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1. Introduction.

A conjecture, attributed to Bieberbach [1], asserts that if
00
(1.1) f(z) = z + E apz"
n=2 "

Is analytic and univalent in the unit disk, then |al £n wth

equal ity holding only for the Koebe function

K(z) - =2 =z + £ nz4
(1-2)2 n=2

or one of its rotations. The conjecture was proved to be true
for n=23 and 4 by Bieberbach [1], Loewner [11] and
Gar abedi an and Schiffer [5], respectively. Aternate proofs for
.the case n =4 have been provided in the papers [19], [4] and
[14]. Recent evidence in support of the conjecture has been ob-
tai ned by Garabedi an, Ross and Schiffer [4], Garabedi an and Schiffer
[ 6] and Bohbi eri [2]. In these papers it was shown that Rean<l n
if f(z) 1is sufficiently close to K(z) in various topol ogies.
The author [14] proved that, at the Koebe point, these topol ogies
are all equi val ent .

It is the purpose of this paper to prove the Bi eberbach
Conj ecture for the sixth coefficient.
Theorem1 If f(z) is normalized, analytic and univalent in
the unit disk, then I1¥:] <L 6 wth equality holding onI.y for
t he Koebe function or one of its rotations.

The proof of the above theoremuses the fornmulas of Garabedi an,

Ross and Schiffer [4] together with an observation of the author [15]
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that the Gunsky matrix of a slit mapping is unitary. Gunsky's
inequality is based on the fact that a function defined by (1.1)
is univalent in the unit disk if and only if the series

oo Hg=f0g) _ |, g 2"
109 zo m n=o mn

converges for |z| <1,|£| < 1. Gunsky [7] showed that this
is the case if and only if the linear transformation defined

by the symetric infinite matrix

satisfies the inequality
(1.3) (Cxsx) £ [[x]°
- for every square summable conplex vector X = (XpXo, .. mMX ,...).

[ n_
Here, and el sewhere, (x,y) denotes the inner product ~,*,Y,*
Schiffer noted that it is a consequence of Schur's diagonalization
theorem [21] that (1.3) is equivalent to the inequality

(1.4) [ICxi? ~ [Ix||* .
The author [15] noticed that it follows froman independent
proof of Jenkins [8] that equality holds in (1.4) if and only if
f defines a slit mapping. Here a slit mapping is one which
maps the disk onto the conplenent of a set of neasure zero. An
i medi at e consequence is that f is a univalent slit napping.if
and only if the Gunsky matrix C 1is unitary.

In his proof that |a,| £2, Bieberbach [1] made use of the
fact that if f(z) 1is univalent in the unit disk, then so is a

branch of ~.f(z?%), Garabedian, Ross and Schiffer [4] observed

t hat any even order coefficient a_n of f can be expressed as




\)
a polynomial in the truncated matrix Ch = (ng—l,gk-l)’
j,k =1, 2,...,n, of the Grunsky matrix C associated with

‘Jf(zg). When 2n = 4, they used this fact to prove that |a4‘ < 4.

An expression for ac is given by (see[4, pp. 985-86])

\Y
_ _ 2 2 12
(1.5) ag = P15(C3) = TCgq +WT3 1135 * ©°11%33 *yT813%15
14 - 323 2 5

t 73%11%13 Y v3%1%13 “5%11°

The above polynomial, however, is not unique since there is a

relation
v V5
- ¥v5 3 _ N5 Vis -
(1.6) Pg(C3) = cy5 + 73 €197 73 S33 - "3 ©11%3 =0
\Y

among the elements of C3. Note that the polynomials Rk are
homogeneous of degree k in the sense that replacing £(z) by

-16f( ) ‘brings out the factor elke in front of P The

k.
above authors were then led to the representation ‘

\ \Y%

2
(1.7) = PlO(C3) - (Acll+ycl3)P6(C3) s

%6
where A and pu are Lagrange multipliers. A comparison of the

above formula with one obtained by a different method then led

to the choice

\ = i _ 12 .
> Mo
The authors then considered the problem of maximizing the above
polynomial over the class of all 3 X 3 matrices which satisfy
Grunsky's inequality (1.3). An application of Schur's diagonali-
zation theorem, together with the maximum principle, then showed

that in the extremal case the truncated matrix must be unitary.




By determning the nmost general 3 x 3 synmetric unitary matri X,
a bound was obtai ned for Keab in tefns of a trigononetric poly-
nomal in five real variables. Conputing machi ne experinents
gave consi derabl e evidence that the polynom al has the desired
bound.

The author [16] wused the unitary property of the infinite
matrix to show that, for suitably normalized slit mappings,
Rea§ i s bounded by a conmputable function of the single rea
variable t = &eag/2. Conputations of this function gave nore
evidence that (fted\ <€ 6. The results of the latter study indicate
that one should be able to prove |

Re(ag-6) < a(2-Rea,)

where a is near 1/2, Since this would require considerably
greater effort, with no new ideas, we content ourselves with
estimates which are consistent with the objective of proving
Theorem 1. |

The present study uses a sinplified version.of the method used

in [16]. W are led naturally to the formula (1.7) with
(1.8) =~ , fi =0.

It is convenient to introduce the identity

2 2
111 - 11 Z 417215, 9193 ©13
(1.9) Yis ~ ¥7 Y5 \pr 3

which is obtained by direct conputation. The useful ness of (1.9)
Is a consequence of the fact that its imaginary part does not

depend on the real parts of elenments outside of the truncated matrix
\%
Cs . After onmitting certain terms, which the unitary property




of C shows are negative, the remaining bound is reduced to a
polynomal in the real and imaginary parts of the first now of
C by neans of (1.6) and (1.9).

Perhaps a few remarks on the determnation of the multipliers
are in order. This requires a certain anount of guessing since
the optimum choice requires a know edge of the eigenval ues of
certain matrices as functions of A and \x. W therefore choose
\l and A so that reasonably good estimtes are obtained fbr
uni val ent functions whose coefficients are all real. The value

= -9/\V5 gives the best local estimate for the latter cl ass.
The choice A = -8/VLIT, which turns out to be a stationary val ue
of the discrimnant of a certain quadratic form gives a better
estimate for functions with conplex coefficients. '~ By conparing
our bound for Beag wth the one obtained for &ea, in [15], the
value A = -8/"5 suggests the beginning of a pattern which, at
| east as far as the local result is concerned, may extend to the
hi gher even order coefficients. Having chosen A = -8>T5 JU
is chosen to optimze the second derivative of the estimte for
af at t = 1. This is acconplished by choosing \x = 0. W
shall not carry out a justification of the remarks of this para-
graph..-The interested reader.may wi sh to do so hinmself by follow
ing the lines of 3 for an arbitrary polynom al of the form
(1.7).

It will be observed that the point = -8//"5, fi =0 lies
outside of the region for which the schene of Garabedi an, Ross
and Schiffer [5, p. 987] gives a negative local variation. This
in no way inplies a contradiction since we are considering a

smal ler class of matrices. The fact that the relations (1.6) and




(1.9) are valid in our class allows us to estimate certain
quadratic forms over subspaces in which smaller bounds are
obtained. Some of the bounds of this paper can be improved by
allowing A and u to vary with t. The above choice,
however, is adequate for the global theorem and tends to min-
imize the complexity of the computations.

For special results related to the sixth coefficient problem,
the reader is referred to Ozawa [13], Schiffer [18]) and Jenkins
and Ozawa [16].

:n1§2 we prove some preliminary lemmas. The basic estimates

for are obtained in §3 and in $4 are reduced to estimates

26
depending only on t = Rea2/2. It turns out to be necessary to
treat the cases Rec;, > O and Rec;, { O differently. In$'6
it is shown that the bound for the former case is dominant. § 5
is devoted te estimating quartic'forms in terms of the eigenvalues

of quadratic forms. In.§7 the results of the previous sections

are used to prove Theorem 1.




2. Preliminary Lemmas. If C 1is a matrix, define §C = C-I

where I is the identity. The elements of C are denoted by

3k T Fik

essential tools of our investigation is provided by the following

+ isjk where rjk and sjk are real. One of the

lemma. 6Cj denotes the 3j-th row of the matrix &C.

Lemma 2.l. A necessary and sufficient condition that an analy-
tic function £(z),  normalized by (1.1), be a slit univalent
mapping of the unit disk is that the Grunsky matrix C

associated with f satisfy

- L
(2.1) Grjk = —2(6Cj,60k)
For a proof of the above lemma see [15].
On several occasions we shall need to estimate the largest

eigenvalue of a 'border' matrix. The following lemma gives

bounds which are adequate for our purposes.

Lemma 2.2. The largest eigenvalue of the quadratic form
(2.2) q(x,y) = Ax" + 2x(B,y),A,XeR,,y,BeR_ ,

is given by

1/2
2 2
(2.3) 1 A + [a%+4|Bl|"]
2
If A and B are of class C® with respect to t and if
. " 2 2, /2
(2.4) 2" > o0, (B,B") > 0, [a%+4]B|“] # 0,

then T is a convex function of t.

Proof: A simple computation shows that the characteristic poly-
nomial of the real symmetric matrix associated with g is

n-1

(-z)™ 1 (22_az-|B|?)




fromwhich it follows that the | argest eigenvalue of q is -
given by (2.3). Assuming A and B to be of class G wth
respect to t, we have

%8 2 - AHLAATHEEY \J_LH . _/é,_h4 d@_o)_fl,

(a2:4 1|B|| 211/2 [AZ.4]|B]]?]%?

An application of Schwarz® inequality yields
(AAT+4(BB' ))? £ (A%+4|B|P)(A")*+4||B' |]P)

Substitution of the above inequality into (2,5 gives
2r' > A" (I« - 22— 5 1]y) L f<BeByy, 12
\ (A2+4IIBII) I (A*+4]1B|%)
Hence® if (2.4) is satisfied, then T" J> 0. This completes the

proof of Lemma 2,2.




3. The Basic lnequalities. Let f(z) be a univalent slit

mappi ng of the unit disk and let C be the Gunsky matri x
Z
of g/f(z ). It may be assuned,, w thout |oss of generality,

t hat

(31) ags >+ 0 ad |Argax| £ 115 .
Setting t = r.,, and using the fact that c”.
follows from (3.1) that

— 2 Int
l—aZ/_* N

(3.2 O£t£ 1 and | s™) £ (tan T/t N -] t

By using formula (1.7) with A = -875 and ji=Q together with
(3.1), we obtain

2

(3.3) 6ap =Relag-6) = Rel[(c -1y + i+ f(e) 055D

€11%35
2 2 3 14 2 34, 5
+vl 9515 M 21395 * WH T3 * 11035 *+ 1eteigh]-

It is easily verified that

: 2 2 2
(3 4)Ee(q lc33—1) = t (r33-1) + {t"-1) -871¥33 - 2t511533 .

The real and imaginary parts of (1.6) are next equated in order

to obtain
(3 5) 33 = Al ris + t3 - 3t 25;|_1— ’\tr13 + ’\511513
and
- A 2 ._ 3N _ 3 - 3
(3 6) S_3.3 = S5 + 3t Si1JL S] 1'§t513 ﬁrlBSll .

Substituting (3.5 and (3.6) into the third and fourth terns
on the right side of the equality in (3.4) and then substituting

the resulting expression into (3.3), we obtain
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_ 2 8t 12 2)X15 |, 10,2
(3.7) Ga6 = 5(r55-l) +VI3r35 +,(V§rl3 + 8t )V?F + 3(t —1)r33
3
14, 2 24t 34,.5 10,.2 32 14, 2
+ 3 tr13 + 3 ri, + 15(t -1) + 3(t -1) - 46t sy - —§t513
_ 8 S,.S - EEEE S,.S - 36ts s - 12s s + 28ts4
V15 “11°35 - V3 11°13 7 V5 "11°15 “Y¥I5°13°15 11
14 3 42t 2 28 2 F15
T S11513 T W F13°11 C 3 f13511%513 C BBsuywm -
It is convenient to introduce the vectors
_ 1 2t 3 2_ 2
(3.8) U = 'S 6C5 + {3-5C3 + QB-r13+2t _asll\ﬁcl
and
(3.9) v = 13 C, + 2téc
. ¥3°C3 1
Here o 1is a constant to be chosen later. It is a consequence
of Lemma (2.1) that
2 3°

2 8t 8,2 8t 12 16t
(3.10) 5(r55—l) +ﬂ-§r35 + 3t (r33—l) + 7-5-— rl5 +ﬁa§rl3r15 + vrrl:;

B 2 2 24 2 4
= -[lul® - (14t-6)rl, +EFE (I-t)r 5 + 8T (1-t)
: a 2 2 2 2 4 4q 2
+ (20t-12%§ ri38y7 - 8at (l—t)sll + 20 (l—t)sll + V?rlSSll .
and
(3.11) 2¢2(r,.-1) + Bt £2||lv]|? + st?(1-t)
. 3 33 v3 13 - T BT

By using a = 9/2 and substituting (3.10), (3.11) into (3.7)

we obtain

2 '
(3.12) da, = -lull® -2Ivl® + 2(e-1n + 2Py + 16tt (1-1)
28 ) 2 2 T13 2 3, 2 14, 2
—(3 t-6 rys + 24t (l—t)V3r - (36t7+10t )sll - 3ts13
.8 . o 52t2s s 38t 12
{5°11°35 3 °11%13 T V5 ®11%15 “VI5°13%1s

| 4 14 3 13 2 28
+(40.5-12. -(54- =<8
(40.5-12.58) s 1 +y5511 5137 (54-488) 57511 =577 351151 5

1
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At this point, it is convenient to introduce the linear forns
” k Lk-j
. \i.L5) & - Z~ 2j-18172j-1 + K xoploxis
J:
3 14 _ S35, 2t
(3.14) n = 5 * V5 ®15
and the nonlinear forms
/-, ~ ’4- 3 9 253 2t ., "13 ®13
(315) d = -3t§1]|_ - AN - Nry43S, + 3 3 i3 ’
3 5 9 3
3160 C, = TfAS°I "27, >
3
S r
_ 11 13 s
(3.17) C3 = 3 +W- 11 .

2. . . . .
The fact that Uf(zz) is an odd function inplies that c¢c. =0

if j and k have opposite parity. By retaining the contributions
of the imaginary parts of the first two non-vani shing conponents

of U the first three of V and using (3.6),(3.8), (3.9), (3.13),
(3.14) , (3.15), we have

) ) ! Iy o2 '
CE0e) N B - 32t sqq#Ly) - 5t

2

R T R SR e (S SR LI Ly C T I L

It follows, by elimnating rj, that

(3.19) -3(T)+2t°syy+Cy) 2 - 5t?rj? - 8nsq,

3

1562 3 2 (48t +16)s%1+24§lsll
< F(2t7s1,+8,) 7 + 3

3+5¢& 3+5t

As a consequence of (3.12), (3.13), (3.18), (3.19) and the inequalities

3 2 6 2 3
-(2t Sll+cl) < -4t Sy11 - 4t7s

1151 -
(B tEEL e D (BT - 2(k e L,

2 2
_(E3-¢3) L _€3 + 2F3C3 »
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we arrive at the estimate

(3.20) Sa, < 2e(t>-1) + 12e%.1) + 16t%(1-1)

28 2 F13
( 3t 6) rys + 24t (1-t) Kl

r,
+ ql(t s) + silqz(t s) +q3(t s)v—.

Here the quadratic forms qy59, and q, are defined by

2
(3.21) q = -(Egrtey)? - 3e%E5 - eP(g,ree))

3, 6Ot8—48t3—16) 2 14 2 52t2

s - ——t
3+5t2 11 V ll 13

<$6t2+10t

20t o _d2 o
" V5 c11%15 TS S13%1s5 ¢

(3.22) q, = j40. 5125t +18t 421, B8E(5E —2{) s2,

| 3+5t

3,54(5t —2)) $11°13 11515
+ | 14+18t+2t7+ N + (9+2t )
( 3+5t V5
and

- 5

(3.23) q, = (48t 54-12t46t 422 05E -29g§1
345t

3 36(5t2-2)} S11513 2 .. %11%15
(28+12t 6t + 31502 ) *Vﬁr—— + 6(t —l)—v?r——

The inequality (3.20) will be used to derive the estimate
§a6 < 0 for t e [.85,1). For intermediate values of t,
different estimates are required. By equating imaginary parts
in (1.9), we have |

S35 _ S17 2

(3.24) = - VP S
: Vs V7 Ty¥5515 T3 S13 T 313513 yB511%1s

2

L2 s+ 2L
V3 511513 T 3F13511 ¢
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By letting a = 5/2 and substituting (3.10), (3.11) and
o) 0 0]

— -

(3.24) into (3.7), neglecting the term -|jul’ - t ||v|| , we
obtain 'the estimate (3.20) with the simpler expressions for the

quadratic forms g*g™ and g~

- 8. 2 g8 .t & P e g
(3.25) q, = "(20t+26t 317 T pl3r glpl7 & 11815

8o &5 e

- $11513 T ¥15713715
2 22
2 12
(3.27) q3 = -(30+8t)sll - YT S11513 ¢
The estimte obtai ned above will be used when .25t ~ .85

and r 13>0.

VWen .25 <At £ .85 and rys <0, let a = 5/2, substitute
(3.10) and (3.24) into (3.7), and onit the term 2t?(ras~l) - |[|u|? .
The result is an inequality which is obtained by adding the

gquantity

3

(3.28) -8t4(1-t) +A%- Fis

to the right side of (3.20). ¢,, a nd q3 are again defined by
(3.25), (3.26) and (3.27)

HUNT LIBRARY
CARNEGIE-MELLON  UNIVERSITY
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4., Reduction of the Number of Vvariables. It was shown in the

previous section that 6a6 has an upper bound of the form

2 F13 2
(4.1) Bag < P -arj3 + 8 3 + qp(s) + s7;d5(s) + q3(S)(3- ,

where P,a and g are polynomials in t and d;59, and d,
are quadratic forms in s = (511’813’515’317) whose coefficients
are rational functions of t. The purpose of this section is to
reduce the above estimate to one depending only on f.

It follows from the fact that the first row of C has norm
one that

”SH2 2 2 2

(4.2) <1 -t% -y <1t

Our goal is to obtain an upper bound for 6a6 subject to the

restraints (4.2) and
, 3

(4.3) lsll\ L7t

The latter inequality is a consequence of the normalization (3.2).

Definition 4.1. If F(s) 1is a quadratic or quartic form whose

coefficients depend on t, we define

(4.4) p() = max TLBL, IIsl® < 1-¢2, || < yat
and
(4.5) o(F) = max F(s) , Hst_g l—t2, [sll|_g 3/4 t .

l

~

The quantities p and ¢ denote upper bounds for p and o ,

respectively.
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2 ~
temre—4-+. Let Q = g» + 5,,(32 2andsuppose that o(Q + a > O.
Then
N 2
(4.6) 6a. £EP+ n(Q(1-t? +—-L____
° 12(a+p(Q)

wher e

(4.7 y = p + a(qs) if ri3 >0,

= a(-q3) - p if ri3<0.
Preef. It is an imedi ate consequence of (4.2) and (44) that

(4.8) Q< p(Q (I-t2-rky)
By using (4.5 and (4.7), we have
(4.9) (etay) 752 <& 17y,
Substituting (4.8) and (4.9) into (4.1), one obtains

()

2y - (atp(Pris vy A=

6G ~ P + p(Q(I-t

The concl usion of Theorem 4.1 now follows fromthe assunption
that a + p(Q > 0 .

In the absence of the restriction (4.3), we have for a quadratic
form q(s)

(4.10) <r(q) = T(I-t?

where T is the largest eigenvalue of the symmetric matrix

associated with g. The inequalities 9@ <N 1-t 2 and \®%ii\ <L 3t/4
2
- - LJ‘ - - -
nerge at t =.8. If the coefficient of s,, is positive and

t <~.8 nore efficient estinates can be obtained by separating
1k

out sorme or all of the terns involving s, , and estimating

t hem separately. The following |ema provides bounds which wll

be used to estinate border matrices.
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Lemma 4.2. If q is a quadratic formgiven by (2.2) then

(4.11)  or(Q ~M\U2+4||B||? V 17,

(412) a(q) £ fgt’A + |t||B[|M A2,
and

(413) o@ £75% A+ [|B|(-12)

The proof is a sinple consequence of Schwarz® inequality (4.2)
and (4.3)
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5. Esti mates of Quartic Forns. This section is devoted to

obt ai ni ng bounds for the quartic form

(5.1) Q = qgx + §°"
wher e Q. and q, are defined by (3.21), (3.22) or (3.25),

(3.26). One nethod is to use the inequality

(5.2) Q£ g. + s2, a(q)
~ i n N

where a is one of the bounds (4.11) - (4.13) , and then to

estimate the | argest eigenvalue of the quadratic f orm def i ned by

i3
the right side of (5.2). It is the nature of g¢g. that the
2t
coefficient of s,, is negative and large in magnitude conpared
to the other coefficients. It therefore seens reasonable that,

for t in a neighborhood of one, better estimtesLcan be found

2

by obtaining a prelimnary bound on the size of s.,, i n order
t hat

(5.3) Q M|\I/s||2 ,|Is|t? £ 1-t?
where M is a tehtative estimate for p(Q) .

The synmbols q, , G H And K are defined by

(5.4) q (8 = qk.lIsIl* 2k >

2, ~,V x , 2% r§ VvV
L r
(5.5) G = 0z ua(l-t ), H= -ax 21 - p(az)(I-t ), K= p(ay)-

Let A and A+ (A < A+) be the roots of
(5.6) Gz? - HZz+ K = 0 .
2

Lenma 5.1. Suppose that H > 4G G>0O H>0 and K> O .
Ri—- 4 2

If (5.3) is satisfied at a point s where s - < A (1-t )g
t hen 11 — -

(5.7) s? < A (1-t?

-M
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In particular, if H > G+K, then (5.7) is valid.

——, Y

2 2
Proof. Let Sy1 = Vl—t £ and vy = Vl—t (513’515’517) :
hence 52 < 2" and gz + |y]2 < 1 . 1It is then easily
demonstrated that

(Q(s) - MHS\'lz)/(l—tz) < G£4 - ng + K .

The right side of the above inequality is negative if A- < g2 < N+
It follows that if (5.3) is satisfied, then either gz < N- or
gz_z M. The latter possibility is precluded. The proof is
completed by noting that if H > G+K, then A+ > 1 .

We next focus our attention on obtaining the preliminary infor-

mation which is needed to apply Theorem 5.1 on the interval [.85,1].

Lemma 5.2. If q; and q, are defined by (3.21), (3.22) and

t € [.85,1], then
Vv V
(5.8) p(ql) < 40t-22 and o(qz) < 42t-26 .

Proof. In order to prove the estimate for p(él), it is suffi-
cient to verify that

2 2 2 v
(5.9) (40t-22) (s] +s]5+s]c) - q;(s)

is positive definite. It is convenient to use the coordinates
gk defined by (3.13). We note that
(5.10) S1,2k-1 = V2k-1 (gk-tgk_l) 5 Yo = O .

After substituting (5.10) into (5.9), we obtain the quadratic

form

3
T A, E.¢E
oemy K30
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where
AlL1 = (40t-22) (1+3t%) - 38t3-7t*-3t°
Ao, = (40t-22)(3+5t%) + 2t(1+t), Azz = 5(40t-22) + |+3t?,
A, = t[t?+8-3(40t-22)], Az = 4t, Ayx; = t+ 6 -5t(40t-22) .

It will be shown that the determinants of the principle mnors
of the above matrix are positive. It is clear that Azy >0,

We next conpute

A(t) = AypAss - Alg = 7158 - 27,830 t + 26, 063t°

+ 1366t° - 324t% + 600t ° .

It is easily verified that "'(_t) >0, t e [.851] and that
A,(.85) > 0; hence A? " >° « As a consequence of convexity,

we have 7t*% + 3t® £ 34t-24, t € [.85,1]; hence
ALl A~ (4Ox-22) (1+3t2) - 341 +24- 38t3 .
It follows that ZLJ = det(Ajk) satisfies
Ay > ®(t) = 14,316 - 12,712t + 14,190t* -390, 254t°
+ 904, 110t* - 647, 346t° + 139, 861t °® - 65, 648t° + 49, 197t85.
One deduces fromthe inequality

V) (t)y A 10[(33t-17)t2 + (lot-8)]

tt! T i t
that 42 is convex. It is next verified that < (.85 < 0,
til 1 It

§ (1) >0, $ (.8) <0 and * (1) <0 . These inequalities,
it

together with the convexity of $ , imply that * is
concave. Mdre conputations give $(.85) >0 and $(1) > O;
hence <£(t) >0, t e [.85/1]] ¢ This conpletes the proof of
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estimate for p(&l) .
1" 1"
It can be shown that q2’13 s q2,13 , qz,15 and qz’15 are
all positive on [.85,1]. Hence, by Lemma 2,2, the largest

eigenvalue, 7T = \/q§’13 + qg’ls , of éz is convex. It follows,

by computing T at both endpoints, that 71 < 42t-26, t ¢ [.85,1].

This completes the proof of Lemma 5.2.

Lemma 5.3. If qq and q, are defined by (3.21), (3.22) and

2 2 2
Q = gy * 519y 2 (7.5-7t)||s||“, then sy1 < 42,

Proof. An analysis of the proof of Lemma 5.2 shows that its
conclusion is valid with ql,ll and q2,ll replaced by upper
bounds. It is fairly easy to verify that qf < 0 and qg 11 > ©
3 3
.85,1]. Estimatin by the tangent at .85 and
on [ ] S g ql,ll Y g q2,1l

by the chord between .85 and 1 we obtain
1 11 < 69-120t and dy 11 £ 7.5+43.5t, te[.85,1] .

Using the above estimate, together with M = 7.5-7t, in (5.5),

we find that

G = (7.5+43.5t) (1-t%) , H = (120t-69)-(42t-26) (1-t2)
and K = 47t-29.5 .
We have
3 2
H -G -K = 85.5t5 - 18.5t2 - 12.5t - 21

The above expression is easily seen to be increasing and positive
at .85. Hence H > G + K, t € [.85,1]. Putting =z = .42 into
(5.6), we obtain

—25.3134t3 + 9.597t2 + 21.9554t - 10.117 .
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The above pol ynomi al has a negative derivative and i s negative
at t = .85 It follows that .42 separates the roots of
quadratic equation (5.6). This conpletes the proof.

W are now in a position to obtain a bound for o(Q).
Lenma 5.4. If the hypothesis of Lemma 5.3 is satisfied, then
(5.11) p(Q £7.5-7t , t € [.85,1]

Proof. As a consequence of Lemmas 5.2 and 5.3, it is sufficient

to prove that the |argest eigenvalue of the quadratic form

G = g + (*42q211 4- 42t - 26) (1 - t?) s~
is less than 7.5-7t. It suffices to show that

(7.5-7)[Isl1? - G

is positive definite. It follows from (3.21) and (5.10) that
t he above quadratic formis equal to

3
P FeeaBIMIN 0 Bk B

wher e

Bl 1= (7-°-") (1+3t? - Ox 117 (- 4202 ;1 +42t - 26) (1-t2)-38t3-7t4-3t°,

By, = 2t (I +t)+(7.5-7t)(3+5t2%) B, = | +3t 2+5( 7. 5- 7t)

BlZ

t3+8t-3t(7.5-7t), Bis = 4t, B,3 = t+6-5t(7.5-7t)

It is clear that 333 >0 . W next conpute

A,(t) = P22°833" 543 = 930.25_| 081t +50 t - 232t *+118. 5t *- | OBt 5.

Not e t hat

L;'z(t) < -(1081-1002t) - (696-474t)t%2 < 0
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and that ~(1) >0 ; hence ~(t) >0, t € [.85,1]
In order to bound AA_, = det(B.jK) frombel ow by a pol ynom al

of |l ower degree, we conpute

BII = 16x2t6 n 4_ 856t4 - 1225t3 + 494956t2

- 54. 702t + 11.96264 + 39 616t-2 41792 N

3+5¢t
!

It is easily verified that By (.85) > 2, Byu(.85) > 34 and

B (t) >0, t e [.85,1]; hence
B.a N 34t-26.9 , t € [.85,1]
Usi ng the above inequality, it can be shown that
As; 2 *(t) = -22,333.725 + 57,307.4t - 71,161.525t

+ 99,502 O5t°% - 104, 267.4t*% + 44,783.5t° - 3686.5t°% -139t'-3t8,

It is next shown that, for t < 1 |
tit n
N (t) ~ 10(597-2508t - 2687t
Usi ng tk£ 1 , we then have

A S

g' N
-443t7-34t -2t

gt (;) ™ 10 (597-2508t+2208t%) >0, t " .9

By applying a simlar argunment to the interval [.85,.90], it
I's seen that ty'" (t) >0, t e [.85,/1]. By conputation, one
shows that &M (1) <0, ty{.85 >0 and V) > 0. It follows
that $(t) >0 on [.85,1]. Hénce the determ nants of the
principle mnors of (B.l.j) are all positive. This conpletes
the proof of Lemma 5. 4.

The problemof finding bounds for p(Q on the interval

[.70,.85] i's considered next.
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Lemma 5.5. If q; and g, are defined by (3.25), (3.26), then
\Y \A 11
(5.12) p(ql)lg 25t-9.3 and p(qz) S-T? , t e [.70,.85] .

Proof. The estimate for p(éz) is a simple consequence of the
inequality between geometric and arithmetic means. The bound
for p(&l) is obtained by demonstrating that

(5.13) (25t-9.3)[|s]® - &

is positive definite. After introducing the variables

(5.14) = \{2k-1 s k =1,2,3,4 ,

Yy 1,2k-1’
(5.13) becomes
2 2 2 2
(25t-9.3)yl + (89t-27.9)y2 + 5(25t—9.3)y3 + 7(25t—9.3)y4
2
+ 60t YiYy + 28tyly3 + 8yly4 + 12y2y3
Elimination of the variables Y3 and Vg by completing the

square shows that the above expression is bounded from below by

2 2
Dy, + 2Eyly2 + Fy,

- where
2
_ 16,196t 1
D = (25t-9.3) - (55— ) [35c0903)
E = 3Ot2 - —gdt
5(25t-9.3)
and F = (89t-27.9) - —2
5(25t-9.3)

Estimating from above by the chord between .7 and .85 and

from below by the tangent at .75 gives

.315-.28t < -5-5-%:—_-9—-.-33 J301-.255t, t € [.7,.85] .
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By using the lower estimate in the expression for E and the upper

estimate in the formulas for D and F, it is found that

DF - E>J> -297t* - 1006t°%® + 265062 - 1677t + 300 s $(t)
It!

The polynomial $(t) is easily shown to satisfy <P (t) < 0,
t € [.70,.85], *" (.70) <0, $(.70) >0 and $(.85) > 0 .
It follows that $(t) >0 on [.70, .85]. Thi s conpl etes the
proof of Lemma 5.5.
termra—5—6. If g1 and g, are defined by (3.25), (3.26) and
Q = qi + sBArJ= (11-1Q)||s||2 t € [.70, .85], then s* £
CA(1-13)
Proof. By Lemma 5.5, (3.25) and (3.26), we see that it is

sufficient to apply Lenma 5.1 with
G= (12.5+15.5t) (1-t?) , H= 20tz+26t3-"i-3(l-t2), K= 35t-20 3
Not e t hat
H- G- K ~ 41.5t° + 38.9t%50 5t+1.3

which is increasing and positive at t = .73; hence it is
positive on [.73,. 85]. Wen t < .73 we use the inequality
S?T < 9t?/16 (see (4.3)) to deduce that s2. 7 .65(1-t2),

t e [.70,.73]. One notes that

G(.65)2-H(.65)+K £ -23t3%22t%+42t-10.8

which is decreasing on [.70,.73] and negative at t = .70.

It follows that A+ J> .65 on [.70, .73]. W next calculate

G(.4)% H(.4)+K < -12.88t3-12. 544t 2+37. 48t - 15. 756 =—«3(t)
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The function & satisfies @l(t) <0, t> .72, and &(.72) <O
hence @(t) < 0 for t e [.72, .85] . It is easily shown that
|&' (¢)| <2 on [.70,.72] and that &(.70) < -.08 from

which it follows that &(t) < O on [.70,.72]. Hence N- < .40.

This completes the proof of Lemma 5.6.
Lemma 5.7. Under the hypothesis of Lemma 5.6, we have
(5.15) o0(Q) <K 11 - lot, t e [.70,.85] .

Proof. As a consequence of Lemmas 5.5 and 5.6, it is sufficient

to prove that

(5.16) (11-1ot)|s|® - q, - (.4(12.5+15.5t) +~%%)(l-t2)sil

1 -
is positive definite. Estimating 1/(11-10t) from below by the
tangent at .8‘ and from above by the chord between .7 and

.85, we obtain

103'5 < 11E10t-$ 1.25¢t-.125, t ¢ [.70,.85] .

(5.17)

By following the lines of the proof of Lemma 5.5, using the
variables (5.14) together with (5.17), it is found that the

quadratic form (5.16) is bounded from -below by

(l.075—19.06t+55.85t2—16.8t3)yi

2

+ 2(11.34t%+9.34t) y,y, + (37.5-25¢)y> .

The negative of the discriminant of the above quadratic form

is bounded from below by
2 3 4
40 -742t + 2483t~ - 2239t~ + 291t

which is easily proved to be concave on the indicated interval
and positive at its endpoints. This completes the proof of

Lemma 5.7.

.
G
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W turn nowto the proof of the bound for p(Q on the
interval [.25,.70].

Lemma 5.8. If g, and q, are defined by (3.25), (3.26), then
(5.18) p(Q £4, t e [.25,.70]

Proof. We first prove that
(5.19) cr(g £ 14.8 , t e {.25,.70].

Oh the interval [.25,.56], the estimate (4.12) gives

- - —— -

14.8t - 9> 14.8t - |t 2- i~t3- 553 t\1-t° = (t) .

A routine cal cul ati on shows that

é It(t]’ - i6225"' 1837t+16 -Sﬁ .E.;-li'tz%i +t .

If t ~ .56, it can be shown that
?

16,5 3 (1+27) -9
(1_ fCZ}B/Z A baT

t!
It follows that $ (t) < O on [.25.56 which together with
*(.25) >O $(.56) >0 yields the inequality (5.19). On the
interval [.56,.70], the estinate (4.'13) is used to obtain
2 79 3 . n
14.8t - g._> 14.8t -J’;frt ﬁ-& - ﬁu.-c’)

whi ch a concavity argunent shows to be positive on [.56,.70].
Using (5.19) and again followi ng the lines of the proof of

Lemma 5.5, it is verified that

2 2
Usl]® - ok - sL102
I s bounded frombel owby a quadratic form the negative of whose

discrimnant is greater than
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o(t) = 34.96 - 129.608t - 120.8t2 + e60t> - 536t .

We note that

' 990\ 2
¥ (t) < -129.608 + t | -2144 t-m) +215.4

Neglecting, for the moment, the squared term within the
1
bracket, it is seen that ¥(t) < 0 if t < .596. When

t > .596, we have
¥ (t) ¢ -129.608 + 183.7t < 0 if t L .7 .

The proof is completed by verifying that ¥(.7) > O .
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6. Conparison of the Cases rys < O and ri;3”2 0 . Inthis
section it will be shown that an estimte of 6a_g for the

case r, J> 0 always dom nates a particular one for the case
r n"'O . The estimate of «cr(gs) which we shall use for the

florrrer case is given by the follow ng | emma.
Lleqmp 6.1 1f gs is defined by (3.23) or (3.27) then
(6.1) cr(q) £ .4(1-t?), te [.25 .85 ,
£ (5Q-37.5)(1-t% , te [.851]

Proof. By Lemma 2.2, the |argest eigenvalue of the quadratic

form (3.27) is given by

- (3¢f8t) +70+8t)*+48 - 24 e .4
= A8 A T
2 (30+8t) + f( 30+8t)

The proof of the first estimate is immediate. Wth q, given

by (3.23), it is fairly easy to prove that

93,11 > © 27 a3 1303 13+ A3,1503,15 > °> * € [1 85 11

"Hence, by Lemma 2,2, the largest eigenvalue r of q3 1is

~convex. Conmput ati ons show that T1(.85) < 5 and T(1) < 12.57?

hence r <i 50-37.5. The proof is conplete.

Lenma 6.2. Suppose that in Theorem4.1, the estimte of Lenma
6.1 is used for 4a(qs) . Then there is a bound for &(-qs) such
that the bound for 5ay for the case r,Jz0 is greater than

t he one for the case ) <£0.

Proof. Consider first the case .85 <t <A1 . As a consequence

of (3.20) and (4.7), it is sufficient to prove that
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(6.2) r(qgs)(l-t%) + 24t2(1-t) > T(-q3)(1-t?) - 24t3(1-t)
where r(qs3) and T(-qg) are the |argest eigenval ues of q_J
and -qs, respectively. By Lemma 2.2,

T(gs) - T(-ds) = Q311
Hence, in order to prove (6.2), it is sufficient to denonstrate
t hat
48t% + (1+t)gs";. >0, t e [.851]

The above quantity is easily shown to have a positive derivative
on [.85,1 and to be positive at .85. This conpletes the proof
of (6.2).

W turn nowto the case .25 £t £ .85 . It follows from

(3.20), (3.28) and Theorem4.1 that it is sufficient to prove

(6.3) [<r(-qgs)-24t%(1-t)-8t%2 ~_[. 4(1-t?) +24t%(|-tn?

ft-6.pcQ ()

Note that, in virtue of Lemmas 5.7 and 5.8, 28t/3.- 6 + p(Q >0 .

The case .25 <At <M .50 is considered first. It follows from

the estimate (4.12) that
2 3 ' 2
<7(-q) £ 16.875t2 + 4.5t% + 3¥3 N1-t%
hence

[.4(1-t12) +24t2(1 -1)] - [a(~qs) -24t2-8¢ 3]

A4 - 5.2tMI-t? + 30.725t2% - 44.5t3 .

. : - 2
By using the inequalities -t £1, t e [.25'.45] and
2 . .
1-t <£ .9, t G [.45,.50], one obtains on each of the intervals
a positive concave |lower bound for the right side of the above

inequality. The validity of (6.3) follows.




-30-

When t > .5, the contribution of 8t4(l-t) must be taken

into account. Define

1 28
A Sl e t’6+p(°i}
and note that
2 2
8t4(l—t) S w.[24t°(1-¢)]

12{%%t-6+o(ofl

In order to prove (6.3), it is sufficient to establish that
—_— 2 2 3
(6.4) Vitw [24t°(1-t)] - [o(-qy) -24t"(1-t)-8t>) > O .

Since 0(Q) =4, t e [.25,.70] and p(Q) = 1l1-10t,t ¢ [.70,.85],
we have
> 1.37 , £ > .5,
>1.7 , t> .65,
(6.5) L+w >1.94 , t > .73,

>2.02 , t 2> .76,
> 2.06 , t > .77.

We also have, as a consequence of (4.13), (4.11) and (2.3)

=10
(o))

< 242 (3048t) +‘%§(l—t2) , t e [.50,.77] ,

e ——

(6.6) o(—q3) gthQ(3o+8t)2+48 V

w

-
1-t2

, te [.77,.80],

(30+8t) + \(30+8t) 2448

: (1-t%), t ¢ [.80,.85].

<

It is easily proﬁed that

(6.7) V(30+8t)% + 48 < 1.02(30+8t), t < .85
and

(6.8) \1-t? < -5535 , te [.77, .80] ,
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the latter inequality being obtained by using the tangent

at .8 as an upper bound. By using (6.5)-(.68), we obtain

the follow ng | ower bounds for (6.4):

-3.466 + 43.471t* - 53.38t° , t € [.50, .65]

-3.466

+

51.391t* - 61.3t°> , t e [.65,.73].
-3.466 + 57.151t* - 67.06t°

(

, t e [.73,.76].

-3.466 + 59.071t% - 68.98t% , t e [.76,.77],

-38.25t + 93.88t2 - 57.28t%, t e [.77,.80].

-30.3 - 8.08t 4- 102.54t% - 56.16t% , t € [.80, . 85].
Each of the above polynom als is concave on and positive at
the end points of the indicated interval. The proof of
(6.4), and hence (6.3), follows.

Proof of Theorem 1. W begin by disposing of the case

O<£t <£ .25. Since C is unitary, we have

1°TJ2+1¢-.9°2
lcikl £ 1 ad |[cizCis| & T4 <t 1/2.

The inequality Isi_Li*I <1 3t/4 (4.3) implies that
|0|| <ft.

After substituting the above inequalities into (1.7) with

7\ =-8/5 and ju =0, we obtain
. 2. & la 14 L o 8 1. ...
ladl <5+ 15+ (yE* 3] T T (3 TS/

+ || (5t/4)% + || (5t/4)°

The above polynom al is increasing and |ess than 6 at t =

Hence 6a, <6 if t € [O0,.25].

1/ 4,.
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On the interval [.25,1], it is a consequence of (3.20),

(4.6), (4.7), (5.11), (5.15), (5.18), (6.1) and Lemma 6.2

t hat
(7.1) 6agN'§(t2-1) + || (t5-1) + 16t%I-t)
a2 12
. S(Q)(l—tz) + [24g2é1-z)+c( )]
12‘:—-§t+p(Q)—6
wher e
(7.2) P(Q = 7.5-7t , t € [.85,1]
= |1-10t , t e [.70,.85]
= 4, t €.25 .70]
and

(5-37.5) (1-t?), te [.851] |,

(7.3) 02(qp)
CA(1-t?) , t e [.25,-85]

By convexity we have

[24t2 + . 4(1+t)]? £ 16(21t-5) , t e [.25,.70]

Using the above inequality, together with (7.1), (7.2), (7.3),

we obtain

2(21t-5) |\ 132

(7.4) b3, g%(l-tz) + -%g—(t‘:’-l) + 16t4(1——t) + 9753

The quantity 2(21t-5)/(14t-3) i s increasing and hence can be

shown to have the respective bounds
.70]. Substituting these estinates

2.2 and 3 on the inter-

vals [.25,.30] and [.30,

into (7.4), we obtain on each interval a polynom al upper bound
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for 6a6. Each of these polynomials has a positive second
derivative on the interval and is negative at its endpoints. It
follows that & < O if t e [.25,.70] .

On the interval [.70,.85], we have

[24t2+.4(1+t)]2

4(15-2t)

< 6.2

as a consequence of monotonicity. The above inequality,

together with (7.1), (7.2), (7.3), implies that
5, < (l%_(ll-lotﬁ (£2-1) + %%(tS-l) + 16t3(1-¢) + 6.2(t-1)2

for t e [.70, .85]. The above polynomial is easily shown to be
convex on [.70,.85] and negative at t = .70 and t = .85. It
follows that 6a6 < 0O on [.70,.85].

Finally we come to the local estimate, t ¢ [.85,1]. After
substituting (7.2) and (7.3) into (7.1l) and re-arranging terms,

we obtain the inequality
(7.5) (28t+18)ba; < 46(t-1) + (t-1)¥(t)

where

T(t) = 80.2 + 41.6t - 268t% - 568%§t3 - 384%§ e4

+ [24t24(50t-37.5) (1+t)1° .

The function W¥(t) has a positive second derivative on [.85,1]

and satisfies

U(.85) < 79.25 , ¥(.9) < 369.02 , ¥(1) < 1302 ;

hence

(7.6) W(t) < 9329.8(t-.9) + 369.02 , t ¢ [.90,1]

L]

< 5795.4(t-.85) + 79.25 , t € [.85, .90] .
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After putting (7.6) into (7.5), and replacing 1-t by s, we

obtain

(28t+18) ba, < ~s[46-13025+9329.85%], s ¢ [0,.1]

< -5[46-948.565+5795.45%], s ¢ [.1,.15] .

In the first estimate, the quadratic within the brackets is
easily shown to have a negative discriminant. Hence 6a6 < O
if t ¢ [.90,1). 1In the second estimate, the quadratic within
the brackets can be shown to have a positive derivative for
s > .1 and to be positive at s = .l. Hence ba, < O if
t e [.85,.90] .

The previous considerations prove that 6a6 < O with equality
only if t = 1. It is well known that the latter possibility

can occur only for the Koebe function. This completes the proof.
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