A SHORT PROOF OF
 ALEXANDROFF'S THEOREM
 Steve Fesmire and Paul Hlavac

Research Report 72-4

February, 1972
/nlc
2/17/72

ABSTRACT

A SHORT PROOF OF ALEXANDROFF ${ }^{1}$ S THEOREM by
 Steve Fesmire and Paul Hlavac

A. D. Alexandroff proved that there is a linear isometry between C (T) and the space of regular, bounded, additive set functions defined on a field 3 of subsets of T. Here C (T) is the dual of the space of bounded, continuous functions on a topological space T. 3 is the field generated by the zero sets of T.

Dunford and Schwartz have given a simple proof of this duality theorem in the case when the underlying topological space is a normal Hausdorff space. In this note we use the methods of Dunford and Schwartz to give an elementary proof of Alexandroff ${ }^{1}$ s result.

A SHORT PROOF OF ALEXANDROFF'S THEOREM

by
Steve Fesmire and Paul Hlavac

1. Introduction

In his paper, "Additive Set Functions in Abstract Spaces", Alexandroff [l] has given a concrete representation of the dual of the space of bounded continuous functions on a topological space T. Dunford and Schwartz [2] give a shorter and more elementary proof of this theorem in the special case when T is a normal Hausdorff space (Theorem 2, p. 262 of [2]). In this note we provide a simple proof of Alexandroff's theorem using the techniques applied by Dunford and Schwartz. The authors are indebted to professor K. Sundaresan for suggesting this method of proof.

2. Preliminaries

In this section we give a few definitions and mention certain basic results concerning zero and cozero sets. Let T be an arbitrary topological space.

$$
C(T)=\{f \mid f: T \rightarrow R, f \text { is bounded and continuous }\}
$$

Then $C(T)$ is a normed linear space with $\|f\|=\sup _{t \in T}|f(t)|$.

$$
C^{*}(T)=\{L \mid L: C(T) \rightarrow R, L \text { is continuous and linear }\}
$$

Then $C^{*}(T)$ is the normed conjugate of $C(T)$ with $\|L\|=\sup _{\|f\|}|L(f)|$.
A set $Z \subset T$ is a zero set if $Z=f^{-1}(O)$ for some $f \in C(T)$. Let $Z=\{Z \subset T \mid Z$ is a zero set $\}$ and let Z be the field generated by Z. A set $G \subset T$ is a cozero set if $T \backslash G \in Z$. Throughout this paper Z and Z_{i} will always denote zero sets, G and G_{i} will always denote cozero sets.

We say that a set function $m: \nrightarrow R$ is regular if given $E \in \boldsymbol{F}$ and $\boldsymbol{\varepsilon}>0$ there are Z and G such that $Z \subset E \subset G$ and $\mathrm{C} \subset \mathrm{G} \backslash \mathrm{Z}, \quad \mathrm{C} \in \mathfrak{F}$ implies $|\mathrm{m}(\mathrm{c})|<\boldsymbol{\mathcal { E }}$. Let

$$
M=\{m \mid m: \mathcal{Z} \longrightarrow R, m \text { is regular, bounded and additive }\}
$$

If \bar{m} denotes the variation of m, then we define $\|m\|=\bar{m}(T)$. We order M by defining $m \geq 0$ if $m(E) \geq 0$ for all $E \in \mathcal{B}^{T} \quad C^{*}(T)$ has the usual ordering, i.e., $L \geq 0$ if $L(f) \geq 0$ for all $f \geq 0, \quad f \in C(T)$.

In the following lemma, we collect some results which are easily verified from the definitions.

LEMMA. (1) The intersection or union of two zero sets is a zero set.
(2) If E is a closed set (open set) in R and $f \in C(T)$ then $f^{-1}(E)$ is a zero set (cozero set) in T.
(3) If $\left\{Z_{i}\right\}_{i=1}^{n}$ are pairwise disjoint (p.w.d.) then there are $\left\{G_{i}\right\}_{i=1}^{n}$ p.w.d. such that $Z_{i} \subset G_{i}$.
(4) If $Z \subset G$ then there exists $f \in C(T)$ such that $f(t)=1$ for $t \in Z$ and $f(t)=0$ for $t \in T \backslash G$.

3. Proof of the Duality Theorem

THEOREM. Let $T, C(T), C^{*}(T)$ and M as above. Then there is an isometric isomorphism between C (T) and M such that corresponding elements L and m satisfy

$$
\mathrm{L}(\mathrm{f})=\underset{\mathrm{T}}{\mathrm{f}} \mathrm{f} \mathrm{dm}
$$

for all feC (T). Further, this isomorphism preserves order.
Proof: We first note that if $f e C(T)$ and $m \in M$ then f is integrable with respect to m. For let $£>0$. Cover $f(T)$ with open sets $U_{\mathbf{1}^{\prime}} \ldots, U_{\mathbf{n}}$ such that $\operatorname{diam}\left(U_{\mathbf{1}}<£ . \quad\right.$ Let $A_{\mathbf{\prime}}=U_{\mathbf{I}}$, $A_{3}=U_{3} \backslash_{i==1}^{j-l} U_{i}$ for $j=2, \ldots, n$. If $A_{3} \wedge 0$, choose $\underset{D}{a} \cdot \in_{3}$ and if $A_{\mathbf{j}}=0$ let $a_{\cdot j}=0$. Then if $B \cdot{ }_{\mathbf{j}}=f \sim^{1}\left(A_{\mathfrak{j}}\right)$ and

Thus f is the uniform limit of m-simple functions and since $\bar{m}(T)<o o j f$ is m integrable.

Since

$$
|\underset{T}{J} f d m| £ \sup _{t \in T}|f(t)|-\bar{m}(T)
$$

if $\mathrm{L}(\mathrm{f})=\mathrm{j}_{-\mathrm{T}}^{\mathrm{f}} \mathrm{dm}$ then clearly $\mathrm{LeC}^{\wedge}(\mathrm{T})$ and $\|\mathrm{L}\| \leq \pm\|\mathrm{m}\|$. To show $\|L\|=\|m\|$, let $6>0$ be given and let $\left\{E_{\mathbf{i}}\right\}_{\mathbf{i}=\boldsymbol{i}}$ be p.w.d. sets in 3 such that $\underset{i=1}{2}\left|m\left(E_{x}\right)\right| \wedge\|m\|-£ . \quad$ Noting that \bar{m} is regular since m is regular, we may choose Z_{I} c E_{I} so that $\bar{m}\left(E^{\mathcal{M}} X^{\mathcal{M}}\right)<6 / n$. Then choose $\left\{G_{i}\right\}_{1=1}^{n}$ p.w.d. such that $Z_{i} c G_{i}$ and $\overline{\mathrm{m}}(\mathrm{G} . \backslash \mathrm{z} \bullet)<€ / \mathrm{n}$. Define $\mathrm{a}-=.+1$ according as $\mathrm{m}(\mathrm{E})>$. or $m\left(E_{.}\right)<0$ and let $f, e C(T), 0 £ f . \leq 1$ such that $f .(t)=0$
if $t \in T \backslash G_{i}$ and $f_{i}(t)=1$ if $t \in Z_{i}$. Defining $f_{0}=\sum_{i=1}^{n} \alpha_{i} f_{i}$ we have that $\left\|f_{o}\right\| \leq 1$ and

$$
\left|L\left(f_{0}\right)\right|=\left|\int_{\substack{n \\ i=1}} f_{0} d m\right|=\left|\sum_{i=1}^{n} \int_{z_{i}} \alpha_{i} f_{i} d m+\sum_{i=1}^{n} \int_{G_{i} \backslash z_{i}} \alpha_{i} f_{i} d m\right|
$$

$$
2 \sum_{i=1}^{n}\left|m\left(E_{i}\right)\right|-2 \boldsymbol{\varepsilon} \quad 2\|m\|-3 \varepsilon
$$

Thus $\|L\|=\|m\|$.
Since it is clear that our correspondence represents a linear map, we need only show that given $L \in C^{*}(T)$ there is $m \in M$ such that $L(f)=\int_{T} f d m$ for all $f \in C(T)$. Therefore let $L \in C^{*}(T)$. Then L has a continuous extension $\hat{L}: B(T) \longrightarrow R$ where

$$
B(T)=\{f: T \longrightarrow R \mid f \text { is a bounded function }\}
$$

$B(T)$ is equipped with the sup norm. By Corollary 5.3, p. 259 of Dunford and Schwartz [2] there is an isometry between $B^{*}(T)$ and

$$
\mathrm{ba}(\mathrm{~T})=\left\{\mathrm{m} \mid \mathrm{m}: 2^{T} \rightarrow \mathrm{R}, \mathrm{M} \text { is a bounded additive set function }\right\}
$$

Therefore let $\lambda \in b a(T)$ be such that $\hat{L}(f)=\int_{T} f d \lambda$ for all $f \in B(T)$. By the Jordan Decomposition Theorem we may assume that $\lambda \geq 0$. We must find $m \in M$ such that $\int_{T} f d m=\int_{T} f d \lambda$ for all $f \in C(T)$. Define $\mu_{1}: Z \longrightarrow R$ by $\mu_{1}(Z)=\inf _{Z \subseteq G} \lambda(G)$ for all $Z \in Z$ and define $\mu_{2}: 2^{T} \longrightarrow R$ by $\mu_{2}(E)=\sup _{Z \subseteq E} \mu_{1}(z)$ for all $E \subseteq T$. It is obvious that both μ_{1} and μ_{2} are non-negative and nondecreasing.

Now if Z_{1}, G_{1}, and G are such that $Z_{1} \backslash G_{1} \subset G$ then $Z_{1} \subset G \cup G_{1}$ and since $\lambda\left(G \cup G_{1}\right) \leq \lambda(G)+\lambda\left(G_{1}\right)$ we have that $\mu_{1}\left(Z_{1}\right) \leq \lambda\left(G_{1}\right)+\lambda(G)$. Therefore $\mu_{1}\left(Z_{1}\right) \leq \lambda\left(G_{1}\right)+\mu_{1}\left(Z_{1} \backslash G_{1}\right)$. Allowing G_{1} to range over all cozero sets containing $Z \cap Z_{1}$ we have $\mu_{1}\left(Z_{1}\right) \leq \mu_{1}\left(z \cap Z_{1}\right)+\mu_{2}\left(Z_{1} \backslash Z\right)$. If $E \subset T$ and Z_{1} ranges over all zero sets which are subsets of E then

$$
\mu_{2}(E) \leq \mu_{2}(E \cap Z)+\mu_{2}(E \backslash Z)
$$

Let Z_{1} and Z_{2} be disjoint. Choose disjoint cozero sets G_{1} and G_{2} such that $\mathrm{Z}_{1} \subset \mathrm{G}_{1}, \mathrm{Z}_{2} \subset \mathrm{G}_{2}$. If $\mathrm{G} \supset \mathrm{Z}_{1} \cup \mathrm{Z}_{2}$ then $\lambda(G) \geq \lambda\left(G \cap G_{1}\right)+\lambda\left(G \cap G_{2}\right)$ so $\mu_{1}\left(Z_{1} \cup Z_{2}\right) \geq \mu_{1}\left(Z_{1}\right)+\mu_{1}\left(Z_{2}\right)$. Now let $\mathrm{E} \subset \mathrm{T}$ and $\mathrm{Z} \in \mathrm{Z}$. If Z_{1} ranges over all zero sets which are subsets of $E \cap Z$ while Z_{2} ranges over all zero sets which are subsets of $E \backslash Z$, we therefore have that $\mu_{2}(E) \geqslant \mu_{2}(E \cap Z)+\mu_{2}(E \backslash Z)$. Thus we have proven that $\mu_{2}(E)=\mu_{2}(E \cap Z)+\mu_{2}(E \backslash Z)$ for any $E \subset T$ and $Z \in Z$. By Lemma 5.2, p. 133 of Dunford and Schwartz [2], if m is defined to be the restriction of μ_{2} to $\mathcal{F}^{\text {, then }} m$ is an additive set function on \mathfrak{F}^{3}. From their definitions it is clear that $\mu_{1}(Z)=\mu_{2}(Z)=m(Z)$ if $Z \in Z$. Therefore $m(E)=\sup _{Z \subseteq E} m(Z)$ if $E \in \mathcal{Z}^{\pi}$ so that m is regular and since $m(T)<\infty \quad$ Z \quad we have that $m \in M$.

We need only show that $\int_{T} f d m=\int_{T} f d \lambda$ for all $f \in C(T)$. We can assume $0 \leq f \leq 1$. Let $\in>0$ and partition T by a family $\left\{E_{i}\right\}_{i=1}^{n}$ of p.w.d. sets in $\mathcal{F}^{\mathfrak{F}}$ such that

$$
\sum_{i=1}^{n} a_{i} m\left(E_{i}\right)+\varepsilon \geq \int_{T} f d m
$$

where $a_{i}=\inf _{t \in E_{i}} f(t)$. There exist sets $Z_{i} \subset E_{i}$ such that $m\left(E_{i} \backslash z_{i}\right)<\varepsilon / n$ which implies that

$$
\sum_{i=1}^{n} a_{i} m\left(z_{i}\right)+2 \varepsilon \quad \int_{T} f d m
$$

Now choose $\left\{G_{i}\right\}_{i=1}^{n}$ p.w.d. such that $Z_{i} \subset G_{i}$ and

$$
b_{i}=\inf _{t \in G_{i}} f(t) \geq a_{i}-\frac{\varepsilon}{n\|m\|}
$$

so that $\sum_{i=1}^{n} b_{i} m\left(G_{i}\right)+3 \varepsilon \geq \int_{T} f d m$. If $Z \subset G$ we have $m(Z) \leq \lambda(G)$ so that $m(G) \leq \lambda(G)$. Therefore $\sum_{i=1}^{n} b_{i} m\left(G_{i}\right) \leq \sum_{i=1}^{n} b_{i} \lambda\left(G_{i}\right) \leq \int_{T} f d \lambda$ and thus $\int_{T} f d m \leq \int_{T} f d \lambda$. Since $m(T)=\lambda(T)$ we also have $\int_{T}(1-f) d \lambda \leq \int_{T}(1-f) d m$ and we can conclude $\int_{T}(1-f) d m=\int_{T}(1-f) d \lambda$. Therefore, replacing f by l-f we have $\int_{T} f d m=\int_{T} f d \lambda$ for all $f \in C(T)$.

To complete the proof we must show that this isometry is order-preserving. clearly $\int_{T} f d m \geq 0$ if $m \geq 0$ and $f \in C(T)$, $f \geq 0$. Conversely let $\int_{T} f d m \geq 0$ for each $f \in C(T)$ such that f 20 and suppose that there is $E \in \mathcal{F}$ such that $m(E)<-\mathcal{E}<0$. Since \bar{m} is regular there are sets Z and G such that $\mathrm{Z} \subseteq \mathrm{E} \subseteq \mathrm{G}$ and $\overline{\mathrm{m}}(\mathrm{G} \backslash \mathrm{Z}) \leq \varepsilon / 4$. Let $\mathrm{g} \in \mathrm{C}(\mathrm{T}), \quad 0 \leq \mathrm{g} \leq 1$, such that $g(t)=l$ if $t \in Z$ and $g(t)=0$ if $t \in T \backslash G$. Then $\left|\int_{T} g d m-m(E)\right| \leq \varepsilon / 2$ contradicting $\int_{T} g d m \geq 0$. Therefore
the mapping is order-preserving. |

REFERENCES

[1] Alexandroff, A. D., "Additive Set Functions in Abstract Spaces II", Mat. Sbornik N.S. $9_{\boldsymbol{L}}(51)(1941)$, 563-628.
[2] Dunford, N. and J. T. Schwartz, Linear Operators, Vol. I, Interscience.Publishers Inc., New York, 1958.

