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ABSTRACT

A SHORT PROOF OF ALEXANDROFF1 S THEOREM

by

Steve Fesmire and Paul Hlavac

A. D. Alexandroff proved that there is a linear isometry

between C (T) and the space of regular, bounded, additive set

functions defined on a field 3 of subsets of T. Here C (T)

is the dual of the space of bounded, continuous functions on

a topological space T. 3 is the field generated by the zero

sets of T.

Dunford and Schwartz have given a simple proof of this

duality theorem in the case when the underlying topological

space is a normal Hausdorff space. In this note we use the methods

of Dunford and Schwartz to give an elementary proof of Alexandroff1s

result.



A SHORT PROOF OF ALEXANDROFF1 S THEOREM

by

Steve Fesmire and Paul Hlavac

1. Introduction

In his paper, "Additive Set Functions in Abstract Spaces",

Alexandroff [1] has given a concrete representation of the dual

of the space of bounded continuous functions on a topological

space T. Dunford and Schwartz [2] give a shorter and more

elementary proof of this theorem in the special case when T

is a normal Hausdorff space (Theorem 2, p. 262 of [2]). In

this note we provide a simple proof of Alexandroff1 s theorem

using the techniques applied by Dunford and Schwartz, The

authors are indebted to Professor K. Sundaresan for suggesting

this method of proof.

2. Preliminaries

In this section we give a few definitions and mention

certain basic results concerning zero and cozero sets. Let T

be an arbitrary topological space.

C(T) = {f | f : T —*>R, f is bounded and continuous}.

Then C(T) is a normed linear space with ||f || = sup| f (t) | .
teT

y

C (T) = {L|L : C(T)-—*R, L is continuous and linear}.

Then C (T) is the normed conjugate of C(T) with ||L|| = sup |L(f)



A set Z c T is a zero set if Z = f (O) for some feC(T).

Let Z = (z c T|Z is a zero set} and let 3 be the field

generated by Z. A set G c T is a cozero set if T \ G G Z .

Throughout this paper Z and Z. will always denote zero

sets, G and G. will always denote cozero sets.

We say that a set function m : 3 — } R is regular if given

Ee25 and £ > 0 there are Z and G such that Z c E c G and

C c G \ Z , Ce3 implies |m(c)| < 6 . Let

M = {m|m : 3 - »R, m is regular, bounded and additive}.

If m denotes the variation of m, then we define ||m|| = m(T) . We

order M by defining m 2 0 if m(E) 2 0 f o r a 1 1 E e 3- C*(T)

has the usual ordering, i.e., L 2. ° i f L(f) 2. ° f o r a 1 1

f ^ O , f€C(T) .

In the following lemma, we collect some results which are

easily verified from the definitions.

LEMMA. (1) The intersection or union of two zero sets

is a zero set.

(2) If E is a closed set (open set) in R and f€C(T)

then f" (E) is a zero set (cozero set) in T.

(3) If {Z.}^ = 1 are pairwise disjoint (p.w.d.) then there

are {G^}^-! p.w.d. such that Z. CIQ..

(4) if z c G then there exists f€C(T) such that f (t) = 1

for tez and f(t) = 0 for teT\G.



3. Proof of the Duality Theorem

THEOREM. Let T, C(T), C (T) and M as above. Then

there is an isometric isomorphism between C (T) and M such

that corresponding elements L and m satisfy

L(f) = J f dm
T

for all feC(T). Further, this isomorphism preserves order.

Proof: We first note that if feC(T) and m€M then f is

integrable with respect to m. For let £ > 0. Cover f(T)

with open sets U,,.,.,U such that diam(U.) < £ . Let A, = UL,

j-l
A. = U.\ U U. for j = 2,...,n. If A. ^ 0, choose a.€A.
3 3 i==1 i 3 D 3

and if A. = 0 let a. = 0. Then if B. = f~ (A.) and

n
g = E a-Xn > g is an m-simple function and clearly ||g-f|| <£ €, .

i=l x Bi

Thus f is the uniform limit of m-simple functions and since

m(T) < ooj f is m integrable.

Since

| J f dm| £ sup| f (t) | -m(T)
T teT

if L(f) = j f dm then c l e a r l y LeC^ (T) and | |L| | <± ||m||. To show
T

||L| | = ||m||, l e t 6 > 0 be given and l e t {E.}? , be p .w.d . s e t s
n _

in 3 such t h a t 2 |m(E . ) | ^ ||m|| - £ . Noting t h a t m is
i = l x

r e g u l a r s ince m is r e g u l a r , we may choose Z. c E. so t h a t

mCÊ X̂ẑ )̂ < 6 / n . Then choose { G i } i = 1 p .w .d . such t h a t Z. c G.

and m(G. \z •) < € / n . Define a- = .+1 according as m(E.) > 0
i i l "•"* i

or m(E.) < 0 and let f.eC(T), 0 £ f. < 1 such that f.(t) = 0
-L X I X



n
if teT\G. and f. (t) = 1 if teZ,. Defining f = 2 a, f,

1 1 1 U « « i l l
1 1we have that ||fo|| <1 1 and

|L(fo)| - |J f d-| = | ZJ a^dm + E J

1—1

n „ n
.dml

S | m ( E . ) | - 2 £ ^ IMI - 3 £ .

Thus ||L|| =

Since it is clear that our correspondence represents a

linear map^we need only show that given LeC (T) there is m€M

such that L(f) = j f dm for all feC(T). Therefore let LeC^(T)
T

Then L has a continuous extension L : B(T)—^R where

B(T) = {f : T — P R| f is a bounded function}.

B(T) is equipped with the sup norm. By Corollary 5.3, p. 259 of

Dunford and Schwartz [2] there is an isometry between B (T) and

Tba(T) = (m[m : 2 —*R, M is a bounded additive set function}.

Therefore let Aeba(T) be such that £(f) = J f dA for all
T

f€B(T). By the Jordan Decomposition Theorem we may assume that
r» r*

A > 0. We must find meM such that I f dm = f dA for all
JT JT

f€C(T) . Define n1 : Z—*R by ll-^iZ) = inf A(G) f6r a l l ZG Z

T
and define JLI2 : 2 *»R by M2̂

E^ = SUP Mi (z) f o r a 1 1 E c T.

I t i s obvious that both /i-. and /Lt2 are non-negative and non-

decreasing.
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Now if Z-^ G1, and G are such that Z1\G1 C G then

Z1 c G U G., and since A(G U G.) £ A(G) + A(G1) we have that

M^Z-^ 1 A(G1) + A(G). Therefore /^(Z^ £ A(GX) + {^(Z^G^.

Allowing G1 to range over all cozero sets containing Z PI Z-,

we have ^(Z-^ <L M1(Z n Z-^ + fj>2{Z1\z) . If E c T and Z1

ranges over all zero sets which are subsets of E then

^ 2 (
E ) ^ " 2 ( E n Z ) + M2(EVvZ)-

Let Z1 and Z 2 be disjoint. Choose disjoint cozero sets

G-. and G2 such that Z, c G,, Z9 CI G2" I f G => Z-. U Z 2 then

A(G) ^ A(G 0 Gj) + A(G fl G2) so ^(Zj^ U Z2) ;> ̂ (Z-,̂ ) + M1(Z2).

Now let E c T and ZeZ. if Z-. ranges over all zero sets

which are subsets of E H z while Z^ ranges over all zero

sets which are subsets of E\z, we therefore have that

Mo(E) ^ Mo(E ^ z) + Mo^^ 2) • Thus we have proven that

fi2(E) = M2(E PI z) + ji2(E\z) for any E c T and ZeZ. By Lemma

5.2, p, 133 of Dunford and Schwartz [2], if m is defined to be

the restriction of \i~ to 3, then m is an additive set

function on 3. From their definitions it is clear that

\i-AZ) = JU2(Z) = m(Z) if ZeZ. Therefore m(E) = sup m(z) if
Z£E

so that m is regular and since m(T) < OD we have

that meM.

We need only show that f dm = I f dA for all feC(T).
T T

We can assume 0 <£ f <£ 1. Let g, > 0 and partition T by a

family {E.}., of p.w. d. sets in 15 such that
1 1 — JL

n r
S aim(Ei) + 6 2 1 f d m

i=l T



where a. = inf f(t). There exist sets Z. c E. such that

m(E.\z.) < £ /n which implies that

n -
S a.m(Z.) + 2 S 2 f
=l T

Now choose {G.)?_, p.w.d. such that Z. c: G. and
J. -L~~ JL x. JL

b, = inf f(t)

1
n P

so that Z b.m(G.) + 3 6 2 f d™. If Z c G we have m(Z) £ A(G)
i=l 1 X JT

n n p
so that m(G) £ A(G). Therefore 2 b.m(G.) ^ L b.A(G.) £ £ dA

i=l 1 X i=l 1 X T

and thus f dm <£ I f dA. Since m(T) = A(T) we also have
T T

J (l-f)dA ̂  J (l-f)dm and we can conclude J (l-f)dm = J (l-f)dA.
T T T T

Therefore, replacing f by 1-f we have f dm = f dA for
JT JT

all feC(T).

To complete the proof we must show that this isometry is

order-preserving. Clearly J f dm ̂  0 if m ^ O and feC(T),
T

f 2. 0- Conversely let f dm 2 0 for each feC(T) such that

T

f >̂ 0 and suppose that there is EeJ5 such that m(E) < - S < 0.

Since m is regular there are sets Z and G such, that

Z c E c G and m(G\z) ^ 6/4. Let g€C(T) , 0 ̂  g <̂  1, such

that g(t) = 1 if teZ and g(t) = 0 if teT\G. Then

| g dm - m(E) | ̂  £/2 contradicting J g dm ;> 0. Therefore
T JT



the mapping is order-preserving. |
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