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ABSTRACT

In this paper we propose new nonparametric Rényi, Tsal-
lis, and L2 divergence estimators and demonstrate their ap-
plicability to mutual information estimation and indepen-
dent subspace analysis. Given two independent and identi-
cally distributed samples, a �naïve� divergence estimation
approach would simply estimate the underlying densities,
and plug these densities into the corresponding integral for-
mulae. In contrast, our estimators avoid the need to con-
sistently estimate these densities, and still they can lead to
consistent estimations. Numerical experiments illustrate the
e�ciency of the algorithms.

1. INTRODUCTION

Many statistical, arti�cial intelligence, and machine learning
problems require e�cient estimation of the divergence be-
tween two distributions. This problem is challenging when
the density functions are not given explicitly, or they are
not members of any parametric family, and parametric ap-
proaches cannot be applied. We assume that only two �nite,
independent and identically distributed (i.i.d.) samples are
given from the two underlying distributions.

The Rényi-α, Tsallis-α , and L2 divergences are impor-
tant special cases of probability divergences. Divergence es-
timators generalize entropy estimators and can also be ap-
plied to mutual information estimation. Entropy estimators
are important, e.g., in goodness-of-�t testing, parameter esti-
mation in semi-parametric models, studying fractal random
walks, and texture classi�cation. Mutual information esti-
mators have been used, e.g., in feature selection, clustering,
causality detection, optimal experimental design, fmri data
processing, prediction of protein structures, boosting, and
facial expression recognition. Both entropy estimators and
mutual information estimators have been used for image reg-
istration, as well as for independent component and subspace
analysis [1, 2]. For further applications, see [3].

An indirect way to obtain the desired estimates would
be to use a �plug-in� estimation scheme��rst, apply a con-
sistent density estimator for the underlying densities, and
then plug them into the desired formula. The unknown den-
sities, however, are nuisance parameters in the case of diver-
gence estimation, and we would prefer to avoid estimating
them. Furthermore, density estimators usually have tunable
parameters, and we may need expensive cross validation to
achieve good performance.

The most relevant existing work to this paper is [4, 5],
where an estimator for the kl-divergence was provided. [6, 7]
investigated the Rényi divergence estimation problem but as-
sumed that one of the two density functions is known. [8]
developed algorithms for estimating the Shannon entropy
and the kl divergence for certain parametric families. Re-
cently, [9] developed methods for estimating f -divergences

using their variational characterization properties. This ap-
proach involves solving a convex minimization problem over
an in�nite-dimensional function space. For certain func-
tion classes de�ned by reproducing kernel Hilbert spaces
(rkhs), however, they were able to reduce the computational
load from solving in�nite-dimensional problems to solving
n-dimensional problems, where n denotes the sample size.
When n is large, solving these convex problems can still
be very demanding. Furthermore, choosing an appropriate
rkhs also introduces questions regarding model selection.
An appealing property of our estimators is that we do not
need to solve minimization problems over function classes;
we only need to calculate certain k-nearest-neighbor (k-nn)
based statistics.

Our work borrows ideas from [3] and [10], who consid-
ered Shannon and Rényi-α entropy estimation from a single
sample. In contrast, we propose divergence estimators us-
ing two independent samples. Recently, [11, 12] proposed
a method for consistent Rényi information estimation, but
this estimator also uses one sample only and cannot be used
for estimating divergences.

The paper is organized as follows. In the next section
we introduce the Rényi, Tsallis, and L2 divergences, and for-
mally de�ne our estimation problem. Section 3 contains our
proposed divergence estimators, and here we also present our
theoretical results about asymptotic unbiasedness and con-
sistency. In Section 4 we collect the technical tools that we
need for proving consistency and also present a brief sketch
of the proofs. We describe how the proposed divergence esti-
mators can be used for mutual information estimation in Sec-
tion 5. We will also use these estimators for the independent
subspace analysis problem (Section 6). Section 7 contains
the results of our numerical experiments that demonstrate
the applicability and the consistency of the estimators. Fi-
nally, we conclude with a discussion of our work.

Notation: Let B(x,R) denote the closed ball around
x ∈ Rd with radius R, and let V

`
B(x,R)

´
= cRd be its

volume, where c = πd/2/Γ(d/2+1) stands for the volume of a
d-dimensional unit ball. We use Xn →p X and Xn →d X to
represent convergence of random variables in probability and
in distribution, respectively. Fn →w F will denote the weak
convergence of distribution functions. The set where density
p is strictly positive is denoted by supp(p). If y ∈ Rdy ,
z ∈ Rdz are column vectors, then x = [y; z] ∈ Rdy+dz denotes
the column vector given by the concatenation of components
y and z.

2. DIVERGENCES

Let p and q be densities over Rd, and α ∈ R \ {1}. The
Rényi-α [13], Tsallis-α [14], and L2 divergences are de�ned
respectively as follows.



De�nition 1.

Rα(p‖q) .
=

1

α− 1
log

Z
pα(x)q1−α(x) dx,

Tα(p‖q) .
=

1

α− 1

„Z
pα(x)q1−α(x) dx− 1

«
,

L(p‖q) .
=

„Z
(p(x)− q(x))2 dx

«1/2

.

Since

lim
α→1

Rα(p‖q) = lim
α→1

Tα(p‖q) = KL(p‖q) .
=

Z
p log

p

q
,

where kl stands for the Kullback�Leibler divergence, we de-
�ne R1(p‖q) and T1(p‖q) to be KL(p‖q). The following
equations summarize the behavior of the Rα(p‖q), Tα(p‖q)
divergences as a function of α.

Properties 2.

α < 0⇒ Rα(p‖q) ≤ 0, Tα(p‖q) ≤ 0,

α = 0⇒ Rα(p‖q) = Tα(p‖q) = 0,

0 < α⇒ Rα(p‖q) ≥ 0, Tα(p‖q) ≥ 0.

We are now prepared to formally de�ne the goal of our
paper. Given two independent i.i.d. samples from distribu-
tions with densities p and q, respectively, we provide L2-
consistent estimators for the following quantities:

Dα(p‖q) .
=

Z
pα(x)q1−α(x) dx, (1)

L2(p‖q) .
=

Z
(p(x)− q(x))2 dx. (2)

Plugging these estimates into the appropriate formulae
immediately leads to consistent estimators for Rα(p‖q),
Tα(p‖q), and L(p‖q).

3. THE ESTIMATORS

In this section we introduce our estimator for Dα(p‖q) and
L2(p‖q). From now on we will assume that supp(q) ⊆
supp(p) and rewrite (1) and (2) as

Dα(p‖q) =

Z
M

„
q(x)

p(x)

«1−α

p(x) dx, (3)

L2(p‖q) =

Z
M

(p(x)− 2q(x) + q2(x)/p(x))p(x) dx. (4)

where M = supp(p). Let X1:N
.
= (X1, . . . , XN ) be an i.i.d.

sample from a distribution with density p, and similarly let
Y1:M

.
= (Y1, . . . , YM ) be an i.i.d. sample from a distribution

having density q. Let ρk(x) denote the Euclidean distance
of the kth nearest neighbor of x in the sample X1:N \ {x},
and similarly let νk(x) denote the Euclidean distance of the
kth nearest neighbor of x in the sample Y1:M \ {x}. We
will prove that the following estimators are consistent under
certain conditions:

bDα(X1:N‖Y1:M )
.
=

1

N

NX
n=1

„
(N − 1)ρdk(Xn)

Mνdk(Xn)

«1−α

Bk,α, (5)

where Bk,α
.
= Γ(k)2

Γ(k−α+1)Γ(k+α−1)
, k > |1 − α|, and d is the

dimension of Xn and Ym.

bL2(X1:N‖Y1:M )
.
=

1

N

NX
n=1

»
k − 1

(N − 1)cρdk(Xn)
− 2(k − 1)

Mcνdk(Xn)

+
(N − 1)cρdk(Xn)

(Mcνdk(Xn))2

(k − 2)(k − 1)

k

–
, (6)

where k − 2 > 0 and c = πd/2/Γ(d/2 + 1).
Let p, q be bounded away from zero, bounded from

above, and uniformly continuous density functions. Let
M = supp(p) be a �nite union of bounded convex sets. We
have the following main theorems.

Theorem 3 (Asymptotic unbiasedness). If k > |1 − α|,
then limN,M→∞ E[bL2] = L2, limN,M→∞ E[ bDα] = Dα, i.e.,
the estimators are asymptotically unbiased.

Theorem 4 (L2 consistency). If k > 2|1 − α|,
then we have that limN,M→∞ E

h
(bL2 − L2)2

i
= 0 and

limN,M→∞ E
h
( bDα −Dα)2

i
= 0, i.e., the estimators are L2

consistent.

4. CONSISTENCY PROOFS

4.1 General Tools

We will need a couple of lemmas to be able to prove the main
theorems of the previous section. This section collects these
tools. The sketch of the proofs will be given in Section 4.3.

Lemma 5 (Lebesgue (1910)). If Rd ⊇ M is a Lebesgue
measurable set, and g ∈ L1(M), then for any sequence of
Rn → 0, δ > 0, and for almost all x ∈ M, there exists an
n0(x, δ) ∈ Z+ such that if n > n0(x, δ), then

g(x)− δ <

R
B(x,Rn)

g(t) dt

V(B(x,Rn))
< g(x) + δ. (7)

We will also need a stronger property; namely, we want it
to hold uniformly over x ∈ M. If g is uniformly continuous
onM, then the following lemma also holds:

Lemma 6. Let g ∈ L1(M) be uniformly continuous function
on M. Then for any Rn → 0 series and δ > 0, there exists
n0 = n0(δ) ∈ Z+ (independent of x!) such that if n > n0,
then for almost all x ∈M

g(x)− δ <

R
B(x,Rn)∩M g(t) dt

V(B(x,Rn) ∩M)
< g(x) + δ. (8)

As we proceed we will frequently use the following
lemma:

Lemma 7 (Moments of the Erlang distribution). Let

fx,k(u)
.
= 1

Γ(k)
λk(x)uk−1 exp(−λ(x)u) be the density of the

Erlang distribution with parameters λ(x) > 0 and k ∈ Z+.
Let γ ∈ R such that γ+k > 0. Then the γth moments of this
Erlang distribution can be calculated as

R∞
0
uγfx,k(u) du =

λ(x)−γ Γ(k+γ)
Γ(k)

.

By the Portmanteau lemma [15] we know that the weak
convergence of Xn →d X implies that E[g(Xn)] → E[g(X)]
for every continuous bounded function g. However, gener-
ally it is not true that if Xn →d X, then E[Xγ

n ] → E[Xγ ].
For this property to hold, the series {Xn}∞n=1 of random
variables should be asymptotically uniformly integrable too.
The following lemma provides a su�cient condition for this.

Lemma 8 (Limit of moments, [15]). Let Xn →d X, 0 ≤
Xn, X, and γ ∈ R. If there exists an ε > 0 such that

lim sup
n→∞

E
h
X
γ(1+ε)
n

i
<∞, then the series {Xn}∞n=1 is asymp-

totically uniformly integrable, and limn→∞ E [Xγ
n ] = E [Xγ ].



4.2 k-nn based Density Estimators

In the remainder of this paper we will heavily exploit some
properties of k-nn based density estimators. In this section
we de�ne these estimators and brie�y summarize their most
important properties.

k-nn density estimators operate using only distances be-
tween the observations in a given sample (X1:N , or Y1:M )
and their kth nearest neighbors. [16] de�ne the k-nn based
density estimators of p and q at x as follows.

De�nition 9 (k-nn based density estimators).

p̂k(x) =
k/N

V
`
B(x, ρk(x))

´ =
k

Ncρdk(x)
, (9)

q̂k(x) =
k/M

V
`
B(x, νk(x))

´ =
k

Mcνdk(x)
. (10)

The following theorems show the consistency of these
density estimators.

Theorem 10 (k-nn density estimators, convergence in
probability). If k = k(N) denotes the number of neigh-
bors applied at sample size N in the k-nn density estima-
tor, limN→∞ k(N) = ∞, and limN→∞N/k(N) = ∞, then
p̂k(N)(x)→p p(x) for almost all x.

Theorem 11 (k-nn density estimators, almost sure con-
vergence in sup norm). If limN→∞ k(N)/ log(N) = ∞
and limN→∞N/k(N) = ∞, then limN→∞ supx

˛̨
p̂k(N)(x) −

p(x)
˛̨

= 0 almost surely.

Note that these estimators are consistent only when
k(N)→∞. We will use these density estimators in our pro-
posed divergence estimators; however, we will keep k �xed
and will still be able to prove their consistency.

4.3 Proof Outline for Theorems 3-4

We can see from (9) that the k-nn estimation of 1/p(x) is
simply Ncρdk(x)/k. Using Lemma 5, we can prove that the
distribution of Ncρdk(x) converges weakly to an Erlang dis-
tribution with mean k/p(x), and variance k/p2(x) [3]. In
turn, if we divide Ncρdk(x) by k, then asymptotically it has
mean 1/p(x) and variance 1/(kp2(x)). It implies that indeed
(in accordance with Theorems 10�11) k should converge to
in�nity in order to get a consistent estimator, otherwise the
variance will not disappear. On the other hand, k cannot
grow too fast: if say k = N , then the estimator would be
simply cρdk(x), which is a useless estimator since it is asymp-
totically zero whenever x ∈ supp(p).

Luckily, in our case we do not need to apply con-
sistent density estimators. The trick is that (3)�(4)
have special forms; each term inside these equations hasR
p(x)pγ(x)qβ(x) dx form. In (5)�(6), each of these terms

is estimated by

1

N

NX
i=1

(p̂k(Xi))
γ (q̂k(Xi))

β Bk,γ,β , (11)

where Bk,γ,β is a correction factor that ensures asymptotic
unbiasedness. Using Lemma 5, we can prove that the dis-
tributions of p̂k(Xi) and q̂k(Xi) converge weakly to the Er-
lang distribution with means k/p(Xi), k/q(Xi) and variances
k/p2(Xi), k/q2(Xi), respectively [3]. Furthermore, they are
conditionally independent for a given Xi. Therefore, �in the
limit� (11) is simply the empirical average of the products of
the γth (and βth) powers of independent Erlang distributed
variables. These moments can be calculated by Lemma 7.

For a �xed k, the k-nn density estimator is not consistent
since its variance does not vanish. In our case, however, this
variance will disappear thanks to the empirical average in
(11) and the law of large numbers.

While the underlying ideas of this proof are simple, there
are a couple of serious gaps in it. Most importantly, from
the Lebesgue lemma (Lemma 5) we can guarantee only the
weak convergence of p̂k(Xi), q̂k(Xi) to the Erlang distribu-
tion. From this weak convergence we cannot imply that the
moments of the random variables converge too. To handle
this issue, we will need stronger tools such as the concept of
asymptotically uniformly integrable random variables [15],
and we also need the uniform generalization of the Lebesgue
lemma (Lemma 6). As a result, we need to put some extra
conditions on the densities p and q in Theorems 3�4. Due to
the lack of space, we omit the details.

5. MUTUAL INFORMATION ESTIMATION

In this section we demonstrate that the proposed divergence
estimators can also be used to estimate mutual information.
Let p : Rd → R be the density of a d-dimensional distribu-
tion with {pi}di=1 marginal densities. The mutual informa-
tion I(p) is the divergence between p and the product of the
marginal densities (

Qd
i=1 pi). Particularly, for the L2 diver-

gence we have that IL(p)
.
= L(p‖

Qd
i=1 pi), and for the Rényi

divergence it is given by Iα(p)
.
= Rα(p‖

Qd
i=1 pi). When

α → 1, then Iα converges to the Shannon mutual informa-
tion. If we are given a sample X1, . . . , X2N from p, we can
estimate the mutual information as follows. We form one set
of size N by setting aside the �rst N samples. We build an-
other sample by randomly permuting the coordinates of the
remaining N observations independently for each coordinate
to form N independent instances sampled from

Qd
i=1 pi. Us-

ing these two sets, we can estimate I(p).
We note that we need to split the 2N sample points only

because our consistency theorems require independent sam-
ples from p and q. However, in practice we found that mutual
information estimators ((5)�(6)) are consistent even if we do
not do this, but instead use the full set of samples for p as
well as for

Qd
i=1 pi.

6. INDEPENDENT SUBSPACE ANALYSIS

In this section we brie�y summarize the independent sub-
space analysis (isa) problem [17]. Assume that we have
J hidden, independent, multidimensional Sj ∈ Rdj source
components (j = 1, . . . , J). Suppose also that at time step
i, only their instantaneous linear mixture is available for ob-
servation

Oi = ASi, (i = 1, 2, . . .) (12)

where Si =
ˆ
S1
i ; . . . ;SJi

˜
∈ RD is a vector concatenated of

components Sji (D =
PJ
j=1 dj), and S

j
i denotes the jth hid-

den source component at time step i. We also assume that
Sis are i.i.d. in time i, and Sjs are non-Gaussian and jointly
independent. The mixing matrix A ∈ RD×D is assumed to
be invertible. The goal of the isa problem is to estimate the
original sources Si by using observations Oi only. If dj = 1
(∀j), then the isa problem reduces to independent compo-
nent analysis (ica) [18].

The identi�cation of the isa model is ambiguous.
Nonetheless, the ambiguities are simple [19]: Hidden mul-
tidimensional components can be determined up to permu-
tation and up to invertible transformation within the sub-
spaces. In isa, we search for the so-called demixing matrix
W ∈ RD×D with which we estimate the source S: Ŝ = WO.
According to the ambiguities of the isa problem, when the
estimation is perfect, the global transform G = WA is a
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Figure 1: Estimated vs. true divergence as a function of the
sample size. The red line indicates the true divergence. The
number of nearest neighbors k was set to 4. (a) The results
of �ve independent experiments are shown for estimating
Dα(p‖q) with α = 0.7. (b) Results for estimating L(p‖q)
from 50 runs. The means and standard deviations of the
estimations are shown using error bars.

block-permutation matrix. This property can be measured
by a simple extension of the Amari index [20] as follows. (i)
Let the component dimensions and their estimations be or-
dered in increasing order (d1 ≤ . . . ≤ dJ , d̂1 ≤ . . . ≤ d̂J),
(ii) decompose G into di × dj blocks (G =

ˆ
Gij
˜
i,j=1,...,J

),

and (iii) de�ne gij as the sum of the absolute values of the
elements of the matrix Gij ∈ Rdi×dj . Then the Amari index
adapted to the ISA task of di�erent component dimensions
is de�ned as follows:

r(G) = κ

"
JX
i=1

 PJ
j=1 g

ij

maxj gij
− 1

!
+

JX
j=1

 PJ
i=1 g

ij

maxi gij
− 1

!#
,

where κ = 1/(2J(J − 1)). One can see that 0 ≤ r(G) ≤ 1
for any matrix G, and r(G) = 0 if and only if G is a block-
permutation matrix with di × di sized nonzero blocks, and
r(G) = 1 in the worst case.

Our proposed isa method is as follows. According to the
�isa separation principle� [2, 17], the isa problem can be
solved by an ica preprocessing step and then clustering the
ica elements into statistically dependent groups. For the ica
preprocessing we used the fastica algorithm [21], and for the
clustering task we estimated the pairwise mutual information
of the ica elements using the proposed Rényi (Iα) and L2

based (IL) estimators ((5)�(6)). This isa algorithm needs
to know the number of subspaces J , but it does not need to
know the true dimensions of the hidden subspaces.

7. NUMERICAL EXPERIMENTS

7.1 Demonstration of Consistency

In this section we present a few numerical experiments to
demonstrate the consistency of the proposed divergence es-
timators. We run experiments on normal distributions be-
cause in this case the divergences have known closed-form
expressions, and thus it is easy to evaluate our methods.

In Figure 1 we display the performances of the proposedbL and bDα divergence estimators when the underlying densi-
ties were zero-mean 2-dimensional Gaussians with randomly
chosen covariance matrices. Our results demonstrate that
when we increase the sample sizes N andM , then the bL andbDα values converge to their true values. For simplicity, in
our experiments we always set N = M .

7.2 Mutual Information Estimation

In this experiment our goal is to estimate Shannon informa-
tion. For this purpose, we selected a 2d uniform distribu-
tion on [−1/2, 1/2]2 rotated by π/4. Due to this rotation, the
marginal distributions are no longer independent. Because
our goal is to estimate the Shannon information, we used Rα
and set α to 1−1/

√
N (so that α→ 1). Figure 2(a) shows the

original samples as well as the independent samples from the
product of the marginal distributions. Figure 2(b) demon-
strates the consistency of the algorithm; as we increase the
sample size, the estimator approaches the Shannon informa-
tion.
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Figure 2: Estimated vs. true Rényi information as a func-
tion of sample size. (b) The red line shows the true mutual
information. The sample size was varied between 20 and
20 000, k was set to 4. The error bars are calculated from 50
independent runs.

7.3 ISA Experiments

We illustrate the e�ciency of the presented nonparametric
divergence estimators for the isa problem. We tested our
algorithms on two datasets. In the celebrities dataset, den-
sities of Sj correspond to 2-dimensional images (dj = 2),
see Fig. 3(a). We chose J = 10 components. In our sec-
ond dataset, which we call d-spherical, the Sj components
were spherical random variables. We sampled them ran-
domly from the distribution of V U , where U is uniformly
distributed on the d-dimensional unit sphere, and the distri-
bution of V was set to exponential, lognormal, and uniform,
respectively (see Fig. 3(b)). The dimensions of the Sj com-
ponents were set to d1 = d2 = 6, and d3 = 8.

After the ica preprocessing and the pairwise Rényi/L2

information estimation steps, we clustered the ica compo-
nents by using either a greedy clustering algorithm (celebri-
ties dataset), or by using the ncut spectral clustering
method (d-spherical dataset). In the mutual information
estimators, the number of neighbors was set to k = 4. The
sample size T was varied between 100 and 100 000. α was
set to 0.997 when we estimated Iα.

We used the Amari index to measure the performance
of our algorithms. Fig. 4(e) presents how the Amari index
changes as a function of the sample size. The �gure shows the
mean curves of 12 independent runs on the studied datasets
using the IL and Iα estimators. The �gure demonstrates that
(i) both the Rényi and L2 mutual information estimators can
be used for solving the isa problem. (ii) After a few thousand
samples, the Amari indices decrease according to a power-
law (the curves are linear on log-log scale). (iii) For small
sample size, the Iα estimator seems to perform better than
IL.

Fig. 4(a) shows the �rst two 2-dimensional projections
of the observations. Fig. 4(b) demonstrates the estimated
components, and Fig. 4(c) presents the Hinton diagram of
G = WA, this is indeed close to a block-permutation matrix.
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Figure 3: Illustration of the celebrities (a) and d-spherical
(b) datasets.
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Figure 4: The divergence estimators on isa. Illustration of
the estimations: (a)�(d), number of samples T = 100 000.
(a)�(c): celebrities, Iα, (d): d-spherical dataset, IL mu-
tual information estimation. (a): observation (Oi), the �rst
two 2-dimensional projections. (b): estimated components
(Ŝj), (c)�(d): Hinton diagram of Gs, approximately block-
permutation matrices. (e): performance as a function of the
sample number on log-log scale.

Fig. 4(d) shows the Hinton diagram for the experiment when
our task was to separate the mixture of one 8-dimensional
and two 6-dimensional d-spherical subspaces.

8. CONCLUSION AND DISCUSSION

In this paper we proposed consistent nonparametric Rényi,
Tsallis, and L2 divergence estimators. We demonstrated
their applicability to mutual information estimation and
independent subspace analysis. There are several open
questions left waiting for answers. Our empirical results
indicate that the conditions of our consistency theorems
could be extended. Currently, we do not know the rate
of the estimators either. All of our theoretical results are
asymptotic, and it would be important to derive �nite
sample bounds too.
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