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1. Introduction.

Several problems in phase transitions, fracture mechanics, plasticity and image
segmentation, may be studied within a framework where the underlying energy is
given by a functional of the type

T : BV(Q: Rd) x A{il) —+ [0, +oo],

where A{Q) stands for the family of open subsets A of a fixed bounded domain Q
of RA, with Lipschitz boundary dA, and T satisfies the following properties :

i) T{u\ •) is the restriction to A(Q) of a Radon measure;
ii) T(-\A) is L1(j4;Rd)-lower semicontinuous;
iii) there exists C > 0 such that, for some p > 1,

0 <T{u-A) <ci f (1 + \Vu\p)dx+\D8u\{A)\.

The case where p > 1 will be studied in a forthcoming paper. Here we treat the
case where p = 1.



' • • * • • * .

An important example of such functionals is given by the relaxed energy
corresponding to a discontinuous bulk energy density, precisely

u;^) :=inf( l iminf / /o(z,un,Vun) dx | U n ^ u i n l 1 ^ ; ^ ) ,
I n—+oc JA

We may also consider the case where both bulk and surface energies are present
in the underlying functional, namely

/0(x,un , Vun)dz + / g^x,u^v^,uUn)dHN'l\
JAnS(un)

un^u in L\Sl\Rd) , uneSBV(Q;Rd)},

where S(un) denotes the jump set of un. Another example of a functional T to
which our theory may be applied is provided by a sequence of functionals Fe (for
instance, in the context of homogenization theory), where the energy F(u, A) that
we want to identify reduces to the limit of (Fe) in the sense of F — convergence.

A natural question at the core of the Calculus of Variations concerns the search
for an integral representation of T(u\ A). In this paper we propose a new method
suitable to the study of all situations mentioned before; the main idea of this
method consists in showing that F(u\ A) can be reconstructed in terms of the set
function m(u., •) defined on A{Q) by

m(u:A) := inf {T(V;A)\ v\dA = u\dA,v €

The reduction of the relaxed problem to a local Dirichlet type of question
has already been used in the context of homogenization or quasiconvexification
theories. The main point proved in Section 3 (see Lemma 3.3) is that m(u;A)
behaves as T{u\ A) when A is a cube of small size. Then the bulk and the jump
local densities of the energy can be recovered from m(u,.) by using Besicovitch
Differentiation Theorem (see Theorem 3.4). An explicit identification of these
densities comes easily by means of a blow-up argument and using the Lipschitz
behaviour of m(u,A) with respect to the norm in Ll(dA) of the trace of u (see
Lemma 3.1).

In Theorem 3.4 we obtain a representation formula of the form

f(u;A)= [ f(x,u,Vu)dx+ [ g(x,u+,u-,vu)dHN-1 (1.1)
JA JS{u)nA

for every u in the space SBV(Q\ Rd) of all functions with bounded variation whose
distributional derivative may be written as
Du = Vu CN + [(u+ - u~) 0 uu) HN-l[S{u) (see [Am2]). Here, and in what



follows, CN denotes the iV-dimensional Lebesgue measure, and HN l stands for
the 7V-l-dimensional Hausdorff measure (see Section 2). For general BV functions
we have also to take into account an extra term in the decomposition of Du,
Du = Vu CN + [(u+ - vT) 0 i/u] H

N-l[S(u) + C(u), where C(u) denotes the
Cantor part of Du. The characterization of the density of T with respect to C(u)
seems to be very difficult to obtain in general (see [BDM] in the scalar case).
Under an additional assumption of continuity of T with respect to vertical and
horizontal translations (see condition (2.4)), we obtain in Theorem 3.10 the full
integral representation for u £ BV(Q:Rd),

Jr{u;A)= [ f(x,u,Vu)dx+ f g(x,u+,u~,i/u) dHN-1

(1.2)

In Section 4 we apply the latter characterizations to some specific situations.
In Subsection 4.1 we provide a new integral representation of the relaxed energy
for a discontinuous integrand with linear growth conditions and in the vectorial
case, recovering the results of [FM1] and [FM2] in the case of non degenerate
coercivity assumptions. The corresponding scalar case, previously treated by
Bouchitte and Dal Maso [BDM], and by Braides and Coscia [BC], follows as a
corollary. In Subsection 4.2 we extend the results of Barroso, Bouchitte, Buttazzo
and Fonseca [BBBF] concerning the relaxation in SBV of an energy involving bulk
and interfacial contributions. In Subsection 4.3 we obtain the characterization of
the homogenized energy associated with a sequence of free discontinuity problems
with a linear growth condition. This problem was treated by Braides, Defranceschi
and Vitali [BDV] in the case p > 1.

2. Preliminaries.

Let Q represent an open bounded subset of RA. In the sequel we use the
standard notations for bounded variation, Sobolev and Lebesgue spaces, denoted,
respectively, by BV(Q: Rd), W ^ f ) ; Rd) and L*(fi; Rd). A{ft) stands for the family
of all open subsets A of Q with Lipschitz boundary dA, and B(Cl) is the collection of
all Borel subsets of ft. The Lebesgue measure and the Hausdorff (N-l)-dimensional
measure in RN are designated by CN and HN~l, respectively. C will denote a
generic constant which may vary from line to line.

To each v e SN~l := {x € R^ | ||x|| = 1} we associate a rotation Rv such
that Rv(e^) = v, where (ej)t=i,...,Ar stands for the canonical basis in RN. We
may choose v *-> Rv so that ReN is the identity and u «—> Rl/(ei) is continuous
in SN~l \ {eN}, for all i = 1,---,JV - 1. We define Qu := RU{Q), where
Q := {x € RAT | \x'6i\ < 1/2, i = 1,••-,#} and we set Qu{x,e) := x + eQy, for
e > 0. We will omit the subscript v whenever v coincides with e^.

In what concerns general BV space theory we follow Evans and Gariepy [EG],
Federer [F], Giusti [G], and Ziemer [Z]. We represent by Vu the density of the



absolutely continuous part of Du with respect to the Lebesgue measure (or Radon
Nikodym derivative), and S(u), the jump set, is the complement of the set of
Lebesgue points, i.e. the set of points x where the approximate upper limit uf(x)
is different from the approximate lower limit u~(x), for some i € {!,..., d},
namely

t = i

Choosing a normal vu(x) to S{u) at x (defined uniquely, up to sign, for HN~l

a.e. x), we set [u](x) := u+(x) — u~(x) the difference between the traces of u at
x € S{u), oriented by i/u(x). Representing by C(u) the Cantor part of the measure
Du, the following decomposition holds :

Du = Vu C N

We represent by SBV (Q;Rd) the space of special functions of bounded variation
introduced by De Giorgi and Ambrosio (see [ADG]), i.e. the space of all functions
in BV(Q;Rd) such that C(u) = 0.

In what follows we consider a functional

T : BV{$1\ Rd) x A(Q) —^ [0, +00]

satisfying

T{u\ -) is the restriction to A{Q) of a Radon measure, (2.1)

T{-\ A) is Ll{A\Rd) - lower semicontinuous, (2.2)

there exist C > 0 such that

0 < ?(u;A) < C(CN{A) 4- \Du\{A)} . (2.3)

In order to characterize the density energy corresponding to the Cantor part of
the measure T(u\ -),we will need to assume further that the functional T depends
continuously both on horizontal and vertical translations in the following sense :

There exists a modulus of continuity $(£) satisfying

\?{u{. -z) + b-z + A)- f(u: A)\ < *(|6| + |z|) {CN(A) + \Du\(A)), (2.4)

for all (u ,AM) eBV{Q\Rd)xA(Q)xRd xRN, such that z + Actl.

Remark 2.1. Condition (2.2) implies that T is local, i.e.,

if u = v £Ara.e. x G A, then JF(u; A) = T(v; A) for all i4 € A(Q) . (2.2')
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Remark 2.2. Without loss of generality we may assume that coercivity holds,
and so we replace (2.3) by the condition

1 \Du\{A) < F(u-A) < C (CN{A) + \Du\(A)^j for some C > 0. (2.3')

Indeed, if we are able to identify the integral representation under (2.1), (2.2)
and (2.3'), given T satisfying (2.1), (2.2) and (2.3), it suffices to define

By virtue of the lower semicontinuity property of the total variation, it is clear that
T\ is under conditions (2.1), (2.2) and (2.3'), and so we are able to find densities
fi,9i,hi such that

= / /i(x,u,Vu) dx+ / Si(x,u+,tT,i/tt) dH
A JS(u)nA

N~l

We deduce that for every u e BV(Q:Rd) we have

F(u:A)=J [/i(*,u,Vu)-|Vu|] dx

f
Js
f
s(u)nA

which provides the representation formula (1.2).

We now state some technical results that will be used in the sequel. Given
(u: A) € BV(Q: Rd) x A(Q), we represent by tr u or U\BA the trace of u restricted
to A. The proof of the first two lemmas may be found in [G].

Lemma 2.3. Let A € A{&) and let un,u e BV(A;Rd) be such that un -• u in
Ll(A*Rd) and \Dun\{A) -+ \Du\(A). Then

l | t run - t r u\dHIS~l -+0.
dA

Lemma 2.4. Let A £ A{Q) and let 6 e L1(dA). For every e > 0 there exists
we e W1A(A) and a constant C, depending only on dA, such that

w£\dA = e, f\w£\dx<e[ \6\dHN-\ [\Vwe\dx<C f \6\dHN-\
JA JdA JA JdA

Next we prove a density result in BV under Dirichlet boundary conditions.
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Lemma 2.5. Let A e A{Q). Given u € BV(A;Rd) we may find vn e W
such that

vn\dA = u\dA, \\vn - u\\Li{A;Rd) — 0, \Dvn\(A) — \Du\(A).

Proof. Let 0n € C°°{A\Rd) satisfy 6n — u in L ^ R * ) and JA\V6n\dx —
|(4). By Lemma 2.3 we have

/ \tv 6n - tr u\ dHN~l ->0. (2.5)
dA

Using Lemma 2.4, for each n consider wn G W ^ ^ R * ) such that

wn\dA = (fln ~ u)|a>i, / |^n | dx < / |tr «n - tr u\ dHN~\
f
 JA JdA (2.6)

/ \Vwn\ dx<C |tr 6n - tr u\ dHN'\
JA JdA

Let vn := ̂ n - u;n. Then vn\dA = ^|ax and

From (2.5) and (2.6) we conclude that

wn-+0 inWl^(A\Rd),

and so, by (2.7) we have

vn -+ u i n L ^ R * ) , lim / |Vvnl dx = lim / \V6n\ dx = \Du\{A).

D

The following result is a version of the Slicing Lemma of E. De Giorgi.

Lemma 2.6. Let F : BV(ft;Rd) x A{ft) -+ [0,-hoo] be a functional satisfying
conditions (2.1), (2.2') and (̂ 2.3̂ ). Let u € BF(n;Rd) and iet (vn) be a sequence
in BV(n:Rd) such that vn -> u in Ll{fyRd). Then, for every A € A(Q) we can
find a sequence wn e BV{Q:Rd) such that

0 , wn = u on dA , limsupF(wn;>l) < liminf F(vn\A) .

Proof. Let vn —• u in L^fijR^). Up to a subsequence, we may assume that
vn\ A). For each k € N define

:= {x € A\ dist(x,dA) > l/k}

liminf F(vn; A) = lim F(vn; A). For each k € N define
n—•+<» n—*>-hoo



and consider the layer Lk := Ak-i \ Ak. For each n e N set Mn : = n + |Dt'n|(j4).
Representing by [a] the integer part of a € R, we split each Lk into | M n ] 2

layers Lk,i, i = 1, • • •, [M n ] 2 , of thickness [k(k - l)[Mn]
2] , Lk = \J{ Lk,r, and

where the layers Lk^ are labeled so that Lk^ is closer to the boundary of A than
Lkj if i > j , ij € {1, • • •, [Mn]

2}.
To each layer Lk^ we assign a cut-off function ipkii with 0 < ipk^ < 1, ipk,i = 0

in Q \ [[jj<t(Lk,j UAk)] and (pkji = 1 in IJ^^i iejUiic) . We have

O(k2lMnf).
Defining

and using (2.1) we will have

F(wn*A\A) < F{vn\A) + F(u\A\Ak)

< F(vn;A) + C(£^v + \Du\yA\Ak) 4-

where we have used (2.3). On the other hand, for fixed /c,

-p J ] \Dwn.k.i\(Lk,i) <JL-(\Dvn\(A) + \Du\(A))
(2.9)

Since the right hand side of (2.9) goes to zero as n —•• 4-oc, we can construct a
sequence n^ —• +oc such that

4;Rd) < £ for all I € {1, • • • , [A / n J 2 } ,

and then choose ik such that

Defining wk := u;nfc,/c,tfc we obtain wk —> u in

- .

and, consequently,

limsupF(u;A:;^4) < Urn sup F(vnk; A) == liminf F(un ;



which completes the proof. D

Remark 2.7. Having in mind the applications treated in Section 4, we mention
some extensions of Lemma 2.6.

1) If the sequence (vn) is in Wl^(il\Rd) (respectively in SBV(Q;Rd)), then the
sequence (wn) can be constructed in Whl(Q\Rd) (respectively in SBV(Q\Rd)).

Indeed, using Lemma 2.5 we can replace u in (2.8) by a sequence (un) in
Wl>l(Q;Rd) satisfying

un->u i n l 1 ^ ; ^ ) , un = u on 9^4, and \Dun\(A) — \Du\(A).

Then, by the lower semicontinuity of the total variation in open sets we obtain

limsup|Dun |(^\A fc) = lim \Dun\(A) - liminf \Dun\(Ak)

< \Du\(A) - \Du\(Ak) = \Du\(A \ Ak) = O(l/k).

2) We can also extend the results stated in Lemma 2.6 and in the previous
remark to a sequence of functional (Fn) satisfying conditions (2.1), (2.2') and
(2.3) uniformly in n. In this case, if u € BV(Q;Rd) and A e A{CL), for each
sequence vn —»• u in Lx(n;Rd) we can find a sequence of indexes (rik) and a
sequence wk € BV{Q;Rd) such that

, wk = u on dA, limsupFnk(wk; A) < liminf Fn(vn:A) .

Finally we state the following truncation lemma (see Lemma 3.7 in [BBBF]) :

Lemma 2.8. Let F : BV(?L\Rd) x A{Q) -• [0,+oc] be a functional satisfying
conditions (2.1), (2.2r) and (2.3). If u0 € J3V(fi;Rd) 0 L°°(fi;Rd) and if e > 0
then, for every R > 0 there exists M = M (e, JI,C, ||uo||i,~(n;Rd)) suci that
for every u € BV{Q;Rd) (resp. u G SBV(Q;Rd) or u € ^ ^ ( n ; ^ ) ; with
IMlBV(n;R") < i? and u = u0 OD an, tiere exists u € BV(n ;R

d) nL°°(fi;Rd)
(resp. u € 5 5 ^ ( 0 ; Rd) n Ioc(n ;R

cf) or il € W 1 ' 1 ^ ; ^ ) n L°°(n;R
d)J suci3 that

= U0 o n

Hi) \Du\(Q) < \Du\(il); iv) F(u;fi) < F(u; 12) + e.

3. The General Method.

In this section we identify the bulk and jump densities of a functional T satisfying
conditions (2.1), (2.2) and (2.3') (Theorem 3.4). In case condition (2.4) holds, we
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can also characterize the Cantor part and conclude with the full representation of
T (see Theorem 3.10).

Given (u\A) G BV(Q\Rd) x A(Q) we introduce

m(u;A) := inf [?(v;A)\ v\dA = u\dA,v G BV(n;R
d)}. (3.1)

The basic idea of our method consists in comparing, for fixed xo G fi, the
asymptotic behaviors of m(u\ Q(xo,e)) and T{u\ Q{XQ,E)) when e goes to 0. This
is made clear in Lemma 3.3 below where, via a blow-up argument, it is shown
that as e gets small we may conclude that relaxation reduces to solving a Dirichlet
problem. An important tool of this method is Lemma 3.1, which allows us to
replace u by its limit obtained by a blow-up at xo.

Lemma 3.1. There exists a constant C such that

\m(ui;A)-m(u2;A)\ <C f |tr (m - tx2)| dHN~l (3.2)
JdA

for all tii, ti2 € BV{Q;Rd) and A e A{Q).

Proof. Let ui,u2 e BV(Q;Rd) and A e A(Q). For 6 > 0 small enough, set

As := {xG^i dist (x,dA) > 6}.

Given v G BV(Q;Rd) with v\aA = ^2\dA^ define v& such that t^ = v in ̂ l^, and
; = ui in fi \ 4̂<5- In view of (3.1) and (2.1) one has

(3.3)

6).

From (2.3r), which still holds for Borel sets, we obtain

T(v6:A\A6)<C f (l^\Vul\)dx + C\Dau1\(A\A6)^C\Dav6\(dA6). (3.4)
JA\A6

As 6 goes to zero, one has immediately

(1 + IVuil) dx - 0, \DsUl\(A \ As) - 0, (3.5)

and, using the definition of trace and Green's formula (see [EG], 5.4),

/
JA\A6

\Dsv6\(dA6)= I \K{U\\A\A6-V\A6)\*HN~1 ~* I ltr {ul-u2)\dHN'1. (3.6)
JdAb JdA

9



From (3.3) - (3.6) we conclude that

m(m\A) < T{v; A) + C f |tr (ux - u2)\ dH
JdA

N-\

Taking the infimum over v and interchanging the roles of u\ and 112, inequality
(3.2) follows. •

Fix u e BV{Q;Rd), v e SN~\ and define /x := CN + \D9u\. Let

Av := {Qv{x,e)\ x € n, e > 0} (3.7)

and for 6 > 0 set

m6(u; A) := inf { ] T m(u; Qi)| Qt € ^ , QlOQJ = 0, Q, C A,
t=i

diam(Qz) < 6,

Besicovitch's Covering Theorem guarantees the existence of such coverings of A.
Given that 6 ̂  me(u\A) is a decreasing function, we define

m*(u;A) : = sup {m*(u;A)\ 6 > 0}

= lim m6(u;A).
6—0

Lemma 3.2. Under iypotheses f2. J|. (2.2) and (2.3'),

Proof. Since !F(u\-) is a Radon measure (see (2.1)), and because m(u:A) <
T(u\A), the inequality m*(u: A) < !F(u\A) is obvious. We prove that

F{u\A)<m*{u\A).

Fix 6 > 0 and let (Q\) be an admissible sequence in the sense of the definition of
m6{u\A), such that

oo

i)^ Qi) < m^(u;A) +6- (3-8)

Using the definition of m, choose vf € 5V(f2;Rd) such that

vflaQf =«I*?J. ^ ; 0 i ) <m(u;Qf) + (5£N(Qf). (3.9)

10



Set

where N$ := fi \ UgjQf. Prom (3.8), (3.9) and the coercivity hypothesis (2.3'), it
follows that vs € BV(n-Rd) (•),

£? (3-10)

where Ns :=AnN$, and

< C (CN(N6) + |Di;*|(Ar*)) = 0

Using (2.1), (3.8) and (3.9), we deduce that

We claim that v6 —• u in Ll(A). If so, using hypothesis (2.2) we have

T{u:A) <liminf T{v6;A),

which, together with (3.11), yields

f(u;A) < lim'mfm6(u]A) = m*(u;A).
6O6—•O

It remains to prove the claim : v6 —* u in Ll(A). By Poincare's inequality there
exists a constant C such that

(*) For every if € Cb(fi), integrating by parts on every Qf and recalling that vf = u
on dQf, we can write

(D(v6 - u),<f) = - Y" / (v6
t - u) ® Vifdx = V / V-iDv* - DM) .

11



thus

t=i

6<C6 \Dv

<C6

In view of the coercivity condition (2.3') and by (3.11), \Dv6\(A) is bounded and
we conclude that \\v6 - U\\LI(A) ~* 0- D

Lemma 3.3. Under (2.1),(2.2) and (2.3'), the following equality holds

lim ^ y * 0 ' g ) ) = l i M a . e . x o e n and for all i/ € S""1 . (3.12)
e-o m(u;QI/(x0,£))

Proof. Since m(u:Ql/(x0,£)) < T(U\QV(XQ,S)), we have

We only need to prove that, /i a.e. xo G f2 and for all i/ € S^"1,

U m ^ ; Q , ( x o , £ ) )

£_o m(u;Q1/(x0.£))

For each t > 1 let £ ( be defined by

Et:=lxeQ\ there exist i/ 6 5 N - 1 and £̂  -• 0 such that

>t m(u\Qv{x,eh)) for all h}.

Our aim is to show that ^{Et) = 0. Consider an open set u and a compact set K
such that K C £ t C u?. Fix 6 > 0 and define

:= [Qv{x,e)\ e<6, Qu{x,e)

By virtue of the definition of Eu tfx € K there exists e < 6 such that Qv(x, e) € Xs

and so

( |J

12



Using Besicovich's Covering Theorem, we may find a subcovering of u such that

where / and J are countable, Q*' € X6, Qj* e Y6, the sets Q?6 and Q}'* are
mutually disjoint, and /x(JV) = 0. Since m(u; •) < ?{u; •) and ^"(u; •) is absolutely
continuous with respect to /x, we have

> tm6{u]u) + (l -t) ?{w,

and letting 6-^0we deduce that

F{u;u) >t m*(tz;a;)

where we have used Lemma 3.2. Letting UJ \ Eu K / Et. and using the
regularity of T(u\ •), we get T(u\Et) = 0, hence fi{Et) - 0 due to the coercivity
assumption. •

We now prove the following representation theorem.

Theorem 3.4. Under hypotheses (2.1), (2.2) and (2.3'), for every
u e SBV(Q;Rd) and A e A{Q) we have

where

?(u-A)= [ f{x,u,Vu)dx+ f
JA JS(u)r\A

/(x0 ,a,0 := limsup
£—0 £

for all x0 e n, a, fi, A € Rd, { € Rd x N , i/ € S^"1 , and where

( A if y • v > 0,
^ otherwise.
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Remark 3.5. for CN almost

1) If for all (u,A,b) € BV{n-,Rd) x A(il) x Rd we have T{u 4- 6; A) =
then / = /(x, 0 and g = g(x, A - 0, i/).

then / = /(a, 0 and p = $(A, 0, i/).
3) In case both conditions 1) and 2) are satisfied we find that the upper-limits in
(3.13) and (3.14) are indeed limits.

Remark 3.6. It is easy to check that the conclusions of Lemma 3.3 still hold if we
replace the hypercube QV{XQ, e) by K(XQ, e) := xo + eK, where K is any bounded,
open, convex subset of R^ containing the origin. This remark will be useful to
obtain the characterization of the Cantor part of F(u; A) when u G BV(Q\ Rd).

Proof. We first prove (3.13). For u e BV(Q;Rd) and v e SN'1 (in particular for
is = ejv) it is known that for CN a.e. xo € Cl

\ I lim I 7"*) i I ((~\ (<y c\\ — C\ /Q i r\

\u(x) - U(XQ) - Vu(xo)(x - xo)| dx = 0, (3.16)

( I o ) = bm

and, in view of Lemma 3.3,

_ _ _ ( x o ) = l1_nlo

Let

ue{y) := ^ o + ^ -

(3.17)

By (3.16) we have ue -+ Vu(xo)y in Ll(Qv\R
d). We claim that

\Due\(Qv) - |Vu(xo)|. (3.18)

If so, by Lemma 2.3 we obtain

|tr (ue{y) -Vu(xo)y)| dHN'\y)

= -L / |tr [u(x) - u(x0) - Vu(xo)(x - xo)]| dHN'\x) - 0,
£' JdQu(xo,e)

14



and, consequently, using Lemma 3.1 we obtain from (3.17)

•), x ,. rn(u(x0) + Vu(xo)(x - x0);Qv(x0,e)){x) = H
= /(io,u(xo),Vu(xo)).

We now prove claim (3.18). By definition of \Duc\{Qv),

ŝup jft / [u(x) - u(x0)] div <p(x) dx,

HVIIDC<I

where we took ^(x) := ^ ( £ ^ £ a ) . Therefore, by (3.15) \Du£\(Qu) converges to
|Vrz(xo)|, and the proof of the claim is complete.

Finally, we prove (3.14). For u € BV(fl;Rd) it is known that for HN~l a.e.
x0 € S(u)

\[u](xo)\ = l im^lDt/KQ^xce)) , (3.19)

lim - 1 / \u(x) - t£+(x0)| dx = 0, (3.20)

x)-u-(xo) |dx = O, (3.21)

where i/ = i/u(x0) is the normal to 5(u),Qj(xo ,e) := {x € £?^(xo,f)|(x - x0)
i/(x0) > 0} and Q~{xo,e) := {x G (3^(xo,e)|(x - x0) • i/(x0) < 0},

and, in view of Lemma 3.3,

dnN'l\S(u)^ = i ^ m U\N^\°'E ' (3'22)

Defining, for each y e Qv,

ue{y) := u(xo+£y) and uXOjl/(y) := t
[ u (x0) if y - v < 0,

15



from (3.20) and (3.21) we have that u£ —> uXo^ in Ll(Qu) and, by the same
argument used to prove (3.18) and by (3.19), we obtain that

\Due\(Qv) = -LflDuKQvixo^e)) - |[u](xo)| = \DuXo,u\(Qu).

In light of Lemma 2.3, we have

/ \tr(u£-uX0,u)\dHN-l = -4zT f \tT(u^uXoA-xo))\dnN^^0
JdQu E JdQv{xQ,e)

and, by (3.22) and Lemma 3.1, we conclude that

= g(x$,u {XQ),U (XO), VU(XO)).

•

In order to complete the integral representation on all BV(Q; Rd), it remains to
obtain the characterization of the energy density with respect to the Cantor part
of Du, C(u). By Lemma 3.3, this problem reduces to the computation of

)| ( X o ) =

at C(u)-almost all xo € fi, where (see Remark 3.6) K is any convex bounded open
subset containing the origin in its interior. Recall that, by Alberti's result [A], the
Cantor measure C(u) is rank one, precisely,

d C ( u \ ( x 0 ) = au(x0) 0 I/^XQ) (3.24)
d\C(u)\*

for \C(u)\ a.e. Xo and for suitable (au(xo),^u(^o)) € Rd x SN~l. In Lemma 3.7
below we will use (3.23) taking for K the hypercube Ql , with v = VU(XQ),

obtained from Qv by a dilatation of amplitude k (k € N will tend to +oo) in the
directions orthogonal to v, precisely,

where Rv denotes a rotation such that Rv{e^) = v (see Section 2).
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Lemma 3.7. Given u € BV(n-,Rd), for \C(u)\ almost all x0 € ft there exists a

double indexed sequence (t{
e
k\b{

e
k)) € (0, +00) x Rd such that, for every k,

t{k) -> -hoc, et[k) -> 0, b[k) -> u(x0), as e — 0,

and

J(xo) = Km l i m s u p ^ ^ ^ ^ ^ - ^ ^ 0 ^ ^ ) , (3.25)

wiere a = au(xo) and ^ = ^ (xo ) satisfy (3.24).

Proof. Let us apply (3.23) with K = Q(
v
k) and set (?tfc)(x0, c) := xo + £Qlk). There

exists a |C(u)|-negligible set N, S(u) C N, such that for all xo € n \ TV and for all

) m(u;QJh)(x0.e))
(Xo) = ^ W '

, 4 k ) - 0. (3.27)

Condition et[k) - • 0 follows easily from the fact that HN~1(B) < -foe implies that
|C(u)|(B) = 0 (see Prop. 3.1 in [Ami]).

Define, for each e > 0 and A: € N,

^ * ' ( 3 ' 2 8 )

1 ( x ) - ^ i ' (3-29)
f\x) := b{

e
k> + t?> a ® i/(x - x0), (3.30)

(3.31)
.(*,._ m(u:Ql;c)(xo^))-m(^);^)(xo.£))

where, for t € R. I l i /0^) := {y € RAT| 2/1/ = ^ , \y - (y - v)v\ < f }.
Using Alberti's result on the blow-up of the Cantor part (see [A] and also [ADM],

Theorem 2.3) and Lemma 5.1 in [L], we can also choose iV so that for all xo € Q\N
there exists a sequence (sn) tending to 0 and, for every fc, a nondecreasing function

: (— ,̂ \) —> R such that the following conditions hold :

lim IDu^l(Q^) = ID^KQ^) = ^^lal . (3.34)
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We notice that the negligible set N and the sequence (en) were chosen indepen-
dently of k. Fix x0 € ft \ N.

Owing to (3.26) and (3.31) we have that, for every k e N,

hmsup — —~r—— = >Î V \ , (xo) - limin

which, together with (3.27) and (3.28), yields the result of Lemma 3.7 provided
we show that

(t) Iim6<*> = u(xo),
,« (3-35)

(it) lim l iminf |4 '1 = 0.
V ' k^+OO £ - 0 ' £ '

Step 1. We prove (3.35) (i). Since x0 $ S{u), we have that lim 6{
e
k) = u(x0).

Then, in view of definitions (3.27), (3.28) and (3.29), it is enough to show that

^ \Du\{Q\*>(xo,e))
N l f c N l

<

(3.36)

With no loss of generality wre prove (3.36) assuming that u is smooth. This
extends to a general u € BV(Qlk)(xo,e):Rd) by considering a sequence (un) in
Coc(Q^)(x0,e);Rd) such that un - u in Ll(Qlk\x0^);Rd),\Vun\(Qlk)(x0,e))-^
\Du\(Qik\xo,e)) and passing to the limit as n —* -hoc in the corresponding
inequality (3.36).

Setting, for each t € (-1/2,1/2),

Q(0 :=

changing variables and using Fubini's Theorem we have that

4/ u { x ) d x - - ^ u(x)dHN-l(x) = / [a(t)-a(l/2))dt

U
fl/2 rl/2 , /-1/2 rl/2

f / af(s)dsdt
-l/2Jt

< £ I I |Vu(£o4-££)| \X\dri (X) at <
J-i/2JnLfc)(t)
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Step 2. We prove (3.35) (ii). By Lemma 3.1, and using the change of variables
x-xo

= ? w e have

<*>, < c

JdQik) " a ( 2 /"

where
/)W UK*) „" ~ °c" - - {k)

By (3.33), (3.34) and Lemma 2.3, we have the strong convergence of the trace
of u{n] to the trace of ^{k)(y • v)a on Tl{v\\) and so

Thus, from (3.37) we deduce

'i <
' ) - » • » -

and by (3.32) the function \^{k){y • v) - y • v -
IlL (±i) and is bounded. We conclude that

) + i

^) + ^| vanishes on the facets

lim sup lim i n f i l l < lim limsup \A{k)\ < = 0.

In order to identify the right hand side of (3.25), we assume now that the
continuity assumption (2.4) holds, that is (see Section 2) there exists a modulus
of continuity *(t) such that for all (u,A,b,z) € BV(Q;Rd) x A(Q) x Rd x RAT,
with z + 4 C fi,

\z\) (CN(A)
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Remark 3.8. An immediate consequence of (2.4) and of the growth condition (2.3)
is that the integrands /(x0 , u0, £) and g(x0, A, 0, v) denned by (3.13) and (3.14) are
continuous with respect to Xo and UQ. In fact, applying (2.4) with A = QV(XQ,E)

and u such that u(x) = uo -f £(x — xo) on dQl/{xo,e), we obtain

\m(u0 + b + f (• - z - x0); Q^z + x0, e))-m(u0 4- £(• - *o); ̂ ( x o , e))|

Dividing by £N and passing to the limit as e -+ 0, we are led to

| / ( x 0 + z ,uo + 6 , 0 - / ( * o , t*o,OI < *(|fc| + \z\){\ + ICI) • (3.38)

Similarly, we obta in

On the other hand, from (2.4) and the coercivity assumption (2.3'), we can also
infer that

u(. - z) + 6; z + A) - m(u; A)| < *(|fc| + \z\) {CN{A) -f Cm(n; X)) . (3.39)

We notice that, since .?"(•; $7) is weakly lower semicontinuous on Wld(A: Rd) and
coincides with the functional u € Wl<l(A;Rd) —> fAf(x,u,Vu)dx (see Theorem
3.4), the integrand /(xo,txo,-) must be quasiconvex for every (xo,uo) € n x Rd

(see, for example, [D]). Thus, defining the recession function f°° by

0 ' * 0 , (3.40)

the right hand side of (3.40) is actually a limit whenever £ is a rank one tensor.

Lemma 3.9. Let (a,i/) e Rd x SN~l, (xo,uo) € ft x Rd and let (£„,*„) be a
sequence suci tiiat en —> 0, tn —> -hoo and e n t n -+ 0. If ("2.4̂  ioids and if f is
defined by (3.13) then

hm inf — ^ ' N
 ; > /(x0 , u0, a ® i/) - /(x0 , u0,0).

n-*+oc tn€% k" 1

We leave the proof of this lemma to the end of this section. Now we are able to
present the full representation of T on BV(Q\Rd).

Theorem 3.10. Under hypotheses (2.1), (2.2),(2.3f) and (2.4), we have for every
u€BV(Q',Rd)

T(u;A)= f /(x,u,Vu)dx-h / g{x,u+,\T,vu) dHN~l

JA JS(u)nA
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where f,gj°° are defined by (3.13), (3.14) and (3.40), respectively.

Proof. By Theorem 3.4 it remains to prove that for \C{u)\ a.e. x e ft

d\C(u)\ v y J

dC(u)
Let XQ be a point of approximate continuity of u where

d|C(u)|
and set u0 := u(xo). By Lemma 3.7 and taking into account (3.39), it is enough
to show that for every fixed k € N, a = au(x0) and v = i/u(x0) one has

m(u0 + £n a &//(• - x o ) ; x o + en(?^))

where, for simplicity of notation, we have deleted the superscript (A:) from tn .
One inequality is easy. Indeed, by Theorem 3.4 we can write

i/{' -xo);xQ+enQlk))<

so that, by (3.38),

m(uo 4 tn a & i/(- — xo):xo 4 snQv ) ^ .. f(xo<uo,tna<
km sup .T , KT < km sup :

n—>-J-oc ^n t-ri ^ n—>+oc ^n

(3.42)

To prove the opposite inequality, we apply Lemma 3.9 after replacing (tn,a) by

—, ta j for any i > 0 fixed. We get

l i m f m(u0 + t n f l 0 i / ( i - x0); XQ -f enQJk)) > f(x0, uo, ta 0 u) - /(x0 , u0,0)
n ^ S tne%kN-1 ~ t

Letting t tend to -hoc and taking into account (3.42), we obtain (3.41).
D

Proof of Lemma 3.9. Set an := m(uo H- tna 0 z/(- - xo);xo 4- ̂ nQ^^) and
Qlk)(xQ,e) := x0 4 5Q^} • By the coercivity hypothesis (2.3'), we have an >
—tn\a\EnkN~l , and by (2.3) and since tn tends to 4oo, we have lim sup — ^ <
C n-+oo tnS%
+oo. Choosing C > 0 large enough, we may assume that

0 < an < Ce%tn. (3.43)
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Fix 77 > 1. By the definition of the set function m, there exists a function
zn e BV(Qik){xo,en);R

d) such that

f(zn;Qlk)(xo,en))<T}an, zn = uo + tna®v(-- x0) on dQ^\xo,en). (3.44)

Taking into account the continuity assumption (2.4) and the coercivity (2.3'), we
can choose po small enough so that

r|<2po =» ̂ (zn(-r)^Qlk\xo^en))<r]
2an^(2po)e^kN-\ (3.45)

Without loss of generality, we suppose that x0 = 0 and v = e^. Let us extend
zn to (-fc£n/2,fc£n/2)N-1 x R by setting

2 n : = u 0 + -£n^n i f x ^ > y , zn := u0 --sntn iixN<—~,

and define a function wn on the whole RN by considering, for every (z, j) €
ZN~l x Z, the hypercube

and defining

it;n(x
/,XAr) := ̂ (x ' -zfcfn^N - jentn) + ajentn , (X',

Also, we introduce a family of piecewise affine functions

where

f if 5 >

if \s\ <

i f s < -

Fix p > 0 such that 0 < p < po and denote

J£ := {(t, j) G Z N " ! x Z I Q ^ fl Qp * 0}, Qp := (-p/2, p/2)N-.

If iVn denotes the cardinality of J£, it is clear that

lim Nne»tnk
N-l = pN . (3.46)

Since ic;n agrees with zn(- - rn) + ajtnen on Q^ , with rn := (iken,jtnen), and
it coincides with i;n on Q ^ n {|x^ - jentn\ > ^n/2}, we have, for all n > n0,

1 + ̂ n ; Q ^ ) for all (z, j) € J£ , (3.47)
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where we have used (3.45) and the fact that Qlk\xo+rn: en) = Ql
T^f){\xN —J£ntn\<

— } . Now vn is continuous and piecewise affine on Q\?, thus by the integral

representation of Theorem 3.4 we can write T{vn\Q\{J) = L . ; f(x,vn,0)dx.
Summing (3.47) with respect to (i,j) € I£ and using the additivity of T, we
get

/(x,vn,0)dx.

Passing to the limit, as n —» +00 and then as 77 —> 1, in the previous inequality,
using (3.46) and recalling that tn —* +00, we obtain

~ ^ J » P ^ jQ

A simple computation shows that

lim \\vn - VO\\L*(QP:**) = 0» where t'o(x',XA0 := u0-f OXAT. (3.49)

Hence, by (3.38), we have

lim [ f(x,vn,0)dx= [ f(x,vo,O)dx. (3.50)

On the other hand, using Poincare's inequality in each Q\j n {|XAT — jffn^n|
en/2} (with Poincare constant Cen), we obtain

\wn(x)-vn(x)\dx< T f \wn(x)-vn(x)\dx

Cen f \Dwn-Dvn\

where we have used (3.43), (3.44), (3.46) and the coercivity hypothesis (2.3'). We
conclude that

lim

which, together with (3.49), yields

lim ||iyn -vo\\LHQ } = 0 .
n—•-f-oc
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Finally, by (3.48), (3.50) and by the lower semicontinuity property of T{-\ Qp), we
deduce that

The conclusion follows by letting p tend to 0 and using (3.38).

4. Applications.

We apply the characterization of the relaxed energy obtained in Section 3 to
particular situations where we are able to obtain a more explicit formula for the
relaxed energy densities.

4.1. Relaxed Energy for Discontinuous Integrands.

Here the functional T is the relaxed energy corresponding to an integrand /o
satisfying the following hypotheses :
(HI)"

/o : ft x Rd x Rd x N -• [0, +oo) is a Borel integrand;

(H2) there exists C > 0 such that

for all ( x . u , 0 € fi x Rd x R d x N ;
(H3) for every £ > 0 there exists 6 > 0 such that

\u-v\<6=> | / o (* ,u ,0 - /o(x,v,OI < C*( l 4-

for all (x . i i . r .O C f i x
(H4) there exist C > 0. 0 < m < 1, L > 0 such that

c

for all £ € RdxN, ||f || = 1, t > L, and for all (x,u) € fi x Rd, where the recession
function /o° is defined by

,u,0:=limsup
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The functional T : BV(Q; Rd) x A(ft) — [0, +oc) is denned by

T(u\A) :=inf (liminf / /o(x,un(x), Vun(i)) dx| un-> u in Lx(Q;

(4.1.1)

Lemma 4.1.1. Under hypothesis (Hi) and (H2), the functional T defined by
(4.1.1) satisfies conditions (2.1), (2.2) and (2.3').

We omit the proof of this lemma since it is quite similar to the one presented
in Section 4.3 for the more general case of the F-limit of a sequence of functional.

Thus we may apply the representation Theorem 3.4 and Lemma 3.7 to our
case. In order to obtain a more explicit characterization of the energies, we need
to identify m(u;A), as introduced in (3.1). Given {u\A) € BV(Cl:Rd) x A(Q)
define

mo(u;i4):=inf{ / fo(x,v(x). Vv(x)) dx\ v € W^V;**), v\dA=u\dA].

Lemma 4.1.2. Under hypotheses (Hi) and (H2), for all (u;A) € BV{Q;Rd) x

mo(u; A) = m(u; A).

Proof. The inequality mo(u;A) > m(u:A) is trivial since for every v €
W'1 '1^;!^) with v = u on dA we have fA /0(x,r(x), Vv(x))dx > T(v:A) >
m(u:A).

Conversely, given e > 0 let v e BV(Q:Rd) be such that v\dA = u\dA and

m(u;A) >T{v\A)-e. (4.1.2)

Let (vn) be a sequence in Wl^(Q;Rd) converging to v in Ll(Q:Rd) such that

Jr(v:A)= lim [ Mx,vn{x),Vvn(x)) dx. (4.1.3)
n ^ + o c JA

Using Lemma 2.6 and Remark 2.7, consider wn E H 7 1 * 1 ^;^) such that wn =
v = u on dA, \\wn — v\\Li(A.Rd^ —• 0 and

lim sup / fo(x,wn(x).ywn(x)) dx< lim / fo{x,vn(x), Vt'n(x))dx.
n—+cx) JA n—foe: JA

From (4.1.2) and (4.1.3) we conclude that

m(u:A) > lim sup / fo(x,wn(x),Vwn(x)) dx - e > mo(u;A) - e.
n—-f-cx JA

Letting e go to zero the result follows. •

We now prove the following representation theorem.
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Theorem 4.1.3. Under hypotheses (Hi), (H2), (H3) and (H4), the functional T,
defined by (4.1.1) and evaluated at {u,A) € BV^ft;!^) x A(Q), is given by

f{u;A) = / /(x,u,Vu) dz + / p(x,u+,u~,i/u) dHN~l/
A

/ h(x,u,au,vu) d\C{u)\,
JA

where vu{x) agrees with the unit normal to S(u) at x for HN~l a.e. x € S(u)
and with the unit vector that, together with au, satisfies (3.24) for C(u) a.e.
x € ft \ S(u). The energy densities are defined as

/(xo,u0,0 :=linisup inf If fo{xo + ey,u0, Vv(y)) dy \ , (4.1.5)
v(v) = £y ondQ ^

g(xo.\,6,i>)— limsup inf {/ /£°(x0 + cj/,u(y),Vt;(y))dyj , (4.1.6)

h(xo,uo,a,v) : = limsup limsup
k->+oc e—0

( 4 ' L 7 )

A if y -1/ > 0,

otherwise,

inffc
t-(y) = a(^ y) o n S Q ^

witi

for aU (xo,uo) € Q x Rd, (A,ff) €

Remark 4.1.4 In general T does not verify the continuity condition (2.4), and so
we cannot apply Theorem 3.10 to identify the Cantor part. Instead, we use Lemma
3.7 together with hypotheses (H3) and (H4). Note, however, that if /o is continuous
with respect to (x,u) then / will coincide with the quasiconvex envelope of /o, h
will agree with f°° and we will recover the representation theorem of [FMl] and
[FM2] or [ADM], under coercivity hypotheses. We remark that it is not necessary
to assume (H3) and (H4) to obtain the representation of T on SBV(£l\Rd) which
will hold like in Theorem 3.4 with / denned by

/(x0 ,uo,0 := limsup ^inf ^ < / /o(xo + ey,uo + ev{y), Vv{y)) dy \ ,

(4.1.5')
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in place of (4.1.5), and with g defined by

g(x0. \,0,v) := limsup ^nf ^ < / efo(xo + ey,v(y),-Vv(y)) dy> ,

(4.1.60
instead of (4.1.6).

Proof of Theorem 4.1.3. Using Lemma 4.1.2 and (3.13), the density / is
given by

„i iinf *<* {j» I h{x,v{x).yv{x)) dx}.
+ { ( x — x o ) on8Q(xo .c) '

Using the change of variables x = xo -f ey. and considering as test functions
w(y) := v ( l o^y )~U o , we get

f(xo.uo.£) = limsup inf / fo(xo + ey.u0 + ew(y).Vw(y)) dy. (4.1.8)
e _ 0 ^Wl-UQ-.i'h JQ

Hypotheses (H2) and (H3), combined with Lemma 2.8, allow us to obtain (4.1.5).
In fact, due to the coercivity hypothesis (H2), both infima in the right hand sides
of (4.1.5) and (4.1.8) are attained on

ER = {w € U' 1 - 1 ^;^) . w = iy on dQ, \\Vw\\LiiQ:Rd) < R},

for a convenient R. independent of e. In view of this, using Lemma 2.8 for each
n € N we can find Mn, independent of £\ such that

inf / fo(xo -f £y, u0 + ew(y), Vw(y)) dy -

r . i (4.1-9)
JQ

ondQ ^

and

inf / /o(xo + ey, u0,
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On the other hand, for fixed n and using (H3) we get that

lim sup inf / /0(x0 -f ey, uo 4- ew(y), Vw(y)) dy =
«(y)=<V on8Q, ||w|loc<A/n

 V

= lim sup inf / /0(x0 4- ey, u0, Viu(y)) dj/.
0 Wll(QPd)nL«(Q;Rd) J Q

H < A /

By (4.1.8), (4.1.9), (4.1.10) and (4.1.11) we obtain (4.1.5) up to an error of order
^. It suffices to let n —• +oo.

Using (3.14) and Lemma 4.1.2, the density g is given by

p(xo,A,0, v) = lim sup A r - 1 ^ i n f / /o(x,v(x), Vv(x))dx.

For y € Qv, define ve(y) := v(x0 + ey). Thus 6e(y) = u\,e,v(y) for H^" 1 a.e.
y e dQv, and

/o(x,v(x),Vt;(x)) d x = / e f0 ( x0 + £y,Cc(y), -V5c(y) J dy,

consequently,

0(xo,A,0,i/) = limsup inf / 5 /ofxo + ey,u(y), -Vv(y)) dy. (4.1.12)
0 € V 4 ' 1 1 ( Q F d ) J \ € /

Hypothesis (H4) yields

) dy = Ce(t0 /
JQu

(4.1.13)

Since the function /Q° also satisfies hypotheses (H2) (with the same constant C),
one sees easily that both infima in the right hand sides of (4.1.6) and (4.1.12) are
attained on

ER = [v € W'1 '1^;!**), v\dQu = uxfiA

for a convenient ii, independent of £. Thus, taking the infima in (4.1.13), one
obtains that

inf / efo (xo + ey,v,-Vv J dy - inf / /o°(xo + ey,v,Vv)dy

< sup |Cc(v)|

< CeTnRl'm.
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Passing to the limit, as e goes to zero, (4.1.6) follows.
Finally, we showT (4.1.7). In view of Lemma 3.7 and by Lemma 4.1.2, we have,

for |C(u)| almost all xo € Q and for a suitable sequence (bik\tik^) converging to
(u0,+oc),

h(xo< uo« a, v) — hm limsup

= lim lim sup , .. .

fc-+oc £_o kN~l

inf

Using as before hypotheses (H2), (H3) and Lemma 2.8, we are led to

h(xo,uo,a,i/) = lim lim sup _ v .

X J C V V 1

Then (4.1.7) follows from (H2) and (H4). •

4.2 Relaxation of bulk and interfacial energies.
We consider the functional defined for each A 6 A(Q) by

//o(x,u,
JA

F(u:A): =

4- oo otherwise ,

where the densities /o and go are continuous integrands satisfying the following
hypotheses :

(HI) /o : fi x RN x Rdx7V -> [0, +oo) is a continuous function, and

|ei </0(x,ti,o

for all (x, ̂ O G f l x R ^ x RdxN and for some C > 0;

(H2) for every e > 0 there exists <5 > 0 such that

|x - 1,1 + |u - t;| < * =• |/O(x,u,0 - /(y,v,OI < Cff (1 4-
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for all (x,y,u,t/,0 € Q2 x (Rd)2 x RdxN;

(H3) go :ft x (Rd)2 x SN~l -> [0, -hoc) is a continuous function, and

~ | A - 0 | < <?oOr,A,M)

for all (z,A,0,i/) € fi x (Rd)2 x SN'X ;

(H4) for every e > 0 there exists 6 > 0 such that

| x - y | + |z| < 6 ̂ > \go(x,\ + z,0 + z,v)

for all (x,y,A,0,z,i/) € & x (Rd)3 x S*"1.

Our aim is to identify the relaxation of F defined for each open subset A e A(Q)

T{u,A) :=inf (liminfF(un;A)| un -^ u in L 1 ^ ; ^ ) i . (4.2.2)

,\,0,v)\ <Ce\\-6\

as

Theorem 4.2.1. Under hypotheses (Hi), (H2), (H3) and (H4), the functional T,
defined by (4.2.2), is given by

(u\A)= I /(x,tx,Vu)dx+
JA S(U)C\A

where, for all xo € ft,foraU(u0,0 € RdxRdxAr and for all (A, 0,i/) € (R d ) 2xSN - \

/(x0 ,u0 .0 •= Hmsup inf { / fo{xo,uo,Vv{y))dy

+ f 9O(XO,UQ + £v+(y),uo + £v~(y),Vy(y))dnN-i, vi (423)
Jons(v) £ *JQnS(v)

:=limsup inf
SBV(Q

/0 (x0,

(4.2.4)

where
A if y • 1/ > 0,

6 otherwise.
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Remark 4.2.2 Let us define

/o(xo,uo,0 : l ime/

go(xo,uo,\,0,v) := lim - go(xo,uo + e\,uo + e6,v) .
e->0 S

Using hypothesis (H4), one can easily see that g0 satisfies the invariance property
po(xo, uo, A -f 2,6 4- z, z/) = po(xo, uo, A, 0, v) for every 2 € Rd, therefore it can be
written as

9o(xo, ^o, A, 0, v) =: <7o(zo, ̂ o, A - 0,z/),

for a suitable function go:QxRd xRd x SN~l .
Let us assume, in addition, that the following estimates hold

fOro, uo,O - ef0 (so, "o> ^

for suitable a, m € (0,1) and e < e0, and for all x0 € RN, ^ € RdxAr, u0, A, 0 e
JK , 1/ fe O

Then, as in Section 4.1, it is possible to verify that formulas (4.2.3) and (4.2.4)
can be rewritten as

{ /
) I JQ

v€SBV(QJd) JQ

(4.2.3')

/QnS(v)

inf { / foc(xo,v(y),Vv(y))dy

! ^ , V" (4.2.4')

As a particular case we recover the characterizations of bulk and jump densities
obtained in [BBBF] where it is assumed that /o = /o(^o-0 and £0 = 9o(xo> A —

Proof. As in the proof of Lemma 4.3.4 of Section 4.3 it can be shown that
the functional T defined by (4.2.2) satisfies conditions (2.1),(2.2) and (2.3'). In
addition, assumptions (H2) and (H4) yield condition (2.4). Therefore, we may use
Theorem 3.10 to obtain the integral representation of T on all BV(Q;Rd), and it
remains to indentify the integrands / and g given by (3.13) and (3.14), respectively.
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By Lemma 2.6 and Remark 2.7 1), we obtain that for every (u,A) € BV(fi) x
A{Q) the function m(u: A) defined in (3.1) agrees with

mo(u;A) := inf {F(v; A) \ v\dA = u\dA] .

Replacing m by mo in (3.13) we have

/(z0 ,a,0 = limsup inf < -rr / fo(x,w{x), Vw{x)) dx

£ ./Q(:ro,OnS(uO

u; € 5BK((5(xo,£);Rd), v(x) = a + f(x - x0) on

Using the change of variables y = ^-^£tt, and setting t;(t/) := £ti;(i-^iL) - a, we are
led to

/ (x 0 , a , 0 = limsup inf ^ / /o(xo + £2/,a + ev(y),Vv(y)) dy
£-0 [ JQ

+ - / So^o + ^ a + v+CyJ^ + v-^i/^yJJdW^-^y) | (4.2.5)
£ JQnS(v)

v e SBV(Q;Rd), v(y) = ^y on dQ i .

Similarly, replacing m by mo in (3.14), changing variables and setting now
v{y) := w{^&), we get

0(xo.A,0,i/) =limsup inf < / e f0 (xo + ey,v{y), ) dy

+ / Po(xo + ^,^(t/),^"(y),^(y))dWAr-1(y) | (4.2.6)
JQunS{v)

v e SBV(Qu:R
d), v(y) = uxAv) o n 9 (3- ?•

By the coercivity condition (2.3'), it turns out that sequences (ve) approaching
the minimum in the right hand sides of (4.2.5) and (4.2.6) are uniformly bounded
in BV{Q;Rd). Thus with the help of the continuity assumptions (H2) and (H4),
we can replace / 0 (x 0 + ey,-,-) by /(xo,-,-) in (4.2.5), and go{xo + ey, •,-,-) by
^0(2:0, •, •, *) in (4.2.6). This concludes the proof of Theorem 4.4. D
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4.3 Homogenization.
In what follows S will stand for a positive parameter, converging to zero. For each
A € A(Q) consider the functionals F6(-;A) denned in BV(Q;Rd) by

F6(u;A):={
S(u)rL4

if u€SBV (Q;-Rd

+ 00

where the densities / 0 and g0 satisfy the following hypotheses :

otherwise ,
(4.3.1)

(HI) /o : RN x RdxN — [0,-foo) is a Borel function, Q-periodic in the first
argument, and

for all e e RdxN, for all x e RN, and for some C > 0;

(H2) there exist m, L, 0 < m < 1, L > 0, such that

c_
tmt

for all f € RrfxA\ ||f || = 1, t > L, and for all x € RN, where the recession function
fo° is denned by

(H3) g0 : R
jV x Rd x SN~l -» [0, -hoc) is a Borel function, (?-periodic in the first

argument, satisfying

for all x € RN, A e Rd and i/ € S*"1 ;

(H4) there exist a, Z, 0 < a < 1. / > 0, such that

for all xeRN, A 6 Rd, ||A|| = 1, v € SN~\ t < Z, where p0 is defined by

t-o t
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We recall the following definitions (see [DM]) :
We say that a functional F : BV(Q,\Rd) -* [0,+oo] is the T-lower limit

(respectively T-upper limit) of a sequence of functionals Fn : BV(Q; Rd) —• [0, -hoc]
for the Ll(Sl\Rd) topology if

i) given u e BV{&',Rd) and (un) in BV{Q-Rd), un -> u in Ll(Sl;Rd), then

F(u) < liminf Fn(un) (respectively F(u) < lim sup Fn(un));
n—+°o n-^+oo

ii) for each u € BV(Q;Rd) there exists (un) in BV(Q;Rd) such that un -• u in
* and

F(u) = Uminf ^(i ln) (respectively F(u) = limsupFn(un)).
n"^+°° n—+00

We write
F = r - lim inf Fn (respectively F = T - lim sup Fn).

n -*+ 0 0 n-^+oc

We say that (Fn) F-converges to F if the F- lower limit and F- upper limit coincide,
or, equivalently, if condition i) for the F- lower limit and the following condition
iii) are both satisfied,

iii) for each u e BV(Q-Rd) there exists (un) in BV(Cl;Rd) such that un —• u
iaLl{Q\Rd) and

F{u)= lim Fn{un).

We write
F = T - lim Fn.

n—•+00

Remsirk 4.3.1. Since L2(n;Rd) is a separable metric space, we can deduce from
Kuratowski's Compactness Theorem (see [DM]) that a sequence (Fn) F-converges
to F if and only if F = F - liminf Fnfc, for any sequence of indexes n* —> -hoc.

Given A € .A(fi), we define

;A) and ^ + ( - ;^) = F - limsupF6(-;>l).

Theorem 4.3.2. Under hypotheses (Hi) - (H4) we have T~ = T+ = T where,
for each u € BV(Q;RN) and A € A{Q), T is deGned by

(4.3.2)
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lim ± inf { / fo(x,Vu)dx+f go(x,

g(\,v):= lim - ^ inf { / f?{x,Vu)dx
(4.3.3)

L+
'S{u)nTQu

(4.3.4)
, / N / A i f t / - i / > 0

10 otherwise.

According to Remark 4.3.1, in order to prove Theorem 4.3.2 it is enough to
show that for any given sequence 6n —* 0 the F-lower limit of (Fsn(-;A)) agrees,
for every A € A(Q), with the functional T(u\ •) defined in Theorem 4.3.2. Having
this in mind, and in order to simplify the notations, we will represent the sequence
(<5n) by the parameter 6.

Lemma 4.3.3. Tie functional T~ satisfies

T-{u{- - h): A + h)= T~{u: A) and T~{u + a; A) = T~{u\ A).

for all u € BV(Q: Rd), A e A{Q): heRN,andae Rd.

For the proof of this lemma we refer to [BDV], Lemma 3.7.

Lemma 4.3.4. Under hypotheses (Hi) - (H4), T~ satisfies conditions (2.1), (2.2).
(2.3f) and (2.4).

Proof. Condition (2.4) is an immediate consequence of Lemma 4.3.3.
We prove (2.2). Since the F-lower limit of a sequence of the functionals is lower

semicontinuous (c.f. [DM]), T'^'.A) is L1(Q;Rd) lower semicontinuous. In view
of the local character of T~', easily deduced from its definition, we conclude that
T~{'\A) is also L1(A;Rd) lower semicontinuous.

In order to prove (2.3'), and by (Hi) and (H3), we consider the double inequality

hDu\{A) < Fs(u;A) < C(CN(A) + \Du\(A)),

for all (u,A) € SBV(Q;Rd) x A(Q), and we pass to the F - lower limit in each
member.

Finally we prove (2.1). We claim that for every u e BV(Q;Rd) and for every
A, B, C in A(Q)i the following implication holds :

CCCBCCA => r-(u;A)<r-(u;B)+r-(u;A\C). (4.3.5)
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In fact, let (vs) and (ws) be two sequences converging to u in L1(fi;Rd) and such
that

liminf F6(v6;B) = .F~(u;B) and liminf F6(ws\A \ C) =T~(u\A\C).
6—>0 6—0

By means of hypotheses (Hi) and (H3) we can apply Lemma 2.6 and Remark 2.7
to the sequence (Ft), and find two other sequences (wf

6) and (v'e) in SBV(Q]Rd),
both converging to u in Ll(Q',Rd), w's = v's = u on £ and

limsupF^u^VBp) <\xmmiF6(ws\A\Bp),
6—0 6-*®

(^;Bp) < liminf F6{v6;Bp),
6—o *—o

where

£ := {x e B \ C | dist (x,dB) = p} and Bp := {x € B\ dist (x,9B) > p},

for some 0 < p < dist (dB,C) and such that |Dsu|(£) = 0. Defining v£ = wf
6

in fi_\ Bp andJJJ = u£ in Bp, we get t^ -• u in L 1 ^ ; ^ ) - Since Bp C B and
A \ Bp C A \ C, we also obtain

T'(u;A) < \immfF6(v6;A) = liminf [F6(^;BP) + F 6 K; A \ Bp)]
6—^0 6—>0

< liminf F6(^;BP) + limsupF6(w'6; A \B P )

< liminfF6(v6;B) + liminf F6{w6;A\C)
6-»0 6—0

which proves (4.3.5).
Now consider (us) in SBV(£l;Rd) such that

?-(u;Q) = liminf F6 (u6; Q).
6—>0

Let /i be the Radon measure on the compact ft defined as the weak limit, up
to a subsequence, of (/0 Q , Vu6) CN [Q + p0 Q , M ^ u . ) H ^ " 1 ^ 5 ^ ) n fi)) as
6 -• 0. We have _

^"(u;n) = /x(n) (4.3.6)

and, by definition of T~, for all A € A{Q),

T'(u\A) < liminf F6(u6; A) < fi(A). (4.3.7)
6—»0

Let B e A{£1) and e > 0 be fixed and consider C 6 .4(Q), C c c B such that
fi{B \ C) < e. We get
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In view of (4.3.6), applying (4.3.7) with A = Q \ C and (4.3.5) with A = Q, it
follows that

< T~ (u; fi) - T~ (u\ Q \ C) + 5 < .F" (u; B) + e.

Letting e —> 0, we conclude that

for all B e A(Q).
In order to prove that T~{u\ A) = n(A) for all A € *4(fi), we fix again e > 0 and

choose C , B e .4(fi) such that C CC B CC ,4 and £^(.4\C) + |I?u|(>l\C) < e/C.
By (4.3.5), (4.3.7), and since T~ satisfies (2.3),

We complete the proof by letting e —> 0 . •

Lemma 4.3.4 enables us to apply Theorems 3.4 and 3.9, which, together with
Remark 3.5, yield

F-(u;A)=[ f-(Vu)dx+[ g'(lu]^u)dnN'^ f (f-r
JA Js(u)nA JA

where /~ : RdxN -> [0, +c») and g~ : Rd x S^"1 — [0. +oo) are given by (3.13)
and (3.14). In order to prove that f~ = f and g~ = g, as defined in (4.3.3) and
(4.3.4), respectively, we introduce (c.f. (3.1))

m(u;A) := inf {F"(t;;X)| f|â  = u\dA,v G

and, for each 6 > 0,

m*(ix;.4) := inf {F6(rM)| r|aA = u\dA,v €

Lemma 4.3.5. For each u e BV(Q;RN), x0 € Q, v e SN~\ we have

liminf ms{u: Q u{xo,t)) = m(u\Qv{xo,t)),
6—0

for almost all t > 0 such that Qu(xo,t) C Q.

Proof. We divide the proof into two steps.

Step 1. We show that

liminf m€(u;Qu(x0,t)) < m{u\Qu{x0,t)) (4.3.8)
o—*0
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for all t > 0 such that Qu(x0,t) C ft. Fix A € -4(fi), e > 0, and let i; € BV(Q;
be such that

m(u; A) > T~{v\ A) — e and t; = u on dA.

Let (t^) be such that !F~{v\ A) = liminf Fs{vs\A). Using Lemma 2.6 and Remark

2.7 2), we can find another sequence (vs) satisfying v& = u on 9̂ 4 and such that

T~ (v;A) = lim inf F6 {v6; 4).
6—*0

Since 771,5(11;4) < Fs{vs]A), we have

liminf T7i6(u; A) - e < T~(v\A) - e < m(w,A).
s—•()

Letting e go to zero we conclude (4.3.8).

Step 2. We prove that for almost all t e (0,T) such that Q^XQ.T) C fi,

liminf m ^ C C z o , * ) ) > m(u;QI/(xo,t)). (4.3.9)
<5—»0

We claim that t »-> m(u;QI/(xo,t)) is a measurable function. Indeed,

for t > t\ and so lim sup m{u\ Qv{x§,t')) < m(u\ Qu{xo,t)). This implies the

measurability of t »-• m(u;QI/(xo?t)). Define

is approximately continuous at to [.

Recalling that a measurable finite function is approximately continuous almost
everywhere (see [EG]), we have that £1((0,T) \ E) = 0. The conclusion of step 2
follows from the two following claims.

Claim 1. For each t € £ ,

limsupm(u;(5l/(x0,t/)) > m(u;Ql/(x0,t)).

This is a consequence of the approximate continuity of the function
m(u,Ql/(x0, •)) a t *» which implies that, for every e > 0, the set

{tf e (t,T) I m(u;Q l /(xo,t /))<m(u;Q I,(xo,t))-e}
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has Lebesgue density at t equal to 0, i.e.

lim -Cl({«' € (t, t + 6)\ ro(u; (?„(*<>, t')) < m(u; Qu(x0, t)) - e} = 0).
6—*0 0

Therefore, there exists a sequence tn \ t such that

m{u\Qu(x0,tn)) > m{u\Qu{xo,t)) - e.

The claim 1 follows by letting first n —* +oc and then e —• 0.

C7aim Ĵ . For every £ > 0,

liminf m(5(u;Qi,(xo,O)60

For each <5 > 0 choose us satisfying us = u on dQv{xo,t) and

For tf > t consider the extension us of us, us •= us in <?i/(xo,O and us := u
in g ^ i c O \<3*(:ro,*)> where fi € H 7 1 ' 1 ^ ^ , ^ ) \ Qu{xQ,t)\Rd) and u = u on
dQv{xQ,tf) \JdQu\xQ,t) (see Lemma 2.5). We have

s\QAxo,t'))-C f
JQJixo,t>)\Q»{xo,

+ |Vfi |) dx - 6.

Using the coercivity conditions (Hi) and (H3), together with Poincare's inequality,
we infer that the sequence (us) is bounded in BV((QL/(xo, t')\ Rd). Let v be defined
as the limit, up to a subsequence, of us in L1(Q1/(XQ, t');Rd). Since by construction
v = u = u on dQu(xoAr), we obtain

(1 + |Vu |) dx

> m{u-Qv{xQ,t')) -C [ (1 + IVu I) dx,
jQJxo,t')\QUxo,t)

The claim is proved by letting t' \ t .
D

The following lemma is due to C. Licht and G. Michaille (see [LM], Theorem
3.1 and its proof). We refer to Section 2 for the definition of the class A.

Lemma 4.3.6. Let p > 1 and let S : A(RP) -+ R+ be such that

i) there exists C > 0 such that S(A) < C£P(A),

ii) S(C) < S(A) + 5(B), for all A,B,C e A{RP), An B = 0, C =
Hi) there exist T c R p and M > 0 suci t£at T + [0, M)p = Rp and

r) = 5(>1) for all A € A(RP) and reT.
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Then, for any cube A of the form [a, 6)p there exists the limit of the sequence

l i m ^ = l i m

Rjtiermore, if {SL}L is a famiiy of set functions satisfying i) - Hi) for C, T and
M independent of L, the above limits are attained uniformly in L.

Lemma 4.3.7. The limits in the right hand side of (4.3.3) and (4,3.4) exist and

(4-3.io)
). (4.3.11)

Proof.
Part 1. First we prove the existence of the limit in the right hand side of (4.3.3)

and then we prove (4.3.10).
Let us define, for e,T > 0 and (w,A) € BV(fyRd) x A{Q),

F£,T(w:A) := [ fo(yT,Vw)dy + i / 9o{yT,e[w],vw)dHN-\ (4.3.12)
£ JS(w)nA

F0,T{W;A) := / fo(yT,Vw)dy + / po(yT, H , ^ ) ^ ^ 1 , (4.3.13)
*/>! JS(u>)n,4

and

mo ,r(^;^) := inf{F0,T(^;^)l ti> € 5BV(A;Rd), w = {ion 9^}. (4.3.14)

For A € >l(n) set

In view of the periodicity hypotheses (Hi) and (H3), we may apply Lemma 4.3.6
to obtain

(4.3.15)

wrhich proves the existence of the limit in the right hand side of (4.3.3).
From (3.13) and in viewT of Remark 3.5, proving (4.3.10) is equivalent to asserting

that

or, by virtue of Lemma 4.3.5, it suffices to prove that
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for a suitable subsequence still denoted by e.
Step 1. We show that

We have

e
where, for each e > 0, <5n>c —> 0. We extract a diagonal subsequence 6(e) such

n—•-J-oc

that T£ := e/6(e) —> -fee and

for suitable v£ € SBV(Q;Rd), v£ = fz on d(eQ). Changing variables and writing

v£(y) := -v£(ey), we have

a = lim F£.Tc {v£\ <?). (4.3.16)

Due to the coercivity hypotheses (Hi) and (H3), together with (4.3.16). we have
sup ||T;£||Sv

r(Q;Rd) = C < -hoc. Since v£(y) = £y on dQ, using Lemma 2.8 with
£

UQ = £y, for fixed r\ > 0 we may find Mv = M (r?, C, C, \\£y\\Lx{QMd)) a nd for each
e we may find w£ € BV(Q; Rd) n I 0 0 ^ ; Rd) such that

( Q ; R - ) < A ^ , w£{y)=ZyondQ, \Dw£\{Q) < C,

and
^(it;£:Q)-77. (4.3.17)

By (H4) we have

limsup / - 9o(yT£,e \we),vWt) -go{yT£,[w£],vWc) dHN~l

^^o Js(wc)nQ £

< limsup C sa f \{w£}\QJtldnN-1

ff—0 JS(wc)r\Q

<Umsup CCeQ M° = 0.

Setting w£(y) := T£it'£ (y/Te), we deduce from (4.3.15), (4.3.16) and (4.3.17) that

1 _
Q > limsupFo,rc(tt'£;(5) - t] — limsup —jjFoyi(w£;T£Q) - rj

e-»0 ' £—0 T£

1 1
> limsup —rrmo \(£x',T£Q) — r? = lim -rrmo i(fx;TQ) - r? = /(£) - 77.
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To conclude the proof of the first step it suffices to let rj tend to zero.

Step 2. We prove that

Let uT € SBV(n-,Rd),uT = £x on d{TQ) be such that

/ ( O ^ l i n ^ ± F0,i(uT;TQ).

Setting ur(y) := ^uj^yT), we obtain

lim
1 — • + O O

and so, just as in Step 1, given 77 > 0 we may replace UT by WT such that
WT — £y on dQ and sup HtyrllL^^-R**) = C < +00. We have

T

/ ( 0 > l i m i n f Fo T(WT',Q) - V — 1™ suP liminf F £ T ( ^ T ; Q ) — V

= lim sup lim inf - ^ F £ / T (u'T,£; eQ) - 77

> lim sup lim inf —rr m^ (^x; eQ) — T7,
£-,o <5̂ o e^

where wT,e(y) •= ewT{y/e).

P a r t 2. WTe prove the existence of the limit in the right hand side of (4.3.4) and
we prove (4.3.11).

For e,T > 0 and (u,A) € BV{Q;Rd) x A{Sl) define

Ge,r(ti;;i4) ~ e f f0 (yT^Vw) dy + / Soty^M^^JdW^"1, (4.3.18)

G0,r(ti;;i4) := / fS°{yT,Vw)dy+ f 9o{yTM^w)dnN'1 (4.3.19)
J>1 JS(w)r\A

and

0 ,r(w; A)\w€ SBV{A\Rd), tx; = uA,u on 9A}. (4.3.20)

Prom (3.14) and in view of Remark 3.5, to prove (4.3.11) is equivalent to assert
that
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Then, by virtue of Lemma 4.3.5, it suffices to show that

lim liminf °y T, = g(A,f), (4-3.21)

for a suitable subsequence still denoted by e. Provided we establish the existence
of

lim rr\r_\ ^O,I(^A,^5TQv), (4.3.22)

the proof of (4.3.21) is quite similar to the one presented in Steps 1 and 2 of Part
1. Indeed, it is enough to replace the functional F€,T by G£ ,T, Fo,T by GO,T, and
to use hypothesis (H2) instead of (H4).

We prove the existence of the limit (4.3.22) in three steps.
Step 1. We recall that, for v € 5N~ 1 , Rv denotes a rotation satisfying

Rv{e^) = v and v y-• Ru{^i) is continuous in SN~l \ {e^}, for all i = 1, • • •, N - 1
(see Section 2). As in [BDV], define 5* to be the set of all v € SN~l such that
Rl/(et) = 7tzt, for some 7» € R \ {0}, zx € ZN, i = 1, • • •, N - 1. The set S* is
dense in SN'K Let

Ql*L :=Rl/{{xeRN\ \xN\ <L/2and |xt| < T/2, for i = 1, • - •, TV - 1}) .

Fix v e 5*, L > 0 and define

TH '= 1 h ~>ei l Xl ez'Ry{ei) = 7l2t'7l €RN{0}'ZieZ J
For each open subset A C R7^"1 with Lipschitz boundary, set

where II — (-L/2.L/2). In view of the periodicity hypotheses (HI) and (H3) we
have that, for C independent of L,

SL(J4 + T,I/) = SL(>1,I/) and SL(A,v) < CCN~l{A), (4.3.23)

for all A e A(Q), r € 7{y), and also 7 » -f [ O ^ ) ^ 1 = R^"1, where
M := max 7,. Applying Lemma 4.3.6, with p — N - 1, we conclude that

l™ ^TrT^oi(wAi/;Q^ ) (4.3.24)

exists and is finite.
Step 2. WTe prove that, for all v € 5*,

lini 7ZTFTrooi(uAi/;^<3i/) = p(A,i/). (4.3.25)

43



In fact,

1 . . . 1 TL

T
, l rkr> ' / 'iV — 1 » \ » / —̂ np . ^ ^ r ^ pi rf]\ — 1 ' ' " '

(4.3.26)
= i n f l i m -=rj-T—-mo i ( u \ V \ Q ' ) ,

L>0 T-̂ +cx) T^"1 '
having in mind that, since the limit in (4.3.24) is uniform in L, we can interchange
the infimum in L with the limit as T goes to +oo.

Conversely, fix L and let T > L. Using again, for each test function in Q^'L,
the extension by u\^u to the whole TQV, we obtain

1 , -.rr r » ^ 1 ,

and, consequently,

inf lim - ^ ^ mOA(uxy,Ql'L) > Hmsup 7=^^- m c i K ^ T Q , ) . (4.3.27)

Prom (4.3.26) and (4.3.27) we conclude the proof of Step 2.
Step 3. We extend the proof of existence of the limit (4.3.22) to all v € S^"1 .

In view of the continuity of v >—> Rv, for each v € SN-1 \ {ejv} and e > 0 we may
find i/£ € 5* and 77 satisfying 1 < 77 < £ + 1, such that

H " - 1 ( 3 ( - Q V , ) n {x € RN | 1 • ut < 0} n {1 € RN\ x • v > 0}) +

H^fd^-Qv.) n { x € R w | x-vt >0}n{a r€R A ' | x - i /<0} )+ (4.3.28)

and analogous estimates hold with r\QVe in place of Qv and Qv in place of ^Qv
Given T > 0, extending each test function defined in {T/7])QUc to TQV by UA,

and taking into account estimates (4.3.28) and hypothesis (H3), it follows that

C\X\e.

Therefore, using Step 2 to justify the existence of the limit as T tends to -hoc in
the right hand side of the previous inequality, we get

lim sup ^ ^ mo^iuxyTQv) < ^lim^ N_x mo,i(uA,^; {T/rj)QVc) + O(e)

(4.3.29)
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Similar reasoning concerning the inclusion Qu C t]QVe leads to

m^uTQ) ^ (

(4.3.30)
Letting £ go to zero in (4.3.29) and (4.3.30), we conclude the proof of Step 3. •
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