
Support Distribution Machines
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Abstract

Most machine learning algorithms, such as
classification or regression, treat the individ-
ual data point as the object of interest. Here
we consider extending machine learning al-
gorithms to operate on groups of data points.
We suggest treating a group of data points
as a set of i.i.d. samples from an underlying
feature distribution for the group. Our ap-
proach is to generalize kernel machines from
vectorial inputs to i.i.d. sample sets of vec-
tors. For this purpose, we use a nonparamet-
ric estimator that can consistently estimate
the inner product and certain kernel func-
tions of two distributions. The projection of
the estimated Gram matrix to the cone of
semi-definite matrices enables us to employ
the kernel trick, and hence use kernel ma-
chines for classification, regression, anomaly
detection, and low-dimensional embedding in
the space of distributions. We present sev-
eral numerical experiments both on real and
simulated datasets to demonstrate the advan-
tages of our new approach.

1 Introduction

Functional data analysis is a new and emerging field
of statistics and machine learning. It extends the clas-
sical multivariate methods to the case when the data
points are functions (Ramsay and Silverman, 2005).
In many areas, including meteorology, economics, and
bioinformatics (Muller et al., 2008), it is more natu-
ral to assume that the data consist of functions rather
than finite-dimensional vectors. This setting is espe-
cially natural when we study time series and we wish to
predict the evolution of a quantity using some other
quantities measured along time (Kadri et al., 2010).
Although this problem is important in many applica-

tions, the field is quite new and immature; we know
very little about efficient algorithms.

In this paper we consider a version of the problem
where the input functions are density functions, and
we cannot even observe these functions directly. We
only see some finite i.i.d. samples from them. If we can
do machine learning in this scenario, then we have a
way to do machine learning on groups of data points.
We treat each data point in the group as a sample from
the underlying feature distribution of the group. Using
this setting, our goal is to generalize kernel machines
from finite-dimensional vector spaces to the domain of
finite sample sets, where each sample set represents a
distribution.

We develop methods for classification and regression
of distributions. In the classification problem our goal
is to find a map from the space of distributions to
the space of discrete objects, while in the regression
problem (with scalar response) the goal is to find a
map to the space of real numbers. For this purpose we
extend the support vector machine algorithm (SVM)
to the space of distributions. In our framework, some
of the distributions in the training data will play the
role of support vectors, hence we call this method a
support distribution machine (SDM).

We also show how kernel machines on the space of dis-
tributions can be used to find anomalous distributions.
It might happen that each measurement in a sample
set looks normal, but the distribution of these values is
different from those of other groups. Our goal is to de-
tect these anomalous sample sets/distributions. The
standard anomaly/novelty detection approach only fo-
cuses on finding individual points (Chandola et al.,
2009). Our “group anomaly” detection task, however,
is different; we want to find anomalous groups of points
(i.e. anomalous distributions) in which each individual
point can be normal.

Finally, we develop an algorithm for linear distribu-
tion regression. As opposed to regression where the
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response is scalar, here we deal with a regression prob-
lem that has a distribution response: we are look-
ing for a linear map from the space of distributions
to the space of distributions. As an application we
show how this method can be used to generalize lo-
cal linear embedding (LLE) (Roweis and Saul, 2000)
to the space of distributions. Here our goal is to em-
bed the distributions (the sample sets of the training
data) into a low-dimensional space preserving proxim-
ity, i.e. nearby distributions should be mapped into
nearby points in a low-dimensional Euclidean space.

The paper is organized as follows. In the next sec-
tion we review some related work. We formally intro-
duce our problems and show how to define kernels on
distributions in Section 3. Section 4 explains how to
evaluate kernels in the space of distributions when the
densities are unknown, and only a few i.i.d. samples
are available to us from each distribution. Section 5
presents the results of numerical experiments that
demonstrate the effectiveness of our proposed algo-
rithm in several applications, including classification,
regression, anomaly detection, and low-dimensional
embedding. We show results on both simulated and
real datasets. Finally, we conclude with a discussion
of our work.

2 Related Work

Although the field of functional data analysis is im-
proving quickly, there is still only very limited work
available on this field. The traditional approach in
functional regression represents the functions by an
expansion in some basis, e.g. B-spline or Fourier ba-
sis, and the main emphasis is on the inference of
the coefficients (Ramsay and Silverman, 2005). A
more recent approach uses reproducing kernel Hilbert
spaces (RKHS) (Berlinet and Thomas, 2004). For
scalar responses, the first steps were made by Preda
(2007). Inspired by this, Lian (2007) and Kadri et al.
(2010) generalized the functional regression problem
to functional responses as well. To predict infinite-
dimensional function valued responses from functional
attributes, they extended the concept of vector val-
ued kernels in multi-task learning (Micchelli and Pon-
til, 2005) to operator valued kernels. Although these
methods have been developed for functional regression,
they can be used for classifications of functions as well
(Kadri et al., 2011). We note that our studied prob-
lem is more difficult in the sense that we cannot even
observe directly the inputs (densities of the distribu-
tions); only a few i.i.d. sample points are available to
us. Luckily in several kernel functions we do not need
to know these densities; their inner product is suffi-
cient, and we will show in Section 4 how this can be
estimated efficiently.

The first paper that used kernels on probabilities den-
sities was the work of Jebara et al. (2004). Here the au-
thors fit a parametric family (e.g. exponential family)
to the densities, and using these fitted parameters they
estimate the inner products between the distributions.
However, in practice it is rare to know that the true
densities belong to these parametric families. When
this assumption does not hold, this method introduces
some unavoidable bias in estimating the inner prod-
ucts between the densities. In contrast, our method is
completely nonparametric and provides provably con-
sistent kernel estimations for certain kernels. Further-
more, we avoid estimating the densities, which are nui-
sance parameters in our problem.

Póczos et al. (2011) used similar nonparametric esti-
mators to solve certain machine learning problems in
the space of distributions. However, that paper did
not investigate inner product estimation or the rela-
tion to kernel machines. It studies only simple kNN
based classifiers that apply divergence estimators. As
such, the estimators cannot be used in Hilbert spaces,
and hence cannot perform distribution regression or
LLE of distributions.

SVMs for structured, complex output also have been
investigated (Tsochantaridis et al., 2004). In our work,
however, the input is also complex: sets of i.i.d. sam-
ples from distributions.

3 Formal Problem Setting

Here we formally define our problems and show how
kernel methods can be generalized to distributions
and sample sets. We investigate both supervised
and unsupervised problems. We assume we have
N inputs X1,. . . ,XN , where the nth input Xn =
{Xn,1, . . . , Xn,mn} consists of mn i.i.d. samples from
density pn, i.e. Xn is a set of sample points, and
Xn,j ∼ pn, j = 1, . . .mn. Let X denote the set of
these sample sets, so that Xn ∈ X .

3.1 Applications

Distribution classification In this supervised
learning problem we have {(Xn, Yn)}Nn=1 (input, out-
put) pairs. The output domain is discrete, i.e. Yn ∈
Y .

= {y1, . . . , yd}. We are looking for a function
f : X → Y, such that for a new input and output
pair (X,Y ) ∈ X × Y when the classification is per-
fect we have that f(X) = Y . We will use ideas from
support vector machines to perform this classification.
For simplicity, we only discuss the case when the class
number d = 2. The ideas below can be extended to
multiclass classification in the standard ways, e.g. (i)
using one vs all classifiers, or (ii) training d(d − 1)/2
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classifiers between each class pairs and then applying
all of them for test points. Finally we decide the class
labels by voting.

Let P denote the set of density functions, K be a
Hilbert-space with inner product ⟨·, ·⟩K, and ϕ : P →
K denote an operator that maps the density functions
to the feature space K. The dual form of the “soft mar-
gin SVM” is as follows (Schölkopf and Smola, 2002):

α̂ = argmax
α∈RN

N∑
i=1

αi −
1

2

N∑
i,j

αiαjyiyjGij , (1)

subject to
∑

i αiyi = 0, 0 ≤ αi ≤ C, where C > 0 is a
parameter, yi ∈ {−1, 1} are the class labels, and G ∈
RN×N is the Gram matrix: Gij

.
= ⟨ϕ(pi), ϕ(pj)⟩K =

K(pi, pj). Now, the predicted class label of a test den-

sity p is simply f(p) = sign(
∑N

i=1 α̂iyiK(pi, p) + b),
where the bias term b can be obtained by averaging
b = yj −

∑
i yiαiGij over all points with αj > 0.

There are many tools available to solve the quadratic
programming task in (1). All that remains is to esti-
mate {K(pi, p)}i and {K(pi, pj)}i,j based on the few
i.i.d. samples available to us. We propose estimators
for these kernels in Section 4.

Anomaly detection We can also use these ideas
in a one-class SVM (Schölkopf et al., 2001) to find
anomalous distributions.

Distribution regression with scalar response
(DRSR) Learning real valued functionals of distri-
butions (e.g. entropy, mutual information) is of great
importance in statistics and machine learning. For cer-
tain functionals, however, this is very difficult, espe-
cially if our only information about the densities is a
few i.i.d. samples. Assume that we can ask an expert
or a reliable Monte Carlo method to tell us the values
of the functionals for a few of those sample sets. Then
we get new sample sets for which expert advice is un-
available, and we do not have the time to run Monte
Carlo methods. Our goal is to estimate the functional
values for these sample sets as well.

This is a regression task on sample sets with scalar
response. Using the Gram matrix defined above in
the support vector regression equations (Schölkopf and
Smola, 2002), we can estimate the unknown function
f : X → R.

Distribution regression with distribution re-
sponse (DRDR) A more general distribution re-
gression problem arises when Y = X , that is the out-
puts are also distributions (or to be more precise, i.i.d.
samples from distributions), and we are looking for
an f : X → X regression function. Below we show
how the coefficients of the linear regression can be
calculated after transforming the distributions to the

Hilbert space K. The regression problem is given by
the following quadratic problem:

α̂ = argmin
α∈RN

∥ϕ(p)−
N∑
i=1

αiϕ(pi)∥2K

= K(p, p)− 2
N∑
i=1

αiK(pi, p) + αiαj

N∑
i=1

N∑
j=1

K(pi, pj).

Local linear embedding of distributions (LLE)
LLE (Roweis and Saul, 2000) performs nonlin-
ear dimensionality reduction by computing a low-
dimensional, neighborhood preserving embedding of
high- (but finite-) dimensional data. As an applica-
tion of DRDR, we show how to generalize LLE to the
infinite-dimensional space of distributions and to i.i.d.
sample sets of distributions. Our goal is to find a map
f : X → Rd that preserves the local geometry of the
distributions. To characterize the local geometry, we
reconstruct each distribution from its κ neighbor dis-
tributions by DRDR.

As above, let X1, . . . , XN be our training set. The
squared Euclidean distance between ϕ(pi) and ϕ(pj) is
given by ⟨ϕ(pi)− ϕ(pj), ϕ(pi)− ϕ(pj)⟩K = K(pi, pi) +
K(pj , pj) − 2K(pi, pj). Let Ni denote the set of κ
nearest neighbors of distribution pi among {pj}j ̸=i.
The intrinsic local geometric properties of distribu-
tions {pi}Ni=1 are characterized by the reconstruction
weights {Wi,j}Ni,j=1 in the equation below.

Ŵ = argmin
W∈RN×N

N∑
i=1

∥ϕ(pi)−
∑
j∈Ni

Wi,jϕ(pj)∥2K (2)

s. t.
∑
j∈Ni

Wi,j = 1, and Wi,j = 0 if j /∈ Ni.

Note that the cost function in (2) can be rewritten:

N∑
i=1

Gii − 2
∑
j∈Ni

Wi,jGij +
∑
j∈Ni

∑
k∈Ni

Wi,jWk,jGjk

 .

Having calculated the weights {Ŵi,j}, we compute
Yi = f(pi) ∈ Rd (i.e. the embedded distributions) as
the d-dimensional vectors best reconstructed locally by
these weights:

Ŷ = argmin
{Yi∈Rd}N

i=1

N∑
i=1

∥Yi −
∑
j∈Ni

Ŵi,jYj∥2

Finally, Ŷ = {Ŷ1, . . . , ŶN}, and Ŷi corresponds to the
d-dimensional image of distribution pi.

Note that many other nonlinear dimensionality re-
duction algorithms—including stochastic neighbor em-
bedding (Hinton and Roweis, 2002), multidimensional
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scaling (MDS) (Borg and Groenen, 2005), isomap
(Tenenbaum et al., 2000), curvilinear component anal-
ysis (Sun et al., 2010)—use only Euclidean distances
between the input points to perform dimensional-
ity reduction. All of these methods can be general-
ized to distributions by simply replacing the finite-
dimensional Euclidean metric with ⟨p− q, p− q⟩K.

3.2 Constructing Kernels

To use the methods above, we must estimate K(p, q),
a kernel value between distributions p and q using two
finite i.i.d. sample sets from them. Many kernels, i.e.
positive semi-definite functionals of p and q can be
constructed from

Dα,β(p∥q) =
∫

pα(x) qβ(x) p(x) dx, (3)

where α, β ∈ R. Linear (K(p, q) =
∫
pq), polyno-

mial (K(p, q) = (
∫
pq + c)s), and Gaussian kernels

(K(p, q) = exp(− 1
2µ

2(p, q)/σ2), where µ(p, q) =
∫
p2+

q2 − 2pq) are examples of these. In the Gaussian ker-
nel, one can also try to use other “distances”, e.g. the
Hellinger distance where µ2(p, q) = 1−

∫
p1/2q1/2, the

Rényi-α divergence where µ(p, q) = 1
α−1 log

∫
pαq1−α,

or the KL-divergence, which is its α → 1 limit case.
These latter divergences are not symmetric, do not sat-
isfy the triangle inequality, and do not lead to positive
semi-definite Gram matrices. In Section 4.3 we will
show how to fix this problem.

4 Nonparametric Kernel Estimation

To estimate the values of the kernels in Section 3.2, it is
enough to estimate Dα,β(p∥q) terms for some α, β val-
ues. Using the tools that have been applied for Rényi
entropy (Leonenko et al., 2008), Shannon entropy (Go-
ria et al., 2005), KL divergence (Wang et al., 2009),
and Rényi divergence estimation (Póczos and Schnei-
der, 2011), we show how to estimate Dα,β(p∥q) in an
efficient, nonparametric, and consistent way.

4.1 k-NN Based Density Estimators

k-nn density estimators operate using distances be-
tween the observations in a given sample and their
kth nearest neighbors. Let X1:n

.
= (X1, . . . , Xn) be an

i.i.d. sample from a distribution with density p, and
similarly let Y1:m

.
= (Y1, . . . , Ym) be an i.i.d. sample

from a distribution having density q. Let ρk(i) de-
note the Euclidean distance of the kth nearest neigh-
bor of Xi in the sample X1:n, and similarly let νk(i)
denote the distance of the kth nearest neighbor of Xi

in the sample Y1:m. Let c̄ denote the volume of a
d-dimensional unit ball. Loftsgaarden and Quesen-

berry (1965) define the k-nn based density estima-
tors of p and q at Xi as p̂k(Xi) = k/((n− 1)c̄ρdk(i)),
q̂k(Xi) = k/(mc̄νdk(i)). Note that these estimators are
consistent only when k(n) → ∞. We will use these
density estimators in our proposed divergence estima-
tors; however, we will keep k fixed and will still be able
to prove their consistency.

4.2 Kernel Estimation

In this section we introduce our estimator for
Dα,β(p∥q). If we simply plugged p̂k(Xi) and q̂k(Xi)
into (3), then we could estimate Dα,β(p∥q) with

1

n

n∑
i=1

kα+β

c̄α+β
(n− 1)−αm−βρ−dα

k (i)ν−dβ
k (i).

Nonetheless, this estimator is asymptotically biased
for any fixed k. Using the same tools as in Póczos
et al. (2011), one can prove that by introducing a mul-
tiplicative term the following estimator is L2 consis-
tent under certain conditions (see the Appendix for
details):

D̂α,β =
1

n

n∑
i=1

(n− 1)−αm−βρ−dα
k (i)ν−dβ

k (i)Bk,α,β , (4)

where Bk,α,β
.
= c̄−α−β Γ(k)2

Γ(k−α)Γ(k−β) . Notably, this

multiplicative bias does not depend on p or q.

4.3 Projecting to the Cone of Positive
Semi-definite Matrices

Under certain conditions D̂α,β is a consistent estimator
ofDα,β , and thus by plugging these estimators into the
formulae in Section 3.2 we get consistent estimators for
those kernels. It means that the more sample points we
have the better the quality of the kernel estimation is.
However, this does not guarantee that the estimated
Gram matrix is positive semi-definite. Therefore, we
project this estimated Gram matrix back to the cone
of positive semi-definite matrices using the alternating
projection method presented in Higham (2002).

5 Numerical Experiments

5.1 SDM for Classification

In this section we demonstrate how SDMs can be used
for image classification on a noisy version of the USPS
dataset, on natural images, and on turbulence data.

5.1.1 USPS Dataset

The USPS dataset1 (Hull, 1994) consists of 10 classes,
and each data point is a 16× 16 grayscale image. On

1http://www-stat-class.stanford.edu/~tibs/
ElemStatLearn/datasets/zip.info
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this data, the human classification error rate is 2.5%.
The best algorithms, e.g. the Tangent Distance algo-
rithm (Simard et al., 1998) achieve this error rate, and
SVM based algorithms perform slightly worse; they
can achieve about 4% error (Mika et al., 2004).

We resized the grayscale images to 160× 160, divided
each pixel value by the sum of all pixel intensities, and
considered each image as a 2d density function; We
sampled 300 i.i.d. 2d coordinates from these densities,
where the sampling probability of a 2d coordinate was
proportional to the grayscale value of the point in the
image. Finally we added Gaussian noise (zero mean,
0.1 variance) to these coordinates. Example noisy im-
ages are shown in Figure 1.

Figure 1: Noisy USPS dataset

This dataset is considerably more difficult than the
original USPS dataset. In the original dataset, the
raw images can be used as features for classification,
and even the Euclidean distances between these im-
ages have high discriminative values. However, in the
noisy USPS dataset the Euclidean distance between
images becomes useless, and using the raw images as
features performs poorly. We use 100-100 train/test
splits and achieve only 67% accuracy using an SVM
with a degree 3 polynomial kernel. However, using an
SDM and estimating the same polynomial kernel non-
parametrically with k = 4 nearest neighbors, we get
91% accuracy.

To demonstrate visually that our tools can keep more
structure of the dataset than simply using the standard
Euclidean metric between the raw images, we per-
formed multidimensional scaling to 2d using both the
Euclidean metric between the raw images (Fig. 2(a))
and using the estimation of the Euclidean distance be-
tween the distributions (Fig. 2(b)). We used 10 in-
stances from letters {1,2,3,4}. We see that our method
was able to preserve the class structure of the dataset;
the letters form natural clusters. However, using raw
images in MDS loses these clusters. Even in this un-
supervised learning task, our method could keep the
clusters of the letters. This explains why the classifica-
tion task using distribution-based kernels was so much
easier.

5.1.2 Natural Image Classification

One set of algorithms for classifying natural scene im-
ages is based on the so called “bag-of-words” (BoW)
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Figure 2: (a) MDS using Euclidean metric between the
images. (b) MDS using the estimated Euclidean dis-
tance between the distributions of the 2d coordinates
of the image pixels.

representation. With BoW, each image is considered
as a collection of visual words (e.g. a coast image
usually contains visual words of sky, sea and so on).
The locations of and dependencies among those vi-
sual words are ignored. The collection of unique visual
words is called the visual vocabulary.

Given a set of images, the visual words and vocabu-
lary are often constructed in the following way: (1)
Select local patches from each image. (2) Extract a
feature vector for each patch. (3) Cluster/quantize all
the patch features into V categories. By doing this,
each category of patches would represent a visual con-
cept such as “sky” or “window”. These V categories
form the “visual vocabulary”, and each patch, rep-
resented by its category number, becomes a “visual
word.” (4) Within each image, count the number of
different visual words and construct a histogram of size
V . This is the BoW representation of the image.

SDM can be applied to image classification problems
based on BoW. The key modification is that instead
of discretizing the patch features as in step (3), we can
use the features directly. SDM treats each image as
a group of its patches’ features, which are real-valued
vectors, and then applies the proposed kernel functions
to pairs of images to get the kernel matrix.

Dataset and feature extraction We use the im-
age dataset published by Oliva and Torralba (2001)
(OT). This dataset contains 8 outdoor scene cate-
gories: coast, mountain, forest, open country, street,
inside city, tall buildings, and highways. There are
2688 images, each about 256× 256 pixels.

The grayscale version of these images are used. We
extract the dense SIFT features (Lowe (2004)) as in
Bosch et al. (2008). For each image, we compute SIFT
descriptors at points on a regular grid with a step
size of 20. To achieve scale-invariance, at each point
we compute three SIFT descriptors, each of which is
128-dimensional, with radii of [6, 9, 12] pixels. Af-
ter the feature extraction, each image is represented
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by 409 vectors whose dimensionality is 128. Finally,
PCA is applied to reduce their dimensionality to 19,
preserving 70% of the total variance. We used the
VLFeat package by Vedaldi and Fulkerson (2008) and
its PHOW functionality to extract the SIFT features.

Performance evaluation We test the performance
of SDM classification. In SDM, we used the Gaussian
kernel K(p, q) = exp(−µ2(p, q)/(2σ2)), where µ(p, q)
was either the KL-divergence (NP-KL) or the Hellinger
distance (NP-Hel). We also tried the standard Eu-
clidean distance, but found that it does not perform
reliably in this high-dimensional situation.

To estimate the Hellinger distance based Gaussian ker-
nel, we used the method presented in Section 3.2 and
Section 4.2. To estimate the KL-divergence based
Gaussian kernel, we applied the same approach, except
that we approximated the KL divergence with Rényi-α
divergence, where we used α = 0.99. We applied k = 3
nearest neighbors in the estimator D̂ (Eq 4).

Note that it is not necessary to use non-parametric ker-
nel estimators for the SDM. For comparison, we also
implement parametric divergence estimators by doing
density estimation based on single Gaussians (G-KL)
and 5-component Gaussian mixture models (GMM-
KL). For single Gaussians, the KL divergence can be
obtained analytically, but for the mixture models we
resort to the Monte Carlo method with 1000 samples.
This strategy of kernel estimation is similar to what
Jebara et al. (2004) proposed.

To apply SDM, we need to determine two parame-
ters: the width of the kernel σ, and the cost param-
eter C for points that are in the margin. We select
their values based on one run 5-fold cross-validation,
individually for each divergence. The values of σ =
[5.63, 24.34, 7.16, 2.11], C = [2, 8, 8, 2] are used for G-
KL, GMM-KL, NP-KL, NP-Hel respectively.

We evaluate the algorithms on 2-fold cross-validation
runs on the whole dataset, following the set up used
by Bosch et al. (2008). The performances of 16 ran-
dom runs are reported in Figure 3. We also dis-
play the state-of-the-art accuracy from Bosch et al.
(2008), who used SVM on grayscale BoW features
(BoW), and BoW improved by PLSA (Hofmann
(1999)) (BoW+PLSA). Most SDM methods achieved
better results than these BoW methods, showing the
advantage of continuous features over their discrete
version. We can also see that the kernel based on
the non-parametric KL divergence estimator performs
better than those based on Gaussian/GMM density
estimation, and achieves the best accuracy of 88.16%.

The OT dataset has been extensively used to evaluate
scene classification algorithms. Therefore, it is possible
to compare our performance and the previous results

G−KL GMM−KL NP−KL NP−Hel
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Figure 3: Image classification performances.

directly. In the original OT paper, Oliva and Torralba
(2001) achieved an accuracy of 83.7% using a holis-
tic representation called the spatial envelope of the
images. Rasiwasia and Vasconcelos (2011) improves
the BoW representation by introducing “contextual
concepts” and achieved 85.60% accuracy. By using
a spatial pyramid matching method that considers the
spatial dependencies among visual words, Yin (2010)
achieved 88.02% accuracy. Qin and Yung (2010a) pro-
posed another way to encode the spatial dependencies
of patches into the visual words and achieved 90.3%
accuracy in 10-fold cross-validations. This result is
further improved in Qin and Yung (2010b) to 91.57%
where contextual visual words are combined with color
information. For comparison, SDM based on the non-
parametric KL divergence estimator achieves 89.95%
average accuracy in 10-fold cross-validations.

We believe we have achieved the highest grayscale ac-
curacy yet reported without using spatial dependen-
cies. We expect further improvements by adding ad-
ditional features to SDMs.

5.1.3 Turbulence Data

One of the challenges of doing science with modern
large-scale simulations is identifying interesting phe-
nomena in the results, finding them, and computing
basic statistics about when and where they occurred.

We performed an exploratory experiment on using
SDM classifiers to assist in this process, using turbu-
lence data from the JHU Turbulence Data Cluster2

(Perlman et al., 2007) (TDC). TDC simulates fluid
flow through time on a 3-dimensional grid, calculat-
ing 3-dimensional velocities and pressures of the fluid
at each step. We used one time step of a contiguous
256× 256× 128 sub-grid.

Our goal is to classify cross-sections of stationary vor-
tices parallel to the xy plane. Each distribution is
defined on the x and y components of each velocity in
an 11× 11 square, along with the squared magnitude
of that point’s distance from the center. The latter
feature was included according to the intuition that

2http://turbulence.pha.jhu.edu
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velocity in a vortex is related to its distance from the
center of the vortex.

We trained an SDM on a manually labeled training set
of 11 positives and 20 negatives, using a Gaussian ker-
nel based on Hellinger distance. Some representative
training examples are shown in Figure 4. Leave-one-
out cross-validation on the training data yielded an
accuracy of 97% (one mistake).

(a) Positive (b) Negative (c) Negative

Figure 4: Training examples for the vortex classifier.

This classifier was then used to evaluate groups along
z-slices of the data, with a grid resolution of 2×2. One
slice of the resulting probability estimates is shown in
Figure 5(a); the arrows represent the mean velocity at
each classification point. The high-probability region
on the left is a canonical vortex, while the slightly-
lower probability region in the upper-right deviates a
little from the canonical form. Note that some other
areas show somewhat complex velocity patterns but
mostly have low probabilities.

5.2 Anomaly Detection with SDMs

As well as finding instances of known patterns, part
of the process of exploring the results of a large-scale
simulation is looking for unexpected phenomena.

To demonstrate anomaly detection with SDMs, we
trained a one-class SDM on 100 distributions from the
turbulence data, with centers chosen uniformly at ran-
dom. Its evaluation on the same region as Figure 5(a)
is shown in Figure 5(b). The two vortices are picked
out, but the area with the highest score is a diamond-
like velocity pattern, similar to Figure 4(c); these may
well be less common in the dataset than are vortices.

We believe that SDM classifiers and anomaly detectors
serve as a proof of concept for a simulation exploration
tool that would allow scientists to iteratively look for
anomalous phenomena and label some of them. Clas-
sifiers could then find more instances of those phe-
nomena and compute statistics about their occurrence,
while anomaly detection would be iteratively refined to
highlight only what is truly new.

5.3 DRSR Experiments

Below we show how distribution regression with scalar
response (Section 3) can be used for learning real val-

ued functionals of distributions from i.i.d. samples in
a nonparametric way.

In the first experiment, we generated 150 sample sets
from Beta(a, 3) distributions where a was varied be-
tween [3, 20] randomly. We had 100 sample sets for
training and 50 for testing. Each sample set consisted
of 500 Beta(a, 3) distributed i.i.d. points. Our goal
was to learn the skewness of Beta(a, b) distributions.
Figure 6(a) displays the predicted values for the 50 test
sample sets. In this experiment we used a polynomial
kernel with degree 3.

In the next experiment, we learn the entropy of Gaus-
sian distributions. We randomly chose a 2 × 2 co-
variance matrix Σ, and then generated 150 sample
sets from {N (0, R(αi)Σ

1/2)}150i=1. Where R(αi) is a
2d rotation matrix with rotation angle αi = iπ/150.
From each N (0, R(αi)Σ

1/2) distribution we sampled
500 2-dimensional i.i.d. points. Our goal was to
learn the entropy of the first marginal distribution:
H = 1

2 ln(2πeσ
2), where σ2 = M1,1 and M =

R(αi)ΣR
T (αi) ∈ R2×2. Figure 6(b) shows the learned

entropies of the 50 test sample sets.
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Figure 6: (a) Learned skewness of Beta(a, 3) distribu-
tion. Axis x: parameter a in [3, 20]. Axis y: skewness
of Beta(a, 3). (b) Learned entropy of a 1d marginal
distribution of a rotated 2d Gaussian distribution.
Axes x: rotation angle in [0, π]. Axis y: entropy.

5.4 Local Linear Embedding of Distributions

Here we show results on the local linear embedding
extension to distributions. This algorithm uses the
linear DRDR method as a subroutine.

We created a 2-dimensional zero mean Gaussian dis-
tribution with covariance matrix Σ1,1 = 9, Σ1,2 =
Σ2,1 = 0, Σ2,2 = 1. Then we generated 2000 i.i.d.
sample points from each of the rotated versions of
this Gaussian distribution: Xi,n ∼ N (0, R(αi)Σ

1/2),
n = 1, . . . , 2000, i = 1, . . . , 63. Here R(αi) denotes the
2d rotation matrix with rotation angle αi = (i−1)/20.
We ran the LLE algorithm (Section 3) and embedded
these distribution into 2d. The results are shown in
Figure 7(a). We can see that our method preserves
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(a) Classification probabilities (b) Anomaly scores

Figure 5: Classification and anomaly scores along with velocities for one 54× 48 slice of the turbulence data.

(a) Rotated 2d Gaussian distributions (b) using Euclidean image distances (c) results with kernel estimation

Figure 7: (a) LLE embedding of rotated 2d Gaussian distributions. (b) LLE embedding results using Euclidean
distances between edge-detected images. The embedding failed to keep the local geometry of the original pictures.
(c) LLE embedding results considering the edges as samples from unknown distributions. The embedding was
successful; nearby objects are embedded to nearby places.

(a) Original image (b) Edge-detected

Figure 8: The original and the edge-detected object.

the local geometry of these sample sets. Distributions
close to each other are mapped into nearby points.

We repeated this experiment on the edge-detected
images of an object in the COIL dataset3. This
dataset consists of 72 128x128 pictures of a rotated
3D object (Fig. 8(a)). We converted these images
to grayscale and performed Canny edge detection on
them (Fig. 8(b)). The number of detected edge points
on these images was between 845 and 1158.

Our goal is to embed these edge-detected images into
a 2d space preserving proximity. While this problem is

3http://www.cs.columbia.edu/CAVE/software/
softlib/coil-100.php

easy using the original images, it is challenging when
only the edge-detected images are available. If we sim-
ply use the Euclidean distances between these edge-
detected images, the standard LLE algorithm fails
(Fig. 7(b)). However, when we consider the edge-
detected images as sample points from unknown 2d
distributions, and use the LLE algorithm on distribu-
tions (Section 3), the embedding is successful. The
embedded points preserve proximity and the local ge-
ometry of the original images (Fig. 7(c)).

6 Discussion and Conclusion

We have posed the problem of performing machine
learning on groups of data points as one of machine
learning on distributions where the data points are
viewed as samples from an underlying distribution for
the group. We proposed support distribution ma-
chines for learning on distributions and provided non-
parametric methods for estimating the necessary ker-
nel matrices. We showed that our methods work across
a range of supervised and unsupervised tasks and in
one case believe we have achieved the best classifica-
tion accuracy yet reported.
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vergence estimation for multidimensional densities
via k-nearest-neighbor distances. IEEE Transac-
tions on Information Theory, 55(5).

Yin, H. (2010). Scene classification using spatial pyra-
mid matching and hierarchical Dirichlet processes.
Master’s thesis, Rochester Institue of Technology.
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APPENDIX—SUPPLEMENTARY MATERIAL

A Consistency of k-NN density estimators

The following theorems show the consistency of k-NN density estimators (Loftsgaarden and Quesenberry, 1965).

Theorem 1 (convergence in probability) If k(n) denotes the number of neighbors applied at sample size n,
limn→∞ k(n) = ∞, and limn→∞ n/k(n) = ∞, then p̂k(n)(x) →p p(x) for almost all x.

Theorem 2 (convergence in sup norm) If limn→∞ k(n)/ log(n) = ∞ and limn→∞ n/k(n) = ∞, then
limn→∞ supx

∣∣p̂k(n)(x)− p(x)
∣∣ = 0 almost surely.

B Consistency of D̂α,β(X1:n∥Y1:m)

Our goal is to estimate

Dα,β(p∥q) =
∫
M

pα(x)qβ(x)p(x)dpx,

and our proposed estimator is

D̂α,β(X1:n∥Y1:m) =
1

n

n∑
i=1

(n− 1)−αm−βρ−dα
k (i)ν−dβ

k (i)Bk,α,β ,

where Bk,α,β
.
= c̄−α−β Γ(k)2

Γ(k−α)Γ(k−β) .

Let B(x,R) denote a closed ball around x ∈ Rd with radius R, and let V
(
B(x,R)

)
= c̄Rd be its volume, where c̄

stands for the volume of a d-dimensional unit ball. The following theorems we will assume that almost all points
of M are in its interior and that M has the following additional property:

inf
0<δ<1

inf
x∈M

V
(
B(x, δ

)
∩M)

V
(
B(x, δ)

) .
= rM > 0.

If M is a finite union of bounded convex sets, then this condition holds.

Theorem 3 (Asymptotic unbiasedness) Let −k < α, β < k. If 0 < α < k, then let p be bounded away from
zero and uniformly continuous. If −k < α < 0, then let p be bounded. Similarly, if 0 < β < k, then let q be
bounded away from zero and uniformly continuous. If −k < β < 0, then let q be bounded. Under these conditions
we have that

lim
n,m→∞

E
[
D̂α,β(X1:n∥Y1:m)

]
= Dα,β(p∥q),

i.e., the estimator is asymptotically unbiased.

The following theorem provides conditions under which D̂α,β is L2 consistent. In the previous theorem we have
stated conditions that lead to asymptotically unbiased divergence estimation. In the following theorem we will
assume that the estimator is asymptotically unbiased for (α, β) as well as for (2α, 2β), and also assume that
Dα,β(p∥q) < ∞, D2α,2β(p∥q) < ∞.

Theorem 4 (L2 consistency) Let k ≥ 2 and −(k − 1)/2 < α, β < (k − 1)/2. If 0 < α < (k − 1)/2, then let p
be bounded away from zero and uniformly continuous. If −(k − 1)/2 < α < 0, then let p be bounded. Similarly,
if 0 < β < (k − 1)/2, then let q be bounded away from zero and uniformly continuous. If −(k − 1)/2 < β < 0,
then let q be bounded. Under these conditions we have that

lim
n,m→∞

E
[(

D̂α,β(X1:n∥Y1:m)−Dα,β(p∥q)
)2

]
= 0;

that is, the estimator is L2 consistent.



Support Distribution Machines

B.1 Proof Outline for Theorems 3-4

We can repeat the argument of Póczos and Schneider (2011). Using the k-nn density estimator, we can estimate
1/p(x) by Nc̄ρdk(x)/k. From the Lebesgue lemma, one can prove that the distribution of Nc̄ρdk(x) converges
weakly to an Erlang distribution with mean k/p(x), and variance k/p2(x) (Leonenko et al., 2008). In turn, if
we divide Nc̄ρdk(x) by k, then asymptotically it has mean 1/p(x) and variance 1/(kp2(x)). This implies that
indeed (in accordance with Theorems 1–2) k should diverge in order to get a consistent estimator, otherwise the
variance will not disappear. On the other hand, k cannot grow too fast: if, say, k = N , then the estimator would
be simply c̄ρdk(x), which is a useless estimator since it is asymptotically zero whenever x ∈ supp(p).

Luckily, in our case we do not need to apply consistent density estimators. The trick is that (3) has a special
form:

∫
p(x)pα(x)qβ(x)dx. In (4) this is estimated by

1

N

N∑
i=1

(p̂k(Xi))
α
(q̂k(Xi))

β
Bk,α,β , (5)

where Bk,α,β is a correction factor that ensures asymptotic unbiasedness. Using the Lebesgue lemma again, we
can prove that the distributions of p̂k(Xi) and q̂k(Xi) converge weakly to the Erlang distribution with means
k/p(Xi), k/q(Xi) and variances k/p2(Xi), k/q

2(Xi), respectively (Leonenko et al., 2008). Furthermore, they
are conditionally independent for a given Xi. Therefore, “in the limit” (5) is simply the empirical average of
the products of the αth (and βth) powers of independent Erlang distributed variables. These moments can be
calculated in closed form. For a fixed k, the k-nn density estimator is not consistent since its variance does not
vanish. In our case, however, this variance will disappear thanks to the empirical average in (5) and the law of
large numbers.

While the underlying ideas of this proof are simple, there are a couple of serious gaps in it. Most importantly, from
the Lebesgue lemma we can guarantee only the weak convergence of p̂k(Xi), q̂k(Xi) to the Erlang distribution.
From this weak convergence we cannot imply that the moments of the random variables converge too. To
handle this issue, we will need stronger tools such as the concept of asymptotically uniformly integrable random
variables (van der Wart, 2007), and we also need the uniform generalization of the Lebesgue lemma. As a result,
we need to put some extra conditions on the densities p and q in Theorems 3–4. The details follow from the
slight generalization of the derivations in Póczos and Schneider (2011).


