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Abstract

A finite difference scheme is proposed for a relatively simple one dimen-
sional collisional plasma model (Vlasov-Poisson-Fokker-Planck). The con-
vergence of the scheme was established in [10]. In this article the scheme is
implemented and compared with a random particle method. The difference
scheme is found to be more effective, particularly at resolving the plasma
density, / (£, x, v).



 



1 Introduction

In this article we consider a relatively simple one dimensional collisional
plasma model. A finite difference scheme for this model is proposed and
implemented. This scheme handles the convective part of the problem by a
splitting procedure proposed by Cheng and Knorr [4]. The convergence of
the difference scheme used in this article has been established in [10]. In this
article the results of implementing this method are described and comparison
with a random particle method is made. The result of the comparison is that
(at least for this model problem) the finite difference scheme produces better
results for comparable work in approximating the electric field and the total
kinetic energy. In approximating the underlying density of ions in phase
space the difference scheme is vastly superior.

The use of particle methods in simulating collisionless plasma is well
developed ([2], [7]). Random particle methods have been found to be effective
for collisional models such as that considered in this article [1]. However,
there are also deterministic particle methods that may be used in collisional
problems also ([5], [6], [9]).

We will consider the following model problem:

dtf + vd,f - E (i, x) dj = adlf + 0dv (vf) (1)

dxE(tix) = b(x)-j fdv. (2)

Here t > 0, x € R, V € R and / gives the number density of mobile ions in
phase space (with mass one and charge minus one). The ions described by /
collide with a secondary population. These collisions produce a diffusion with
parameter a > 0 and exert a viscous drag with parameter (3 > 0. See [3] for
a more complete discussion of these parameters, b (x) is a given background
charge density. We will consider a periodic situation in which

and
l

I E(t,x)dx = 0.
0
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Correspondingly a periodic initial condition

/ ( 0 , x , v ) > 0

is given.

2 Description of Methods

To motivate our finite difference scheme we point out that if (1) were simply

dtf = crtff, (3)

that is the heat equation, the backward Euler scheme is know to give good
results. Let At > 0, Ax > 0, Av > 0, tn = nAt, xk = kAx, vt = £Av, and

then the backward Euler scheme for (3) is

rn+l rn
fc/ "" Jkfkf.

At - ° (At;)2 " t j

An implicit scheme, such as (4) is prefered here because of the infinite
speed of propogation in (3). Note that to solve (4) we must solve a tridiagonal
system for each /c, which may be done as efficiently as implementing an
explicit scheme. Our scheme for (1) is to be this way also.

We comment that although the Crank Nicolson scheme is second order in
time and backward Euler is only first order, the second order accuracy is lost
when the transport terms of (1) are included. Hence we opt for the simplex-
backward Euler methodology.

The main issue now is the transport effect represented by the left hand
side of (1). Let us define the characteristics (X (s, t, x, v), V (s, t, x, v)) asso-
ciated with (the left hand side of) (1) by

V(t,t,x,v) =
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then
-f / (a, X, V) = (dtf + VdJ - E (a, X) ft/) |(.,x ,„>.
as

Let us abbreviate

X(s) = X (s,tn+1,xk>ve) ,V(s) = V(s,tn+\xk,ve)

then by (1)

f(r+1,xktve)-f(t«,X{n,V(t»))
At

To derive a difference scheme from this we must approximate / (tn, X (tn), V (tn))
using values of / at grid locations. We will develop this approximation
shortly, but for now let us denote it by

(Sfn)k, « / {tn,X (tn,tn+\xk,v,) , V (t"X+\xk,vt)) . (6)

Then using the abbreviation

our scheme derived from (5) is

At (At;)2

A ,
(7)

We require (7) to hold for \£\ < L and impose

r:;1 = 0 if \e\ > L.

The last term of (7) was constructed in such a way that multiplying (7) by

/^ + 1 and summing over A: = 1 , . . . , K (where Ax = —) and \£\ < L yields
A
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(after summation by parts, see [10], Proposition 4)

*=1 \t\<L

K L-\ +1 K

k=l l=-L \ / *=1 \t\<L

The approximation (Sfn)kf is constructed so that

E E <E E (/-
(see [10], Proposition 3) so by the Schwarz inequality

E E (^ \
K

E E EE

(8)

and hence for — /3At < 1

k=l

K

E E (#)2-
fc=l |/!|<L

This ensures the stability of the scheme when (3At < 2, and we point out the
crucial use of (8) in showing the stability.

Now we consider (6) more fully. Sfn is computed from fn in three steps.
The first will be denoted with S\. If we dealt with functions defined at all
points, Si would simply be given by

1
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Since we must draw on values located at grid points we perform an interpo-
lation: For any I choose m e Z and 6 € [0,1) such that

so that
xk - T

9)Ax

for all k. Then we define

For the second step we'll need to approximate E (tu+~,xk) . We define

by

Ax
b (xk+1) + b (xk) - Y, (Sxf")k+h, ~

and
A ' - l

In order to ensure periodicity we take

:+^Ek
+' if k = !,...,

and
all*.

Now 52 would be given by

S29 (^, v) = g (x, v + AtE uTl+2 ?:

if interpolation were not needed. For any k choose m £ Z and 6 6 [0,1)
such that

AtEt** = (m + 0) Ai;

so that + > - vm+e + OAv
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for all £. Then we define

(SaSi/")« = (1 - 0) ( S , r ) M + m + 6

Finally the first and third steps axe the same so

We point out that once fn is known, Sfn may be computed explicitly.
Then the scheme (7) is a tridiagonal system in £ for each k. The operation
count per time step is linear in the number of grid points. It is shown in
[10] (comment following Proposition 4) that the linear system involved is
nonsingular as long as ft At < 2.

We will compare the difference scheme with the following random particle
method. The underlying approximation is

f(t,x,v)

where

Xkf (0) = (k - ^j Ax, VU (0) =(f-\

and
wiu = / (O.Xu (0) f Vk, (0)) AxAv.

The particle motion satisfies the system of stochastic differential equations

(9)
dVkt = ( - f r

where B (t) is a Brownian motion. Let,

and zero for |x| > Ax. We define E at grid points by

E(t,xM)-E(t,xk)— = 6
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and

- (E (i, 0) + E (i, xK)) + J2 E (t, xk) = 0.
* i

For other values of x, E (t,x) is defined by linear interpolation. Now we use
the explicit order 1.5 strong scheme (page 383 of [8]) to track the solutions
(9). For a system of stochastic differential equations of the form

dy=li (t,y)dt+ 6 dB{t)

with b constant, this scheme is

yl* = yu +At a (Vi, f n ) + AB ~b"

a

where

7± =

AB =

AZ - (u1 +-L

and U} and i/2 are normally distributed random numbers with mean zero and
unit variance.

Note that each time step of this procedure requires the field E to be
evaluated twice. The operation count per time step is linear in the number
of particles.

3 A Steady State Solution

In this section we consider the following steady state solution of (1) and (2):

/ (x,v) = exp Uin (2TT.T) - Z~v2 J , (10)
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where

b (x) = 7}

E(x) = ——

sin (2TTO:) + W - j ^ exp (sin (2TT.T)) .

(11)

(12)

All computations were performed in Fortran 77 on a SUN Sparc 5 worksta-
tion. The difference scheme was implemented in double precision.

In the first set of runs both a and (3 were set equal to one and the
number of grid points/particles was increased systematically. As described
in the previous section the grid points for the difference scheme are closely
associated with the initial states of the particles. In both cases |v;| > 6 was
truncated as the resulting error of order

is comparable with round off. All runs in this section display results at the
final time t = 1. Table I contains the results. The numbers in the column
headed "E" are the relative errors in E in L2 norm, i.e.,

\

N

N

\

Similarly those under the heading "kinetic energy" are the relative errors in
the total kinetic energy. Those under "f' are relative errors in / in L2 norm,
which was computed only for the difference scheme. The top line pertains
to the difference scheme, the bottom to the particle method. The run times
for the two methods are comparable, the difference scheme being about 20%
faster.
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Tkble I: Comparison of Errors for Steady
Solution 'with a = /3 = 1

State

Ax

.040

.020

.010

.005

.0025

Av

.240

.120

.060

.030

.015

At

.111

.071

.045

.029

.019

E
1.90E-03
3.59E-02
1.16E-03
1.59E-02
6.02E-04
7.23E-03
2.73B-04
1.23E-03
1.21E-04
8.38E-04

kinetic
energy

5.34B-02
1.31B-01
2.33E-O2
6.86E-02
9.51E-O3
2.44E-02
3.64E-03
6.28E-04
1.55E-03
1.66E-05

/
3.65B-O2

1.52E-O2

5.97E-03

2.27E-03

9.27E-04

(Top entry is for the difference scheme.
Bottom entry is for the particle method.)

In [10], it is shown that, for L suitably chosen the difference scheme is
nearly first order convergent in A.T:,A7J, and At. The results exhibited in
Table I appear to be much better than first order in that moving down the
table the errors usually drop faster than by factors of ^ while Ax + A?; + At
drops more slowly than by factors of ^.

Comparing the results of the two methods in Table I we see that the
difference scheme gave better results for the field. For the kinetic energy the
difference scheme gave better results when Ax was larger, but poorer results
on the runs with finer resolution.

In the next set of runs we again take the final time to be one and truncate

\v\ > 6j^ (same steady solution (10), (11), (12)). Now we will take

Ax =.01, AT; = .06, and At = .045

and vary a and /?. The results appear in Table II. The headings in Table II
have the same meanings as those in Table I.
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Tkble II: Comparison of Errors for Steady State Solution
with Ax = .01, Av = .06, At = .045

a

.01

.1

1

10

100

1

1

1

1

1

P
.01

.1

1

10

100

E
1.07E-03
5.05E-O3
1.01E-03
4.73E-03
6.02E-04
7.23E-03
1.33E-04
6.80E-O3
3.61E-04

OVERFLOW

kinetic
energy
1.94E-02
2.41E-02
1.80E-02
3.17E-02
9.51E-03
2.44E-02
4.73E-04

-4.13E-02
-7.68E-04

OVERFLOW

f
1.36E-02

1.23E-02

5.97E-03

4.39E-03

3.23E-03

.01

.1

1

10

100

1.55E-02
8.88E-03
1.37E-02
2.82E-02
6.02E-04
7.23E-03
2.33E-O3
7.35E-03
7.09E-03

OVERPLOW

-9.64E-01
3.78E+01
3.64E-02
2.76E 00
9.51E-03
2.44E-02

-1.55E-03
-3.25E-02
-8.89E-02

OVERFLOW

4.61E-01

2.88E-01

5.97E-03

6.31E-03

2.43E-02

(Top entry is for the difference scheme.
Bottom entry is for tlie particle method.)

The difference scheme appears more robust than the particle method in
that the particle method never gave better results, but failed badly in two
cases (when ft = 100, a = 100 or 1) where the difference scheme gave good
results. Both methods gave poor resolution of the kinetic energy in the case
a = 1, P = .01. In all cases decreasing At recovered good results.
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4 A Dynamic Solution
In this section we consider the solution of (1) and (2) with

and
b (x) = 1 + sin (2TTX) .

This initial condition for / represents a beam of negative ions traveling at
average speed 2.5 that is cold relative to the background plasma. Since a
closed form analytic solution is not known for this initial condition, both
methods were implemented with 400 by 400 grid points/particles yielding
very good agreement. The resulting data was saved and used as a "nearly
exact" reference set.

In Figures 1 and 2 the electric field at time t = 1 is plotted. The solid
curve is the reference data. In Figure 1 the squares are data points generated
by the difference scheme with

Ax = 0.067, Ai> = 0.4, At = 0.2. (13)

In Figure 2 the squares are data points generated by the particle method
with

Ax = 0.02, AT; = 0.12, At = 0.071. (14)

In both cases \v\ > 6 was truncated. Despite the smaller mesh values (and
hence more particles) used with the particle method, the difference scheme
gives significantly better results.

Figures 3 and 4 display the approximations of / (t = 1, x = 0, v) result-
ing from the runs described above. The squares in Figure 3 are data points
from the difference scheme with (13), the squares in Figure 4 are data points
from the particle method with (14). The "size" of the particles was taken to
be lOAx by At; in generating Figure 4. Clearly the particle method gives only
a rough indication of the velocity distribution, while the difference scheme
reproduces it well for less computation.

The squares in Figure 5 are the approximation of / (t = 4, x = 0, v) gen-
erated by the difference scheme with (13). Comparing Figures 3 and 5 we can
see that from t = 1 to t = 4 the negative ions have slowed from an average
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speed of around one to nearly zero. Examining the width of these two graphs
reveals that the plasma has warmed very little in this time. Thus the ability
to resolve the distribution / can reveal physically relevant features.

5 Conclusions.

The above comparisons (particularly the time dependent solution) indicate
that the difference scheme is superior to the random particle method used,
particularly in reproducing local information such as pointwise values of / . It
is to be expected that a random particle method will work most poorly when
computing a quantity such as f (t,x,v) which is not an average over all the
particles; this is not the case for a difference scheme. Although further study
is required to see if this advantage can be retained in higher dimension, it-
appears that working on a grid may hold advantages for the simulation of
this collisional plasma model.
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Figure Legend

Figure 1: Electric field at time 1, E (l,.x). Squares are data points fiom the
difference scheme with (13).
Figure 2: Electric field at time 1, E (l,.x). Squares are data points from the
particle method with (14).
Figure 3: Density at x = 0 and time 1, / (1,0, u). Squares are data points
from the difference scheme with (13).
Figure 4: Density at x = 0 and time 1, / ( l , 0 , ? ; ) . Squares are data points
from the particle method with (14).
Figure 5: Density at x = 0 and time 4, / (4,0,'/..>). Squares are data points
from the difference scheme with (13).
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FIGURE 2
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FIGURE 3
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FIGURE 4
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FIGURE 5
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