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Abstract

The existence of a Dowker space of cardinality K^^i and weight
is proved in ZFC using pcf theory.

1 Introduction

A Dowker space is a normal Hausdorff topological space whose product with
the unit interval is not normal. The problem of existence of such spaces was
raised by C. H. Dowker in 1951. C. H. Dowker characterized Dowker spaces
as normal Hausdorff and not countably paracompact [3].
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Exactly two Dowker spaces were constructed in ZFC so far. The existence
of a Dowker space in ZFC was first proved by M. E. Rudin in 1971 [5], and
her space was the only known Dowker space in ZFC for over two decades.
Rudin's space is a subspace of r i n > i ( ^ + 1) and has cardinality N^°. The
problem of finding a Dowker space of smaller cardinality in ZFC was referred
to as the "small dowker space problem".

Z. T. Balogh constructed recently [1] a dowker space in ZFC whose car-
dinality is 2*°.

While both Rudin's and Balogh's spaces are constructed in ZFC, their
respective cardinalities are not decided in ZFC, as is well known by the
independence results of P. Cohen: both 2 °̂ and N °̂ have no bound in ZFC,
(and may be equal to each other).

The problem of which is the first Na in which ZFC proves the existence of
a Dowker space remains thus unanswered by Rudin's and Balogh's results.

In this paper we prove that there is a Dowker space of cardinality Nw+i.
A non-exponential bound is thus provided for the cardinality of the smallest
ZFC Dowker space. We do this by exhibiting a Dowker subspace of Rudin's
space of that cardinality. Our construction avoids the exponent which ap-
pears in the cardinality of Rudin's space by working with only a fraction of
N^°. It remains open wThether Nw+i is the first cardinal at which there is a
ZFC Dowker space.

We shall describe shortly the cardinal arithmetic developments which
enable this result. The next three paragraphs are not necessary for under-
standing the proofs in this paper.

In the last decade there has been a considerable advance in understanding
of the infinite exponents of singular cardinals, in particular the exponent K^°.
This exponent is the product of two factors: 2**° x cf ([HJ^0, C). The second
factor, the cofinality of the partial ordering of inclusion over all countable
subsets of Nw, is the least number of countable subsets of N^ needed to cover
every countable subset of Kw; the first factor is the number of subsets of a
single countable set. Since N °̂ is the number of countable subsets of Nw, the
equality ^ = 2*° x cf ([*U*°> is clear.

While for 2**° it is consistent with ZFC to equal any cardinal of uncount-
able cofinality, the second author's work on Cardinal Arithmetic provides a
ZFC bound of N^ on the factor cf ([K]*°, Q -

This is done by approximating cf ( [ N ^ ^ C ) by an interval of regular
cardinals, whose first element is Nw+i and whose last element is cf ([Nw]No, C),
and so that every regular cardinal A in this interval is the true cofinality of a



reduced product fj B\IJ<\ of a set B\ C {Nn : n < u} modulo an ideal J<\
over a;. The theory of reduced products of small sets of regular cardinals,
known now as pcf theory1, is used to put a bound of U4 on the length of this
interval.

Back to topology now, it turns out that the pcf approximations to K °̂ are
concrete enough to "commute" with Rudin's construction of a Dowker space.
Rudin defines a topology on a subspace of the functions space IIn>i(^n + 1).
What is gotten by restricting Rudin's definition to the first approximation
of N*° is a closed and cofinal Dowker subspace X of the Rudin space XR of
cardinality N^+i. The fact that X is Dowker follows readily from the closure
and cofinality of X in XR, and Rudin's proof [5] that XR is Dowker.

Hardly any background is needed to state the pcf theorem we are using
here. However, an interested reader can find presentations of pcf theory in
either [2], the second author's [7] or the first author's [4]. The pcf theorem
used here is covered in detail in each of those three sources.
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2 Notation and pcf

In this section we present a few simple definitions needed to state the pcf
theorem used in proving the existence of an N^+i-Dowker space.

Suppose B C u is a subset of the natural numbers.

Definition 1. 1. ]JneB K = {/ : dom f = B A f(n) < K for n G B}

2- UneB^n + l) = {/:rfom/ = 5A f(n) < Nn for n € B}

3- forf,geUneB^n + l) let:

(a) f<9iffVneB[f(n)<g(n)]

(b) f<9iffVneB[f(n)<g(n)]

2pcf means possible cofinalities



(c) f<*giff{n: f(n) > g(n)} is finite

(d) f <* 9 iff {n ' /(™) > 9{n)} is finite
(e) f=*giff{n: f{n) ^ g{n)} is finite

4- A sequence {fa : a < A) of functions in Yln£B Hn is increasing in <
(<,<*,<*) iff<*<P<\*fa<ff> (fa < f(>, fa <* //>, fa <* ffi)

5 . 5 6 Iln€B(Nn + 1) ™ an upper bound of {/Q : a < 8} C Y[n£B K if
and only if fa <* g for all a < 8

6- 9 € YlnzB^ri + 1) is a least upper bound of {fa : a < 8} C JlneB ^n
if and only if g is an upper bound of {fa : a < 8} C YlneB ^ an^ if 9r

is an upper bound of {fa : a < 8} then g <* g

Theorem 1. (Shelah) There is a set B = J?«w+1 C a; and a sequence f =
(/a : tt < Na,+i) of functions in YlneB Nn

f is increasing in <*

f is cofinal: for every f e IlneB ̂ ^ t/iere is a < Nw+i ô £/m£ / <* /Q

A sequence as in the theorem above wrill be referred to as an "
By Theorem 1 we can find B C u and an Nw+i-scale 'g = (ga : a <

in Iln€jB^^- ^ e se^ & is clearly infinite. Restricting every ga 6 ~g to a
fixed co-finite set of coordinates does not matter, so we assume without
loss of generality that 0,1 ^ B. For notational simplicity we pretend that
B = UJ — {0,1}; if this is not the case, we need to replace Nn in what follows
by the n-th element of B. We sum up our assumptions in the following:

Claim 2. We can assume without loss of generality that there is an N^+i-
scale g = (ga : <* < Hw+i> in

Claim 3. There is an Nw+i-sca/e / = (/a : a < Nw+i) in Y\n>1 Hn ^o that
for every 8 < N^+i, i/ c/5 > Ko and a least upper bound of f\8 exists, then
fs is a least upper bound of f\8.

Proof. Fix an N^+i-scale ~g = {ga \ a < Nw+i) in Iln>i ^n a s guranteed by
Claim 2. Define fa by induction on a < K^+i as follows: If a is successor or
limit of countable cofinality let fa be g$ for the first /? e (a, Nw+i) for which
P/3 >* //? for all (3 < a. If cf a > No then let ga be a least upper bound to



f[S := (fp : /? < a), if such least upper bound exists; else, define fa as in
the previous cases.

The sequence / = (fa : a < N^+i) is increasing cofinal in I~In>i ̂  an<^
by its definition satisfies the required condition. •

Claim 4, Suppose 0 < m < k < UJ. Let(a(Q : £ < Nm) be strictly increasing
with sup{a(C) : C < ^m} = $ < ̂ Wi- U (#c : C < Nm) ^ a sequence of
functions in Yln>k ̂  which is increasing in <, and g^ =* / a ^ /or ei>en/

• g := sup{^ : C < Km} 6 IIn>Ar ̂ ^ ^s a ^eas^ uPPer bound of f\8

• cfd(n) = Nm /or all n > k

• 9=* fs

Proof of Claim. Let # := sup{^ : ( < Km}. Since (g^ : (" < Hm) is increasing
in <, necessarily cfg(n) = Km for all n > k and since g(n) < Kn it follows
that g(n) < Kn for n > k and therefore 5 G jfIn>Ar ^n-

Suppose that 7 < 5 is arbitrary. There exists ( < Km such that 7 < a(£),
hence / 7 <* /a(^) =* g^ < g. Thus 5 is an upper bound or f\S.

To show that g is a least upper bound suppose that g1 is an upper bound of
f\S. Let X := {n> k : g'{n) < g{n)}. For every n e X find £(n) < Nm such
that g((n)(n) > g'{n). Such £(n) can be found because g = sup{p^ : £ < Nm}.
Let C* := sup{C(n) : n > 1}. Since Km > No, C < Km- Since (^c : C < Km> is
increasing in <, it holds that f^ > f{(n)(n) > gl(n) for every n e X . But
gf is an upper bound of f\5, so /f(#) <* gf and Ar is therefore finite.

By the definition of / we conclude that fs is a least upper bound of / \S.
Since both g and fs are least upper bounds of f\S it follows that g =* fs. •

3 The Space

Definition 5. Let XR = {h € Iln>i(^n + 1) : 3mVn [No < c//i(n) < Km]}.

The space is XR is f/ie Rudin space from [5] with the Hausdorff topology
defined by letting, for every / < g in ]ln>i(^n + *)'

(f,g]:={heXR:f<h<g} (1)

be a basic open set (see [5]).



Recall that a normal Hausdorff space is countably paracompactifffov every
decreasing sequence (Dn : n < u) of closed sets such that f] Dn = 0 there
are open sets Un D Dn with f\ Un = 0.

Definition 6. Dn := { / i G l H : 3 m > n[/i(m) = Nm]}

M. E. Rudin defined in [5] the closed subsets Dn C XR above and proved:

Theorem 2. (Rudin)

1. XR is collectionwise normal

#• If Un C XR is open and Dn C Un for all n > 1 then f \> i ^ ^

Those two facts establish by [3] that XR Dowker.
Let / = (/a : a < Nu,+i) be as provided by Claim 3. We use this scale to

extract a closed Dowker subspace of cardinality Nw+i from Rudin's space.

Definition 7. X = {h e XR : 3a < K+i [h =* fa]}

Since \{h e X H : /i =* / a } | = Hw for every a < N^+i it is obvious that
\x\ = *w

Since / is totally ordered by <*, for every h € X there exists a unique
a < No;+i such that h =* / a . Consequently, the space X is totally quasi
ordered by <*, namely the following trichotomy holds:

V/i,fc G X F/i <* fc V A: <* ft V ft =* fc] (2)

Claim 4 translates to a property of X:

Claim 8, Suppose that 0 < m < k < u and that (h^ : ( < Hm) is a sequence
of elements of X such that (h^\(k,u) : C < ^m) ^ increasing in <. Denote
g = sup{/i£ : C < ^m}- Then there is some h G X such that h =* g

Proof For every £ < Nm there is a unique a(C) < frWi f° r which ftc =* / a ( c ) .
Since (ft< : C < Nm) is increasing in <*, the sequence (a(C) : C < Km) is
strictly increasing. Let 5 = sup{a(C) : C < ^m}- By Claim 4, cfp(n) = Km

for all n G (fc,o;) and g =* /$.
Let ft G Iln>i(N» +1) b e defined by ft(n) = Hn forn < k and ft(n) = c/(n)

for n > k. Then ft G XR and ft =* /*. Thus ft G X and ft =* 5 as
required. •
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Claim 9. X is a closed subspace of XR.

Proof Suppose t e clX and t G XR. For every h G X let E(h,t) := {n >
1 :h(n) =t(n)}.

Claim 10. If h <t and h £ X then E(h,t) is either finite or co-finite.

Proof of Claim. Suppose to the contrary that h <t, h G X and \E(h,t)\ =
\v-E(h,t)\ = No. Let, for n > 1,

{0 if n e £ ( M )

h(n) if ne (u - E(h,t))

Clearly f < t. We argue that A" D (/, t] is empty, contrary to t G cl X.
Indeed, if fc G X and fc(n) > /i(n) for all n G (w-E(h,t)) then k jt* h A k y£*
h because w — E(h,t) is infinite and so h <* & by the trichotomy (2). Since
E(h,t) is infinite and {n > 1 : fc(n) < h(n)} is finite, there is n G E(h,t)
such that fc(n) > /i(n) = t(n) and therefore A: ^ (/,<]. •

We need a definition:

Definition 11. W := {w C a; : V/ < < 3/i G (/, t]; [^(/i, *) = w] }

By Claim 10 if w G W then w is finite or w is co-finite.

Claim 12. W # 0

o/ Claim. Assume that W is empty. This is equivalent, by Claim 10,
to assuming that every finite and every co-finite w C u is not in W. For every
finite or co-finite w C UJ fix a function fw<t such that h G (/w,£] H Ar =>
E(hjt) y£ w. Let / be the supremum of fw taken over for all finite and
co-finite w C. UJ. Since there are countably many fw and cf t(n) > No for all
n > 1 it follows that f <t. If h < t is in X and u; = E(h, t) then /i ^ (/«,,<]
and hence /i ^ (/, t]. Thus (/, t] n X = 0, contrary to t G cl X. •

Let us denote Mm = {n > 1 : cftf(n) = Hm}. Likewise, M<r71 =

Claim 13. / / there is h G X so that E(h,t) is co-finite then t G X.

Proof Clear. •

Claim 14. There exists h G X so that E(h, t) is co-finite.



Proof. By Claim 10 is suffices to prove that there is h < t in X with infinite
E(h,t). Let m be the least such that Mm is infinite. Such m must exist
because {cf t(n) : n > 1} is bounded by the definition of XR.

Fix w G W. If tt; is infinite then we are done. So suppose that w is finite
and let k = max{ra,maxu;}.

For every n G Mm fix an increasing sequence (7* : a < Nm) with supre-
mum t(n). By induction of £ < Hm find a sequence (h^ : £ < Nm) so that:

1. h^ < t is in X and E(h^t) = it;

3. /ic(n) > 7£ for all n G (fc,o;) n Mm

At stage (let f = sup{/if f(/c,cj) : £ < (}• Since for every £ < £ it follows
by E(fi£,t) = to that toft(fc,u>) < tf(fc,cj), and since cft(n) > ^ m for all
n G (fc,c«;), we have f < t. By definition of w G W we can find h^ < t in X
with E(h^,t) = to such that /i{f(fc,u;) > /f(fc,a;). Without loss of generality
we can choose h^ so that h^(n) > 7" for all n > k in' Mm.

By Claim 8 there is some h G X with /i(n) =* sup{/i^(n) : £ < Nm}. In
particular, h(n) = t(n) for all but finitely many n > k in Mm. Since Mm is
infinite, E(h,t) is infinite, and we are done. •

•
Claim 15. X is collectionwise normal

Proof. Clear from Claim 9 and Theorem 2. •

We show next that X is not count ably paracompact.
Let D* = { / 6 l : 3m > n [/(m) = Nm]} for n > 1. It is straightforward

that D* is closed and that f|n D% = 0.

Claim 16. IfUnCX is open, and D* C f/n /or a// n > 1? t/ien p| t/n 25 not
empty.

The truth of the matter is that this follows trivially from the analogous
property in XR: Rudin's definition of Dn above is absolute between X and
XR, namely D ^ = D n f l I , and Rudin's proof in [5] gives that if Dn C Un

and Un is open for all n then there is some / G Iln>i ^n s u c ^ *^a* ̂  e Clu^n
for all /i > / in XR. Since for every such / there is h G X with h > / , we
see that Q J7n fl X is not empty.
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For the sake of completeness, though (but not less, for the reader's amuse-
ment) we shall prove Claim 16 directly using elementary submodels.

Proof of Claim 16. Suppose that Un D D* is open for n > 1. We need to
prove that f]n Un is not empty.

We shall prove that there is some / G Iln>i ^n such that every h > f in
X belongs to this intersection.

It suffices to show that for each n > 1 there is some fn G IIn>i ^« s u c ^

that V/i G X \h > fn => f G Un , because then / = sup{/n : 1 < n < u>} is
as required.

Suppose to the contrary that m > 1 is fixed and for every function / G
Iln>i ^n there is some function hf > f in X — Um. Since hf £ Dm, it follows
that hf(n) < Nn for all n > m.

For a given / , let gf = snp{hr : / ' G Un>i^n A (m,u>) C E(f'J)}.
Since this supremum is taken over Nm many functions /*//, it follows from the
above that g/{n) < Hn for all n > m. Also, clearly g/(i) = Ht- for 1 < z < m.

Let (M{ : C < ^i) be an elementary chain of submodels of H(6) for large
enough regular 9 so that:

• / , X and the functions f ^ hf and f ^ gf belong to Mo

• MQ has cardinality Hi and (Aff : ^ < C) € M;+i f° r all C < ^i-

For every C let X((n) :== sup(M^ fl Kn) for all n > 1. Since |M^| = Mi, it
follows that Xc(n) < ^n for all n and hence X( € IIn>i ^^*

Since %e £ Af̂  for ^ < £ < u>i, by elementarity also /iXe and gXi belong to
M^ and consequently hX(L,gXfi < X(-

Therefore, if f < C < ^i then x^ < ^x^ < Xc < hXc < x^ • Thus
(^xc " C < ^l) is a sequence in X, increasing in < with supremum Xui- By
Claim 8, Xu>t G X.

Let x' be so that x'(n) = Xwi(^) for all n > m and ^ ( 0 = Mt- for
K t < m . S o x / G ^ C C/m and therefore (/, x'] Q Un for some / < X', as
Um is open.

Find some C < ^i such that f\(m,oo) < Xc\(miu)' Let / ' = f\(m + 1) U
X c t ( m ^ ) - By the definition of gx< we see that / ; < hf < gx< < x' and, of
course, hf> £ \jmm This contradicts hf G (/,x'] £ £/m- D

The space X defined in 7 is normal and not countably paracompact by
Claim 15 and Claim 16 respectively, and is therefore Dowker by [3]. Since
\X\ = Nw+i we have proved:
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Theorem 3. There is a ZFC Dowker space of cardinality

It is straightforward to verify that the space X constructed above has
weight Nw+1 and character K .̂

Problem 17. Is N^+i the first cardinal in which one can prove the existence
of a Dowker space in ZFC?
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