A bound on the number of edges in graphs without an even cycle

Boris Bukh* Zilin Jiang ${ }^{\dagger \text {,** }}$

Abstract

We show that, for each fixed k, an n-vertex graph not containing a cycle of length $2 k$ has at most $80 \sqrt{k \log k} \cdot n^{1+1 / k}+O(n)$ edges.

Introduction

Let ex (n, F) be the largest number of edges in an n-vertex graph that contains no copy of a fixed graph F. The first systematic study of ex (n, F) was started by Turán [16], and now it is a central problem in extremal graph theory (see surveys [14, 9]).

The function ex (n, F) exhibits a dichotomy: if F is not bipartite, then ex (n, F) grows quadratically in n, and is fairly well understood. If F is bipartite, $\operatorname{ex}(n, F)$ is subquadratic, and for very few F the order of magnitude is known. The two simplest classes of bipartite graphs are complete bipartite graphs, and cycles of even length. Most of the study of ex (n, F) for bipartite F has been concentrated on these two classes. In this paper, we address the even cycles. For an overview of the status of $\operatorname{ex}(n, F)$ for complete bipartite graphs see [2]. For a thorough survey on bipartite Turán problems see [8].

The first bound on the problem is due to Erdős[5] who showed that ex $\left(n, C_{4}\right)=\Theta\left(n^{3 / 2}\right)$. Thanks to the works of Erdős and Rényi [6], Brown [4, Section 3], and Kövari, Sós and Turán [10] it is now known that

$$
\operatorname{ex}\left(n, C_{4}\right)=(1 / 2+o(1)) n^{3 / 2} .
$$

The best current bound for ex $\left(n, C_{6}\right)$ for large values of n is

$$
0.5338 n^{4 / 3}<\operatorname{ex}\left(n, C_{6}\right) \leq 0.6272 n^{4 / 3}
$$

due to Füredi, Naor and Verstraëte [7].
A general bound of $\operatorname{ex}\left(n, C_{2 k}\right) \leq \gamma_{k} n^{1+1 / k}$, for some unspecified constant γ_{k}, was asserted by Erdős. The first proof was by Bondy and Simonovits [3], who showed that ex $\left(n, C_{2 k}\right) \leq 20 k n^{1+1 / k}$ for all sufficiently large n. This was improved by Verstraëte [17] to $8(k-1) n^{1+1 / k}$ and by Pikhurko [13] to $(k-1) n^{1+1 / k}+O(n)$. The principal result of the present paper is an improvement of these bounds:

[^0]Main Theorem. Suppose G is n-vertex graph that contains no $C_{2 k}$, and $n \geq(2 k)^{8 k^{2}}$ then

$$
\operatorname{ex}\left(n, C_{2 k}\right) \leq 80 \sqrt{k \log k} \cdot n^{1+1 / k}+10 k^{2} n .
$$

It is our duty to point out that the improvement offered by the Main Theorem is of uncertain value because we still do not know if $\Theta\left(n^{1+1 / k}\right)$ is the correct order of magnitude for ex $\left(n, C_{2 k}\right)$. Only for $k=2,3,5$ constructions of $C_{2 k}$-free graphs with $\Omega\left(n^{1+1 / k}\right)$ edges are known [1, 18, 11, 12]. The first author believes it to be likely that ex $\left(n, C_{2 k}\right)=o\left(n^{1+1 / k}\right)$ for all large k. We stress again that the situation is completely different for odd cycles, where the value of ex $\left(n, C_{2 k+1}\right)$ is known exactly for all large n [15].

Proof method and organization of the paper Our proof is inspired by that of Pikhurko [13]. Apart from a couple of lemmas that we quote from [13], the proof is self-contained. However, we advise the reader to at least skim [13] to see the main idea in a simpler setting.

Pikhurko's proof builds a breadth-first search tree, and then argues that a pair of adjacent levels of the tree cannot contain a Θ-graph ${ }^{1}$. It is then deduced that each level must be at least $\delta /(k-1)$ times larger than the previous, where δ is the (minimum) degree. The bound on ex $\left(n, C_{2 k}\right)$ then follows. The estimate of $\delta /(k-1)$ is sharp when one restricts one's attention to a pair of levels.

In our proof, we use three adjacent levels. We find a Θ-graph satisfying an extra technical condition that permits an extension of Pikhurko's argument. Annoyingly, this extension requires a bound on the maximum degree. To achieve such a bound we use a modification of breadth-first search that avoids the high-degree vertices.

What we really prove in this paper is the following:
Theorem 1. Suppose $k \geq 4$, and suppose G is a biparite n-vertex graph of minimum degree at least $2 d+5 k^{2}$, where

$$
\begin{equation*}
d \geq \max \left(20 \sqrt{k \log k} \cdot n^{1 / k},(2 k)^{8 k}\right) \tag{1}
\end{equation*}
$$

then G contains $C_{2 k}$.
The Main Theorem follows from Theorem 1 and two well-known facts: every graph contains a bipartite subgraph with half of the edges, and every graph of average degree $d_{\text {avg }}$ contains a subgraph of minimum degree at least $d_{\text {avg }} / 2$.

The rest of the paper is organized as follows. We present our modification of breadth-first search in Section 1. In Section 2, which is the heart of the paper, we explain how to find Θ-graphs in triples of consecutive levels. Finally, in Section 3 we assemble the pieces of the proof.

1 Graph exploration

Our aim is to have vertices of degree at most Δd for some $k \ll \Delta \ll d^{1 / k}$. The particular choice is fairly flexible; we choose to use

$$
\Delta \stackrel{\text { def }}{=} k^{3} .
$$

[^1]Let G be a graph, and let x be any vertex of G. We start our exploration with the set $V_{0}=\{x\}$, and mark the vertex x as explored. Suppose $V_{0}, V_{1}, \ldots, V_{i-1}$ are the sets explored in the 0th, 1st, $\ldots,(i-1)$ st steps respectively. We then define V_{i} as follows:

1. Let V_{i}^{\prime} consist of those neighbors of V_{i-1} that have not yet been explored. Let Bg_{i} be the set of those vertices in V_{i}^{\prime} that have more than Δd unexplored neighbors, and let $\mathrm{Sm}_{i}=V_{i}^{\prime} \backslash \mathrm{Bg}_{i}$.
2. Define

$$
V_{i}= \begin{cases}V_{i}^{\prime} & \text { if }\left|\mathrm{Bg}_{i}\right|>\frac{1}{k+1}\left|V_{i}^{\prime}\right|, \\ \mathrm{Sm}_{i} & \text { if }\left|\mathrm{Bg}_{i}\right| \leq \frac{1}{k+1}\left|V_{i}^{\prime}\right| .\end{cases}
$$

The vertices of V_{i} are then marked as explored.
We call sets V_{0}, V_{1}, \ldots levels of G. A level V_{i} is big if $\left|\mathrm{Bg}_{i}\right|>\frac{1}{k+1}\left|V_{i}^{\prime}\right|$, and is normal otherwise.
Lemma 2. If $\delta \leq \Delta d$, and G is a bipartite graph of minimum degree δ, then each $v \in V_{i+1}$ has at least δ neighbors in $V_{i} \cup V_{i+2}^{\prime}$.

Proof. Fix a vertex $v \in V(G)$. We will show, by induction on i, that if $v \notin V_{1} \cup \cdots \cup V_{i}$, then v has at least δ neighbors in $V(G) \backslash\left(V_{1} \cup \cdots \cup V_{i-1}\right)$. The base case $i=1$ is clear. Suppose $i>1$. If $v \in \operatorname{Bg}_{i}$, then v has $\Delta d \geq \delta$ neighbors in the required set. Otherwise, v is not in V_{i}^{\prime} and hence has no neighbors in V_{i-1}. Hence, v has as many neighbors in $V(G) \backslash\left(V_{1} \cup \cdots \cup V_{i-1}\right)$ as in $V(G) \backslash\left(V_{1} \cup \cdots \cup V_{i-2}\right)$, and our claim follows from the induction hypothesis.

If $v \in V_{i+1}$, then the neighbors of v are a subset of $V_{1} \cup \cdots \cup V_{i} \cup V_{i+2}^{\prime}$. Hence, at least δ of these neighbors lie in $V_{i} \cup V_{i+2}^{\prime}$.

Trilayered graphs A trilayered graph with layers V_{1}, V_{2}, V_{3} is a graph G on a vertex set V_{1}, V_{2}, V_{3} such that the only edges in G are between V_{1} and V_{2}, and between V_{2} and V_{3}. If $V_{1}^{\prime} \subset V_{1}, V_{2}^{\prime} \subset V_{2}$ and $V_{3}^{\prime} \subset V_{3}$, then we denote by $G\left[V_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}\right]$ the trilayered subgraph induced by three sets $V_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}$. Any three sets $V_{i-1}, V_{i}, V_{i+1}^{\prime}$ from the exploration process naturally form a trilayered graph; these graphs and their subgraphs are the only trilayered graphs that appear in this paper.

We say that a trilayered graph has minimum degree at least $[A: B, C: D]$ if each vertex in V_{1} has at least A neighbors in V_{2}, each vertex in V_{2} has at least B neighbors in V_{1}, each vertex in V_{2} has at least C neighbors in V_{3}, and each vertex in V_{3} has at least D neighbors in V_{2}. A schematic drawing of such a graph is on the right.

2 - 2 -graphs

A Θ-graph is a cycle of length at least $2 k$ with a chord. We shall use several lemmas from the previous works.

Lemma 3 (Lemma 2.1 in [13], also Lemma 2 in [17]). Let F be a Θ-graph and $1 \leq l \leq|V(F)|-1$. Let $V(F)=W \cup Z$ be an arbitrary partition of its vertex set into two non-empty parts such that every path in F of length l that begins in W necessarily ends in W. Then F is bipartite with parts W and Z.

Lemma 4 (Lemma 2.2 in [13]). Let $k \geq 3$. Any bipartite graph H of minimum degree at least k contains a Θ-graph.

Corollary 5. Let $k \geq 3$. Any bipartite graph H of average degree at least $2 k$ contains a Θ-graph .
For a graph G and a set $Y \subset V(G)$ let $G[Y]$ denote the graph induced on Y. For disjoint $Y, Z \subset V(G)$ let $G[Y, Z]$ denote the bipartite subgraph of G that is induced by the bipartition $Y \cup Z$.

Suppose G is a trilayered graph with layers V_{1}, V_{2}, V_{3}. We say that a Θ-graph $F \subset G$ is well-placed if each vertex of $V(F) \cap V_{2}$ is adjacent to some vertex in $V_{1} \backslash V(F)$.

Lemma 6. Suppose G is a trilayered graph with layers V_{1}, V_{2}, V_{3} such that the degree of every vertex in V_{2} is between $2 d+5 k^{2}$ and Δd. Suppose t is a nonnegative integer, and let $F=\frac{d \cdot e\left(V_{1}, V_{2}\right)}{8 k\left|V_{3}\right|}$. Assume that

$$
\begin{align*}
\text { a) } & F \\
\text { b) } & e\left(V_{1}, V_{2}\right) \geq 2 k F\left|V_{1}\right|, \\
\text { c) } & e\left(V_{1}, V_{2}\right) \geq 8 k(t+1)^{2}(2 \Delta k)^{2 k-1}\left|V_{1}\right|, \tag{2}\\
\text { d) } & e\left(V_{1}, V_{2}\right) \geq 8(e t / F)^{t} k\left|V_{2}\right|, \\
\text { e) } & e\left(V_{1}, V_{2}\right) \geq 20(t+1)^{2}\left|V_{2}\right| .
\end{align*}
$$

Then at least one of the following holds:
I) There is a Θ-graph in $G\left[V_{1}, V_{2}\right]$.
II) There is a well-placed Θ-graph in $G\left[V_{1}, V_{2}, V_{3}\right]$.

The proof of Lemma 6 is in two parts: finding trilayered subgraph of large minimum degree (Lemmas 7 and 8), and finding a well-placed Θ-graph inside that trilayered graph (Lemma 9).

Finding a trilayered subgraph of large minimum degree The disjoint union of two bipartite graphs shows that a trilayered graph with many edges need not contain a trilayered subgraph of large minimum degree. We show that, in contrast, if a trilayered graph contains no Θ-graph between two of its levels, then it must contain a subgraph of large minimum degree:

Lemma 7. Let a, A, B, C, D be positive real numbers. Suppose G is a trilayered graph with layers V_{1}, V_{2}, V_{3} and the degree of every vertex in V_{2} is at least $d+4 k^{2}+C$. Assume also that

$$
\begin{equation*}
a \cdot e\left(V_{1}, V_{2}\right) \geq(A+k+1)\left|V_{1}\right|+B\left|V_{2}\right| . \tag{3}
\end{equation*}
$$

Then one of the following holds:
I) There is a Θ-graph in $G\left[V_{1}, V_{2}\right]$.
II) There exist non-empty subsets $V_{1}^{\prime} \subset V_{1}, V_{2}^{\prime} \subset V_{2}, V_{3}^{\prime} \subset V_{3}$ such that the induced trilayered subgraph $G\left[V_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}\right]$ has minimum degree at least $[A: B, C: D]$.
III) There is a subset $\widetilde{V}_{2} \subset V_{2}$ such that $e\left(V_{1}, \widetilde{V}_{2}\right) \geq(1-a) e\left(V_{1}, V_{2}\right)$, and $\left|\widetilde{V}_{2}\right| \leq D\left|V_{3}\right| / d$.

Proof. We suppose that alternative (I) does not hold. Then, by Corollary 5, the average degree of every subgraph of $G\left[V_{1}, V_{2}\right]$ is at most $2 k$.

Consider the process that aims to construct a subgraph satisfying (II). The process starts with $V_{1}^{\prime}=V_{1}, V_{2}^{\prime}=V_{2}$ and $V_{3}^{\prime}=V_{3}$, and at each step removes one of the vertices that violate the minimum degree condition on $G\left[V_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}\right]$. The process stops when either no vertices are left, or the minimum degree of $G\left[V_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}\right]$ is at least $[A: B, C: D]$. Since in the latter case we are done, we assume that this process eventually removes every vertex of G.

Let R be the vertices of V_{2} that were removed because at the time of removal they had fewer than C neighbors in V_{3}^{\prime}. Put

$$
\begin{gathered}
E^{\prime} \stackrel{\text { def }}{=}\left\{u v \in E(G): u \in V_{2}, v \in V_{3}, \text { and } v \text { was removed before } u\right\}, \\
S \stackrel{\text { def }}{=}\left\{v \in V_{2}: v \text { has at least } 4 k^{2} \text { neighbors in } V_{1}\right\} .
\end{gathered}
$$

Note that $\left|E^{\prime}\right| \leq D\left|V_{3}\right|$. We cannot have $|S| \geq\left|V_{1}\right| / k$, for otherwise the average degree of the bipartite graph $G\left[V_{1}, S\right]$ would be at least $\frac{4 k}{1+1 / k} \geq 2 k$. So $|S| \leq\left|V_{1}\right| / k$.

The average degree condition on $G\left[V_{1}, S\right]$ implies that

$$
e\left(V_{1}, S\right) \leq k\left(\left|V_{1}\right|+|S|\right) \leq(k+1)\left|V_{1}\right|
$$

Let u be any vertex in $R \backslash S$. Since it is connected to at least $d+C$ vertices of V_{3}, it must be adjacent to at least d edges of E^{\prime}. Thus,

$$
|R \backslash S| \leq\left|E^{\prime}\right| / d \leq D\left|V_{3}\right| / d
$$

Assume that the conclusion (III) does not hold with $\widetilde{V}_{2}=R \backslash S$. Then $e\left(V_{1}, R \backslash S\right)<(1-a) e\left(V_{1}, V_{2}\right)$. Since the total number of edges between V_{1} and V_{2} that were removed due to the minimal degree conditions on V_{1} and V_{2} is at most $A\left|V_{1}\right|$ and $B\left|V_{2}\right|$ respectively, we conclude that

$$
\begin{aligned}
e\left(V_{1}, V_{2}\right) & \leq e\left(V_{1}, S\right)+e\left(V_{1}, R \backslash S\right)+A\left|V_{1}\right|+B\left|V_{2}\right| \\
& <(k+1)\left|V_{1}\right|+(1-a) e\left(V_{1}, V_{2}\right)+A\left|V_{1}\right|+B\left|V_{2}\right|, \\
a \cdot e\left(V_{1}, V_{2}\right) & <(A+k+1)\left|V_{1}\right|+B\left|V_{2}\right| .
\end{aligned}
$$

The contradiction completes the proof.
Remark. The preceding lemma by itself is sufficient to prove the estimate ex $\left(n, C_{2 k}\right)=O\left(k^{2 / 3} n^{1+1 / k}\right)$. For that, one chooses approximately $B=k^{2 / 3}, D=k^{1 / 3}$ and $a=1 / 2$. One can then show that when applied to trilayered graphs arising from the exploration process the alternative (III) leads to a subgraph of average degree $2 k$. The two remaining alternatives are dealt by Corollary 5 and Lemma 9 . However, it is possible to obtain a better bound by iterating the preceding lemma.

Lemma 8. Let C be a positive real number. Suppose G is a trilayered graph with layers V_{1}, V_{2}, V_{3}, and the degree of every vertex in V_{2} is at least $d+4 k^{2}+C$. Let $F=\frac{d \cdot e\left(V_{1}, V_{2}\right)}{8 k\left|V_{3}\right|}$, and assume that F and $e\left(V_{1}, V_{2}\right)$ satisfy (2). Then one of the following holds:
I) There is a Θ-graph in $G\left[V_{1}, V_{2}\right]$.
II) There exist numbers A, B, D and non-empty subsets $V_{1}^{\prime} \subset V_{1}, V_{2}^{\prime} \subset V_{2}, V_{3}^{\prime} \subset V_{3}$ such that the induced trilayered subgraph $G\left[V_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}\right]$ has minimum degree at least $[A: B, C: D]$, with the following inequalities that bind A, B, and D :

$$
\begin{align*}
& B \geq 5, \quad(B-4) D \geq 2 k, \\
& A \geq 2 k(\Delta D)^{D-1} . \tag{4}
\end{align*}
$$

Proof. Assume, for the sake of contradiction, that neither (I) nor (II) hold. With hindsight, set $a_{j}=\frac{1}{t-j+1}$ for $j=0, \ldots, t-1$. We shall define a sequence of sets $V_{2}=V_{2}^{(0)} \supseteq V_{2}^{(1)} \supseteq \cdots \supseteq V_{2}^{(t)}$ inductively. We denote by

$$
d_{i} \stackrel{\text { def }}{=} e\left(V_{1}, V_{2}^{(i)}\right) /\left|V_{2}^{(i)}\right|
$$

the average degree from $V_{2}^{(i)}$ into V_{1}. The sequence $V_{2}^{(0)}, V_{2}^{(1)}, \ldots, V_{2}^{(t)}$ will be constructed so as to satisfy

$$
\begin{align*}
e\left(V_{1}, V_{2}^{(i+1)}\right) & \geq\left(1-a_{i}\right) e\left(V_{1}, V_{2}^{(i)}\right), \tag{5}\\
d_{i+1} & \geq d_{i} \cdot F a_{i} \prod_{j=0}^{i}\left(1-a_{j}\right) . \tag{6}
\end{align*}
$$

Note that (5) and the choice of a_{0}, \ldots, a_{i} imply that

$$
\begin{equation*}
e\left(V_{1}, V_{2}^{(i)}\right) \geq \frac{1}{t+1} e\left(V_{1}, V_{2}\right) \tag{7}
\end{equation*}
$$

The sequence starts with $V_{2}^{(0)}=V_{2}$. Assume $V_{2}^{(i)}$ has been defined. We proceed to define $V_{2}^{(i+1)}$. Put

$$
\begin{aligned}
& A=a_{i} e\left(V_{1}, V_{2}^{(i)}\right) / 2\left|V_{1}\right|-k-1, \\
& B=a_{i} d_{i} / 4+5, \\
& D=\min \left(2 k, 8 k / a_{i} d_{i}\right) .
\end{aligned}
$$

With help of (7) and (2c) it is easy to check that the inequalities (4) hold for this choice of constants.
In addition,

$$
\begin{aligned}
(A+k+1)\left|V_{1}\right|+B\left|V_{2}^{(i)}\right| & =\frac{3}{4} a_{i} e\left(V_{1}, V_{2}^{(i)}\right)+5\left|V_{2}^{(i)}\right| \\
& \stackrel{(2 \mathrm{e})}{\leq} \frac{3}{4} a_{i} e\left(V_{1}, V_{2}^{(i)}\right)+\frac{1}{4(t+1)^{2}} e\left(V_{1}, V_{2}\right) \\
& \stackrel{(7)}{\leq} a_{i} e\left(V_{1}, V_{2}^{(i)}\right)
\end{aligned}
$$

So, the condition (3) of Lemma 7 is satisfied for the graph $G\left[V_{1}, V_{2}^{(i)}, V_{3}\right]$. By Lemma 7 there is a subset $V_{2}^{(i+1)} \subset V_{2}^{(i)}$ satisfying (5) and

$$
\left|V_{2}^{(i+1)}\right| \leq D\left|V_{3}\right| / d
$$

Next we show that the set $V_{2}^{(i+1)}$ satisfies inequality (6). Indeed, we have

$$
\begin{aligned}
d_{i+1} & =\frac{e\left(V_{1}, V_{2}^{(i+1)}\right)}{\left|V_{2}\right|} \geq \frac{\left(1-a_{i}\right) e\left(V_{1}, V_{2}^{(i)}\right)}{D\left|V_{3}\right| / d}=\left(1-a_{i}\right) a_{i} d_{i} \frac{d}{8 k\left|V_{3}\right|} e\left(V_{1}, V_{2}^{(i)}\right) \\
& \geq\left(1-a_{i}\right) a_{i} d_{i} \frac{d \cdot e\left(V_{1}, V_{2}\right)}{8 k\left|V_{3}\right|} \prod_{j=0}^{i-1}\left(1-a_{j}\right)=d_{i} \cdot F a_{i} \prod_{j=0}^{i}\left(1-a_{j}\right) .
\end{aligned}
$$

Iterative application of (6) implies

$$
\begin{equation*}
d_{t} \geq d_{0} F^{t} \prod_{j=0}^{t-1} a_{j}\left(1-a_{j}\right)^{t-j} \geq d_{0} F^{t} \prod_{j=0}^{t-1} \frac{e^{-1}}{t-j+1}=d_{0} \frac{(F / e)^{t}}{(t+1)!} \tag{8}
\end{equation*}
$$

If we have $\left|V_{2}^{(t)}\right|<\left|V_{1}\right|$, then the average degree of induced subgraph $G\left[V_{1}, V_{2}^{(t)}\right]$ is greater than $e\left(V_{1}, V_{2}^{(t)}\right) /\left|V_{1}\right| \stackrel{(7)}{\geq} e\left(V_{1}, V_{2}\right) /(t+1)\left|V_{1}\right| \stackrel{(2 \mathrm{c})}{\geq} 2 k$, which by Corollary 5 leads to outcome (I).

If $\left|V_{2}^{(t)}\right| \geq\left|V_{1}\right|$ and $d_{t} \geq 4 k$, then the average degree of $G\left[V_{1}, V_{2}^{(t)}\right]$ is at least $d_{t} / 2 \geq 2 k$, again leading to the outcome (I). So, we may assume that $d_{t}<4 k$. Since $(t+1)!\leq 2 t^{t}$ we deduce from (8) that

$$
d_{0} \leq 4 k(t+1)!(e / F)^{t} \leq 8 k(e t / F)^{t} .
$$

This contradicts (2d), and so the proof is complete.
Locating well-placed Θ-graphs in trilayered graphs We come to the central argument of the paper. It shows how to embed well-placed Θ-graphs into trilayered graphs of large minimum degree. Or rather, it shows how to embed well-placed Θ-graphs into regular trilayered graphs; the contortions of the previous two lemmas, and the factor of $\sqrt{\log k}$ in the final bound, come from authors' inability to deal with irregular graphs.

Lemma 9. Let A, B, D be positive real numbers. Let G be a trilayered graph with layers V_{1}, V_{2}, V_{3} of minimum degree at least $[A, B, d+k, D]$. Suppose that no vertex in V_{2} has more than Δd neighbors in V_{3}. Assume also that

$$
\begin{gather*}
B \geq 5 \tag{9}\\
(B-4) D \geq 2 k-2 \tag{10}\\
A \geq 2 k(\Delta D)^{D-1} \tag{11}
\end{gather*}
$$

Then G contains a well-placed Θ-graph .
Proof. Assume, for the sake of contradiction, that G contains no well-placed Θ-graphs. Leaning on this assumption we shall build an arbitrary long path P of the form

where, for each i, vertices v_{i} and v_{i+1} are joined by a path of length $2 D$ that alternates between V_{2} and V_{3}. Since the graph is finite, this would be a contradiction.

While building the path we maintain the following property:
Every $v \in P \cap V_{2}$ has at least one neighbor in $V_{1} \backslash P$.
We call a path satisfying (\star) good.
We construct the path inductively. We begin by picking v_{0} arbitrarily from V_{1}. Suppose a good path $P=v_{0} \leadsto v_{1} \leadsto \cdots \not \cdots v_{l-1}$ has been constructed, and we wish to find a path extension v_{0} «ns v_{1} « $\cdots \nrightarrow v_{l-1} \leadsto v_{l}$.

For each $i=1,2, \ldots, 2 D-1$ we shall define a family \mathcal{Q}_{i} of good paths that satisfy

1. Each path in \mathcal{Q}_{i} is of the form $v_{0} \leadsto v_{1} \longleftrightarrow \cdots \not \cdots v_{l-1} \leadsto u$, where $v_{l-1} \leadsto u$ is a path of length i that alternates between V_{2} and V_{3}. The vertex u is called a terminal of the path. The set of terminals of the paths in \mathcal{Q}_{i} is denoted by $T\left(\mathcal{Q}_{i}\right)$.
2. For each i, the paths in \mathcal{Q}_{i} have distinct terminals.
3. For odd-numbered indices, we have the inequality

$$
\left|\mathcal{Q}_{2 i+1}\right| \geq-3 k+A\left(\frac{1}{\Delta}\right)^{i} \prod_{j \leq i}\left(1-\frac{j}{D}\right)
$$

4. For even-numbered indices, we have the inequality

$$
e\left(T\left(\mathcal{Q}_{2 i}\right), V_{2}\right) \geq d\left|\mathcal{Q}_{2 i-1}\right|
$$

Let

$$
t \stackrel{\text { def }}{=}\lceil B / 2\rceil .
$$

We will repeatedly use the following straightforward fact, which we call the small-degree argument: whenever Q is a good path and $u \in V_{2}$ is adjacent to the terminal of Q, then the path $Q u$ is adjacent to fewer than t vertices in $V_{1} \cap Q$. Indeed, if vertex u were adjacent to $v_{j_{1}}, v_{j_{2}}, \ldots, v_{j_{t}} \in V_{1} \cap Q$, then $v_{j_{2}}$ ans u (along path Q) and the edge $u v_{j_{2}}$ would form a cycle of total length at least $2 D(t-2)+2 \geq 2 D(B / 2-2)+2 \stackrel{(10)}{\geq} 2 k$. As $u v_{j_{3}}$ is a chord of the cycle, and u is adjacent to $v_{j_{1}}$ that is not on the cycle, that would contradict the assumption that G contains no well-placed Θ-graph.

The set \mathcal{Q}_{1} consists of all paths of the form $P u$ for $u \in V_{2} \backslash P$. Let us check that the preceding conditions hold for \mathcal{Q}_{1}. Vertex v_{l-1} cannot be adjacent to k or more vertices in $P \cap V_{2}$, for otherwise G would contain a well-placed Θ-graph with a chord through v_{l-1}. So, $\left|\mathcal{Q}_{1}\right| \geq A-k$. Next, consider any $u \in V_{2} \backslash P$ that is a neighbor of v_{l-1}. By the small-degree argument vertex u cannot be adjacent to t or more vertices of $P \cap V_{1}$, and $P u$ is good.

Suppose $\mathcal{Q}_{2 i-1}$ has been defined, and we wish to define $\mathcal{Q}_{2 i}$. Consider an arbitrary path $Q=v_{0} \leadsto v_{1} \leadsto \rightarrow \cdots \leadsto v_{l-1} \leadsto \rightarrow u \in \mathcal{Q}_{2 i-1}$. Vertex u cannot have k or more neighbors in $Q \cap V_{3}$, for otherwise G would contain a well-placed Θ-graph with a chord through u. Hence, there are at least d edges of the form $u w$, where $w \in V_{3} \backslash Q$. As we vary u we obtain a family of at least $d\left|Q_{2 i-1}\right|$ paths eligible for inclusion into $\mathcal{Q}_{2 i}$. We let $\mathcal{Q}_{2 i}$ consist of any maximal set of such paths with distinct terminals.

Suppose $\mathcal{Q}_{2 i}$ has been defined, and we wish to define $\mathcal{Q}_{2 i+1}$. Consider an arbitrary path $Q=v_{0} \leadsto v_{1} \leadsto \cdots \cdots v_{l-1} \longleftrightarrow u \in \mathcal{Q}_{2 i}$. An edge $u w$ is called long if $w \in P$, and w is at a distance exceeding $2 k$ from u along path Q. If $u w$ is a long edge, then from u to Q there is only one edge, namely the edges to the predecessor of u on Q, for otherwise there is a well-placed Θ graph. Also, at most i neighbors of u lie on the path $v_{l-1} \leadsto u$. Since $\operatorname{deg} u \geq D$, it follows that at least $(1-i / D) \operatorname{deg} u$ short edges from u that miss $v_{l-1} \leadsto u$. Thus there is a set \mathcal{W} of at least $(1-i / D) e\left(T\left(\mathcal{Q}_{2 i}\right), V_{2}\right)$ walks (not necessarily paths!) of the form $v_{0} \leftrightarrow v_{1} \nrightarrow \cdots \not \cdots \not v_{l-1} \downarrow u w$ such that $v_{l-1} \leftrightarrow u w$ is a path and w occurs only among the last $2 k$ vertices of the walk.

From the maximum degree condition on V_{2} it follows that walks in \mathcal{W} have at least $(1-i / D) e\left(T\left(\mathcal{Q}_{2 i}\right), V_{2}\right) / \Delta d$ distinct terminals. A walk fails to be a path only if the terminal vertex lies on P. However, since the edge $u w$ is short, this can happen for at most $2 k$ possible terminals. Hence, there is a $\mathcal{Q}_{2 i+1} \subset \mathcal{W}$ of size $\left|\mathcal{Q}_{2 i+1}\right| \geq(1-i / D) e\left(T\left(\mathcal{Q}_{2 i}\right), V_{2}\right) / \Delta d-2 k$ that consists of paths with distinct terminals. It remains to check that every path in $\mathcal{Q}_{2 i+1}$ is good. The only way that $Q=v_{0} \longleftrightarrow \cdots \not \cdots \not v_{l-1} \leftrightarrow u w \in \mathcal{Q}_{2 i+1}$ may fail to be good is if w has no neighbors in $V_{1} \backslash Q$. By the small-degree argument w has fewer than t neighbors in V_{1}. Since w has at least B neighbors in V_{1} and $B \geq t+2$, we conclude that w has at least two neighbors in V_{1} outside the path. Of course, the same is true for every terminal of a path in $\mathcal{Q}_{2 i+1}$.

Note that $\mathcal{Q}_{2 D-1}$ is non-empty. Let $Q=v_{0} \leadsto \cdots \cdots \nrightarrow v_{l-1} \leadsto u \in \mathcal{Q}_{2 D-1}$ be an arbitrary path. Note that since $2 D-1$ is odd, $u \in V_{2}$. By the property of terminals of V_{i} (odd i) that we noted in the previous paragraph, there are two vertices in $V_{1} \backslash Q$ that are neighbors of u. Let v_{l} be any of them, and let the new path be $Q v_{l}=v_{0} \leftrightarrow \cdots \not \cdots \leadsto v_{l-1} \leadsto u v_{l}$. This path can fail to be good if there is a vertex w on the path Q that is good in Q, but is bad in $Q v_{l}$. By the small-degree argument, w is adjacent to fewer than t vertices in $Q \cap V_{1}$ that precede w in Q. The same argument applied to the reversal of the path $Q v_{l}$ shows that w is adjacent to fewer than t vertices in $Q \cap V_{1}$ that succeeds w in Q. Since $2 t-2<B$, the path $Q v_{l}$ is good.

Hence, it is possible to build an arbitrarily long path in G. This contradicts the finiteness of G.
Lemma 6 follows from Lemmas 8 and 9 by setting $C=d+k$, in view of inequality $4 k^{2}+k \leq 5 k^{2}$.

3 Proof of Theorem 1

Suppose G has minimum degree of at least $2 d+4 k^{2}+k$ and contains no $C_{2 k}$. Pick a root vertex x arbitrarily, and let $V_{0}, V_{1}, \ldots, V_{k-1}$ be the levels obtained from the exploration process in Section 1.

Lemma 10. For $1 \leq i \leq k-1$, the graph $G\left[V_{i-1}, V_{i}, V_{i+1}\right]$ contains no well-placed Θ-graph.
Proof. The following proof is almost an exact repetition of the proof of Claim 3.1 from [13] (which is also reproduced as Lemma 11 below).

Suppose, for the sake of contradiction, that a well-placed Θ-graph $F \subset G\left[V_{i-1}, V_{i}, V_{i+1}\right]$ exists. Let $Y=V_{i} \cap V(F)$. Since F is well-placed, for every vertex of Y there is a path of length i to the vertex x. The union of these paths forms a tree T with x as a root. Let y be the vertex farthest from x such that every vertex of Y is a T-descendant of y. Paths that connect y to Y branch at y. Pick one such branch, and let $W \subset Y$ be the set of all the T-descendants of that branch. Let $Z=V(F) \backslash W$. From $Y \neq V_{i} \cap V(F)$ it follows that Z is not an independent set of F, and so $W \cup Z$ is not a bipartition of F.

Let ℓ be the distance between x and y. We have $\ell<i$ and $2 k-2 i+2 \ell<2 k \leq|V(F)|$. By Lemma 3 in F there is a path P of length $2 k-2 i+2 \ell$ that starts at some $w \in W$ and ends in $z \in Z$. Since the length of P is even, $z \in Y$. Let P_{w} and P_{z} be unique paths in T that connect y to respectively w and z. They intersect only at y. Each of P_{w} and P_{z} has length $i-\ell$. The union of paths P, P_{w}, P_{z} forms a $2 k$-cycle in G.

The same argument (with a different Y) also proves the next lemma.
Lemma 11 (Claim 3.1 in [13]). For $1 \leq i \leq k-1$, neither of $G\left[V_{i}\right]$ and $G\left[V_{i}, V_{i+1}\right]$ contains a bipartite Θ-graph.

The next step is to show that the levels $V_{0}, V_{1}, V_{2}, \ldots$ increase in size. We shall show by induction on i that

$$
\begin{align*}
e\left(V_{i}, V_{i+1}\right) & \geq d\left|V_{i}\right|, \tag{12}\\
e\left(V_{i}, V_{i+1}\right) & \leq 2 k\left|V_{i+1}\right|, \tag{13}\\
e\left(V_{i}, V_{i+1}^{\prime}\right) & \leq 2 k\left|V_{i+1}^{\prime}\right|, \tag{14}\\
\left|V_{i+1}\right| & \geq(2 k)^{-1} d\left|V_{i}\right|, \tag{15}\\
\left|V_{i+1}\right| & \geq \frac{d^{2}}{400 k \log k}\left|V_{i-1}\right| . \tag{16}
\end{align*}
$$

Clearly, these hold for $i=0$ since each vertex of V_{1} sends only one edge to V_{0}.

Proof of (12): By Lemma 2 the degree of every vertex in V_{i} is at least $d+3 k+1$, and so

$$
e\left(V_{i}, V_{i+1}^{\prime}\right) \geq\left|V_{i}\right|(d+3 k+1)-e\left(V_{i-1}, V_{i}\right) \stackrel{\text { induc. }}{\geq}(d+k+1)\left|V_{i}\right| .
$$

We next distinguish two cases depending on whether V_{i+1} is big (in the sense of the definition from Section 1). If V_{i+1} is big, then $e\left(V_{i}, V_{i+1}\right)=e\left(V_{i}, V_{i+1}^{\prime}\right)$, and (12) follows. If V_{i+1} is normal, then Corollary 5 implies that

$$
e\left(V_{i}, \mathrm{Bg}_{i+1}\right) \leq k\left(\left|V_{i}\right|+\left|\mathrm{Bg}_{i+1}\right|\right) \leq(k+1)\left|V_{i}\right|
$$

and so

$$
e\left(V_{i}, V_{i+1}\right)=e\left(V_{i}, V_{i+1}^{\prime}\right)-e\left(V_{i}, \mathrm{Bg}_{i+1}\right) \geq d\left|V_{i}\right|
$$

implying (12).
Proof of (13): Consider the graph $G\left[V_{i}, V_{i+1}\right]$. Inequality (12) asserts that the average degree of V_{i} is at least $d \geq 2 k$. If (13) does not hold, then the average degree of V_{i+1} is at least $2 k$ as well, contradicting Corollary 5.

Proof for (14): The argument is the same as for (13) with $G\left[V_{i}, V_{i+1}^{\prime}\right]$ in place of $G\left[V_{i}, V_{i+1}\right]$.

Proof for (15): This follows from (13) and (12).
Proof of (16) in the case V_{i} is a normal level: We assume that (16) does not hold and will derive a contradiction. Consider the trilayered graph $G\left[V_{i-1}, V_{i}, V_{i+1}^{\prime}\right]$. Let $t=2 \log k$. Suppose momentarily that the inequalities (2) in Lemma 6 hold. Then since V_{i} is normal, the degrees of vertices in V_{i} are bounded from above by Δd, and so Lemma 6 applies. However, the lemma's conclusion contradicts Lemmas 10 and 11. Hence, to prove (16) it suffices to verify inequalities (2a-d) with $F=d \cdot e\left(V_{i-1}, V_{i}\right) / 8 k\left|V_{i+1}^{\prime}\right|$.

We may assume that

$$
\begin{equation*}
F \geq 2 e^{2} \log k, \tag{17}
\end{equation*}
$$

and in particular that (2a) holds. Indeed, if (17) were not true, then inequality (12) would imply $\left|V_{i+1}^{\prime}\right| \geq\left(d^{2} / 16 e^{2} k \log k\right)\left|V_{i-1}\right|$, and thus

$$
\left|V_{i+1}\right| \geq\left(1-\frac{1}{k}\right)\left|V_{i+1}^{\prime}\right| \geq\left(d^{2} / 32 e^{2} k \log k\right)\left|V_{i-1}\right|,
$$

and so (16) would follow in view of $32 e^{2} \leq 400$.
Inequality (2b) is implied by (15). Indeed,

$$
e\left(V_{i-1}, V_{i}\right)=8 k\left|V_{i+1}\right| F / d \stackrel{(15)}{\geq} 4 F\left|V_{i}\right| \stackrel{(15)}{\geq} 2 k^{-1} d F\left|V_{i-1}\right|,
$$

and $d \geq k^{2}$ by the definition of d from (1).
Inequality (2c) is implied by (1) and (12).
Next, suppose (2d) were not true. Since $F / t \geq e^{2}$ by (17), we would then conclude

$$
\begin{aligned}
\left|V_{i+1}\right| & \stackrel{(15)}{\geq}(2 k)^{-1} d\left|V_{i}\right| \geq\left(16 k^{2}\right)^{-1}(F / e t)^{t} e\left(V_{i-1}, V_{i}\right) \\
& \geq\left(16 k^{2}\right)^{-1} e^{2 \log k} e\left(V_{i-1}, V_{i}\right) \stackrel{(12)}{\geq} \frac{1}{16} d\left|V_{i-1}\right|,
\end{aligned}
$$

and so (16) would follow.
Finally, (2e) is a consequence of (12).

Proof of (16) in the case V_{i} is a big level: We have

$$
\begin{aligned}
\left|V_{i+1}\right| & \geq \frac{1}{2}\left|V_{i+1}^{\prime}\right| \stackrel{(14)}{\geq}(4 k)^{-1} e\left(V_{i}, V_{i+1}^{\prime}\right) \geq(4 k)^{-1} e\left(\mathrm{Bg}_{i}, V_{i+1}^{\prime}\right) \geq(4 k)^{-1} \Delta d\left|\mathrm{Bg}_{i}\right| \\
& \geq\left(8 k^{2}\right)^{-1} \Delta d\left|V_{i}\right| \stackrel{(15)}{\geq}\left(16 k^{3}\right)^{-1} \Delta d\left|V_{i-1}\right|=\frac{1}{16} d\left|V_{i-1}\right|,
\end{aligned}
$$

and so (16) holds.
We are ready to complete the proof of Theorem 1. If k is even, then $\lfloor k / 2\rfloor$ applications of (16) yield

$$
\left|V_{k}\right| \geq \frac{d^{k}}{(400 k \log k)^{k / 2}}
$$

If k is odd, then $(k-1) / 2$ applications of (16) yield

$$
\left|V_{k}\right| \geq \frac{d^{k-1}}{(400 k \log k)^{(k-1) / 2}}\left|V_{1}\right| \geq \frac{d^{k}}{(400 k \log k)^{(k-1) / 2}}
$$

Either way, since $\left|V_{k}\right|<n$ we conclude that $d<20 \sqrt{k \log k} \cdot n^{1 / k}$.

References

[1] Clark T. Benson. Minimal regular graphs of girths eight and twelve. Canad. J. Math., 18:10911094, 1966.
[2] Pavle V. M. Blagojević, Boris Bukh, and Roman Karasev. Turán numbers for $K_{s, t}$-free graphs: topological obstructions and algebraic constructions. Israel J. Math., 197(1):199-214, 2013. arXiv:1108.5254.
[3] J. A. Bondy and M. Simonovits. Cycles of even length in graphs. J. Combinatorial Theory Ser. B, 16:97-105, 1974.
[4] W. G. Brown. On graphs that do not contain a Thomsen graph. Canad. Math. Bull., 9:281-285, 1966.
[5] P. Erdős. On sequences of integers no one of which divides the product of two others and on some related problems. Inst. Math. Mech. Univ. Tomsk, 2:74-82, 1938.
[6] P. Erdős and A. Rényi. On a problem in the theory of graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl., 7:623-641 (1963), 1962.
[7] Zoltan Füredi, Assaf Naor, and Jacques Verstraëte. On the Turán number for the hexagon. Adv. Math., 203(2):476-496, 2006. www.cims.nyu.edu/~naor/homepagefiles/final-hexagons. pdf.
[8] Zoltán Füredi and Miklós Simonovits. The history of degenerate (bipartite) extremal graph problems. arXiv:1306.5167, June 2013.
[9] Peter Keevash. Hypergraph Turán problems. In Surveys in combinatorics 2011, volume 392 of London Math. Soc. Lecture Note Ser., pages 83-139. Cambridge Univ. Press, Cambridge, 2011. http://www.maths.ox.ac.uk/~keevash/papers/turan-survey.pdf.
[10] T. Kövari, V. T. Sós, and P. Turán. On a problem of K. Zarankiewicz. Colloquium Math., 3:50-57, 1954.
[11] Felix Lazebnik and Vasiliy A. Ustimenko. Explicit construction of graphs with an arbitrary large girth and of large size. Discrete Appl. Math., 60(1-3):275-284, 1995. ARIDAM VI and VII (New Brunswick, NJ, 1991/1992).
[12] Keith E. Mellinger and Dhruv Mubayi. Constructions of bipartite graphs from finite geometries. J. Graph Theory, 49(1):1-10, 2005. http://homepages.math.uic.edu/~mubayi/papers/ ArcConstf.pdf.
[13] Oleg Pikhurko. A note on the Turán function of even cycles. Proc. Amer. Math. Soc., 140(11):3687-3692, 2012. http://homepages.warwick.ac.uk/~maskat/Papers/EvenCycle. pdf.
[14] Alexander Sidorenko. What we know and what we do not know about Turán numbers. Graphs Combin., 11(2):179-199, 1995.
[15] M. Simonovits. A method for solving extremal problems in graph theory, stability problems. In Theory of Graphs (Proc. Colloq., Tihany, 1966), pages 279-319. Academic Press, New York, 1968.
[16] P. Turán. On an extremal problem in graph theory (in Hungarian). Mat. Fiz. Lapok, 48:436-452, 1941.
[17] Jacques Verstraëte. On arithmetic progressions of cycle lengths in graphs. Combin. Probab. Comput., 9(4):369-373, 2000. arXiv:math/0204222.
[18] R. Wenger. Extremal graphs with no C^{4} 's, C^{6} 's, or C^{10} 's. J. Combin. Theory Ser. B, 52(1):113116, 1991.

[^0]: *Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213. Supported in part by U.S. taxpayers through NSF grant DMS-1301548.
 ${ }^{\dagger}$ Supported in part by U.S. taxpayers through NSF grant DMS-1201380.

[^1]: ${ }^{1}$ We recall the definition of a Θ-graph in Section 2

