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§1. In his book [3], Yosida presents a section (§12 of Ch. IX)

entitled !The Trotter-Kato Theoremr in which is proved a theorem

on the convergence of a sequence of CQ semi-groups acting on a

sequentially complete lctvs (locally convex topological vector

space) X. This is parallel to, but does not subsume, the theorem

presented by Trotter [2] and Kato (e.g., [1]) on the convergence

of a sequence of (discrete or continuous) semi-groups acting on a

sequence of approximating spaces; for Trotter and Kato all the

spaces are Banach spaces. The aim of this paper is to provide a

common generalixation of these results.

In § 2 is presented the setting for the theorems: a net of

spaces (X } approximating an lctvs X. In 13 an approximation

theorem is proved for a net of C Q semi-groups and in f4 this is

used to treat also the case of discrete-parameter approximating

semi-groups. Finally, |*5 contains a converse to the main theorems

of §3 and §4.

12. For any lctvs X we call a set <i> of continuous semi-norms

on X a determining set if it determines the topology of X; for

simplicity we also assume $ closed under linear combination with

positive coefficients so $ is a determining set for X iff

{{xeX: <p(x) < 1}: cpe<£} is a neighborhood base at 0.

Let G be a directed set, (X : aeG] a net of lctvs fs, and

{TT_: cceG'} a net of continuous linear surjections Ô Q," X — * x ) •
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Let $ be a determining set of semi-norms on X and let <p._*<p̂

be a map (for each cced) of $ onto a .determining set of semi-norms

on X . We call such a system (incorrectly, but conveniently,

identified as (̂  }) an approximating net (of spaces) to X if,

for each xeX and each

(1) <p(

(convergence as af in the directed set G).

Example: Let X be any lctvs with dual space X* and let G
r

be the directed set of all finite-dimensional subspaces a of the

dual X* ordered by inclusion. Let X be the dual of a. for

oteG and, define ir by setting [ir x] (y) = y(x) for each xeX

and y ea . Let <£ be any determining set for X and, for <pc$,
set ^(z) = inf (<p(x) • xeX, 7T x = z} for each zeX ; since ir ,

as defined above, is open as well as continuous, linear and sur-

jective, <p will be a continuous semi-norm on X^ . To demonstrate

(1) , note that for any (pe$ and x eX there exists, by the

Hahn-Banach Theorem, a yeX* such that |y(x) | < <p(x) for all

XG X while y (x ) = cp(x ) ; it follows that we have ^ry^o^n^ = ^^x
o^

for any a. such that yea . Thus, every lctvs c a n b e approximated

in this sense by a net of finite-dimensional spaces.

If <£ is a determining set for the lctvs X and /I is a

mapping (/i: $ $) , we say the linear operator L: X—*X is

M-continuous if, for every xeX and every

cp(Lx) < [iup] (x) .



We observe that every continuous operator on X is fJi-continuous

for some /I . An operator L^: X^—>XQ, will also be called

jU-continuous if, for every x^eX a n d <PG^

A net of operators (LQ,} (La- X —*X ) is called equi.-continuous

in CL if each L is /i-continuous with the mapping /i fixed

(independent of a) .

Let (xa- aeG} be a net of vectors, XQ, € X . We say x

converges to x (for some xeX) and write x —>x or x = lim x

if, for every <p

For a net {L ) of operators (L : X —**X ) we say (L } con-

verges (strongly) to L ( for some operator L on X) and write

L — ^ L or lim L = L if, for every xeX , L IT X —+ Lx so, for

every

For future reference, we state the following (obvious) result

as a lemma.

Lemma 1: Let {&&} > ^Bc^ t>e n e t s °f operators on the approximating

net ( X ) to X . If A —>- A and B —±- B , then (A 4- B )—*

If, in addition, (A } is equi-continuous (i.e., jii-continuous

uniformly in a. for some IX) then (A B )—*• AB .

§3. In this section ( X } will denote an approximating net of

spaces to X, with X and each X a sequentially complete



l c tvs ; [S } = (S (t) : t >̂  0} i s a net of C semi-groups

(S (t) : X —+X ) /i-continuous uniformly in aeG 3 t >_0; that

for each K
a
eX(y

(2) a a a a a

Denote by A the infinitesimal generator of the semi-group s

and by Ra^ t h e r e s o l v e n t o f A
a (Ra(^) = (A - A ) ~ where this

inverse exists as a continuous operator).

Theorem 1: Let {S } be a uniformly /i-continuous net of C Q

semi-groups^ as above^ on the net {X } approximating X . Suppose

that, for some AQ > 0 ,

R(AQ)x = lim Ra(Ao)Trax

exists for each xeX and that the range of R(A ) (i.e., the set

{lim Ra(Ao)Tr0:x: xeX}) is dense in X. Then, for ReA > 0, R <

converges strongly to an operator R(A) on X which is the resol-

vent of the infinitesimal generator A of a /i-continuous C n

semi-group S = {S (t) : t >̂  0} on X ; further, S (t) converges

to S (t) uniformly in t , for t in any bounded interval.

Proof: That R (A) is defined for ReA > 0 is Corollary 1 of

[Y: IX, 4] . Formula (10) of that section gives us, for each

xa € Xa Re?v > ° > n = °*1' • • ••>

[AR^(A)]n+V = A n + 1

(that the [Bochner] integral is well-defined follows from (2)

References of this form are to chapter and section of Yosida [3];
e.g., this refers to |4 of Chapter IX.



and the sequential completeness of X ) so, for each

(3)

n}i f A i s r e a l a n d p o s i t i v e ; i . e . , {[AR ( A ) ] n } i s f l - c o n t i n u o u s

uniformly in A (A > 0) , n(n=l,2,...) and

From the linearity of each R/y(V>) follows that of R(An) .

Using (3) with A = Ao , we may apply Lemma 1 recursively in n

to show [\)RG^\^ l n~* E A o R ^ \ ) ^ n (n=1^2J, . . .) . It then follows

that t\)R^\0-'n -̂s M-continuous (for n=l,2,...) on X since

<p([A0R(A0)]
nx) < !<Pa(VA0R(V]nx) " ^ ( ^ 0

R ( V ] I l x ) l

where e
Cj'~

>0 and the convergence of

[[tip] (x) by (1) .

Now set e = (AQ - > 0 A o and, for A such that

and

|e| < 1

set

(4) R(\)x = 6n[A0R(A0)]
n+1x .

The series converges absolutely - - i.e., the related series

|AQ| £ |G| (p([AQR(A0)] x) converges - - by the uniformQR(A0)

/^continuity of {[A0R(AQ)] n +
0 Q Hence R(A)- is well-defined

by (4) since $ is a determining set and X is sequentially

complete . Observe that, similarly, for |A - Ao| < An



converges absolutely and may easily be seen to converge to R (A)

Let R and R be the corresponding partial sums (E ) so, for

e > 0, there exists N(e) = N(x,<p, €) independent of cc (xeX,

such that

3 R == R(^)) f o r N > N(e) i n which case

< <p (ir RNx - R^TT x)— ̂ a a OL or'

- R N ]x ) - <p([R - R N ]x )

- R N ]x )

* 0 ;

the first term going to 0 as 9 n [AQRa(Ao) ]
 n + 1—> 0 n [AQR(Ao) ]

 n + 1

for n = O,.,.jN and the second by (1) . Thus R/v(^)—>R(A) for

IA - A I < A and. as above, this implies that (for A real and1 o o

0 < A < 2A ) [AR(A)] is /l-continuous (for n=1^2^...) . Choosing

a 'new A f one can now repeat the process to obtain convergence

in a larger disc and so, eventually, R (A)—^R(A) for Re A > 0

and, for A real, positive and n=l,2,..\, [AR(A)]nis u-continuous,

Since each Ra(
#) satisfies the resolvent equation, so does

R(#) (at least for positive real A) by the equi-continuity of

AR (A) and Lemma 1. The assumed density of the range of R(A )

now guarantees (c.f., [Y: IX, 7]) the existence of an operator

A of which R(A) is the resolvent and the uniform jU-continuity

of {[AR(A)] : A > 0; n=l,2,...} guarantees that this A is the



i n f in i t e s ima l generator of a ji-continuous Co semi-group

S = [S (t) : t >_ 0} on X . We need only show the convergence of

S a ( t ) to S ( t ) .

For N = 1 , 2 , . . . , n = 1 ,2 , . . . . , t > 0, s e t

_N,. v -nt V
N n t r _ , N1k

S ( t ;n )x = e LQ -£-7— [nR(n)] x

for xeX, xry6X^y ̂  t>y the uniform /i-continuity of { [nR(n) ] ,

[nRa(n)]
k} we obtain the /i-continuity of SN(t;n), S^(t;n) , S(t;n)

liitLjS (t;n) , and Sa(t;n) = lint, S (t;n) (convergence of {S
N}

and (S } follows as before from the absolute convergence of the

series). By [Y: IX, 7], S(t;n) and S (t;n) are C Q semi-

groups which converge strongly, as n—•oo , to S (t) and S (t)

respectively.

We may differentiate (5) term-by-term (justifiable by the

absolute convergence - locally uniform in t - of the derived

series) to obtain

~ r S ( t ; n ) = [n2R(n) - n] S ( t ; n ) .

Observing that (we set R(l) = R)

[n R(n) - n]R = nR(n) [R-l] and

[mR(m) - nR(n)]R = ( - ^ nR (n) mR (m) [R-l],

we have

[S(t;n) - S(t;m)]R2x = f - ^ - [S (t-s;n) S (s;m) ] Rxds

°° t
= ( I ~) nR(n)mR(m)-[R-l] J S (t-s;n) S (s;m) xds
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I t fol lows t h a t , for xeX and n , m = l , 2 , . . . ,

<p([S(t;n) - S( t ;m)]Rx)< t | i - - ^ | [M'<p] (x)

5 4where /z!(p = /i <p -f \i <p (exponents denoting iterates) . Thus,

as ;s(t;n)~*S(t),

(6) <p([S(t) - S(t;m)]Rx) < | [pup] (x) .

Similarly,

(6') *>a([Sa(t) - Sa(t-m)]Raxa) < £ [ M . ^ a ( X o j ) .

Notice that the absolute convergence of [S } is uniform in

a ; there exists e = e (t^n), such that e ~*0 uniformly in

t (t bounded) as N—> oo and

(7) <p a([S^(t ;n) - S a ( t ; n ) ] x a ) < eN [W>] a ( x ^

<p([SN(t;n) - S ( t ; n ) ] x ) < e^ [fup] (x) .

We now have , • fo r y = Rx and a l l aeG, N, n, t > 0 , <pe<£>,

- S N ( t ; n ) ] y ) - <p ([S (t) - S N ( t ;n ) ] y) |

- S ( t ;n ) ]Rx) + <p([S(tjn) - S N ( t ; n ) ] y )

<Pa([Sa(t) -

N" k knt \f - [nRa(n)



Given (p,y and a bounded t - i n t e r v a l , choose n l a r g e enough so

t h a t ( t /n ) [fJL}(p] (x) and ( t /n ) [H^tp] a(rr x) a r e smal l (uniformly

i n a for a > aQ - - so [/i!<p] ̂ Or^x) ~ [/•*'<£] ( x ) ) ; next f i x N

so €NlAty>](y), ^[/aplgOr^) are small (uniformly in a for

a > a 1 ) ; finally, take & large enough that all the remaining

terms are small (possible by (1) , the equicontinuity of ^(t)

and S (t;n) and the convergence of R to R) .

Thus Sa(t)y converges to S(t)y (uniformly in t for t

in a bounded interval) when y is in the range of R = R(l) .

Since this range is dense in X, the continuity of S (t) (uniformly

in t) and the equi-continuity in a of {S (t) } suffice to

ensure the convergence of S (t) y to S (t) y for all yeX and

the local uniformity in t of this convergence.

QED

§4» In this section (X } and X will be as in §3. For

let ba > 0 with 5a—*0 ; set T^ = {n5^: n=O,l,...} if 6 a > 0

and Ta = [O,oo) if 6^ = 0. Let {S^} = (§a(t) : teT^} be a

semi-group: s
a(

n5
a) = ^ n (n=0,l,...) if 5^ > 0 and S^

a C Q semi-group if 6^ = 0. Set A^ = [&a - l]/&a if 6^ > 0

and let A be the infinitesimal generator of the C semi-group

S^ if 5^ = 0 ; in any case let R^A) be the resolvent of A

We assume the semi-groups (sa}
 a r e M-continuous uniformly in

so, for each x^eX^ , ta
eT

a > a n d

(8)
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Theorem 2: Let {S } be a uniformly p-continuous net of

(possibly discrete) semi-groups as above on the net {X ) approxi

mating X . Suppose that for some 7\ > 0

R(AQ)x = lim Ka(^o)Trax

exists for each XGX, R(A ) has dense range and t —^t (with

t eT ) uniformly on bounded t-intervals. Then R (A) exists for

Re A > 0 and converges there to R(A) which is the resolvent

of the infinitesimal generator A of a jLX-continuous C o semi-

group {S(t): t >_ 0} ^further, if t
0,

eT
0,

 a n d ta~" > t' t h e n

Proof: When 5 > 0, define, for t >̂  0, x ^X ,

s

where s = ^/b ; if 6^ = 0 set S^ = S • Observe that, by (8)

(9) converges absolutely and

-s v°° s /^in+k .

s

By the usual series manipulations, it follows that {S (t) } is

a semi-group and, by term-by-term differentiation of (9) , that its

infinitesimal generator is A (6 > 0) ; that S is of type

C Q follows easily from (8) and (9) .

Thus, the net [S } satisfies the conditions of Theorem 1

so Sa-(t) —*-S (t) , where S (t) is the well-defined /i-continuous

C o semi-group whose infinitesimal generator has resolvent

R(A) = lim Ra(?0 . We need only prove that f^a(ta) -
 S
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must become small as t —• t ( S — * . 0) .

We s e t R = R (1) , R = R(l) for convenience and f i r s t

show t h a t , for x ^ X ^ , t a e T^ , <p€$ ,

(ID <Pa([^a(ta) - Sa(ta)]Rjc f lJ < | V a t « p ] a ( [ R a - I ] 2

this is t r iv ia l for 6^ = 0 , in which case S - S , and we may

assume 6 > 0 . Then., noting that a l l operators involved commute

so

2 2 r r r s

iI5 v «-• 1 t \ rfC "~ x \ 5C "1 I I XN I X\ *"• 1 } 3C ~r" I O I JO 1

o o

whence, as [R + 6 R (R - 1) ] = S* R 5

- t)Sa(t) (Ra - l )2x adt .

Now, for

a^n-klf i^^^ff i^ - Sa]R
2 xa

= ^ J a(6a " t)Sa([n-k]6a + tJ^^tR^ - l)2xadt
o

whence, using (10) ,

o
2 x)= n( |«5[Wl a([R a - I]

which is just (11) .
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Next we show that for t , s >_ 0, x/veX/y ) <pe$ w e have

(12) <Pa([Sa(t) - Sa(s)]Ro;xa) < |t-s|[w>]a([Ra - H x a ) .

We may clearly assume t > s and set e = t -s > 0. Noting that

we have

fe) V a = V a + f s
a

( r ) fRa " "f
whence

«Pa([Sa(t) - Sa(s)]Ropca) < J% a(S a(s+r)[R a- l ]x o)dr

which is just (12) .

2
^ for y = R xeX , cp€* , we have

(13)

^ ( [ ^ ( V - Sa(t) ] [ R ^ _ 7raR
2]x) .

By (11) , the f i rs t term on the right in (13) is bounded by

1
which, in turn is less than 2 tofta. t i m e s

[R-l] 2x)

.+ I [IMP] ( [R-1] 2 X) - [H<pla(TTa(R-l)2
X)
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which i s bounded - - so the f i r s t term goes to 0 as 6 —•O

(as a. increases in G) uniformly on bounded t - i n t e rva l s . By

(12), the second term on the right in (13) i s bounded by

| t a - t\[iMp]a([Ra - l]RaTrQpc) which i s less than | t^ - t | times

([R - l]Rx)

[R - l]Rx) - lW>1 afr a[K - l]Rx) |

Tra[R - l]Rx - [Ra - llR

which is bounded - - so the second term goes to 0 as t —*» t

(as oc increases in 6) uniformly on bounded t-intervals. Finally,

2 2

the last term in (13) is less than 2 [jbup] ( [R^TT - ir̂ R ]x) which

goes to 0 (independently of t) as oc increases in G • Thus,

for each y in the range of R , s (t ) IT V —^S (t) y (uniformly

on bounded t-intervals) as a increases in G . Since the range
2

of R is dense in X 3 S(t) continuous (uniformly in t on

bounded intervals), and S (t ) equi-continuous, this implies

that S (t )TT v—-> S (t) y for all yeX (whether or not y is
2

in the range of R ) uniformly on bounded t-intervals.
QED

§5. In this section it is shown that the consistency condition,

Ra(Ao)~>R(A ) , is necessary for the approximating semi-groups

to converge.

Theorem 3: Let {S } be a uniformly /i-continuous net of C n

semi-groups on the net X approximating X (as in §3) . Suppose

there is a /i-continuous C Q semi-group {S} on X such that

Sa(t).—-*S (t) strongly, uniformly on bounded t-intervals. Then

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSlii



14

R (A) —*R(A) for Re A > 0 where R^(^) i s t h e resolvent

(A - A ) ~ of the infinitesimal generator A of {S } and

similarly for R(A) = (A - A) "

Proof: Recall (see^ e.g., [Y: IX, 4]) that we have the repre-

sentation

r
OO

o

for Re A>_ 0, x/yeX
0, > an<3 s imi lar ly for R(A) . Then, for any

and any xeX,

-(ReA)t

M

The last term may be made small by taking M large enough. Then,

by the strong convergence of S (t) to S (t) uniformly on [0,M],

the preceding term becomes small as a f in G #

QED

Remark: In the setting of §4, the consistency condition is still

necessary as S (t ) —> S (t) and <p ([S (t ) - S (t)]x )—*0

(uniformly on bounded t-intervals) implies the convergence of

to S (t) so the above theorem can be applied.

s
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