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Abstract

We describe fully polynomial randomized approximation schemes for
the problems of determining the number of Hamilton paths and cycles
in an n-vertex graph with minimum degree (g + e)n, for any fixed
e > 0. We show that the exact counting problems are #P-complete.
We also describe fully polynomial randomized approximation schemes
for counting paths and cycles of all sizes in such graphs.

1 Introduction

Combinatorial counting problems have a long history, even from the compu-
tational viewpoint. For example, the classical matrix-tree theorem provides
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a good algorithm for determining the number of trees in a graph. However,
it seems that few interesting combinatorial structures possess good count-
ing algorithms. This intuition was made precise by Valiant [21] using the
class # P . He showed that many problems for which the decision counterpart
is easy were nevertheless complete for this class. Since it is unlikely that
# P = P, exact counting is apparently intractable for many natural prob-
lems. For example Valiant [20] showed that 0-1 permanent evaluation, and
counting the number of bases of a (suitably presented) matroid [21] were
#P-complete. Many other problems have since been added to this list, for
example volume computation for polyhedra [6], counting linear extensions of
a partial order [3] and counting Eulerian orientations of a graph [17].

The hardness of most counting problems has led to an interest in approximate
counting. The most fruitful approach in this respect has been randomized
approodmation. This is based on the idea of a fully polynomial randomized
approximation scheme (fpras) due to Karp and Luby [15]. Thus if N is the
true value, we must determine an estimate N such that for given 7,6 > 0

Pr (1/(1 + 7) < N/N < (1 + 7)) > 1 - «,

in time polynomial in the size of the input, 7""1 and log(6~1). Examples
of problems amenable to this type of approximation are dense 0-1 perma-
nent [4, 12], matchings [12], volume computation [7], counting Eulerian ori-
entations [17], counting linear extensions of a partial order [16] and comput-
ing the partition function for the Ising model [13]. The algorithms in the
papers cited use a random walk to generate an almost uniform random solu-
tion to the problem (e.g., a random matching), and then apply multi-stage
statistical sampling methods to obtain the desired estimate.

One obvious requirement for such approximate counting to be possible is that
the associated decision problem be easy. In fact, it appears from experience
that it must be "very easy" in order to have a realistic hope that a randomized
approximation scheme can be found.

In this paper, we add further entries to the small but growing list of randomly
approximate hard counting problems: that of counting the number of Hamil-
ton paths and cycles in "dense" graphs. Let G = (V, E) be a graph, where
V = {^1,^2,..., vn}. Denote the degree of vertex V{ by d*, for i = 1 ,2 , . . . , n.
We will say that G is dense if mint d, > (5 + e)n, where 0 < e < \ is a fixed
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constant. Under these circumstances it is known [5] that G must contain a
Hamilton cycle. Moreover, the proof of this fact is easily modified to give
a simple polynomial-time algorithm for constructing such a Hamilton cycle.
This algorithm, which uses edges whose existence is guaranteed by the pi-
geonhole principle to "patch together" disjoint cycles, provides the required
easy decision procedure.

We consider here the natural but more difficult problems of counting the
number of Hamilton paths and cycles in such graphs. We show in Section 5
that these problems are in fact #P-complete, so exact counting is presumably
intractable. More positively, our main results in Sections 2, 3 and 4 establish
the existence of fpras's for these counting problems when e > 0. We may
observe that if the degree condition is relaxed to min, d, > {\ — en)n with
en = ^(n*""1) for any fixed K > 0, then the question of the existence of any
Hamilton path or cycle becomes NP-Complete,1 and approximate counting
is NP-hard. Thus our results establish quite precisely the difficulty of the
counting problem except in the region where e is close to zero.

The natural approach given previous successes in this area is to try to find a
rapidly mixing Markov chain with state space the set of Hamilton cycles of a
given dense graph, and possibly its Hamilton paths as well. Earlier attempts
with this approach have proved fruitless. Somewhat surprisingly, the key lies
in the fact that in dense graphs, Hamilton cycles form a substantial fraction
of the set of 2-factors. This is not obvious a priori and the main technical
difficulty in this approach lies in obtaining a good upper bound on the ratio
of 2-factors to Hamilton cycles in a dense graph. A direct attack — relating
the number of 2-factors with k cycles to the number with k + 1 cycles —
appears unworkable. Instead, we introduce a weight function on 2-factors
that allows us to argue about the distribution of total weight as a function of
the number of cycles. By a rather delicate analysis, we are able to show that
the Hamilton cycles carry sufficient weight for our purpose. In summary we
prove

1This is true even if we insist on G being fc-connected for any k = o(n). The construction
is from Bollobas [2]. Start with an arbitrary graph G and add a clique C of size m = n1/*
and an independent set I of size m — 1 and then join every vertex in C to every other
vertex, to produce a graph T. Then G has a Hamilton path if and only if T has a Hamilton
cycle. Also T contains a Hamilton path if and only if G contains two vertex disjoint paths
that cover all its vertices.



Theorem 1 If G is dense then there are fpras's for

(a) approximating its number of Hamilton cycles,

(b) approximating its number of Hamilton paths,

(c) approximating its number of cycles of all sizes,

(d) approximating its number of paths of all sizes.

2 Outline approach

Our approach to constructing an fpras for Hamilton cycles in a dense graph G
is via a randomized reduction to sampling and estimating 2-factors in G. An
almost uniform sampler for 2-factors in a graph is a randomized algorithm
that takes as input a graph G and 6 > 0 and outputs a 2-factor Z (a random
variable) such that

1/(1 + S)N < Pr(Z = F) < (1 + 6)/N,

where F is any 2-factor in G and N is the total number of 2-factors. The
sampler is said to be fully polynomial if it runs in time polynomial in the size
of G and logtf""*1. Using known techniques, 2-factors in a dense graph G may
be efficiently sampled, and their number estimated.

Theorem 2 There exist both a fully polynomial randomized approximation
scheme and a fully polynomial almost uniform sampler for the set of 2-factors
in a dense graph.

Proof The result follows immediately from Corollary 4.2 of Jerrum and
Sinclair [14], as will be clear once the notation used there is explained.
In that corollary, d = (di,. . . ,dn) stands for a degree sequence on V =
{vi,V2,...,t;n}, and X C V^ for the edge set of an "excluded" graph on
vertex set V. The notation (?(d, X) stands for the set of graphs on vertex
set V that have degree sequence d and avoid all edges in X. Finally, e(d)
is the number of edges in any graph with d as degree sequence, dmax is the



largest component of d, and xmBX is the largest degree of any vertex in the
excluded graph (V, X).

Note that the set of 2-factors in a graph G = (V,E) is equal to (7(d,X),
where d = (2 ,2 , . . . ,2), and X = F ( 2 ) — E is the complementary edge set
to E. The result now follows from Corollary 4.2 of [14], since, for a dense G
and n sufficiently large, dmax = 2, xmax < \n - 1 , and dmj,dm^+xm^-1) <
n = e(d). •

Before describing the randomized reduction from Hamilton cycles to 2-factors,
it is appropriate to recall the algorithmic techniques used to sample from,
and estimate the size of £(d,J\T). Using a reduction due to Tutte [19], a
graph F is constructed whose perfect matchings are in many-one correspon-
dence with elements of <y(d,X). An algorithm of Jerrum and Sinclair [12],
based on the the simulation of a rapidly mixing Markov chain, is then used
to sample or estimate the number of perfect matchings in F, as required. For
this algorithm to be applicable, we require that F satisfy a certain condition;
it is this condition, translated back through the reduction to the pair (d,X),
that gives rise to the condition e(d) < dmax(dmax + xmax — 1) in Corollary 4.2
of [14].

Given Theorem 2, the reduction from Hamilton cycles to perfect matchings
is easy to decribe. We estimate first the number of 2-factors in (?, and
then the number of Hamilton cycles by standard sampling methods as a
proportion of the number of 2-factors. Both counting and sampling phases
run in polynomial time, by Theorem 2, provided only that G is dense. For
the sampling phase to produce an accurate estimate, it is necessary that the
ratio of 2-factors to Hamilton cycles in G not be too large. This will be
established in Section 3.

We remark that it would be sufficient to be able to generate a random Hamil-
ton cycle. We could then proceed alternatively by adding one edge at a time,
giving a sequence of M = O(n2) graphs G = Go, C?i,..., Gu = Kn> We could
then estimate the ratio of the number of Hamilton cycles in G,-_i to those in
G{[for i = 1 ,2 , . . . , M. The degree conditions can be used to show that each
of these ratios is not too small and hence can be estimated efficiently. (This
is similar to an idea in [4].)



The method of using random 2-factors to generate random Hamilton cycles
was previously used by Frieze and Suen [9] in the context of random digraphs
and more recently by Frieze, Jerrum and Molloy [8] with regard to random
regular graphs. It is interesting that the same method should be successful
here also. It raises the intriguing possibility of using existing approaches
to other random graph problems to guide the design of new randomized
algorithms for restricted versions of the corresponding deterministic problem.

3 Many 2-factors are Hamiltonian

Let n be a natural number and a a positive constant. Let fc0 = max{ [a In nj, 1},
and for 1 < k < n, define g(k) = nak\(a In n)"*, and

f(k) = ( 9^J if k - *°;

\p(fc0), otherwise.

Lemma 1 Let f be the function defined above. Then

1. f is non-increasing and satisfies

min{/(fc - l),/(* - 2)} = /(* - 1)

2. f(k) >l,for all k.

Proof Observe that g is unimodal, and that fco is the value of k minimizing
g(k); it follows that / is non-increasing. When k < k0, we have f(k - 1) =
g(k - 1) = (alnn)fc-1p(Jb) = (a\nn)k-lf(k); otherwise, f(k - 1) = g(k0) =
f(k) > (a\nn)k~1f(k). In either case, the inequality in part 1 of the lemma
holds.

Part 2 of the lemma follows from the chain of inequalities

1 ^ (alnn)fc° ^ _ ~ (alnn)* _a

g{k0) nak\ ^ A;!f(k) g{k0) nak0\ ^ A;!
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Lemma 2 Suppose e is constant greater than 0. Let G be an undirected
graph of order n and minimum degree ( | + e)n. Then the number of 2-
factors in G exceeds the number of Hamilton cycles by at most a polynomial
(in n) factor, the degree of the polynomial depending only on e.

Proof For 1 < k < [n/3\y let $k be the set of all 2-factors in G containing
exactly k cycles, and let $ = 14$* be the set of all 2-factors. Define

tf = { ( F , F ' ) : F e $ * , F ' e $* ,* '<* ,
and F e F ' ~ C 6 } ,

where © denotes symmetric difference, and CQ is the cycle on 6 vertices.
Observe that ($,\£) is an acyclic directed graph; let us agree to call its
component parts nodes and arcs to avoid confusion with the vertices and
edges of G. Observe also that if (F, F') € \I> is an arc, then F ' can be
obtained from F by deleting three edges and adding three others, and that
this operation can decrease the number of cycles by at most two. Thus every
arc (F, F') 6 ^ is directed from a node F in some $* to a node F ' in $^-1
or $*_2.

Our proof strategy is to define a positive weight function on the edge set #
such that the total weight of arcs leaving each node (2-factor) F 6 $ \ $i is
at least one greater than the total weight of arcs entering F. This will imply
that the total weight of arcs entering $i is an upper bound on the number
of non-Hamilton 2-factors in G, and that the maximum total weight of arcs
entering a single node in $i is an upper bound on the ratio |$ \ $i | / |$i | .

The weight function w : \I> —• R+ we employ is defined as follows. For any arc
(F, F') with F* € $*: if the 2-factor F ' is obtained from F by coalescing two
cycles of lengths l\ and 1% into a single cycle of length l\ +1%, then w(F, F1) =
(/f1+/^"1)/(A:); if F' results from coalescing three cycles of length /i, I2, and 1$
into a single one of length h+l2 + /3, then w(F, F') = (/f1 + l2

l + ljx)f(k).

Let F € $fc be a 2-factor with k > 1 cycles 71,72,..., 7*, of lengths ni, n 2 , . . . ,
We proceed to bound from below the total weight of arcs leaving F. Imagine
that the cycles 71,72,. •., 7* are oriented in some way, so that we can speak
of each oriented edge (w, u') in some cycle 7, as being "forward" or "back-
ward" . Since we are interested in obtaining a lower bound, it is enough to



consider only arcs (F, F') from F of a certain kind: namely, those for which
the 6-cycle 7 = F © F' is of the form 7 = (x, x', y, */, z, z!), where (x, a;') is a
forward cycle edge, (y, j/) is a forward edge in a cycle distinct from the first,
and (2, z!) is a backward cycle edge. The edge (2, z') may be in the same cycle
as either (a:, x') or (y, 3/), or in a third cycle. Observe that (a;', y), (j/, 2) and
(z'yx) must necessarily be non-cycle edges (with respect to F). It is routine
to check that any cycle 7 = (a;, x\ y, j / , 2, z') satisfying the above constraints
does correspond to a valid arc from F. The fact that (2, zf) is oriented in
the opposite sense to (a;, x7) and (y, j/) plays a crucial role in ensuring that
the number of cycles decreases in the passage to F ' when there are only two
cycles involved.

First, we estimate the number of cycles 7 for which (x, xf) is contained in a
particular cycle 7,- of F. We might say that 7 is rooted at 7,. Assume, for a
moment, that the vertices a^ar^y, \f have already been chosen. There are at
least ( | + e)n — 6 ways to extend the path (x,x*,y,x/), first to z and then
to z', which are consistent with the rules given above; let Z1 be the set of
all vertices z1 so reachable. Denote by G(x) the set of vertices adjacent to x.
The number of ways of completing the path (a:, x', y, y7) to a valid 6-cycle is
at least

\G(x)\ + \Z'\-n > ( I + e ) n + [(i + e ) n - 6 ] - n
= 2 e n - 6
> en,

for n sufficiently large. A lower bound on the number of 6-cycles 7 rooted at 7,
now follows easily: there are nt- choices for (a:, #'); then at least ( | + e)n — nt-
choices for (y, y7); and finally — as we have just argued — at least en ways
to complete the cycle. Thus the total number of 6-cycles rooted at 7, is at
least £nn t[(| + e)n — nj .

We are now poised to bound the total weight of arcs leaving F. Each arc
(F, F') defined by a cycle 7 rooted at 7; has weight at least njl min{/(fc —
l),/(fc - 2)}, which, by Lemma 1, is bounded below by (alnn)(fcnt)'"

1 f(k).
Thus the total weight of arcs leaving F is bounded as follows:

w(F,F') >
t = l

8



> e2af(k)n2lnn
> 4/(fc)n2lnn, (2)

for a suitable choice of a, where we have used the fact that k >2. Note that
the presence of a unique backward edge, namely (z, z'), ensures that each
cycle 7 has a distinguishable root, and hence that the arcs (F, F') were not
overcounted in summation (1).

We now turn to the corresponding upper bound on the total weight of
arcs (F', F) € \& entering F. It is straightforward to verify that the cy-
cle 7 = (#, x', y, t/, Z, Z') = F © F1 must contain three edges — (x, x')} (yy T/),
and (ZjZf) — from a single cycle 7,- of F, and three non-cycle edges (x\y),
(t/, z), and (z',z). (The labeling of vertices in 7 is not canonical: each cycle
appears in six labeled guises.) Removing these three edges from 7, leaves a
triple of simple paths of lengths (say) a — 1, b — 1, and c — 1: these lengths
correspond (respectively) to the segments joining edge (x, x') to (t/,t/), edge
(y^i/) t o (z,zf), and edge iz,z') t o (#,#')• Note that each triple (a,6,c) is
consistent with up to 16nt- choices for the edges (#,#'), (yJy

/)J and (z,zf).
(This maximum will be attained when cycle 7, is contained in a clique of G.)
Five cases should be distinguished.

1. For 8nf- of the 16nf choices, 7,- © 7 is a single cycle;

2. for 2n, choices, 7, © 7 is a pair of cycles of lengths a and b + c;

3. for 2nt- choices, 7,- © 7 is a pair of cycles of lengths 6 and a + c;

4. for 2n, choices, 7,- © 7 is a pair of cycles of lengths c and a + 6;

5. for 2n, choices, 7,- © 7 is a triple of cycles of lengths a, 6, and c.

The first case does not yield an arc (F',F), since the number of cycles does
not decrease when passing from Ff = F © 7 to F; but the other four cases
do have to be reckoned with.



Allowing for the previously noted overcounting of cycles 7, the total weight
of arcs entering F can be bounded above as follows:

t=l ajb,c>l

U + bTl) + U + 7T^) + U

a,6,c>l

< X>./M«E j + ^ r
t=l a=l L a n *

< 3/(fc)n2/fn (3)

where # n = S?=i i""1 < Inn + 1 is the nth harmonic number [10, eq. (6.60)].
Combining inequalities (2) and (3), we have

F) > 4/(fc)n2lnn-3/(fc)n2i/n

> /(Jt)n2(lnn-3)
> n 2 ( lnn-3) ,

where the final inequality is by Lemma 1. Thus the total weight of arcs
leaving F exceeds the total weight of arcs entering by at least 1, provided
n > 21. The number of non-Hamilton 2-factors |$ \ $i | is bounded above
by the total weight of arcs entering $1, which in turn is bounded — see
inequality (3) — by |$i | x 3/(l)n2#n = |$i | x O(n2+a). This establishes the
lemma. •

4 Hamilton Paths

We now describe an fpras for counting the number of Hamilton paths with
a prescribed pair of endpoints, w, v say. The existence of an fpras for all
Hamilton paths follows easily. If necessary we add edge e = (w, v) to G. We

10



now show that the previous analysis is easily modified to show the existence
of an fpras for approximating the number of Hamilton cycles containing e.

First of all we can modify the proof of Theorem 2 to restrict attention to
2-factors containing e. We then modify the proof of Lemma 2 as follows:
since the edge e can be in at most 6n2 rooted 6-cycles we can replace the
right hand side of (2) by (4/(fc) In n - 6)n2. Inequality (3) is still valid and
so Lemma 2 remains true when we restrict attention to Hamilton cycles and
2-factors which contain e. This proves Theorem l(b).

5 Exact counting is #P-complete

Let #HC (resp. #HP) be the problem of counting the number of Hamilton
cycles (resp. paths) in an undirected graph. It is known [21, 18] that #HC
is #P-complete, and it follows, by an easy reduction, that #HP is also #P-
complete.

Theorem 3 Both #HC and #HP are #P-complete when restricted to graphs G
of minimum degree at least (1 — e)n, where n is the number of vertices in G,
and e > 0.

Proof We first present a Turing reduction from #HP to #HP such that all
the target instances of #HP satisfy the required minimum degree condition.
Let G = (V, E) be a undirected graph of order n with vertex set V and edge
set E, considered as an instance of #HP. A typical target instance of #HP
is a graph Gt constructed from G by forming the disjoint union of G with
the complete graph K% on t > n vertices, and connecting every vertex in G
with every vertex in Kt.

Assume t > 3. For 1 < k < n, denote by Pk the set of all covers of G
by fc vertex-disjoint oriented paths, where paths of length 0 are allowed.
Each oriented Hamilton path P in Gt induces an element of UkPk by re-
striction to G. Conversely, each element of Pk may be extended in precisely
*l('+2)fc! = (t + 2)*!(£})(*; - 1)! ways to an oriented Hamilton path in Gt:

the vertices in Kt may be visited in t! orders; there are ('"£2J ways to choose

11



fc positions in that order during which excursions to G can be made, includ-
ing the two positions prior to and following the order, and fc! ways to match
those positions to the fc oriented paths covering G. Thus the number pt of
oriented Hamilton paths in Gt can be expressed as the sum

fc=l

Note that pt may be evaluated by one call to an oracle for #HP, since the
number of oriented Hamilton paths is twice the number of unoriented paths.
Using n such calls we may evaluate pt for t = to + j and j = 1,2, . . . , n,
where to = [V~lnl ls chosen sufficiently large that every graph Gt with t > tQ

satisfies the minimum degree constraint. Recovering the values {(fc — l)!|Pfc| -
1 < fc < n} from {pt0+j/((to+i+2)(to+j)!) : 1 < j < n) amounts to inverting
the matrix

which may be expressed as the product A = LU of a lower triangular matrix
L = (Ljh) and upper triangular matrix U = (Uhk) defined as follows:

ana

The equality A = LU is a direct consequence of the "Vandermonde convolu-
tion" formula [10, eq. (5.22)]

Both L and U have unit diagonals and are hence non-singular: indeed their
inverses have the following simple explicit forms, as can be verified by di-
rect multiplication using standard identities involving sums of products of
binomial coefficients [10, eqs (5.24), (5.25)]:

and

12



Since A x = U lL *, the values {|P*| :1 <k <n} may be computed in poly-
nomial time using two matrix multiplications involving integers of O(n logn)
bits. Observe that ^\P\\ gives the number of (unoriented) Hamilton paths
inG.

The hardness of #HC is now simple to verify. Given a graph G = (V, E) with
the minimum degree condition we add a new vertex x and edges (#, v) for
all v G V to create G'. Note the G' satisfies the minimum degree condition
as well. Removing x from a Hamilton cycle in G1 creates a Hamilton path in
G. This defines a bijection from the set of Hamilton cycles in G1 to the set
of Hamilton paths in G. •

6 Counting the number of paths and cycles
of all sizes

We will first consider approximating the total number of cycles in graphs with
minimum degree ( | + s)n. We will sketch an fpras for the total number of
cycles. For brevity, the development will be less formal than that of Section 3,
and we will omit some details.

We first note that if we add a loop to each vertex and extend the definition
of 2-factor to include loops as cycles of length one, then the argument of [14]
may be extended to this case (note that we still forbid cycles of length two
i.e. double edges). Thus there exists both a fully polynomial randomized
approximation scheme and a fully polynomial almost uniform sampler for
the set of extended 2-factors in a dense graph. Let an extended 2-factor be
cyclic if it consists of a single cycle of length at least three and a collection
of loops. Clearly the number of cyclic extended 2-factors is the same as the
number of cycles.

The procedure for approximating the number of cycles of all sizes is as follows:
we estimate first the number of extended 2-factors in G, and then the number
of cyclic extended 2-factors by standard sampling methods as a proportion

13



of the number of extended 2-factors. To produce an accurate estimate in
polynomial time it is only necessary to show that the ratio of extended 2-
factors to cyclic extended 2-factors is not too large.

Tt = {extended 2-factors with £ loops} and ft = \Tt\.

For a given F 6 ^ let L={loops}, which we will now identify with the cor-
responding set of vertices. For v € L let dv denote the number of neighbours
of v in L and D = YlveL dv-

IfveL then there are at least 2en — 2dv ways of adding v to a cycle C of F
by deleting an edge (a, 6) of C and adding edges (a, v), (v, b). In total there
are at least

= 2£en-2D (4)

> 2<(en- («- l ) ) (5)

such augmentations.

Suppose first that £ < l\ = [sn/2\. Then (5) gives at least £en/2 augmen-
tations of F € Tt to an F1 € Tt-\. Each F1 G Fe-i arises in at most n ways
and so

i l
ft - 2-

Putting £Q = [4/e] we see that

Suppose next that £> £\. Note first that L contains at least

distinct cycles.

Adding a cycle C contained in L to F and removing \C\ loops gives us a
2-factor in Tt where V < £. From (4) and (7) we see that there are at least2

(8)

(9)

2x+ = max{0,x}

14



such augmentations from F. Each F9 € T<£ arises in at most n + n ways
(accounting for both ways of reducing L) and so

ft <

where 9 = 6/(e2n), assuming £ > £x.

Thus
ft + fi-i + ---+fo <x j Q

fe-i + ft-2 H H /o ~~
and so

where Ei = f£l+ fil_l + h /0 . We weaken (10) to

< e*" 1 ^ . (11)

It follows from (6) and (11) that

{° + {1 + "' + {»<n«»-'. (12)

Now take an F e Te where £ < £0 and fix its set of loops L. The number
of extended 2-factors with this same L is at most a polynomial factor, p(n)
say, of the number of cycles of size n — £ through V \ L, by the results of
Section 3. Thus, by (12), the ratio of extended 2-factors to cyclic extended
2-factors is O(np(n)) and we have proved the existence of an fpras for the
number of cycles.

We now show how to modify the above analysis in order to count paths. We
use the same strategy as in Section 4 i.e. we fix an edge e and approximate
the number of cycles containing e. Simple modifications to the argument
for cycles replace the right hand side of (4) by 2£en — 2D — £ and (5) by
2£(en — £). Thus (6) remains true. We can replace the right hand side of (8)
by 1(^2 "" 2) an^ preserve (9). Thus the argument now goes through more or
less unchanged as for cycles.

15



7 Concluding remarks

We remark that it is not difficult to adapt the above methods to the cor-
responding directed case. Here we will have both minimum indegree and
outdegree at each vertex guaranteed to be at least (^ + e)n. Also we may
similarly count the number of connected fc-factors in G for any k = o(n).
(Hamilton cycles are, of course, connected 2-factors.)

We leave open the following questions. First, is it possible to count ap-
proximately as e —> 0 in any fashion? Secondly, is there a random walk on
Hamilton cycles and (in some sense) "near-Hamilton-cycles" which is rapidly
mixing? In other words, can we avoid the Tutte construction and the need
for 2-factors with many cycles?

Finally, are there other interesting counting problems which are tractable on
such dense graphs? Note that Annan [1] has recently found an fpras for the
number of spanning forests in a dense graph. This can easily be modified to
approximate the total number of (not necessarily spanning) trees in a dense
graph. On the other hand Jerrum [11] has recently shown that the problem
of computing this number for a general graph is #P-Complete.

Acknowledgement We thank Alistair Sinclair for his comments on an ear-
lier draft.
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