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This paper is concerned with linear partial difference

operators L having constant coefficients. The functions

considered are defined only on the lattice points of the complex

plane. It is shown that with any two solutions of Lu(z) = 0

there is associated a new solution which is represented as a

convolution product. This product may be considered as a type of

line integral and is based upon a discrete analogue of Green's

formula. This development may be regarded as an anology to the

pioneering work of H. Lewy concerning the composition of solutions

of partial differential equations. It may also be considered a

continuation of the investigation pursued by Duffin and Duris

in the introduction of a convolution product for discrete analytic

functions.
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Partial Difference Equations*

by

R. J. Duffin

and

Joan Rohrer
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1. Introduction

The purpose of this paper is to establish a formula which

associates with any two solutions of a partial difference equa-

tion with constant coefficients a new solution which is represented

as a convolution product. This product is based upon a discrete

analogue of Green's formula in the plane.

The lattice points of the complex plane are the points

z = m + ni, where m and n may assume the values 0, ll, "t2, . . . .

Let u(z) be a complex-valued function defined on the lattice

points of the plane. The translation operators are defined as

follows:

(1) X^u(z) = u(z + m) ; Y nu (z) = u (z +• in), m,n = 0,11,12,

We are concerned with solutions of the partial difference

equation

(2) Lu(z) = 0,

k m. n.
where L = L c.T.. T. = X Y , m.. n. are real integers and

. , l i' l * l* l ^

, -m. -n .
c. are complex constants. Note that the operator T7 = X Y

*Prepared under, Research Grant DA-ARO-D-31-124-G68O, Army Research
Office (Durham).



is the inverse of T..

Particular examples of the partial difference equations of

concern are:

(3) (X - 21 + X""1 + Y - 21 + Y"1)u(z) = 0 (Laplace !s equation)

(4) [(X - 21 + X"1) - c~2(Y - 21 + Y""1)]u(z) = 0 (Wave equation)

(5) (X - 21 + X""1 + Y - 21 + Y"*1)2u(z) = 0 (Biharrnonic equation)

(6) [(X - 21 + X"1) - c(Y - I)]u(z) = 0 (Heat equation)

(7) (I + iX - XY - iY)u(z) = 0 (Cauchy-Riemann equation3 complex forr

A problem of interest concerning such difference equations is the

generation of new solutions from a given solution. One approach

to this problem was given by Duffin and Shelly [2] by the defin-

ition of operators under which the solution set is invariant. A

new class of such operators is studied here.

The first four of the above equations are self-explanatory;

the-last refers to the theory of discrete analytic functions 3

and solutions of this equation are termed discrete analytic. It

was shown by Duffin and Duris [1] that, given two solutions w(z)

and u(z) of (7) there is a new solution $(z) = w*u^ where "*"

was termed a convolution product. This product is both commutative

and associative. In this paper we also introduce a convolution

product for solutions of an arbitrary difference equation of the

class described. We shall designate this product as ^(z) = w*u;

in generalj however, this product is neither commutative nor

associative.

We pattern our product after a formula given by Hans Lewy

[5]3 who was concerned with the corresponding problem for partial

differential equations. The formula of Lewy has several applications



in the theory of partial differential equations; in particular

we refer to the paper by Lehman and Lewy [6].

To develop the formula in the context of discrete function

theory, we first of all need a close analogue of Green's formula

in the plane. We express this as:

k /
£[v(z)Lu(z) - u(z)Mv(z)J = £ c. / v(a)u(T.a)d/i. ;
E i=l 1*/MB *- 1

here M is the adjoint difference operator, and E is a set of

lattice points in the complex domain. On the right of this for-

mula is a Stieltjes-type integral evaluated on a closed contour

MB termed the median boundary of E, and oc denotes certain

points in the vicinity of this boundary. We then proceed to

define an open contour integral given by the formula

i-iCi J'
1 — 1 %J

(w*u) (z) = £ c.. / w(z - a) u (T.a) d/x. .

It is clear that this is a product of convolution type. By

virtue of Green's formula it results that this product is independ-

ent of the path if w and u are both solutions of the difference

equation. By making use of this property it is then shown that

this convolution product is itself a solution of the difference

equation.

2. The adjoint operator and Green's formula

Let u!(z) and v!(z) be lattice functions which both vanish

:L R where R is a constant. If £ indicates the sum

taken over all lattice points, it is clear that

(1) £ v' ( z J x W (z) = £ u' (z)X~rVrV (z) .



k
Corresponding to the operator L = £ c.T. , the adjoint operator

1 = 1 k- -1M is defined in this treatment by M = £ c.T. . Then by (2-1)
i=l x x

it is seen that

(2) £v» (z)Lu' (z) - u' (z)MV (z) = 0 .

In particular for functions u ! and vT which vanish outside a

finite set E of lattice points, (2-2) becomes

(3) £ vT (z)Lu' (z) - u» (z)MV (z) = 0.

E

Now let u(z) and v(z) be lattice functions; let u ! = u and

v ! = v in Ey and let uT = vT = 0 in the complement E 1 . Define

the sets of neighboring points for a lattice point z as deter-

mined by L and M:

f[r (z) = { C C = T.z for some i, 1 < i < k} :

tt?M(z) = { C IC = T.
-1z for some i, 1 < i < k} .

Note that the sets are not necessarily disjoint and also that

Now for zeE , define

0 if T. (z)eE
T.vu(z) ' X

u(T. z) if T. (z) eET ;
J-» wr i

(T.~ ) is defined similarly,
-N k > -N k ..

Then let L°u(z) = £ c ^ V u (z) ; likewise Mu(z) = £ c. (T. ~X) uu (z) .

At a point zeE such that ^?L (
z) ^ E' = 0 ^ Lu' = Lu ; when

7(L(z) n E 7 0 , Lu' = Lu - L u. Thus at each point zeE,

Lu! = Lu - L u

Mu' = Mu - M u .



Then (2-3) may be written

L/v(z) [Lu(z) - L u(z)] - u(z) [Mv(z) - M
E

= O

or

(4)
E

- u(z)Mv(z)]
E

This may be termed a first analogue of Green's formula for partial

difference equations.

Now if Lu(z) = Mv(z) = 0 in E, (2-4) gives

(5) £[v(z)lAi(z) - = 0 .

• Green's formula as a line integral

It is proposed to formulate the right side of Green's formula

(2-4) as a line integral. To facilitate introduction of this

line integral the device of the "median boundary" is used.

The edges of the primal lattice are those lines of length

one connecting lattice points z. and z., where Z i —
= 1

Now consider a dual lattice whose edges, again having length

are the perpendicular bisectors of edges of the primal latttice.

About each point z of E, construct a unit square having z as

center. The sides of such a square are edges of the dual lattice;

the union of all such squares will be designated the associated

region of E. See Figure 1.

\

Yy " I

H

t
i-J

Figure 1. A set E together
with its associated
region

Figure 2. A set E together
with its median
boundary



The boundary of the associated region of E consists of a

set of closed "curves" which are unions of edges of the dual

lattice. Hereafter we are concerned only with a set E whose

associated region has a boundary consisting of a single simple

closed curve (or Jordan curve^ in the usual sense). This

boundary will be designated as the median boundary MB of E;

see Figure 2.

Let MB have direction of circulation so that the enclosed

set E remains on the left. For an arbitrary translation T_,

construct a translation vector from every lattice point a to

the lattice point Ta = fi, observing the following convention:

The vector To. shall be composed only of edges of the primal

lattice and shall exhibit at most a single right turn. For ex-
p —

ample^ if T = XY ^ the translation vector T^ would be constructed

by moving along consecutive edges beginning at a, first two

units upward and then one unit to the right. See Figure 3.

Figure 3. Construction of the translation
vector for T = XY2.

Le t • • • J P V T the points at which MB crosses an

edge of the primal lattice. For a specified translation T, define

the sets of lattice points:

A(p ) = [a\TC( c r o s s e s MB a t p } 3 f o r s = 1 , 2, . . . , N.



Noting that if A (p ) contains more than one element9 Ta crosses

MB in the same direction, VaeA(p ) , we now define a step function

on the set pn ,p^, . . • ,p%, as follows:
f0 if A(p ) = 0 ;

(1) d/i(p ) =V+1 if Ta crosses MB at p left to right;
I -
-1 if To: crosses MB at p right to left.

k S

Now suppose f (Oiy jS) is a function defined on pairs of lattice

points OL and iŜ  where j8 = Ta. Then the line integral of f
around the contour MB is symbolized by

MB

and in this context this line integral is defined by

f N

(2) /(f}d/z s £ £
MB S = 1 tt6A

The symbol {} is used to indicate that it is in general a set

of functional values of f that is to be multiplied by the measure

function d/i at a particular point. With this understanding, how-

ever^ there will be no danger of confusion if we omit the braces

and write simply

MB

Of course it may happen that a single translation vector

crosses MB N times, where N > 1; however it is impossible

that Ta should cross MB in the same direction twice in success-

ion. To see this^ let the crossing points be labeled p ,p ^.

sl S2

as they occur consecutively along Tec from its tail towards its

head. Now suppose aeA (p ) fl A (p ), and that the crossings
Sm sm+l
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at p and p both occur in the direction left to right.
sm Sm+1

Since MB circulates with the associated region on its left and

Ta always crosses MB perpendicularly, this would imply that Ta

passes from the inside to the outside of the associated region

twice in succession^ which is clearly impossible. Likewise it

is impossible that two consecutive crossings should occur from

right to left. Thus we have dfi(p ) = -d/i(p ) , and it may
_ Sm sm+l

be concluded that if Ta crosses MB an even number of times,,

there is no net contribution to the sum in (3-2) .

If To. crosses MB an odd number of times,, then either

(i) aeE and TcteEr , in which case the left-to-right crossings

must exceed the right-to-left crossings by exactly one; and

the net contribution to the sum is •\-£{a.,Tot)-:> or

aeE1 and TG^eE, in which case the right-to-left crossings

must exceed the left-to-right crossings by exactly one; with

a net contribution of -f (G^Ta) to the sum.
Now let a and b denote two points on MB which are inter-

section points of edges of the dual lattice. Then the definite

line integral is defined by

b

(3) /fd/i = £ S f (a,Ta)djLi(pQ) sQ

where the sum is taken over all points of the set p,, ,.,,p

which occur between a and b in the positive sense of circulation.

The integral thus defined satisfies

b c c

(4) /fd/i + /fd/i = /fd/i ;

if the direction of path be reversed,,



(5) Tfd/i = - /fd/i.

b a

Clearly the integral is a linear operator. Thus

b b b

(f + g)d/i = /fdju + jgdjl .

a a a

Taking f (ot,Ta) = v(a)u(Ta) we have

Lemma 3 . 1 .

£[v(z)T^u(z) - u(z) (T"1)^v(z) ] = / v (oc) u (Ta) d/i
E
* MB

Proof: In view of the preceding remarks,, it is seen that a non-zero

contribution occurs on the right side only for those lattice points

a for which To: crosses MB an odd number of times. For those

cases either ot or TaeE^ and a corresponding term appears on the

left side:

(i) For oteE, TaeE » , the term v(a)u(TG0 appears on the right;

taking z = <x, T u(z) = u(Tz) = u(Ta) and the same term

appears on the left.

(ii) For aeE'j TaeE, the term -v(a)u(Ta) appears on the right;

taking z = Tot, T~ z = OieEl , so that (T~ ) v(z) = v(a)

and the term -u(TQ:)v(o:) appears on the left.

It is clear that such a correspondence accounts for all the terms

on the left side^ since the sum is taken only over points zeE

and the presence of either T or (T~ ) in each term decrees

that a non-zero contribution can occur only if either TzeE! or

T~ zeE1. This in turn necessitates that the translation vector

Ta cross MB an odd number of times, with either cc = z or

cc = T~ z, respectively.
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Consider now the set of translations 1\ ̂ T ^ . . .T, appearing

in L. Define the sets A. (p ) and the step functions d/i. (p )
JL t> 1 S

as above to correspond with the translations T., i = l,2,...^k.
1 k

Then from the preceding lemma it follows that for L = E cATA

(6) I
E

~x k r
- u(z)M v(z)l = L c. / v(a)u(T.a)d/i.

• i 1 7 1 1
1 = 1 MB

.•10mm

This together with the first form of Green's formula (2-4) gives

k r
(7) L[v(z)Lu(z) - uMv(z)J = £ c / v (a) u (T. a) d/i. .

1"~ MB

This is the second analogue of Green Ts formula.

It follows that for functions u and v satisfying

Lu = Mv = 0 in .E,

(8) £Ct / v (oc) u (T . oc) d/i. = 0
V
MB

This together with (3-5) implies that the line integral

b

(9) ' *(u,v,a,b) = £ c. fv{a) u(T4 a) dfi.

a

k fLCiJ

k f
v̂̂ â b) = L c. /

i=l V

is independent of path between points a and b on the dual

lattice_, provided any two paths taken together enclose a region

E where Lu = Mv = 0. This line integral exhibits a useful

translation property.

Lemma 3.2. \f(u, v,T . a,T .b) = ^(T .u,T . v, a,b)

Proof. Assuming that the conditions for independence of path

continue to hold, choose a path P to evaluate the left side.

Then the "parallel" path T.~ P may be used to evaluate the right
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side, and it is observed that the crossing points on the two

paths are in 1-1 correspondence. The functions u and v as

evaluated on path P are replaced by the translated functions

T.u and T.v on the path TT P.
3 3 3

»
4. The convolution product

Let 0 represent the origin of the xy plane, Q the point

z = x + iy, P the point z = x + iy. A lattice function w(z)

may be considered a function of the vector OQ; also w(z) =

w(OQ) = w(QP) = w(z - z) provided the vector QP has the same

components as the vector OQ. Let the notation X Y w(QP)

indicate that the operation X Y is to be applied treating the

point P as independent variable while the point Q is held

fixed; i.e., X Y w(z - z) = w(z + ra + in - z). Correspondingly,

A AmiAni A ^ A
let T. = X Y , L = Lc.T.

Lemma 4.1. Suppose the vectors QP and OQ have the same components.

Then if Lw(z) = 0, Mw(z - z) = 0.

Proof. First it is observed that Lw(OQ) = Lw(QP), and Lw(z) = 0

L ( z - z) = 0 . Now Mw(z - z) = S c.T7 W ( Z - z)

= L.c.w(z - T71z)
I I

= L c.w(T. z - z)
1 1

A .A
= Lw(z - z)

= 0.

Thus if Lu = Lw =0 in E, O G E , the function v (a) in (3-9) may

be replaced by the function w(z - a) • the integral remains inde-

pendent of path provided any two paths enclose a region E# c: E

such that for any point oieE*3 the vector QP directed from a
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to z has the same components as a vector OQ !eE. See Figure 4,

Figure 4. QP = OQ1

The concept of the median boundary was introduced merely for

convenience in computing the line integral. Without changing the

meaning of the integral, let the limits a and b on the dual

lattice now be identified with the lattice points z-, = a - e,

Zy = b » Gj where 6 = -r- + ~ i . It then results that

(1) E c.. / w(z - a)u(T.a)d/i.
i=l xJ x x

In particular^ the lattice points 0 and z may be

chosen as limits, provided that the conditions for independence

of path are fulfilled. This establishes as a function of z,

and finally the convolution product of two functions u and w

satisfying (1-2) is here defined as

(2) (w*u) (z) = c
= S c . / w(z - , a.) u (T. a) d/i.

If Lw = Lu = 0 in the entire plane, then the convolution product

is independent of path for any lattice point z. For Lw = Lu = 0

in a rectangular region E surrounding the origin, the conditions

for independence of path are fulfilled whenever zeE and paths are

restricted to the quadrant of E containing z. If z lies on an
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axis^ then paths restricted to the half-plane containing z will

be suitable.

r

5. The convolution product as a solution of the difference equation

For clarity of presentation and emphasis of the main result

of this developmentj the following theorem is stated and proved

under the specialized hypothesis that u and w are solutions

of (1-2) in the entire plane. Remarks concerning adaptation to

more general situations follow the proof.

Theorem: If Lu(z) = Lw(z) = 0 for all z, then likewise

L(w*u) (z) = 0 for all z.

Proof: L(w*u) (z) = L\&(z) = 2 c.^(T.z); a convenient path is

chosen for the evaluation of ^(T.z) . Let

, T .0

(1) p- = 2 q / w(T.z - a)u(T.a)da. : <o

T .z

c. / w(T.z - a) u (T . a) du

Then by property (3-4) and independence of path., ^(T.z) — p. + (p.

so that

j=l
c.p .
3 D

Now by the translation property,

c .p
= 1 D 3

so that L
k
Lc.(p

(2)

1=1 ^
w(T.z - T .a)u (T .T. a) du.

c. / w(z - a) u(T .T. a) du. ,

T)

w(z - a) Lc.T.u(T.a)d/x.
D D 1 1

k
S

i = 1
Lu

= o

HUNT LIBRARr
CARNEGIE-MELLON
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k k
It remains to show that £ c.p. = 0 . Observe that p. — S c.p..,

i D D 3 • i l l
= l J J J 1

where
T.O

(3) P. . = / w(T. z - a) u

We propose to show that the matrix (̂ '̂  ^s s-^ew symmetric

Letting T. a = j8_, a = T. "~ jS , we have

T.O

ro
T .0

(4) = f

similarly _,
T.O

(5) p j ± = /
X)

Now since p. is independent of dual lattice path between 0 and

T.O = m. + n.i. it is possible to consistently choose a path P.

which makes at most one left turn. Also it is important to note

here that for a fixed i and j, the integrand of p.. and p..

is a function of j8 alone; i.e., the usual f (ot,fi) of (3-2)

may here be written f(6) .

The desired result is thus a special case of the more general

result

T.O T.O

(6) / f(P)dii. = -/ f(j8)d/ij ,

under the condition that the respective paths on the dual lattice,

P. and P., can exhibit at most a single left turn and f(j3) is

an arbitrary function. However, to establish this it is sufficient

to consider the case f (#) = 0 except if j3 has the special value
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j8 = jS . The general case will then follow by the linearity of

the line integral.

That the left and right sides of (5-6) must have the same value

is a simple geometrical consequence of the consistent choice of

left-turn paths and right-turn translation vectors. Consider the

path P. : set OL = T. " /3 and consider the translation vector^ j 3 1 1 o

T.GL . There are three possibilities:

(i)

(ii)

(iii)

T OL
1 1

±a

does not cross P. ;

crosses P. twice ;

crosses p. once .

In the first two cases^ the left side of (5-6) vanishes. In the

third case, the left side of (5-6) becomes *f(j8 ), the sign being

determined by the direction of crossing.

Next consider the path P. • set = T. ]S and consider
3 o

the translation vector T.
D

ensue:

The same three possibilities

(i)

(ii)

(iii)

does not cross P.;

crosses P. twice :
l *

crosses P. once.

< * .

— J

0

A
t

A

Path P. ̂  translation vector T. OL „ Path P._, translation vector T.G'

Figure 5.



16

If the diaqram of P. and T.OL be rotated 180°, it is
J j 1 1 *

found to be identical with the diagram of P and *T .ao (except
i 3 z

1 1 -
for a uniform shift of e = y + -r- i) ; in fact, P. and T. OL

Z A ] J Z

and P. and T. GL , respectively, are indistinguishable except

for the sense of direction, A typical case is illustrated in

Figure 5. Thus it may be concluded that

(i)«=-> (i) *, (ii)«=Mii) <, (iii)«=>(iii) t,

and that the direction of crossing in the cases (iii) and (iii)'

must be opposite. It is also important to note that j3 serves

as the terminus of both T.o: and T. OL , assuring that, in the

case of (iii), both sides of (5-6) have a common value of if(# ) .

It is interesting to note that when i = j, case (iii) is

impossible•

Thus (5-6) is demonstrated and from it follows the desired

result p.. = -p.., p.. = 0, i = 1,2,...,k. Then

k k k
c . p . = Ti JJC . c . p. . = 0 ,

J

as was to be shown. QED.

For the case where Lu = Lw = 0 in a bounded region E, it

may be concluded that L(w*u)(z) = 0 provided the following addi-

tional conditions are met:

1) ^(z) must be independent of path throughout a sufficient-

ly large region E* c E containing both the origin and the point

z, so that the evaluation of ^'(T.z) may include the term p.

as defined in (5-1) ;

2) There must exist a dual lattice path PT joining the

points a = 0 + e and b = z + e having the property that

TiAi(p) = {/3|jS = T±a for «eAi (p) } c E , for i = l,2,...,k and
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for each point p lying on Pl between a and b. This condition

makes it possible to conclude Lu(T.a) = 0 in (5-2) .

6. Applications

(i) Suppose u(z) is a real discrete harmonic function;

u(z) satisfies (1-3) . Then the function = l*u

is a conjugate harmonic function of u(z) . In this context_, the

conjugate harmonic function is defined on the nodes of the dual

lattice,, so that we revert to the original formula (3-9) . The

"Cauchy-Riemann" equations to be satisfied are A ^ = A u 9

A ^ = -A Uj where the symbol t!Af!denotes a forward difference.x y

Consider an edge S of the primal lattice with left end-point

z. Let a denote the lower end-point of the edge of the dual lattice

which bisects S. (See Figure 6.) Then the "Cauchy-Riemann"

equations become

u(z - u(z),

+ i, a+l+i) = -[u(z + 1 + i) - u(z + 1) ] .

That these equtions are satisfied is a direct consequence of the

definition of

1
t

t

. ^* ~̂* — f • —

1

1
1

• - -1 - ~

1

1 -

*

1
, \

4—1_

2 ;

>
i _ . . _ -

i

w

Figure 6.
*

(ii) Consider the discrete form of the heat equation (1-5) .
k i

Here L = £ c.T. = X + X - c Y + (c - 2)1. We generate thex 1

solution (w*u)(z) by choosing a path exhibiting a single left
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For z = m + ni^ m_,n > 0,
z

= £ c.f
i=l V1 t)

w(z - a) u (T. a) dju.

m n
= c £ w(z-s) u (s+i) + £ [w (z-m-si) u (m+l+si) -w (z-m-l-si) u (m+si) ]

s=l s=l
m n

= c £ w(z-s) u (s+i) + £ [w( (n-s) i) u (m+l+si) -w(-l+(n-s) i) u (m-t-si) ]
s=l s=l

Figure 7 illustrates the translation vectors XOL, X
"I

as

they cross the dual lattice path and the points (circled) at

which w is to be evaluated.

I

Figure 7.

2

(iii) It is known thatthe polynomials 1, z, z are dis-

crete analytic in the entire plane; i.e., they satisfy Lu(z) = 0,

where L = I + iX - XY - iY. Then the functions >J>(z) = (l^u) (z)
2for u(z) = or will also be discrete analytic in the

entire plane. For the sake of brevity3 the lattice points of the

plane may be listed as a single sequence z 3 z. , z 9 •••; this

sequence is termed the spiral coordinate system . See Figure 8C

In Table 1 the first sixteen of these points are listed together

with the values of the functions ^(z) = (l*u) (z) at these points^
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for u(z) The formulas (adapted from (4-2)) used to

obtain the functional values are also tabulated.

Notation: u. = u(z.) .

i

1/6

17

/f

11

to

IS

i

Zl

\l'f
\ „ ,

3

fi

7

Zl

[15

z

1

$

23

11

il

10

Z4

n

is

Figure 8. The spiral coordinate system

3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

z .

0

1

1+i

i

-1+i

-1

-1-i
•

- l .

1-i

2-i

2

2+i

2+2i

l+2i

2i

-] +2

1*1

0

2i

-2

3+i

2+2i

4i

-2+2i

-3+i

l*z

0

-2+3i

-2

-i

3

6+2i

3+5i

-6+8i

-6+3i

-5-i

-3-4i

0

-6+3i

-2-2i

-l

-i

5

14+4i

5+13i

-26+8i

-3-9i

5-6i

l*u(z)

0

iu2+Ull
iu2+iull

Ul+U10

iu2+Ull+iull+U28

iu2+iull+iu12+iu29
iu2+iu11+iu12-u12

27

28
29

3+i
3+2i Table 1.
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It is found that the resulting functional values ^(z) are

those which would be obtained by the following special cases of

the discrete line integral as defined in [1] by Duffin and Duris:

z

1 * 1 = j (1 + i ) 1 6 z = ( 1 + i ) z ;

Z 2
i* / r n ^ -\ ± ( l + 3 i ) u (1 4- i ) ? / ^ ,1 4- 3iN1* z = / [ (1 + l ) z + J ] 6z = ——TT-2 + ( ^ ) zf

z 3 _
= I [ (1 + i ) z 2 + (1 + 3 i ) z + 2 i ] 6 z - (1+i) j z + z / 2 ) + (1±21) z

2 + 2 i z

0

This example raises the question of the general relationship between

the convolution product presented here and that introduced previous-

ly by Duffin and Duris,
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