)!

(
us̄

n− 1

)j (
1− us

n− 1

)n−1−j

= 1−
k−1∑
j=0

1

j!

(n− 1)!

(n− 1− j)!(n− 1)j︸ ︷︷ ︸
→1

(us̄)j
(

1− us

n− 1

)n−1−j

︸ ︷︷ ︸
→exp(−us)

.

Thus for all p(x) > δ > 0 and for almost all x ∈M, we have that

lim inf
n→∞

Fn,k,x(u) ≥ 1−
k−1∑
j=0

1

j!
(uc̄[p(x) + δ])j exp(−uc̄[p(x)− δ]),
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and hence by choosing δ → 0, we can see that for almost all x ∈M

lim inf
n→∞

Fn,k,x(u) ≥ 1−
k−1∑
j=0

1

j!
(uλ)j exp(−uλ)

.
= Fk,x(u),

where λ
.
= c̄p(x). Using similar arguments we can also prove that for almost all x ∈M,

lim sup
n→∞

Fn,k,x(u) ≤ 1−
k−1∑
j=0

1

j!
(uλ)j exp(−uλ)

.
= Fk,x(u).

This completes the proof of the lemma.

Proof of Lemma 21

Proof If x /∈ cl(M), then Pn,u,x
.
=
∫
M∩B(x,Rn(u)) p(t) dt becomes zero for all fixed u if n is

large enough. For these n values Fn,k,x(u) = 0.

Proof of Lemma 22

Proof We already know by Lemma 20 that for almost all x ∈ M Fn,k,x(·) →w Fk,x(·) as
n→∞. From this, it follows by definition that ξn,k,x →d ξk,x (a.a. x ∈M). Now, since the
(·)γ function is continuous on (0,∞), and Xi ∈ (0,∞) almost surely, thus by the continuous
mapping theorem (van der Wart, 2007) the lemma follows.

ξn,k,x ∼ Pr((n− 1)ρdk(1)|X1 = x). Therefore, if x /∈ cl(M), then there exists ε > 0 such
that ρdk(1) > ε > 0 almost surely, and thus ξn,k,x →∞.

Proof of Theorem 25

Proof [Proof of (19) in Theorem 25] First we will prove that there exists n0 independent
of x such that for all n > n0 it holds that∫ √n−1

0
(1− Fn,k,x(u))ωuγ−1du (44)

≤
k−1∑
j=0

(
1

j!

)ω
(c̄rM)−γ Γ(γ + jω)

(
p(x) + δ

p(x)− δ

)jω
(p(x)− δ)−γ((1− δ)ω)−γ−jω

= (c̄rM)−γ H(x, p, δ, ω).

Then we will see that for n > n0, it also holds that

∞∫
√
n−1

(1−Fn,k,x(u))ωuγ−1du
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≤ (knk)ω
[

(n− 1)γ

γ
+

∫
‖x− y‖γp(y)dy

]
exp

[
−((n− k)ω − 1)(p(x)− δ) c̄r(x)√

n− 1

]
≤ δ1 + δ1

∫
‖x− y‖γp(y)dy. (45)

Assume that p is bounded away from zero, that is, there exists a δ > 0 such that 0 <
p(x) − δ, for almost all x ∈ M. Furthermore, let p be uniformly Lebesgue approximable
(see definition 16), i.e. for all δ > 0 there exists n0(δ) such that if ñ− 1 > n0(δ) then for
almost all x ∈M we have that

p(x)− δ <

∫
M∩B

(
x,
(

1√
ñ−1

)1/d) p(t) dt

V
(
M∩B

(
x,
(

1√
ñ−1

)1/d
)) < p(x) + δ.

p(x)− δ <

∫
M∩B

(
x,
(

1√
ñ−1

)1/d) p(t) dt

c̄√
ñ−1

r(x)
< p(x) + δ, (46)

where

r(x)
.
=

V
(
M∩B

(
x,
(

1√
ñ−1

)1/d
))

V
(
B
(
x,
(

1√
ñ−1

)1/d
)) ∈ [rM, 1].

Usually r(x) = 1 inM, however, close to the boundary ofM its value can be less. Nonethe-
less, according to our conditions it is always at least as large as rM > 0. By definition
Pn,u,x

.
=
∫
M∩B

(
x,( u

n−1)
1/d
) p(t)dt. Let n − 1 > n0(δ), and β < u <

√
n− 1. If we define

ñ
.
= 1 +

(
n−1
u

)2
, then ñ− 1 =

(
n−1
u

)2
> n− 1 > n0(δ), and thus

0 < p(x)− δ <

∫
M∩B

(
x,
(

1√
ñ−1

)1/d) p(t) dt

c̄r(x)√
ñ−1

(47)

=

∫
M∩B

(
x,( u

n−1)
1/d
) p(t) dt

c̄r(x)u
n−1

=
Pn,u,x
c̄r(x)u
n−1

< p(x) + δ.

Assume also that n0(δ) is so large that (n − k)/n > 1 − δ when n > n0. Hence, when
n− 1 > n0(δ), where n0 is independent from x, then∫ √n−1

0
(1− Fn,k,x(u))ωuγ−1du =

∫ √n−1

0
uγ−1

k−1∑
j=0

(
n− 1
j

)
(Pn,u,x)j(1− Pn,u,x)n−1−j

ω

du

by applying Lemma 19. For brevity, introduce the following notations: s̄
.
= (p(x) + δ)c̄r(x),

s
.
= (p(x)− δ)c̄r(x). Now using (47) we can continue the inequality as follows∫ √n−1

0
(1− Fn,k,x(u))ωuγ−1du ≤
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≤
∫ √n−1

0
uγ−1

k−1∑
j=0

(
n− 1
j

)
s̄juj

(n− 1)j

[
1− su

n− 1

]n−1−j
ω

du;

≤
∫ √n−1

0
uγ−1

k−1∑
j=0

(
n− 1
j

)
s̄juj

(n− 1)j
exp

[
−(n− 1− j) su

n− 1

]ω

du

≤
k−1∑
j=0

(
1

j!

)ω
s̄jω
∫ √n−1

0
uγ+jω−1 exp

[
−n− 1− j

n− 1
ωsu

]
︸ ︷︷ ︸
≤exp[−ω(1−δ)su] if n > n1(δ)

du; [ωs(1− δ) ≥ 0, γ + jω ≥ 0]

≤
k−1∑
j=0

(
1

j!

)ω
s̄jω [(1− δ)ωs]−(γ+jω) Γ(γ + jω); [using (42)]

= (c̄r(x))−γ(p(x)− δ)−γ
k−1∑
j=0

(
1

j!

)ω (p(x) + δ

p(x)− δ

)jω
[(1− δ)ω]−(γ+jω)Γ(γ + jω)

= (c̄r(x))−γ H(x, p, δ, ω) ≤ (c̄rM)−γ H(x, p, δ, ω).

In the proof we also used Lemma 39. The proof of (44) is finished.
One might wonder if instead of using this approach, we could try the following cruder

way, too:∫ √n−1

0
(1− Fn,k,x(u))ωuγ−1du ≤

∫ √n−1

0
uγ−1knk(1− Pn,u,x)n−kdu

≤ knk
∫ √n−1

0
uγ−1 exp[−n− k

n− 1
(p(x)− δ)uc̄r(x)]du→∞.

But this approximation is too crude for us since the right hand side diverges to infinity,
and hence it does not lead to useful upper bound. That is why in this case we also need to
upper bound Pn,u,x. Nonetheless, this approach will work for bounding (45), where lower
bounding of Pn,u,x will be enough. Let us see now the proof of (45). In this case we have
to upper bound

∫ ∞
√
n−1

(1− Fn,k,x(u))ωuγ−1du =

∫ ∞
√
n−1

uγ−1

k−1∑
j=0

(
n− 1
j

)
(Pn,u,x)j(1− Pn,u,x)n−1−j

ω du.

(48)

Let A ⊆ Rd be an arbitrary measurable set, and introduce the I(A) =
∫
A p(t)dt notations.

We start with an easy observation.

Lemma 47 If u ≥
√
n− 1, ω ∈ (0, 1], and n is at least as large that ω(n−k)−1 > 0 holds,

then

(1− Pn,u,x)ω(n−k)−1 ≤

[
1− I

(
M∩B

(
x,

{
1√
n− 1

}1/d
))]ω(n−k)−1

. (49)
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Proof If u ≥
√
n− 1, then

I

(
M∩B

(
x,

(
1√
n− 1

)1/d
))
≤ I

(
M∩B

(
x,

(
u

n− 1

)1/d
))

.
= Pn,u,x.

Assume again that p is uniformly Lebesgue approximable (Eq. (46)). We cannot use
this time the previous approach, since u can diverge to ∞. However, we can at least lower
bound Pn,u,x. Let δ > 0,

√
n− 1 ≤ u, and p be uniformly Lebesgue approximable with the

corresponding n0(δ) threshold number, which is independent of x, and let n > n0. Then
for almost all x ∈M we have that

(p(x)− δ) c̄r(x)√
n− 1

≤ I

(
M∩B

(
x,

(
1√
n− 1

)1/d
))

≤ I

(
M∩B

(
x,

(
u

n− 1

)1/d
))

.
= Pn,u,x. (50)

In turn, for almost all x ∈ M, when 0 < δ < p(x), n > n0, and ω(n− k)− 1 > 0, then
(thanks to Pn,u,x ≤ 1, and

(
n−1
j

)
) it holds that

∫ ∞
√
n−1

uγ−1

k−1∑
j=0

(
n− 1
j

)
(Pn,u,x)j(1− Pn,u,x)n−1−j

ω du

≤
∫ ∞
√
n−1

uγ−1
[
knk(1− Pn,u,x)n−k

]ω
du

=
(
knk

)ω ∫ ∞
√
n−1

uγ−1(1− Pn,u,x)(n−k)ω−1(1− Pn,u,x)du

≤
(
knk

)ω ∫ ∞
√
n−1

uγ−1
(

1− I(M̃)
)(n−k)ω−1

(1− Pn,u,x)du [by (49)]

≤
(
knk

)ω (
1− I(M̃)

)(n−k)ω−1
∞∫

√
n−1

uγ−1(1− Pn,u,x)du

≤
(
knk

)ω
exp

[
−((n− k)ω − 1)s√

n− 1

]
×

∞∫
√
n−1

uγ−1(1− Pn,u,x)du (51)

[using n > n0 in (50)].

Here we introduced the M̃ .
= M∩ B

(
x,
(
1/
√
n− 1

)1/d)
shorthands. We have to upper

bound its last term,
∫∞√

n−1 u
γ−1(1−Pn,u,x)du, as well. We want to prove that asymptotically∫∞√

n−1 u
γ−1(1− Pn,u,x)du < v(n), where v(n) is an appropriate polynomial. The previous

bounding “trick” of Pn,u,x would not be good enough now, since all what we would get is
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as follows:∫ ∞
√
n−1

uγ−1(1− Pn,u,x)du ≤
∫ ∞
√
n−1

uγ−1

(
1− (p(x)− δ) c̄√

n− 1

)
du

=

(
1− (p(x)− δ) c̄√

n− 1

)∫ ∞
√
n−1

uγ−1du︸ ︷︷ ︸
∞

.

Hence, we have to follow another route, and make stronger assumptions. The following
lemma will show that∫ ∞

√
n−1

uγ−1(1− Pn,u,x)du <
(n− 1)γ

γ
+

∫
‖x− y‖γp(y) dy

for almost all x ∈M. To finish the proof, let n0 be so large that when n > n0, then(
knk

)ω
exp

[
−
(

(n− k)ω − 1
)
(p(x)− δ) c̄r(x))√

n− 1

]
< min

(
δ1,

δ1

(n− 1)γ/γ

)
.

Since 0 < rM < r(x) and p is bounded away from zero, there exists this n0 threshold
number and this is independent from x.

Lemma 48 If γ > 0 and
∫
‖x− y‖γp(y) dy <∞ for almost all x ∈M, then∫ ∞

√
n−1

uγ−1(1− Pn,u,x)du ≤ (n− 1)γ

γ
+

∫
‖x− y‖γp(y) dy.

Proof By using the du = dt(n− 1), u = t(n− 1) integral transformation, it is easy to see
that ∫ ∞

√
n−1

uγ−1(1− Pn,u,x)du (52)

=

∫ ∞
√
n−1

uγ−1

(
1− I

(
M∩B(x,

(
u

n− 1

)1/d

)

))
du

= (n− 1)γ−1

∫ ∞
1√
n−1

tγ−1
(

1− I
(
M∩B(x, t1/d)

))
(n− 1)dt

= (n− 1)γ
∫ 1

1√
n−1

tγ−1
(

1− I
(
M∩B(x, t1/d)

))
dt (53)

+(n− 1)γ
∫ ∞

1
tγ−1

(
1− I

(
M∩B(x, t1/d)

))
dt. (54)

We upper bound (53) first:

(n− 1)γ
∫ 1

1√
n−1

tγ−1

(
1−

∫
M∩B(x,t1/d)

p(y) dy

)
︸ ︷︷ ︸

≤1

dt
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≤ (n− 1)γ
∫ 1

1√
n−1

tγ−1dt

≤ (n− 1)γ
[
tγ

γ

]1

1√
n−1

= (n− 1)γ

[
1

γ
− (n− 1)−γ/2

γ

]

=
(n− 1)γ

γ
− (n− 1)γ/2

γ
≤ (n− 1)γ

γ
.

Now we upper bound (54). Thanks to (14), we have that

F2,1,x(t) = 1− (1− P2,t,x)1 = P2,t,x =

∫
M∩B(x,t1/d)

p(y) dy, (55)

and thus

γ

∫ ∞
1

tγ−1

(
1−

∫
M∩B(x,t1/d)

p(y) dy

)
dt

= γ

∫ ∞
1

tγ−1 (1− F2,1,x(t)) dt; [using (55)]

=

∫ ∞
1

tγ dF2,1,x(t)− (1− F2,1,x(1)); [using (38)]

≤
∫ ∞

0
tγ dF2,1,x(t)− (1− F2,1,x(1))

= E [‖X1 −X2‖γ |X1 = x]− (1− F2,1,x(1)); [by the def. of Fn,k,x]

= −(1− F2,1,x(1)) +

∫
‖x− y‖γp(y) dy

≤
∫
‖x− y‖γp(y) dy <∞; [by assumption].

F2,1,x ∈ [0, 1], ∀x, since this is a cdf. The
∫
‖x− y‖γp(y)dy <∞ for almost all x ∈ M was

our assumption here, and is similar to that of in Wang et al. (2009b). This finishes the
proof of Lemma 48.

Proof [Proof of (21) in Theorem 25] The proof is almost the same as in proving (19).
However, in this case instead of assuming the uniformly Lebesgue approximability and
“bounded away from zero” properties of p, we use the Lebesgue lemma locally only, that
is, we use a different δ(x) in each x ∈ M. As a result, there will not exist a global thresh-
old number n0; these n0(δ(x)) threshold numbers will be different in each point of x ∈M.

Proof [Proof of (22) in Theorem 25]
Note that if p is bounded, p(x) ≤ p̄, then∫

M∩B
(
x,( u

n−1)
1/d
) p(t) dt

.
= Pn,u,x ≤

p̄u

n− 1
c̄, ∀x ∈M, ∀n, ∀u > 0. (56)
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Therefore,

Fn,k,x(u)

uk
=

1

uk

n−1∑
j=k

(
n− 1
j

)
(Pn,u,x)j(1− Pn,u,x)n−1−j ; [thanks to (14)]

≤ 1

uk

n−1∑
j=k

(
n− 1
j

)(
p̄c̄

u

n− 1

)j

≤
n−1∑
j=k

1

j!
(p̄c̄)j uj−k;

[
since

(
n− 1
j

)
1

(n− 1)j
≤ 1

j!

]

≤ (p̄c̄)k
n−1∑
j=k

1

(j − k)!
(p̄c̄)j−k βj−k; by assumption u < β

≤ (p̄c̄)k exp(p̄c̄β) = L̂(p̄, β).

Proof [Proof of (24) in Theorem 25] Use that Fn,k,x ≤ 1 and γ < 0. Thus,∫ ∞
β

uγ−1 (Fn,k,x(u))ω du ≤
∫ ∞
β

uγ−1 =

[
uγ

γ

]∞
β

=
−βγ

γ
.

Proof [Proof of (25) in Theorem 25] According to (22), if u ≤ β, then Fωn,k,x(u) ≤
ukωL̂ω(p̄, β). In turn,

∫ β

0
uγ−1 (Fn,k,x(u))ω du ≤

∫ β

0
uγ−1

(
ukL̂(p̄, β)

)ω
du

= L̂ω(p̄, β)

∫ β

0
uγ+kω−1du = L̂ω(p̄, β)

βγ+kω

γ + kω
,

assuming γ + kω > 0.

Appendix E. Proofs for the Asymptotic Variance

We will need the following observation:

Lemma 49

Fn,k,x(u) ≤ Fn,k−1,x(u) ≤ . . . ≤ Fn,0,x(u) = 1.
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Figure 13: Explanation of the proof of Lemma 29. 0 ≤ j, l, and j + l ≤ n− 2.

Proof of Lemma 28

Proof Follow the proof of Lemma 19 and calculate this distribution in a “closed” form.

Fn,k,x1,x2(u, v) = Pr(ζn,k,1 < u ∧ ζn,k,2 < v|X1 = x1, X2 = x2)

= Pr((n− 1)ρdk(1) < u ∧ (n− 1)ρdk(2) < v|X1 = x1, X2 = x2)

= Pr (ρk(1) < Rn(u) ∧ ρk(2) < Rn(v)|X1 = x1, X2 = x2)

= Pr (k elements or more ∈ B(x1, Rn(u))

∧k elements or more ∈ B(x2, Rn(v))|X1 = x1, X2 = x2)

=
n−2∑
j=k

n−2−j∑
l=k

(
n− 2
j

)(
n− 2− j

l

)
Sn,j,l,

where

Sn,j,l
.
= (Pn,u,x1)j(Pn,v,x2)l(1− Pn,u,x1 − Pn,v,x2)n−2−j−l,

and Pn,u,xi
.
=
∫
M∩B(xi,Rn(u)) p(t)dt. In the last equation we used that max(Rn(u), Rn(v)) ≤

‖x1 − x2‖, and thus x2 /∈ B(x1, Rn(u)), and x1 /∈ B(x2, Rn(v)).

Proof of Lemma 29

Proof The lemma below can be easily proven by induction.

Lemma 50 Let 0 ≤ p1, p2, and p1 + p2 ≤ 1. Then

n∑
l=0

(
n
l

)
pl2(1− p1 − p2)n−2 = (1− p1)n.

Figure 13 will help us understand the proof. The figure shows the domain of a multinomial
distribution with α and β random variables along its axes. Let p1

.
= Pn,u,x1 , p2

.
= Pn,v,x2 ,
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and consider the following multinomial distribution

Pr(α = j, β = l|j + l ≤ n− 2)
.
=

(
n− 2
j

)(
n− 2− j

l

)
pj1p

l
2(1− p1 − p2)n−2−j−l.

Now, thanks to (31), Fn,k,x1,x2(u, v) =
n−2∑
j=k

n−2∑
l=k

Pr(α = j, β = l|j + l ≤ n − 2). This is the

domain A in Figure 13. We also have that

Pr(α = j) =

n−2−j∑
l=0

Pr(α = j, β = l)

=

(
n− 2
j

)
pj1

n−2−j∑
l=0

(
n− 2− j

l

)
pl2(1− p1 − p2)n−2−j−l

=

(
n− 2
j

)
pj1(1− p1)n−2−j [by Lemma 50]. (57)

Similarly,

Pr(β = l) =

n−2−l∑
j=0

Pr(α = j, β = l) =

(
n− 2
l

)
pl2(1− p2)n−2−l.

Figure 13 displays the probability mass of a multinomial distribution. Here A + B +
C +D = 1, and therefore A=1-(B+D)-(C+D)+D. It is easy to see that

D + C =

k−1∑
j=0

n−2−j∑
l=0

Pr(α = j, β = l) =

k−1∑
j=0

Pr(α = j)

=

k−1∑
j=0

(
n− 2
j

)
(Pn,u,x1)j(1− Pn,u,x1)n−2−j [using Eq. (57)]

= 1− F̃n−1,k,x1(u) [by Eq. (14)],

and similarly

D +B = 1− F̃n−1,k,x2(v).

We can conclude that

A = Fn,k,x1,x2(u, v)

= Fn−1,k,x1(u) + Fn−1,k,x2(v)− 1 +
k−1∑
j=0

k−1∑
l=0

(
n− 2
j

)(
n− 2− j

l

)
Sn,j,l.
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Proof of Lemma 30

Proof We already know from Lemma 29 that if x1 6= x2 fixed, and n is large enough, then
we have that max(Rn(u), Rn(v)) < ‖x1 − x2‖, and thus Lemma 29 holds. Investigate the
lemma’s first three terms:

lim
n→∞

[Fn−1,k,x1(u) + Fn−1,k,x2(v)− 1] = Fk,x1(u) + Fk,x2(v)− 1

= 1−
k−1∑
j=0

1

j!
(uc̄p(x1))j exp(−uc̄p(x1))−

k−1∑
l=0

1

l!
(vc̄p(x2))l exp(−vc̄p(x2)).

The last term is also easy to study:

lim
n→∞

k−1∑
j=0

k−1∑
l=0

(
n− 2
j

)(
n− 2− j

l

)
Sn,j,l

=
k−1∑
j=0

k−1∑
l=0

1

j!

1

l!
(uc̄p(x1))j(vc̄p(x2))l exp(−uc̄p(x1)− vc̄p(x2)).

Its proof is analogous to the proof of Lemma 20, we just have to bound Pn,u,x1 and Pn,v,x2 .
We omit the details.

In turn,

lim
n→∞

Fn,k,x1,x2(u, v)

=

1−
k−1∑
j=0

1

j!
(uc̄p(x1))j exp(−uc̄p(x1))

[1−
k−1∑
l=0

1

l!
(vc̄p(x2))j exp(−vc̄p(x2))

]
.

This is what we wanted to prove.

Proof of Theorem 34

Before starting the proof of this theorem, observe that

fn(x1, x2) = E[(n− 1)2γρk(1)dγρk(2)dγ |X1 = x1, X2 = x2]

= E[ζγn,k,1ζ
γ
n,k,2|X1 = x1, X2 = x2]

=

∫ ∞
0

∫ ∞
0

uγvγFn,k,x1,x2(du,dv).

Proof [Proof of (32) in Theorem 34]
Let γ > 0, and use Lemma 45 to rewrite Fn,k,x1,x2(du,dv).

fn(x1, x2) =

∫ ∞
0

∫ ∞
0

uγvγFn,k,x1,x2(du,dv)

= γ2

∞∫
0

∞∫
0

uγ−1vγ−1 [1− Fn,k,x1,x2(u,∞)− Fn,k,x1,x2(∞, v) + Fn,k,x1,x2(u, v)] dudv
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= γ2

∞∫
0

∞∫
0

uγ−1vγ−1(1− Fn,k,x1,x2(u,∞))(1− Fn,k,x1,x2(∞, v))dudv (58)

+ γ2

∞∫
0

∞∫
0

uγ−1vγ−1 [Fn,k,x1,x2(u, v)− Fn,k,x1,x2(u,∞)Fn,k,x1,x2(∞, v)] dudv.

(59)

By definition

Fn,k,x1,x2(u, v) = Pr(ξn,k,x1 < u ∧ ξn,k,x2 < v|X1 = x1, X2 = x2).

Note that

Fn,k,x1,x2(u, v) ≤ min[Fn,k,x1,x2(u,∞), Fn,k,x1,x2(∞, v)].

Split the domain of (u, v) ∈ [0,∞]2 into four parts.

1. When ‖x1 − x2‖ > Rn(u) = (u/(n− 1))1/d, and ‖x1 − x2‖ > Rn(v) = (v/(n− 1))1/d,
then Λ = Λ(n, x1, x2)

.
= (n − 1)‖x1 − x2‖d > u, and Λ = (n − 1)‖x1 − x2‖d > v.

Furthermore, Fn,k,x1,x2(u,∞) = Fn−1,k,x1(u), and Fn,k,x1,x2(∞, v) = Fn−1,k,x2(v) by
Lemma 33. Now,

Fn,k,x1,x2(u, v)− Fn,k,x1,x2(u,∞)Fn,k,x1,x2(∞, v)

≤ min[Fn−1,k,x1(u), Fn−1,k,x2(v)]− Fn−1,k,x1(u)Fn−1,k,x2(v)

≤
√

1− Fn−1,k,x1(u)
√

1− Fn−1,k,x2(v); [Using Lemma 38].

Thus,∫ Λ

0

∫ Λ

0
uγ−1vγ−1 [Fn,k,x1,x2(u, v)− Fn,k,x1,x2(u,∞)Fn,k,x1,x2(∞, v)] dudv

≤
∫ Λ

0

∫ Λ

0
uγ−1vγ−1

√
1− Fn−1,k,x1(u)

√
1− Fn−1,k,x2(v)dudv.

Similarly,∫ Λ

0

∫ Λ

0
uγ−1vγ−1(1− Fn,k,x1,x2(u,∞))(1− Fn,k,x1,x2(∞, v))dudv

=

∫ Λ

0

∫ Λ

0
uγ−1vγ−1(1− Fn−1,k,x1(u))(1− Fn−1,k,x2(v))dudv.

2. When ‖x1 − x2‖ ≤ Rn(u), and ‖x1 − x2‖ > Rn(v), then Λ = Λ(n, x1, x2)
.
= (n −

1)‖x1 − x2‖d ≤ u, and Λ = (n − 1)‖x1 − x2‖d > v. Furthermore, Fn,k,x1,x2(u,∞) =
Fn−1,k−1,x1(u), and Fn,k,x1,x2(∞, v) = Fn−1,k,x2(v) by Lemma 33. Now,

Fn,k,x1,x2(u, v)− Fn,k,x1,x2(u,∞)Fn,k,x1,x2(∞, v)

≤ min[Fn−1,k−1,x1(u), Fn−1,k,x2(v)]− Fn−1,k−1,x1(u)Fn−1,k,x2(v)
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≤
√

1− Fn−1,k−1,x1(u)
√

1− Fn−1,k,x2(v); [Using Lemma 38].

≤
√

1− Fn−1,k,x1(u)
√

1− Fn−1,k,x2(v); [Using Lemma 49].

Thus,∫ ∞
Λ

∫ Λ

0
uγ−1vγ−1 [Fn,k,x1,x2(u, v)− Fn,k,x1,x2(u,∞)Fn,k,x1,x2(∞, v)] dudv

≤
∫ ∞

Λ

∫ Λ

0
uγ−1vγ−1

√
1− Fn−1,k,x1(u)

√
1− Fn−1,k,x2(v)dudv.

Similarly,∫ ∞
Λ

∫ Λ

0
uγ−1vγ−1(1− Fn,k,x1,x2(u,∞))(1− Fn,k,x1,x2(∞, v))dudv

≤
∫ ∞

Λ

∫ Λ

0
uγ−1vγ−1(1− Fn−1,k,x1(u))(1− Fn−1,k,x2(v))dudv.

3. The ‖x1 − x2‖ > Rn(u) and ‖x1 − x2‖ ≤ Rn(v) case is similar to the previous one,
just replace the role of u and v. Then Λ = Λ(n, x1, x2)

.
= (n − 1)‖x1 − x2‖d > u,

and Λ = (n − 1)‖x1 − x2‖d ≤ v. Furthermore, Fn,k,x1,x2(u,∞) = Fn−1,k,x1(u), and
Fn,k,x1,x2(∞, v) = Fn−1,k−1,x2(v) by Lemma 33. Now,

Fn,k,x1,x2(u, v)− Fn,k,x1,x2(u,∞)Fn,k,x1,x2(∞, v)

≤ min[Fn−1,k,x1(u), Fn−1,k−1,x2(v)]− Fn−1,k,x1(u)Fn−1,k−1,x2(v)

≤
√

1− Fn−1,k,x1(u)
√

1− Fn−1,k−1,x2(v)

≤
√

1− Fn−1,k,x1(u)
√

1− Fn−1,k,x2(v).

∫ Λ

0

∫ ∞
Λ

uγ−1vγ−1 [Fn,k,x1,x2(u, v)− Fn,k,x1,x2(u,∞)Fn,k,x1,x2(∞, v)] dudv

≤
∫ Λ

0

∫ ∞
Λ

uγ−1vγ−1
√

1− Fn−1,k,x1(u)
√

1− Fn−1,k,x2(v)dudv.

Similarly,∫ Λ

0

∫ ∞
Λ

uγ−1vγ−1(1− Fn,k,x1,x2(u,∞))(1− Fn,k,x1,x2(∞, v))dudv

≤
∫ Λ

0

∫ ∞
Λ

uγ−1vγ−1(1− Fn−1,k,x1(u))(1− Fn−1,k,x2(v))dudv.

4. When ‖x1 − x2‖ ≤ Rn(u), and ‖x1 − x2‖ ≤ Rn(v), then Λ = Λ(n, x1, x2)
.
= (n −

1)‖x1 − x2‖d ≤ u, and Λ = (n − 1)‖x1 − x2‖d ≤ v. Furthermore, Fn,k,x1,x2(u,∞) =
Fn−1,k−1,x1(u), and Fn,k,x1,x2(∞, v) = Fn−1,k−1,x2(v) by Lemma 33. Now,

Fn,k,x1,x2(u, v)− Fn,k,x1,x2(u,∞)Fn,k,x1,x2(∞, v)
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≤ min[Fn−1,k−1,x1(u), Fn−1,k−1,x2(v)]− Fn−1,k−1,x1(u)Fn−1,k−1,x2(v)

≤
√

1− Fn−1,k−1,x1(u)
√

1− Fn−1,k−1,x2(v)

≤
√

1− Fn−1,k,x1(u)
√

1− Fn−1,k,x2(v).

∫ ∞
Λ

∫ ∞
Λ

uγ−1vγ−1 [Fn,k,x1,x2(u, v)− Fn,k,x1,x2(u,∞)Fn,k,x1,x2(∞, v)] dudv

≤
∫ ∞

Λ

∫ ∞
Λ

uγ−1vγ−1
√

1− Fn−1,k,x1(u)
√

1− Fn−1,k,x2(v)dudv.

Similarly,∫ ∞
Λ

∫ ∞
Λ

uγ−1vγ−1(1− Fn,k,x1,x2(u,∞))(1− Fn,k,x1,x2(∞, v))dudv

≤
∫ ∞

Λ

∫ ∞
Λ

uγ−1vγ−1(1− Fn−1,k,x1(u))(1− Fn−1,k,x2(v))dudv.

Putting the pieces together we can conclude that if 0 < γ, then∫ ∞
0

∫ ∞
0

uγvγFn,k,x1,x2(du,dv)

≤ γ2

[∫ ∞
0

uγ−1
√

1− Fn−1,k,x1(u)du

] [∫ ∞
0

vγ−1
√

1− Fn−1,k,x2(v)dv

]
+γ2

[∫ ∞
0

uγ−1(1− Fn−1,k,x1(u))du

] [∫ ∞
0

vγ−1(1− Fn−1,k,x2(v))dv

]
≤ 2γ2

[∫ ∞
0

uγ−1
√

1− Fn−1,k,x1(u)du

] [∫ ∞
0

vγ−1
√

1− Fn−1,k,x2(v)dv

]
.

Using (19) with ω = 1/2 we have what we wanted to prove∫ ∞
0

∫ ∞
0

uγvγFn,k,x1,x2(du,dv) ≤ 2γ2L(x1, 1/2, k, γ, p, δ, δ1)L(x2, 1/2, k, γ, p, δ, δ1).

Proof [Proof of (33) in Theorem 34] The proof is almost the same as the proof of (32).
However, in this case instead of assuming the uniformly Lebesgue approximability and
“bounded away from zero” properties of p, we use the Lebesgue lemma locally only, that is,
we use a different δ(x) in each x ∈ M. As a result, there will not exist a global threshold
number n0; these n0(x1, x2) threshold numbers will be different for each x1, x2 ∈M pairs.

Proof [Proof of (34) and (35) in Theorem 34]
If γ < 0, then∫ ∞

0

∫ ∞
0

uγvγFn,k,x1,x2(du,dv) = γ2

∫ ∞
0

∫ ∞
0

uγ−1vγ−1Fn,k,x1,x2(u, v)dudv.
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In this case, we can follow the approach presented in Leonenko et al. (2008a). Split the
domain of (u, v) ∈ [0,∞]2 into four parts again.

1. When ‖x1 − x2‖ > Rn(u), and ‖x1 − x2‖ > Rn(v), then Λ = Λ(n, x1, x2)
.
= (n −

1)‖x1 − x2‖d > u, and Λ = (n − 1)‖x1 − x2‖d > v. Fn,k,x1,x2(u,∞) = Fn−1,k,x1(u),
Fn,k,x1,x2(∞, v) = Fn−1,k,x2(v).

Fn,k,x1,x2(u, v) ≤ min[Fn,k,x1,x2(u,∞), Fn,k,x1,x2(∞, v)]

≤
√
Fn−1,k,x1(u)Fn−1,k,x2(v).

Thus,∫ Λ

0

∫ Λ

0
uγ−1vγ−1Fn,k,x1,x2(u, v)dudv

≤
[∫ Λ

0
uγ−1

√
Fn−1,k,x1(u)du

] [∫ Λ

0
vγ−1

√
Fn−1,k,x2(v)dv

]
≤
[∫ 1

0
uγ−1

√
Fn−1,k,x1(u)du+

∫ ∞
1

uγ−1
√
Fn−1,k,x1(u)du

]
×

×
[∫ 1

0
vγ−1

√
Fn−1,k,x2(v)dv +

∫ ∞
1

vγ−1
√
Fn−1,k,x2(v)dv

]
≤
[∫ 1

0
uγ−1

√
Fn−1,k,x1(u)du+

∫ ∞
1

uγ−1du

]
×

×
[∫ 1

0
vγ−1

√
Fn−1,k,x2(v)dv +

∫ ∞
1

vγ−1dv

]
≤

[
L1/2(p̄, 1)

k/2 + γ
− 1

γ

]2

; [assuming k/2 + γ > 0.]

In the last inequality we used (24) and (25).

2. When ‖x1 − x2‖ ≤ Rn(u), and ‖x1 − x2‖ > Rn(v), then Λ = Λ(n, x1, x2)
.
= (n −

1)‖x1 − x2‖d ≤ u and Λ = (n − 1)‖x1 − x2‖d > v. Fn,k,x1,x2(u,∞) = Fn−1,k−1,x1(u),
and Fn,k,x1,x2(∞, v) = Fn−1,k,x2(v).

Fn,k,x1,x2(u, v) ≤ min[Fn,k,x1,x2(u,∞), Fn,k,x1,x2(∞, v)]

= min[Fn−1,k−1,x1(u), Fn−1,k,x2(v)]

≤ F
1/2
n−1,k−1,x1

(u)F
1/2
n−1,k,x2

(v).

If k > 1, then∫ ∞
Λ

∫ Λ

0
uγ−1vγ−1Fn,k,x1,x2(u, v)dudv

≤
[∫ ∞

Λ
uγ−1F

1/2
n−1,k−1,x1

(u)du

] [∫ Λ

0
vγ−1F

1/2
n−1,k,x2

(v)dv

]
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≤
[∫ 1

0
uγ−1F

1/2
n−1,k−1,x1

(u)du+

∫ ∞
1

uγ−1du

]
×

×
[∫ 1

0
vγ−1F

1/2
n−1,k,x2

(v)dv +

∫ ∞
1

vγ−1dv

]
≤
[∫ 1

0
uγ−1F

1/2
n−1,k−1,x1

(u)du− 1

γ

] [∫ 1

0
vγ−1F

1/2
n−1,k,x2

(v)dv − 1

γ

]
≤

[
L̂1/2(p̄, 1)

(k − 1)/2 + γ
− 1

γ

][
L̂1/2(p̄, 1)

k/2 + γ
− 1

γ

]
.

Here we used (25) again and assumed that (k − 1)/2 + γ > 0, and thus k/2 + γ > 0,
too. If k = 1, then the bounding above cannot be applied, since Fn−1,0,x1(u) = 1,

γ < 0, and thus
∫ 1

0 u
γ−1du = ∞. In this case when (u, v) ∈ [Λ,∞] × [0,Λ], we have

that x2 ∈ B(x1, Rn(u)) and x1 /∈ B(x2, Rn(v), thus Fn,1,x1,x2(u, v) = Fn−1,1,x2(v). In
turn,∫ ∞

Λ

∫ Λ

0
uγ−1vγ−1Fn,1,x1,x2(u, v)dudv

=

∫ ∞
Λ

∫ Λ

0
uγ−1vγ−1Fn−1,1,x2(v)dudv

=

[∫ ∞
Λ

uγ−1du

] [∫ Λ

0
vγ−1Fn−1,1,x2(v)dv

]
= −Λγ

γ

∫ Λ

0
vγ−1Fn−1,1,x2(v)dv

≤ −Λγ

γ

[∫ 1

0
vγ−1Fn−1,1,x2(v)dv +

∫ ∞
1

vγ−1dv

]
≤ −Λγ

γ

[
L̂(p̄, 1)

1 + γ
− 1

γ

]
; [using (25) and assuming 1 + γ > 0]

= −(n− 1)γ

γ
‖x1 − x2‖dγ

[
L̂(p̄, 1)

1 + γ
− 1

γ

]

≤ −1

γ
‖x1 − x2‖dγ

[
L̂(p̄, 1)

1 + γ
− 1

γ

]
; [since (n− 1)γ ≤ 1].

3. The ‖x1−x2‖ > Rn(u), ‖x1−x2‖ ≤ Rn(v) case is similar to the previous one, just need
to switch the role of u and v. In this case, Λ = Λ(n, x1, x2)

.
= (n− 1)‖x1 − x2‖d > u,

and Λ = (n− 1)‖x1 − x2‖d ≤ v.

4. Finally, when ‖x1 − x2‖ ≤ Rn(u), and ‖x1 − x2‖ ≤ Rn(v), then Λ = Λ(n, x1, x2)
.
=

(n−1)‖x1−x2‖d ≤ u and Λ = (n−1)‖x1−x2‖d ≤ v. Fn,k,x1,x2(u,∞) = Fn−1,k−1,x1(u),
and Fn,k,x1,x2(∞, v) = Fn−1,k−1,x2(v).

Fn,k,x1,x2(u, v) ≤ min[Fn,k,x1,x2(u,∞), Fn,k,x1,x2(∞, v)]
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≤ F
1/2
n−1,k−1,x1

(u)F
1/2
n−1,k−1,x2

(v).

If k > 1, then∫ ∞
Λ

∫ ∞
Λ

uγ−1vγ−1Fn,k,x1,x2(u, v)dudv

≤
[∫ ∞

Λ
uγ−1F

1/2
n−1,k−1,x1

(u)du

] [∫ ∞
Λ

vγ−1F
1/2
n−1,k−1,x2

(v)dv

]
≤
[∫ 1

0
uγ−1F

1/2
n−1,k−1,x1

(u)du+

∫ ∞
1

uγ−1du

]
×

×
[∫ 1

0
vγ−1F

1/2
n−1,k−1,x2

(v)dv +

∫ ∞
1

vγ−1dv

]
≤

[
L̂1/2(p̄, 1)

(k − 1)/2 + γ
− 1

γ

]2

; [using (25)].

Here we assumed that (k−1)/2+γ > 0. If k = 1, then the bounding above cannot be
applied, because Fn−1,0,x1 = Fn−1,0,x2 = 1. In this case when (u, v) ∈ [Λ,∞]× [Λ,∞]
we have that x2 ∈ B(x1, Rn(u)) and x1 ∈ B(x2, Rn(v), thus Fn,1,x1,x2(u, v) = 1. In
turn,∫ ∞

Λ

∫ ∞
Λ

uγ−1vγ−1Fn,1,x1,x2(u, v)dudv =

[∫ ∞
Λ

uγ−1du

]2

=
Λ2γ

γ2
=

(n− 1)2γ

γ2
‖x1 − x2‖2dγ

≤ 1

γ2
‖x1 − x2‖2dγ ; [since(n− 1)2γ ≤ 1].

Other Proofs on Divergences and their Properties

Lemma 51 (KL-divergence as a limit case) When α→ 1 then Rα(p‖q)→ KL(p‖q).

Proof Using L’Hospital rule and assuming that the integral, the limit and the derivative
operators can be switched:

lim
α→1

Rα(p‖q) = lim
α→1

1

α− 1
log

∫
pα(x)q1−α(x)dx

= lim
α→1

∂
∂α log

∫
pα(x)q1−α(x)dx
∂
∂α(α− 1)

; [L’Hospital rule]

= lim
α→1

∂

∂α
log

∫
pα(x)q1−α(x)dx

= lim
α→1

1∫
pα(x)q1−α(x)dx

∂

∂α

∫
pα(x)q1−α(x)dx

59
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= lim
α→1

∂

∂α

∫
pα(x)q1−α(x)dx

= lim
α→1

∫
∂

∂α
pα(x)q1−α(x)dx; [

∂

∂α

∫
=

∫
∂

∂α
]

= lim
α→1

∫
pα(x) log(pα(x))q1−α(x)− pα(x)q1−α(x) log(q(x))dx

=

∫
p(x) log(p(x))− p(x) log(q(x))dx; [lim

∫
=

∫
lim].

Similarly, we can also prove that

Lemma 52 (KL-divergence as a limit case) When α→ 1 then Tα(p‖q)→ KL(p‖q).

Beta Distributions

Lemma 53 Let f(x) =
∏d
i=1Betaxi(ai, bi), and g(x) =

∏d
i=1Betaxi(ci, di). Then

Rα(f‖g) = 1
α−1 logDα(f‖g) and Tα(f‖g) = 1

α−1(Dα(f‖g)− 1), where

Dα(f‖g) =
d∏
i=1

(Γ(ai + bi))
α

(Γ(ai))α(Γ(bi))α
(Γ(ci + di))

1−α

(Γ(ci))1−α(Γ(di))1−α

× Γ(α(ai − 1) + (1− α)(ci − 1))Γ(α(bi − 1) + (1− α)(di − 1))

Γ(α(ai − 1) + (1− α)(ci − 1) + α(bi − 1) + (1− α)(di − 1))
.

Proof

f(x)
.
=

d∏
i=1

Betaxi(ai, bi) =
d∏
i=1

Γ(ai + bi)

Γ(ai)Γ(bi)
xai−1
i (1− xi)bi−1,

g(x)
.
=

d∏
i=1

Betaxi(ci, di) =
d∏
i=1

Γ(ci + di)

Γ(ci)Γ(di)
xci−1
i (1− xi)di−1.

Thus, ∫
fα(x)g1−α(x)dx =

∫ d∏
i=1

(Γ(ai + bi))
α

(Γ(ai))α(Γ(bi))α
(Γ(ci + di))

1−α

(Γ(ci))1−α(Γ(di))1−α

× xα(ai−1)+(1−α)(ci−1)
i (1− xi)α(bi−1)+(1−α)(di−1)dx

=
d∏
i=1

(Γ(ai + bi))
α

(Γ(ai))α(Γ(bi))α
(Γ(ci + di))

1−α

(Γ(ci))1−α(Γ(di))1−α

× Γ(αai + (1− α)ci)Γ(αbi + (1− α)di)

Γ(αai + (1− α)ci + αbi + (1− α)di)
.

Similarly, it is also easy to calculate the KL-divergence between two beta distributions.
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Lemma 54

KL(f‖g) =
d∑
i=1

log
B(ci, di)

B(ai, bi)
− (ci − ai)ψ(ai)− (di − bi)ψ(bi)

+ (ci − ai + di − bi)ψ(ai + bi),

where B is the Beta and ψ is the digamma function.

The following lemma determines the L2-divergence between two beta distributions.

Lemma 55 Let f(x) =
∏d
i=1Betaxi(ai, bi), and g(x) =

∏d
i=1Betaxi(ci, di). Then,

L2(f‖g)

=

(
d∏
i=1

β(2ai − 1, 2bi − 1)

β2(ai, bi)
+

d∏
i=1

β(2ci − 1, 2di − 1)

β2(ci, di)
− 2

d∏
i=1

β(ai + ci − 1, bi + di − 1)

β(ai, bi)β(ci, di)

)1/2

Proof

f(x)
.
=

d∏
i=1

Γ(ai + bi)

Γ(ai)Γ(bi)
xai−1
i (1− xi)bi−1 =

d∏
i=1

1

β(ai, bi)
xai−1
i (1− xi)bi−1,

g(x)
.
=

d∏
i=1

Γ(ci + di)

Γ(ci)Γ(di)
xci−1
i (1− xi)di−1 =

d∏
i=1

1

β(ci, di)
xci−1
i (1− xi)di−1.

We know that∫ d∏
i=1

xai−1
i (1− xi)bi−1dx1 . . . dxd =

d∏
i=1

Γ(ai)Γ(bi)

Γ(ai + bi)
=

d∏
i=1

β(ai, bi)

Thus,∫
f2(x)dx =

∫ d∏
i=1

1

β2(ai, bi)
x

(2ai−1−1)
i (1− xi)(2bi−1−1) =

d∏
i=1

β(2ai − 1, 2bi − 1)

β2(ai, bi)∫
g2(x)dx =

∫ d∏
i=1

1

β2(ci, di)
x

(2ci−1−1)
i (1− xi)(2di−1−1) =

d∏
i=1

β(2ci − 1, 2di − 1)

β2(ci, di)

∫
f(x)g(x)dx =

∫ d∏
i=1

x
(ai+ci−1−1)
i (1− xi)(bi+di−1−1)

β(ai, bi)β(ci, di)
=

d∏
i=1

β(ai + ci − 1, bi + di − 1)

β(ai, bi)β(ci, di)

In turn,

L2(f‖g) =

(∫
(f(x)− g(x))2dx

)1/2
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=

(
d∏
i=1

β(2ai − 1, 2bi − 1)

β2(ai, bi)
+

d∏
i=1

β(2ci − 1, 2di − 1)

β2(ci, di)
− 2

d∏
i=1

β(ai + ci − 1, bi + di − 1)

β(ai, bi)β(ci, di)

)1/2

In the 1-dimensional case it has the following simple form:

L2(f‖g) =

(
β(2a− 1, 2b− 1)

β2(a, b)
+
β(2c− 1, 2d− 1)

β2(c, d)
− 2

β(a+ c− 1, b+ d− 1)

β(a, b)β(c, d)

)1/2

Normal Distributions

Lemma 56 (Rényi divergence between normal distributions with zero means) Let
f(x)

.
= Nx(0,Σf ), g(x)

.
= Nx(0,Σg). Then

Rα(f‖q) =
1

α− 1
log

(
|Σ−1

f |
α/2|Σ−1

g |(1−α)/2

|αΣ−1
f + (1− α)Σ−1

g |1/2

)
. (60)

Proof Let

f(x)
.
= Nx(0,Σf ) = |2πΣf |−1/2 exp(−1

2
xTΣ−1

f x),

g(x)
.
= Nx(0,Σg) = |2πΣg|−1/2 exp(−1

2
xTΣ−1

g x).

Observe that
∫

exp(−1
2x

TΣ−1x) = |2πΣ|1/2 = 1
|(2π)−1Σ−1|1/2 , and therefore∫

fα(x)gβ(x)dx =

∫
|2πΣf |−α/2|2πΣg|−β/2 exp(−α

2
xTΣ−1

f x) exp(−β
2
xTΣ−1

g x)

= |2πΣf |−α/2|2πΣg|−β/2
∫

exp(−α
2
xTΣ−1

f x) exp(−β
2
xTΣ−1

g x)

= |(2π)−1Σ−1
f |

α/2 |(2π)−1Σ−1
g |β/2

∫
exp(−1

2
xT (αΣ−1

f + βΣ−1
g )x

=
|(2π)−1Σ−1

f |
α/2 |(2π)−1Σ−1

g |β/2

|(2π)−1(αΣ−1
f + βΣ−1

g )|1/2
.

Thus,

Dα(f‖g) =

∫
fα(x)g1−α(x)dx =

|Σ−1
f |

α/2|Σ−1
g |(1−α)/2

|αΣ−1
f + (1− α)Σ−1

g |1/2
,

Rα(f‖g) =
1

α− 1
log

(
|Σ−1

f |
α/2|Σ−1

g |(1−α)/2

|αΣ−1
f + (1− α)Σ−1

g |1/2

)
.
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Lemma 57 (Rényi divergence between normal distributions with arbitrary means)
Let f(x)

.
= Nx(µf ,Σf ), g(x)

.
= Nx(µg,Σg). Then Rα(f‖g) = 1

α−1 logDα(f‖g), Dα(f‖g) =
A/B, where

A =
|Σ−1

f |
α/2|Σ−1

g |(1−α)/2

|αΣ−1
f + (1− α)Σ−1

g |1/2
exp

{
µTf αΣ−1

f µf + µTg (1− α)Σ−1
g µg

}
B = exp

{(
µTf αΣ−1

f + µTg (1− α)Σ−1
g

)(
αΣ−1

f + (1− α)Σ−1
g

)−1 (
αΣ−1

f µf + (1− α)Σ−1
g µg

)}
Proof

It is known that∫
exp(−1

2
(x− µ)TΣ−1(x− µ)) = |2πΣ|1/2 =

1

|(2π)−1Σ−1|1/2

exp
{
−α

2
(x− µf )TΣ−1

f (x− µf )
}

exp

{
−β

2
(x− µg)TΣ−1

g (x− µg)
}

= exp

{
−1

2

(
xTαΣ−1

f x+ µTf αΣ−1
f µf − 2µTf αΣ−1

f x+ xTβΣ−1
g x+ µTg βΣ−1

g µg − 2µTg βΣ−1
g x

)}
= exp

{
−1

2

[
xT
(
αΣ−1

f + βΣ−1
g

)
x− 2

(
µTf αΣ−1

f + µTg βΣ−1
g

)
x+ µTf αΣ−1

f µf + µTg βΣ−1
g µg

]}
= exp

{
−1

2

[
xTS1x− 2ST2 x+ S3

]}
= exp

{
−1

2

[
(x− S−1

1 S2)TS1(x− S−1
1 S2) + S3 − ST2 S−1

1 S2

]}
= exp

{
−1

2

[
(x− S−1

1 S2)TS1(x− S−1
1 S2)

]}
exp

{
S3 − ST2 S−1

1 S2

}
,

where S1 =
(
αΣ−1

f + βΣ−1
g

)
, ST2 =

(
µTf αΣ−1

f + µTg βΣ−1
g

)
, S3 = µTf αΣ−1

f µf +µTg βΣ−1
g µg.

Therefore,∫
exp

{
−α

2
(x− µf )TΣ−1

f (x− µf )
}

exp

{
−β

2
(x− µg)TΣ−1

g (x− µg)
}

=

∫
exp

{
−1

2

[
(x− S−1

1 S2)TS1(x− S−1
1 S2)

]}
exp

{
S3 − ST2 S−1

1 S2

}
=

1

|(2π)−1S1|1/2
exp

{
S3 − ST2 S−1

1 S2

}
,

and we have that∫
fα(x)gβ(x)dx =

|(2π)−1Σ−1
f |

α/2 |(2π)−1Σ−1
g |β/2

|(2π)−1
(
αΣ−1

f + βΣ−1
g

)
|1/2

exp
{
S3 − ST2 S−1

1 S2

}
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The KL divergence between two normal distributions with different means is as follows:

KL(f‖g) =
1

2

[
log

(
|Σg|
|Σf |

)
+ tr(Σ−1

g Σf ) + (µg − µf )TΣ−1
g (µg − µf )− d.

]
Uniform Distributions

Lemma 58 (Rényi divergence between uniform distributions) Let uniform distri-
butions f(x)

.
= Ux(a1, b1), g(x)

.
= Ux(a2, b2). Then

Rα(f‖g) =
1

α− 1
log

(
l

(b1 − a1)α(b2 − a2)1−α

)
. (61)

where l = V([a1, b1] ∩ [a2, b2]) i.e. the length of the common support of f and g.

Lemma 59 (L2 divergence between uniform distributions) Let uniform distribu-
tions f(x)

.
= Ux(a1, b1), g(x)

.
= Ux(a2, b2). Then

L2(f‖g) =

√
1

b1 − a1
+

1

b2 − a2
− 2l

(b1 − a1)(b2 − a2)
(62)

where l is defined as above.
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