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ABSTRACT

We consider the problem of detecting whether a high dimen-
sional vector ∈ Rn lies in a r-dimensional subspace S, where
r � n, given few compressive measurements of the vec-
tor. This problem arises in several applications such as de-
tecting anomalies, targets, interference and brain activations.
In these applications, the object of interest is described by a
large number of features and the ability to detect them using
only linear combination of the features (without the need to
measure, store or compute the entire feature vector) is desir-
able. We present a test statistic for subspace detection using
compressive samples and demonstrate that the probability of
error of the proposed detector decreases exponentially in the
number of compressive samples, provided that the energy off
the subspace scales as n. Using information-theoretic lower
bounds, we demonstrate that no other detector can achieve
the same probability of error for weaker signals. Simulation
results also indicate that this scaling is near-optimal.

Index Terms— subspace detection, compressed sensing

1. INTRODUCTION

We study the problem of detecting whether a high-dimensional
vector x ∈ Rn lies in a known low-dimensional subspace S,
given few compressive measurements of the vector. The
problem of testing whether a vector lies within a subspace
is relevant for several tasks such as anomaly detection [1],
medical imaging [2], hyperspectral target detection [3], radar
signal processing [4], interference estimation [5], etc.

In high-dimensional settings, it is desirable to acquire
only a small set of compressive measurements of the vec-
tor instead of measuring every coordinate. This reduces the
amount of storage, communication, and computation needed.
Recent advances in compressed sensing show that it is possi-
ble to reconstruct the original vector from few compressive
measurements without significant loss in accuracy, provided
that the vector is sparse or lies in a low-dimensional sub-
space. However, in some applications (as mentioned above)
the objective is not to reconstruct the vector, but to detect
whether the vector sensed using compressive measurements
lies in a low-dimensional subspace or not. In this paper, we
address this question and show that it is possible to detect
when a compressively sampled vector lies in a known low-

dimensional subspace using few compressive measurements.
Notice that we cannot first reconstruct the vector and then test
whether it lies in the subspace as the reconstruction might be
arbitrarily poor if the signal did not lie in that subspace.

While a few papers have considered the problem of detec-
tion from compressive samples [6, 7, 8], these typically con-
sider a simple hypothesis test of whether the vector x is 0 (i.e.
observed vector is purely noise) or a known signal vector s:

H0 : x = 0 vs. H1 : x = s (1)
In this paper, we consider the subspace detection setting,
where the subspace is known but the exact signal vector is
unknown. This set up leads to the composite hypothesis test:

H0 : x ∈ S vs. H1 : x 6∈ S
Equivalently, let x⊥ denote the component of x that does not
lie in S. Now the composite hypothesis test can be stated as:

H0 : ‖x⊥‖2 = 0 vs. H1 : ‖x⊥‖2 > 0 (2)
In [8], the authors also consider the unknown signal case,
but do not consider a subspace setting. The most closely re-
lated paper is [9] where the authors consider that a few of
the coordinates of the vector x are missing at random. Note
that the missing observation case is a special case of com-
pressive measurements where the rows of the measurement
matrix have a single non-zero entry which picks out the cor-
responding coordinate. Thus, our results generalize that of
[9], and additionally characterize the optimal information-
theoretic threshold of signal to noise ratio needed to perform
the testing reliably in high dimensions. While writing this pa-
per, we also became aware of a paper that recently appeared
on arXiv [10] that characterizes similar optimal threshold for
detection of a sparse vector using compressive measurements.
In this case, the subspace is specified by the span of a subset of
the canonical basis vectors and the optimal threshold is shown
to scale as n/m, however the probability of error is allowed to
decrease arbitrarily slowly in the number of compressive mea-
surements m. We propose detectors for an arbitrary subspace
S, and require the probability of error to decay exponentially
in the number of compressive measurements. As a result, the
optimal threshold for energy off the subspace scales as n in
our setting.

Our results show that it is possible to detect whether a
high-dimensional vector ∈ Rn lies in a r-dimensional sub-
space S, where r � n using only m = ω(r) 1 compressive

1a = ω(b) means that a > b· constant for every constant> 0.



samples, provided the energy off the subspace scales as n.
In comparison, in the setting of Eq. (1), if the signal vector is
known then the energy of the signal vector s can be a constant
> 0 (with universal random measurements that do not depend
on the subspace S) [6]. Even weaker signals can be detected
if both the signal and subspace are known, and the measure-
ment matrix is tailored to the subspace S [7, 11]. However,
this requires knowing the subspace S at the time of making
the compressive measurements. We do not consider that set-
ting here, and instead focus on universal compressive mea-
surements that can be used to test whether a high-dimensional
vector lies in any set of known subspaces that do not have to
be fixed at the time of measurement collection.

2. MEASUREMENT MODEL AND TEST STATISTIC

Let S be a known r-dimensional subspace of Rn, spanned
by the orthonormal columns of a matrix U ∈ Rn×r. We
are interested in determining whether an unknown vector x ∈
Rn lies in S or not based only on a small number of com-
pressive measurements. Specifically, for some m ≥ 1, let
A ∈ Rm×n be a random matrix with i.i.d. N (0, 1) entries.
Then we observe the m-dimensional vector y = A(x + w),
where w ∼ N (0, σ2In×n) denotes noise with known vari-
ance σ2 that is independent of A. Notice that this noise model
is analogous to the one studied in [12], and different from
the more commonly studied case y′ = Ax + wm where
w ∼ N (0, σ2Im×m). In particular, for fixed A we have
y ∼ N (Ax, σ2AAT ) and y′ ∼ N (Ax, σ2Im×m). We
focus on the former model as in most applications noise is
inherently generated during the measurement process, while
compressive linear measurements may be formed later on to
optimize storage or data collection.

Define the projection operator PU = UUT . Then
x⊥ = (I−PU)x, where x⊥ is the component of x that does
not lie in S, and x ∈ S iff ‖x⊥‖22 = 0. Analogously to [9],
we define the test statistic T = ‖(I−PBU)(AAT )−1/2y‖22
based on the observed vector y and study its properties,
where B = (AAT )−1/2A. Here PBU is the projec-
tion operator onto the column space of BU, specifically
PBU = BU((BU)TBU)−1(BU)T , if ((BU)TBU)−1

exists.

3. MAIN RESULTS

For the sake of notational simplicity, throughout this section
we directly work with the matrix B and its marginal distribu-
tion. Writing y = B(x+w), we have T = ‖(I−PBU)y‖22.
Notice that since A is i.i.d. normal, the distribution of the row
span of A (and hence B) will be uniform overm-dimensional
subspaces of Rn [13]. Furthermore, due to the (AAT )−1/2

term, the rows of B will be orthonormal (almost surely). First
we show that, in the absence of noise, the test statistic ‖(I −
PBU)Bx‖22 is close to m‖x⊥‖22/n with high probability.

Theorem 1. Let 0 < r < m < n, 0 < α0 < 1 and
β0, β1, β2 > 1. With probability at least 1 − exp[(1 − α0 +
logα0)m/2]− exp[(1− β0 + log β0)m/2]− exp[(1− β1 +
log β1)m/2]− exp[(1− β2 + log β2)r/2](
α0
m

n
− β1β2

r

n

)
‖x⊥‖22 ≤ ‖(I−PBU)Bx‖22 ≤ β0

m

n
‖x⊥‖22.

This implies the following corollary.

Corollary 1. If m ≥ c1r logm, then with probability at least
1− c2 exp[−c3m],

d1
m

n
‖x⊥‖22 ≤ ‖(I−PBU)Bx‖22 ≤ d2

m

n
‖x⊥‖22

for some universal constants c1 > 1, c2 > 0, c3 ∈ (0, 1),
d1 ∈ (0, 1), d2 > 1.

Corollary 1 states that given just over r noiseless compressive
measurements, we can estimate ‖x⊥‖22 accurately with high
probability. In the presence of noise, t is natural to consider
the hypothesis test:

T = ‖(I−PBU)y‖22
H0

≶
H1

η (3)

The following result bounds the false alarm level and
missed detection rate of this test (for appropriately chosen η)
assuming a lower bound on ‖x⊥‖22 underH1.

Theorem 2. If the assumptions of Corollary 1 are satisfied,
and if for any x ∈ H1

‖x⊥‖22 ≥ σ2 4e+ 2

d1

(
1− r

m

)
n,

then
P(T ≥ η|H0) ≤ exp[−c4(m− r)]

and

P(T ≤ η|H1) ≤ c2 exp[−c3m] + exp [−c5(m− r)] .

where η = eσ2(m− r), c4 = (e− 2)/2, c5 = (e+ log(2e+
1))/2, and all other constants are as in Corollary 1.

It is important to determine whether the performance of
the test statistic we proposed can be improved further. The
following theorem provides an information-theoretic lower
bound on the probability of error of any test. A corollary of
this theorem implies that the proposed test statistic is optimal,
that is, every test with probability of missed detection and
false alarm decreasing exponentially in the number of com-
pressive samples m requires that the energy off the subspace
scale as n.

Theorem 3. Let P0 be the joint distribution of B and y under
the null hypothesis. Let P1 be the joint distribution of B and
y under the alternate hypothesis where y = B(x+w), x ∼ π
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Fig. 1: Simulation results. Type II error averaged over 100
runs for different values of n. Across all trials, we set σ2 = 1,
r = 1, m = 5, U = (1, 0, ..., 0)T , and the Type I error is
α = 0.05. The detection threshold was set to ηm = F−1(1−
α;m− 1) (F−1(·, k) is the inverse CDF of χ2

k).

independently of B and w, and π is the uniform distribution
over x such that x = x⊥ and ‖x‖2 = M for some M > 0. If
conditions of Corollary 1 are satisfied, then

inf
ψ

max
i=0,1

Pi(ψ 6= i) ≥ 1

4
exp

[
−M

2

2σ2

m

n

]
where the infimum is over all hypothesis tests ψ.

Corollary 2. If there exists a hypothesis test ψ based on B
and y such that for all n and σ2

max
i=0,1

P(ψ 6= i|Hi) ≤ C0 exp[−C1(m− r)]

for some C0, C1 > 0, then there exists some C > 0 such that
‖x⊥‖22 ≥ Cσ2(1− r/m)n for any x ∈ H1 and all n and σ2.

4. SIMULATION RESULTS

The bounds in Theorem 2 and Corollary 2 state that for fixed
r, ‖x⊥‖2 needs to scale as approximately

√
n to ensure low

error under H1. We perform simulations to demonstrate the
effect of this scaling as follows.

We measure detection error as a function of ‖x⊥‖2 for
some values of n, for fixed false alarm level α (note that the
true distribution under the null hypothesis is known, so we
can construct an exact level α test). If the bounds in Theorem
2 are tight, we expect to see that for fixed ‖x⊥‖2, larger n
leads to larger error; we observe this in Figure 1a. Moreover,
we expect that if we rescale the x-axis to ‖x⊥‖2/

√
n, the er-

ror becomes independent of n, as is the case in Figure 1b.
Thus, our simulations verify that the proposed test statistic
can reliably detect if a n-dim vector lies in the given subspace
provided the energy off the subspace scales as n.

5. CONCLUSION
This paper shows that it is possible to detect whether a high-
dimensional vector lies in a subspace with very few compres-
sive measurements. We precisely characterized the amount of

energy outside the subspace needed for reliable detection and
verified this with simulations. The test statistic we propose
is optimal in the sense that no other test can detect vectors
with smaller energy off the subspace while ensuring that the
probability of error decays exponentially with the number of
compressive samples. Since the measurement model we con-
sider is not specialized to the problem at hand, the proposed
approach is universal and can be used in to detect energy out-
side any given subspace. This work also has important rami-
fications for sequential basis learning, where the subspace of
interest may not be known a priori, but needs to be learnt from
a collection of high-dimensional vectors that are expected to
lie in some lower-dimensional subspace. We plan to investi-
gate this direction in future work.
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7. PROOFS
We will use the following results for random projections.

Theorem 4. Let z ∈ Rd be distributed uniformly over
the set of unit norm vectors in Rd. For k < d, let z′ =
(z1, ..., zk, 0, ..., 0) ∈ Rd be the projection of z onto the span
of e1, ..., ek, the first k elements of the standard basis. Then
for any 0 < α < 1 and β > 1,

P
(
‖z′‖22 ≤ αk/d

)
≤ exp ((1− α+ logα)k/2) and

P
(
‖z′‖22 ≥ βk/d

)
≤ exp ((1− β + log β)k/2) .

As in Section 3, in the following we assume the distribu-
tion of B is such that its rows are orthonormal and the row
span of B is distributed uniformly over m-dimensional sub-
spaces of Rn. We will also always assume 0 < r < m < n.

Proposition 1. Let z1, ..., zn ∈ Rm be the columns of B,
and Pr ∈ Rm×m the projection operator on the span of
z1, ..., zr. For any β1, β2 > 1, ‖Przr+1‖22 ≤ β1β2r/n
with probability at least 1 − exp ((1− β1 + log β1)m/2) −
exp ((1− β2 + log β2)r/2).

Proof. Let z̃r+1 = zr+1/‖zr+1‖2. Then ‖Przr+1‖22 =
‖Prz̃r+1‖22‖zr+1‖22. By Theorem 4, ‖zr+1‖22 ≤ β1m/n
w.p. at least 1 − exp[(1 − β1 + log β1)m/2]. Now consider
‖Prz̃r+1‖22. This is the norm of the projection of a random
unit vector in Rm onto a random r-dimensional subspace,
so by Theorem 4 we have that ‖Prz̃r+1‖22 ≤ β2r/m with
probability at least 1 − exp[(1 − β2 + log β2)r/2] and the
result follows by combining the two terms.

Proof of Theorem 1: Define x‖ = x − x⊥. Clearly x‖ =
PUx‖, so (I − PBU)Bx‖ = 0 and (I − PBU)Bx =
(I − PBU)Bx⊥. From here the case when ‖x⊥‖2 = 0
follows easily, so for the remainder of the proof assume
‖x⊥‖2 > 0. Clearly (I − PBU)Bx⊥ and PBUBx⊥ are



orthogonal. Defining x̃⊥ = x⊥/‖x⊥‖2, we can write
‖(I − PBU)Bx̃⊥‖22 = ‖Bx̃⊥‖22 − ‖PBUBx̃⊥‖22. By
Theorem 4, with probability at least 1 − exp[(1 − α0 +
logα0)m/2]− exp[(1− β0 + log β0)m/2]

α0m/n ≤ ‖Bx̃⊥‖22 ≤ β0m/n.

Now consider ‖PBUBx̃⊥‖22. Due to the rotational
symmetry of the distribution of B, we can assume U =
(e1, ..., er) and x̃⊥ = er+1. So applying Proposition 1, w.p.
≥ 1−exp[(1−β1+log β1)m/2]−exp[(1−β2+log β2)r/2],

‖PBUBx̃⊥‖22 ≤ β1β2r/n

and the result follows by combining the two bounds.

Lemma 1. If P is a rank k projection operator, µ ∈ Rm, and
w ∼ N (0, σ2I), then 1

σ2 ‖P(µ+ w)‖22 ∼ χ2
k

(
‖Pµ‖22
σ2

)
.

Proof. See [14], specifically pages 64 and 146.

Proposition 2. For ε > 0, if y ∼ χ2
k, then

P(y ≥ (1 + ε)k) ≤ exp (−k(ε− log(1 + ε))/2) .

If λ+ k > η > 0 and z ∼ χ2
k(λ), then P(z ≤ η) ≤

exp [(g(η)/2− η + 2ηλ/g(η)− λ) /2] (2η/g(η))
k/2

where g(η) = k +
√
k2 + 4ηλ.

Proof of Theorem 2: Observe that for fixed B, the test statistic
is equal to T = ‖(I − PBU)y‖22 = ‖BT (I − PBU)Bx +
BT (I − PBU)Bw‖22. Clearly BT (I − PBU)B is a rank
m − r projection operator. By Lemma 1, conditioned on
B, T/σ2 ∼ χ2

m−r
(
λ(B,x)/σ2

)
, where we have defined

λ(B,x) = ‖(I − PBU)Bx‖22. For x ∈ H0, λ(B,x) ≡ 0
(see proof of Theorem 1), and T/σ2 ∼ χ2

m−r. From the first
part of Proposition 2 we see that since η = eσ2(m− r),

P(T/σ2 ≥ η/σ2|H0) ≤ exp[−(m− r)(e− 2)/2].

Now considerH1. Let G(B,x) be the indicator of the event

d1m/n‖x⊥‖22 ≤ λ(B,x) ≤ d2m/n‖x⊥‖22.

By Corollary 1, EB(1−G(B,x)) ≤ c2 exp[−c3m] for fixed
x. Together with the condition on ‖x⊥‖22 this gives

P(T ≤ η|H1) ≤ c2 exp[−c3m] + P(z ≤ e(m− r))

where z ∼ χ2
m−r ((4e+ 2)(m− r)). By Proposition 2,

P(z ≤ e(m− r)) ≤ exp [−(m− r) (e+ log(2e+ 1)) /2]
Proof of Theorem 3: Let K be the Kullback-Leibler diver-
gence. Then infψ maxi=0,1 Pi(ψ 6= i) ≥ e−K(P0,P1)/4 [15].
Let q be the density of B and p(y;µ,Σ) that of N (µ,Σ).
Note that, under P0, y ∼ N (0, σ2Im×m) since rows of B are
orthonormal. By Jensen’s inequality,

K(P0, P1) = EBEy log
p(y;0, σ2Im×m)q(B)

Exp(y;Bx, σ2Im×m)q(B)

≤ EBEx‖Bx‖22/(2σ2) = M2m/(2σ2n).
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