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ABSTRACT

We determine the detailed qualitative behavior of radially symmetric equilib-
rium states with two or more phases for general classes of nonlinear thermoelastic
materials. We treat the cases of structured and non-structured interface. Methods
are based on a combination of geometric constructions with phase-plane analyses
of the governing equations. A special feature of the solutions is that they admit
nonplanar interfaces.
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1. INTRODUCTION

For aeolotropic nonlinearly thermoelastic disks and balls, we determine the de-
tailed qualitative behavior of radially symmetric equilibrium states with two or
more phases. Much of our treatment is based on a combination of simple geometric
constructions with phase-plane analyses of the governing equations. We treat very
general classes of materials. A host of novel effects are due to the lack of isotropy,
which causes the innocuous polar singularity at the center for an isotropic body to
be replaced by a very different singularity, one which strongly influences the behav-
ior near the center. The richness of the phenomena we find reflects the richness of
the material response we consider. A special feature of our solutions is that they
admit nonplanar interfaces.

In Section 2 we record the equations governing the equilibrium of coexistent
phases separated by smooth interfacial surfaces, including the case when the inter-
faces can be structured. In Section 3 we specialize these equations to a dual form
especially appropriate for radially symmetric problems. In Section 4 we describe
the properties of the phase portraits corresponding to isothermal equilibria of ho-
mogeneous materials. In Section 5 we solve the isothermal problem first for any
finite number of simple interfaces. In Section 6 we treat the same problems for
structured interfaces. In Section 7 we specialize some of these results to linearly
elastic materials, which cannot sustain multiple radially symmetric phases in the
absence of interfacial structure. We introduce heat conduction in Sections 8 and 9.
Its presence typically prevents the governing ordinary differential equations from
being autonomous. Since there is but slight advantage to treating homogeneous
materials, we do not restrict our attention to these in Section 9. In Section 10 we
develop a version of the theory of asymptotically autonomous equations applica-
ble to our thermoelastic problems, which enables us to obtain detailed information
about solutions for these problems from solutions of an appropriate autonomous
system.

Notation. We often denote the function u «-• f(u) by /(•). The partial derivative
of a function / with respect to a scalar argument t is denoted by either ft or dtf.
Obvious analogs of these notations will also be used.

2. BASIC EQUATIONS FOR COEXISTENT PHASES

In this section we state the equations governing the equilibrium of coexistent
phases separated by smooth structured interfaces, following the formulation of
Gurtin [6,7]. The purpose of this presentation is merely to identify the variables
that enter the jump conditions of radially symmetric problems, which we study in
the rest of the paper.

Gibbs notation. In our formulation of the three-dimensional theory, we employ
Gibbs notation for vectors and tensors: Vectors, which are elements of Euclidean
3-space E3, and vector-valued functions are denoted by lower-case, italic, bold-face
symbols. The dot product of (vectors) u and v is denoted by u • v. The value of
tensor A at vector v is denoted A-v (in place of the more usual Av) and the product
of A and B is denoted A • B (in place of the more usual AB). The transpose of
A is denoted A \ We write u • A = A* • u. The inner product of A and B (which
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equals the trace of A • £*) is denoted A : B. The dyadic product of vectors a and
6 is denoted ab (in place of the more usual a® 6). It is defined by (ab)-u = (b-u)a
for all u. Thus (ab): (uv) = (a • u)(b • t>). Twice-repeated lower-case Latin indices
are summed from 1 to 3 and twice-repeated lower-case Greek indices are summed
from 1 to 2.

In Section 10, we employ traditional notation for matrices.

The (Gateaux) differential of u i-> f(u) at v in the direction h is j-tf(v + th)\fs:0.
When it is linear in h we denote this differential by f£(t>) • /* or fu(v) • h. If *
represents a point in Euclidean 3-space, then the divergence of a tensor T is de-
fined to be V • T* s (dT/dx) : I where / is the identity tensor or, equivalently,
( V * r ) « c s tr[d(T* • c)/dx) for all c, where tr denotes trace.

The surface gradient and divergence. An invariant definition of the surface
gradient V and surface divergence V* is given by Gurtin and Murdoch [8] and
Gurtin [6]; we give a useful coordinate version: Let 17 = (r?1,^2) be a pair of surface
coordinates for a C1 interface, which we represent by 17 •-• TT(TJ). By definition, the
vectors gQ(v) = ~§Z* a r e independent and span the tangent space to the interface
7r at *n(rj). Let {gQ} be the basis dual to {gQ}- Then the surface gradient V is
the operator glm^p and the surface divergence is the operator y 7 ^ - . (The same
technique yields a coordinate version of the ordinary gradient V.) At the end of
this section, we compute these operations in the polar coordinates we use in the
rest of this paper.

Let x denote a typical material point in a body Cl and let p(x) denote the position
of x in a deformed configuration. Let F(x) denote the deformation gradient at x,
6(x) the absolute temperature at *, T(x) the first Piola-Kirchhoff stress tensor
at x, q(x) the (negative of) the material heat-flux vector at x, and tf>(x) the
Helmholtz free energy per unit reference volume at x. A phase of a thermoelastic
material is a maximal connected set of material points on which the deformation
gradient and the temperature gradient are continuous. Suppose that a body has
a finite number of phases separated by smooth surfaces, called interfaces, having
continuously differentiate unit normal fields n. To account for effects like surface
tension we can endow an interface with a surface free energy xp and a surface Piola-
Kirchhoff stress tensor T, which is a tensor that is a derivative of $ and that
annihilates n. When $ ^ 0, the interface is said to have structure.

We limit our attention to coherent interfaces, across which p is continuous. The
tensor P s I — nn is the projector onto the tangent plane to the interface at any
point. The coherency of an interface ensures that F s F • P (which is another
surface tensor in the sense that it annihilates n) is continuous across the interface.

The body is in (Maxwell) equilibrium under zero body force and zero heat source
if

(2.1) V • T* = 0,
(2.2) V - 9 = 0
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in each phase, and

(2.3) [r]n = -VT%

(2.4) [xl>-(T-n)-(F- n)] s $P - F*. f1): Vn - V • c,
(2.5) [g].n = O

on each interface. Here [/] denote the jump across an interface of the function
/ , i.e., the limiting value of / on the interface in the phase into which n points
minus the limiting value of / for the other phase. The vector c is associated with
shear forces acting on the interface; we ignore it because it will not appear in the
problems we treat.

We supplement these jump conditions with the the jump condition coming from
the requirement that the interface be coherent:

(2.6) [p] = 0.
We limit our attention to interfaces across which the temperature is continuous:

(2.7) [6] = 0.

We study thermoelastic materials for which there are constitutive functions $,

T, q, Vs Ty such that the functions delivering the free energy, stress, free energy,
heat flux, surface free energy, surface stress, and surface shear at a material point
are the compositions

(2.8) tf

(2.9) T

(2.10) <Z

(2.11) ^

(2.12) t = f (F,n,0,x) = ̂ ( / \ n f *,«),

(2.13) c = - f ( F , n, 0, *)*.£• n - ^n(F, n, 0, m).
Here E is the average of the limits of F on each side of the interface. We do not
bother to put these constitutive equations into frame-indifferent form. We shall not

use the fact that T and T are derivable from potentials.
We study equilibrium states with coexistent phases. We do not concern ourselves

with how these states could be reached. In particular, we assume that a set of
constitutive equations is given for each phase. We need not explicitly regard these
constitutive equations as corresponding to different energy wells of a single free-
energy function. That our problems do in fact describe coexistent phases resulting
from a free-energy function with multiple wells, rather than describe some standard
equilibrium configurations, is embodied in (2.3) and the Maxwell condition (2.4).
Since these conditions account for the instabilities associated with the spinodal
regions produced by a free-energy function with multiple wells, we can assume that
the constitutive equations in each phase are reasonably stable, namely, that they
are strongly elliptic.

For accounts of the underlying theory of coexistent phases, see Abeyaratne and
Knowles (1,2], Gurtin [6,7], and TVuskinovsky [17].
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Polar coordinates. Let the interface be a sphere of radius r. Let {t,j,fc} be
a right-handed orthonormal basis for Euclidean space. We identify 17 with the
spherical coordinates (#,<£), in which case

(2.14) TT(0,<f>) B r[sin0(cos <f>i + sin<j>j) + cos9k] = rn.

Set

(2.15) a\ = cos 0(cos # i + sin $3) — sin 0fc, a<i = — sin #i + cos ^ j , 03 = n.

Then {a*} is orthonormal, and g\ = raj , g% « rsin^a2 ,
smB. Hence,

In particular, if we represent T by Tl*aiCLj% then

P.17) V . ^ - i ( ^ | + ^

(U8) *n = i (a, A + ̂ | ) *(M) = I(«lOl + o2a2) = \p.

If the interface is a circular cylinder of radius r, we identify TJ with the cylindrical
coordinates (4>,z), in which case

(2.19) TT(<£, 2:) «s r(cos <f>i + sin < î) + zk.

We set ai = — sin^t + cos ̂ j , a2 = fc, and a$ = n = cos ̂ i + sin ̂ j and find that

(2.20) * = ^ |

3. EQUATIONS FOR RADIALLY SYMMETRIC CONFIGURATIONS

We study radially symmetric equilibrium problems, which are governed by or-
dinary differential equations, because they can be readily analyzed and because
they describe interesting phenomena that arise in a variety of real materials. For
example, the casting of a metal cylinder typically results in a configuration with a
reasonable approximation of cylindrical radially symmetric aeolotropy (see Walker
[18]). Spherical radially symmetric aeolotropy occurs in spherulite (see Sinha [15]).

We accordingly take our body to be a disk or a ball of outer radius 1 and assume
that the constitutive equations respect this symmetry. Let 8 denote the radial
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coordinate in the reference configuration. Let r(s) be the radius of a material point
originally at distance s from the origin. The following development is restricted to
radially symmetric problems. We use the notation of (2.14)-(2.22).

The only strain variables are the radial and azimuthal stretches v and r defined
by

(3.1a,b) »(s) = r'(*), r ( , ) « ^ .

In particular, for the ball, F = T(aiai+a2a2)+i>nn, and for the disk, ai-F*a\ = r,
a3 • F • a$ = v.

The only nonzero components of T are the radial normal component N and the
azimuthal normal component(s) T. The temperature 6 depends only on *, and the
only nonzero component of q is its radial component q.

Equations (2.1) and (2.2) reduce to

(3.2)

(3.3) £[*"«(*)] = 0

where a = 1 for cylindrical coordinates and a s 2 for spherical coordinates.
The surface stress tensor has the form T = T{a\a\ + 0202) for the ball and T =

Ta^i + ? z zkk for the disk. Using (2.17) and (2.21) we find that V-T = - a f n / r .

The surface shear c = 0 and rp is independent of n. It is convenient to introduce
the Eshtlby function

(3.4) x = 1>-Nv

(the constitutive function for which is a partial Legendre transform of that for tp,
so that x represents a thermodynamic variable between the free energy and the free
enthalpy). The interface conditions (2.3)-(2.7) reduce to

(3.5)

(3-6) 7
(3-7) [9] = 0,
(3.8) [r] = 0,
(3.9) [6] = 0,

In each phase the constitutive equations (2.8)-(2.10) reduce to equations of the
form

(3.10) T(*) = f(r(s),

(3.11)

(3.12)
(3.13)

* « -

* ( « ) «
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in each phase. Let

Let us now drop the superposed tildes. Then (3.19) is equivalent to

(3.21a) f-i^r.n,*,^-1)-*.
(3.21b) n ~ aT^r, n, 0, e^1) - an,

(3.21c) 0 m e^

where the superposed dot denotes differentiation with respect to (• If the material
in each phase is homogeneous, so that the constitutive functions do not depend
explicitly on *, then equations (3.21a,b) are autonomous. But even under these
conditions, (3.21c) for a = 1 is not autonomous unless / ' is affine in g, i.e., unless
the material satisfies a version of the Fourier heat conduction law, and (3.21c) for
a = 2 is not autonomous unless /* is affine in

The corresponding forms of (3.5), (3.6) are

(3.22)

(3.23)

while (3.7)-(3-9) remain the same. (Since there can be no interface at the center,
the presence of e*"1 in the denominators of (3.22), (3.23) causes no difficulty.)

o

We identify a constant reference temperature 0. We assume that the reference
configuration is natural for this temperature, i.e., that

(3.24a) JV(1,1,0, s) = 0 = T(l, 1,6, s)

or, equivalently,

(3.24b) i/*(l,0,£,s) = 1, T*(l,0,2,s) = 0.

We now discuss mechanical boundary conditions, postponing until Section 8 a
discussion of thermal boundary conditions.

The requirement that the center of the body be intact, i.e., that r(0) = 0, is
equivalent to

(3.25) lim e * - a r ( 0 « 0
—00

by virtue of (3.1b) and (3.20).
If the center is not required to be intact, then the body could suffer cavitation,

in which a hole forms about the center. In this case, r(0) is positive and there
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is no traction acting on the boundary of the hole. This situation at the center
corresponds to the point

(3.26) Hm (T(O,n(O)-(oo,0).

Here we follow [3] in characterizing cavitation by the vanishing of the Piola-Kirchhoff traction
n at the center. Alternatively, one can adopt the weaker, but eminently reasonable, assumption
that the Cauchy traction n/r vanish at the center (cf. Ball [5]). The advantage of our approach is
that there is at most one phase-plane trajectory satisfying (3.26), whereas otherwise there could
be a whole family of admissible trajectories, to which a stabilty criterion must be applied to select
the physically reasonable one.

We can prescribe the radius r(l) of the outer boundary of the body, or prescribe
the normal Piola-Kirchhoff traction n(l), or prescribe the normal stress per unit
actual area, etc. We handle all such possibilities by requiring (r(l),n(l)) to lie on
a prescribed curve §B in the (r,n)-plane:

(3.27) (r(l) ,n(l))€§B.

4. PHASE PORTRAITS FOR ISOTHERMAL AUTONOMOUS PROBLEMS

We now limit our attention to isothermal problems for homogeneous media, so
that the behavior in each phase is given by the autonomous version of (3.21a,b) for
constant 0, which we write as

(4.1a,b) f = v%{r,n) - r, n = aTl{r,n) - an.

Under certain constitutive assumptions (which are slightly stronger than ours,
which can be weakened, and which we do not spell out) the methods of Antman
and Negron-Marrero [3] show that the phase portraits1 for (4.1) have special prop-
erties illustrated in Figure 4.2: The point (r^n) = (l>0) is a singular point. All
nondegenerate singular points are either saddle points or stable nodes. All singular
points lie along a simple curve §5 that is asymptotic to the negative n-axis and that
is unbounded in the positive n-direction for r > 1. The curve %S is the union of
the singular points and trajectories (separatrices) joining the singular points.

The following result is central for our analysis: For the phase containing the
center, any trajectory satisfying (3.25) must begin at a saddle point (possibly at
infinity) and must be confined to a separatrix leaving the saddle point, or else must
be confined to a singular point. See [3] for a proof. For an isotropic material, the
curve §5 degenerates into a curve of singular points. If the phase containing the
center is isotropic, then any trajectory satisfying (3.25) is merely a point of §5.
The treatment of the degenerate problems in which the phase containing the center
is isotropic is much easier than those in which this phase is not isotropic, and is
accordingly omitted. (Our methods automatically account for cases in which other
phases are isotropic.)

There can be a cavitation, satisfying (3.18), if the constitutive equations for the
phase containing the center admit a trajectory, like the §C's of Figure 4.2, that
is asymptotic to the positive r-axis and originates at (r,n) = (oo,0). See the
discussion and references in [3].

1 Although the phase in phase portrait has nothing to do with the phase of a material, we
encounter no ambiguity because each material phase has its own phase portrait.
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Fig. 4.2. Typical phase portraits for (4.1) showing the separatrix curve
§5 and the trajectory §C asymptotic to the positive r-axis.

5. THE ISOTHERMAL PROBLEM WITH UNSTRUCTURED INTERFACES

We seek equilibrium states in which there are a finite number of phases, each of
which touch along circular interfaces for a = 1 and spherical interfaces for a = 2.
We prescribe the number k + 1 of phases and the constitutive functions in each
phase (but not the locations of the phase boundaries). In this section, we assume
that the interfaces are not structured, so that the right-hand sides of (3.5) and (3.6)
are each 0. We use the very simple geometric construction shown in Figure 5-1 to
characterize solutions:

First suppose that the center is intact. Let xo be the Eshelby constitutive
function x' for the phase containing the center, which we call the phase 0- (This
phase is a disk or a ball.) In (r,n, x)-space construct the curve 70 formed by the
graph of xo restricted to the curve §S for the phase 0, which is denoted %SQ. Thus

(5.2) : (r,n) € §50,X - Xo(r,n)}.

Segments of 70 caa be parametrized by the ( that parametrizes each separatrix
constituting §So-

Let xi be the Eshelby constitutive function x' f°r the phase, called phase 1,
adjacent to that containing the center. (This phase is an annulus or a shell.) In
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Fig. 5.1. The graphs of the curve 70 and the surface A- Their intersec-
tion points, if any, correspond to the {r,n) at the interface between the
phases 0 and 1.

the same (r, n, x)'sPBCe construct the graph A of xi-

(5.3) A « {(r,n,X) : X

The curve 70 might intersect the surface at one or more points. If there are no
such intersections, then there cannot be equilibria with phase 1 touching phase 0
along an interface satisfying (3.5), (3.6), (3.8). Otherwise, denote the projection of a
typical intersection point onto the (r,n)-plane by (roi,noi)« This point determines
the state on the interface. A segment of a separatrix in the portrait of phase 0
that begins at a saddle point and terminates at (rOi,nOi) describes the state of
phase 0. For each (roi,noi) there is different state of phase 0. We do not (yet)
know the value of £ corresponding to (roi,noi) because (4.1), being autonomous, is
invariant under changes of the independent variable £. The separatrix determines
an appropriate state because an infinite amount of £ is exhausted in going from the
saddle point to the terminal point (rOi,nOi), as is required by (3.25).

Now we locate (roi,noi) in the portrait of phase 1. Issuing from it is at most
one semi-orbit §d along which £ increases. (It could happen that (rOi,nOi) is a
singular point, in which case §Ci lies on (roi,noi).)

First, let us suppose that the only phases are phases 0 and 1. Then we get a
solution to the equilibrium problem if and only if §C\ intersects the boundary curve
§5. (In the rare case that (rOi,noi) is a singular point, it must lie on %B. Then
phase 1 is degenerate, being confined to the boundary of the body. We choose
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not to regard the solution as a two-phase solution.) The semi-orbit %C\ determines
the state of phase 1. In consonance with (3.27), we identify the value of ( at the
intersection of §Ci with %B as 1. We then obtain from (4.1) an integral expression
for the amount of the independent variable £ used up along the §Ci from (roi,noi)
to (r(l), n(l)). Since there can be no singular points on §Ci (or else there would be
no two-phase solution), this amount is finite. It determines the ( at the interface.
All the conditions of our problem are met, and the portraits of phases 0 and 1
determine the solutions in those phases.

Now, suppose that there is at least one more phase, phase 2, surrounding phase
1. Then over the entire semi-orbit §Ci in the portrait of phase 1 we construct the
curve

(5.4) 71 = {fan,x): fan) € §Ci,X = Xifan)}.

Let X2 be the Eshelby constitutive function \* f°r *ke phase 2. In the same fa n, x)-
space construct the graph A of X2-

(5.5) r2 « {fan,x): X = X2fan)}.

We denote intersection points of 71 with J2 by (ri2,ni2). We then repeat our
preceding arguments with obvious, modifications, according as phase 2 is the last
phase or not.

Now consider problems in which there is cavitation at the center. (This can only
occur for certain materials in phase 0.) We then carry out the preceding argument,
but replace §5 in the definition of 70 with the §C of Figure 4.2.

Note that it can happen that there are no solutions or there are be several
solutions. All the steps just described are based on straightforward geometric con-
structions of phase portraits and graphs over phase portraits from the constitutive
equations. (Given analytical expressions for the constitutive equations, all these
constructions could be carried out on available graphical packages for computers.)
The most important feature of the equilibrium configurations is the state at the
center of the body, which corresponds to a saddle point in the portrait of phase 0.
In general, the particular saddle point corresponding the the boundary condition
(3.27) cannot be determined until all the phases are determined. As in [3] and
[4], there are critical values of boundary conditions, i.e., critical dispositions of §B,
across which the state at the center jumps. For example, the stresses N and T at
the center can be zero for all normal pressures up to a threshold and then jump to
—00 as this threshold is crossed.

6. THE ISOTHERMAL PROBLEM WITH STRUCTURED INTERFACES

To obtain equilibrium solutions with structured interfaces we need a construction
more complicated than that of the last section because the presence of the right-
hand sides in the jump conditions (3.22), (3.23) distorts the simple geometry there
and because the material coordinate £ enters the interface conditions explicitly. .

Let phase k be the outermost phase. In its phase portrait all orbits that terminate
on §5 sweep out a region Z>* of the (r,n)-plane. (See [4] for sketches of Z>*.) At
each point fan) of T>t we compute from integral expressions obtained from (4.1)
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the value (kfan) of £ with the property that the orbit from (r,n) to §£ uses up
exactly 1 - frfo n) units of the independent variable. In particular, we note that
under mild constitutive equations, Antman and Negr6n-Marrero [3] showed that the
horizontal and vertical isoclines of (4.1) have graphs for which r is an increasing
function of n. The curve §5 lies between these isoclines and has a graph of the
same sort. It follows from these facts that a nonsingular trajectory can cross at
most one isocline. Therefore each trajectory can be parametrized by r or by n. Let
n <-> rk(n) be the graph of a trajectory in the &th phase that is nowhere parallel to
the r axis. Then (4.1b) implies that

(6.1a) l-£*(r*(n),n)= f
Jn

n<2> dm
aT'(fjk(m)f m) — am

where (n(n(l)),n(l)) € §B. Likewise, Let r •-• nk(r) be the graph of a trajectory
in the kth phase that is nowhere parallel to the n axis. Then (4.1a) implies that

(6.1b) ' *

where (r(l),fu(r(l)) € %B. When the hypotheses leading to (6.1a) or (6.1b) axe
not in force, we can represent (* by a sum of integrals of the kind that occur in (6.1).
These integral expressions show that £* depends continuously on its arguments, ex-
cept when bifurcations occur. It could happen that the positive semi-orbit through
(r, n) in Z>* intersects §5 at more than one point. For each such intersection we
define a different function (*.

Let (r+,n+) denote the limit of (r,n) as £ approaches the interface between the
kth and the (fc — l)st phase from the kth phase, and (r~,n~) denote the same limit
as ( approaches the interface from the (k - l)st phase. Then (3.22), (3.23), (3.8)
yield

(6.2) n- = n+- #*(r+,&(r+ ,n+)),

(6.3) X*-i(r- ,n-) = X*(r+ ,n+) -** (r + , e t ( r + , n+) ) ,

(6.4) T- = T+.

Here Nt and Xt denote the given constitutive functions for the interface between
the kth and the (k — l)st phase, and, as before, Xj denotes the given constitutive
function for the the jth phase. We substitute (6.2) and (6.4) into (6.3) to find that
(r+,n+) must satisfy

x*-i (r, n - J\fr(r, ̂ (r,n)))
Xk(r,n) -

We construct the graphs Qk of Gk and Hk-\ of Hk-i over

= {(r,n,x) : (r,n) € P*, X = <?*(r,n)},
. {(r,n,X): (r,n) € Vk, x - **-i(r,n)}.
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(Note that Hk-i is a distortion of the graph of x*-i in the n-direction; it is satisfy-
ing to note that there is no distortion in the r-direction, because such a distortion
would wreak havoc with the the inequality r > 0.) The graphs Gk and W*-i might
intersect, on a (curve-like2) set whose projection onto the (r,n)-plane is §B*-i,*.
The pairs (T+,n+), if any, satisfying (6.5) lie on §B*-it*. If there is no intersection
of Gk and *Hk-i* then there can be no solution.

Now we construct the curve-like set

(6.7) M*-,,* s {(r,n) :n = n+- Nk(r,fr(r,n+)), (T>n+) € §B*- M } ,

which consists of all points (T~,n~) satisfying the interface conditions (6.2) and
(6.4). All orbits in the portrait of phase fc — 1 that terminate on §.4*-if* sweep
out a region T>k-i of the (r,n)-plane. It can happen that no orbits terminate on
§«4*.-if*, so that T>k-i is empty, whence there can be no equilibrium state with
these phases. If (r,n) € &4fc-i,*9 then we define £*-i(r,n) to be the value of & &t
the corresponding point of §B*-i,*, namely,

(6.8) &-i(rf n
+ - #*(r, &(rf n+))) m tk{r,n+)% (ryn+) € §B*-M .

At each point (r, n) of Vt-i > we compute from integral expressions obtained from
(4.1) for phase fc — 1 the value (*_i(r,n) of ( with the property that the orbit from
(r>n) to (r^^n^) on §-4*-!,* uses up exactly &_i(T~,n~) — £*_i(r,n) units of
the independent variable. (As before, it could happen that the positive semi-orbit
through (r^n) in Vk-i intersects §-4*-i,* at more than one point. For each such
intersection, we define a different function (*-i, which would lead to a different
solution.)

We define (7*-i and Hk-2> their graphs Qu-\ and W*-2> and the sets §B*-2,fc-i
and §«4*-2,*-i just as above, and we repeat the process just described, with the
obvious changes of indices, until we obtain the curve-like set %Aoi- (If any of the
sets §*4|-i j is empty, there can be no radially symmetric equilibrium state with
these phases.)

Each segment of the separatrix §5o that terminates on §.4oi determines the state
in phase 0 for which the center is intact. (For cavitation problems, replace §5o with
§Co.) The point at which §5o and §«4oi intersect determines via (6.2) the initial
point on §5oi of an orbit in phase 1 and therefore determines the whole orbit in
this phase. By repeating this process, we determine an orbit in each phase; these
orbits give the equilibrium solution. (This procedure bears a vague resemblance to
that used to construct solutions of shrink-fit problems; see [4].)

7. THE ISOTHERMAL PROBLEM FOR LINEARLY ELASTIC MATERIALS

It is instructive to specialize our results to homogeneous linearly elastic materials, because
these are used in most studies of coexistent phases, and more importantly, because they yield
some surprising results. Let the free energy in a typical phase have the form:

(7.1) *(r,i/) 2

3 We use curve-like tautologically as an adjective describing any set that is the intersection of
two-dimensional surfaces; this use is suggestive of the generic local behavior of such intersections.
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where the elastic moduli A, B, C are numbers satisfying A,C > 0, AC > B7. (In a specific
problem these moduli would bear indices identifying the phase.) The material is isotropic if
A =s C. Let a typical surface free energy have the the form

(7.2) for)
where D is a positive number. Then the stresses in the phase characterised by (7.1) are

(7.3a) N(T, *>) = B{r - 1 ) + C(i/ - 1),
(7.3b) f (r, u) 8 A(T - 1) + B(y - 1),

and the surface stress corresponding to (7.2) is

(7.4)

We explicitly invert the equation N{r,v) — n and thus obtain

C[*«(r,n)-l]«n-B(r-l),
(7.S) CT'(r,n) as (>1C - B2)(r - 1) + £n,

Cx1 (r,n) = |(>IC - B»)(r - 1 ) 3 - Jn s + fln(r - 1) - Cn

(cf. (3.16)). Then our autonomous system (4.1) reduces to

The interface conditions (3.8), (3.22), (3.23) reduce to

where 17 corresponds to the reference preimage of the interface.
The general solution of (7.6) is

where

and ii, Af are arbitrary constants of integration.
Now we study a material with two phases. Since we are considering only linear elasticity, the

only meaningful solutions are those that stay near the natural state (r, n) as (1,0). We accordingly
suppose that the singular point corresponding to the center must be a saddle at (1,0). In this
case, the eigenvalue Ao for the solution for the phase 0 containing the center must be positive, so
that Ao > Co; thus the material must be stronger in the azimuthal directions than in the radial
direction. (In the degenerate case that the material of phase 0 is isotropic, so that Ao = Co, the
analysis is simplified, and is left as an exercise for the interested reader.) Moreover, §5o must be
the ray spanning the eigenvector corresponding to Ao, and the solution in the phase 0 containing
the center must take values on this ray. Thus we conclude that in phase 0 the solution (7.8)
reduces to
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The solution in the outer phase 1 is given by (7.8) with all the material constants indexed with 1.
Let {oi = 17, so that e = e1*"1 is the radius of material points forming the interface. Let

L 2 A0e
Xor>. Substituting our solutions into the interface conditions (7.7) we obtain

(7.11)

(7.12)

(7.13) K

_ QD ( /p 1 J?i €*P \

a(l — L) \C\ 2 C\ 2Ci*(l — L) J *

To be specific, suppose that n(l) is prescribed to equal ft. Then (7.8) yields

(7.14) -AieXlh + Afie^mi m ft.

Equations (7.11)-(7.14) are to be solved for the four unknowns A\ t M\% X, and u s efl"l
% with cr

confined to (0,1).
Let us first consider the unstructured interface, for which P = 0. Then (7.13) implies: For

phases consisting of linearly elastic materials and for unstructured interfaces there can only be
a solution in the unlikely case that K = 0, t.e.f only if there is a very special relation between
the elastic moduli of each phase. In this case, the interface can be located anywhere, because the
remaining equations do not restrict e. Indeed, let a be arbitrary in (0,1). The determinant of
coefficients ofAlyMiyL in (7.11), (7.12), (7.14) vanishes if and only if

(7.15)
m i lo —

Since /o,/i > 0 > mi, the right-hand side of (7.15) cannot take values in (0,1). Thus this
determinant never vanishes for <r in (0,1), so that for each such e, the system (7.11), (7.12),
(7.14) has a unique solution for A\, M\, L.

This result indicates the paramount importance of interfadal structure for linearly elastic
phases, provided we can show that (7.11)-(7.14) can be solved under natural circumstances when
there is structure. Let us briefly sketch how this could be done. We rewrite (7.13) as

(7.16) , ( , , L) = (/. - iCx - ft) ,(1 - 1 ) + 2 £ - 0.

We solve (7.11), (7.12) uniquely for A\tMx in terms of X,cr, and we substitute these solutions
into (7.14) to obtain

(7.17) h{<r% L) S [/j (/o - mi )**+"* + mx (h - /0)<r1+x* ] 1(1 - L)

^ )aPL + ft(/i - m1)<r1+A*+'1*(1 - L) s 0.

Now we determine the vector field (gth) on the rectangle consisting of the lines <r = 0, <r = 1,
I s 1,1 s 1+ and the rectangle consisting of the lines a ss 0, c s 1, L ss 0, L = £", where L+
is a large positive number and L~ is a large negative number. We can readily obtain reasonable
conditions on the elastic moduli and on ft to show that the rotation of this vector field on at least
one of these rectangles is not 0; this condition ensures that (7.16), (7.17) has at least one solution
within a rectangle having nonzero rotation. (See [11].)

8. THE THERMOELASTIC PROBLEM WITH UNSTRUCTURED INTERFACES •

Our governing equations for (r, n, 9) are the ordinary differential equations (3.21)
and the interface conditions (3.22), (3.23), (3.8), (3.9). Recall that /i, which is the
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heat flux on the outer boundary, is a pure constant by virtue of (3.7). If \i ^ 0,
then the heat flux, which is given by q(() = iie*ll~*\ blows up as £ -> -oo. We
admit this flux source at the center so that thermal effects can enter our problem.
(One adopts a similar approach in studying sources and sinks in fluids.)

In this section we restrict our attention to unstructured interfaces for homoge-
neous materials and adopt the obvious analogs of the notation used there. In our
endeavor to imitate the development of Section 5, we encounter a few technical
difficulties occasioned by the failure of our equations to be autonomous. We first
consider the case in which q(l) = /! is prescribed. We introduce the temperature /?
at the center:

(8.1) • ( - » ) = fi

We denote the solution of (3.21) satisfying (8.1) and either (3.25) or the cavita-
tion conditions that r(—oo) = oo, n(—oo) as 0 in the phase 0 containing the center
by (ro(*,/?),no(*,/?),0o('>/?))- We discuss conditions ensuring the existence and the
consequent behavior of (ro,no,0o) below. Let xo, Xi> ••• i denote the constitutive
function x1 m the phases 0 ,1 , . . . . For the time being, we merely assume that it is
defined for £ in some interval containing — oo.

In the 4-dimensional space of (r, n, 0, x) we construct the curve

(8.2) £ ~

and the 3-dimensional surface

(8.3) (r, n, 6) ~ ((r, n, 0, Xi (r, M ) ) .

The homogeneity of the material implies that no computations need be made in find-
ing this surface. Any point where (8.2) intersects (8.3) defines a point (roi,noi, 0oi)
at which the interface conditions (3.22), (3.23), (3.8), (3.9) are met. If there are no
such intersections, there cannot be equilibria with phase 1 touching phase 0 along
an interface satisfying (3.22), (3.23), (3.8), (3.9). We do not have to make special
provision for the possibility that solutions of the differential equations blow up: A
solution that blows up either generates a (8.2) that intersects (8.3) or it does not.
A trajectory of (3.21) in phase 0 terminating at a (rOi, noi, 0oi) defines the state in
this phase that meets the intactness condition and the interface conditions.

But now we encounter what distinguishes this construction from that of Section
5: The failure of our system to be autonomous means that the value €oi(/?) of
{ at this interface is determined. We illustrate this failure by a simple example:
Suppose that the function / ' , which appears in (3.21c), is independent of (r, n, 0,a),
as it would be for Fourier's Law. Then (3.21c) reduces to an equation of the form
€ as e*-lf*0ie*ll-ti). To be specific, assume that f*[q) m A<f where A and 8 are
positive constants. Then the last equation becomes 6 as Be"̂ 1""̂ ,̂ where B and 7
are suitable constants. When we solve this equation and set the solution equal to
0oi, we find that 6>i(/?) = 1 + ^ln [%(9Oi - /? ) ] .

Thus the amount of ( available for the remaining phases is fixed. It may happen
that £oi(/?) > 1, in which case there can be no equilibrium state for this /?. In
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general, for a fixed 0 there is thus little hope of satisfying the boundary condition
(3.27). We shall accordingly wish to vary 0 to satisfy (3-27). We discuss this matter
below.

Now we solve (3.21) in the phase 1 subject to the initial conditions r(£oi(/?)) =
rotfoi(/?),/*)> n(MP)) = no(&i(/?),0), *(6>i03)) = *otfoi(/?),/?), denote the re-
suiting solution by (rx(•, /?), n\(•, /?), $i (•, 0)) and repeat the process beginning with
(8.2) with the obvious change of indices. We continue in this manner until we find
the solution (r*(-,/?),n*(-,/?),$*(•,/?)) in the fcth phase.

Now we plot the curve 0 •-> (r*(l, /?), n*(l, /?)). In view of our preceding remarks,
it may happen that parts of this curve are not defined for certain ranges of 0. A
value of 0 at which this curve intersects %B generates a solution of the equilibrium
problem.

Now suppose that in place of /i we prescribe

(8.4) <?(1)*= 7.

In this case /i is an unknown parameter. We imitate the entire preceding develop-
ment, merely replacing the single parameter 0 with the pair (/i, 0). In particular, we
denote the solution of (3.21) satisfying (8.1) and either (3.25) or the cavitation con-
ditions in the phase 0 containing the center by (r<>(-,/i, /?), no(-, A*> /?)> ̂ oO* A*i /?))> etc.
We plot the two-dimensional surface (p,/?) •-» (r*(l,/^/?),njb(l,/i,/?),0*(l,/i,/?)) in
the three-dimensional (r,n, 0)-space. A value of (/!,/?) at which this surface in-
tersects the curve {(ryn,6) : (r,n) € §B,0(1) = 7} generates a solution of the
equilibrium problem.

Finally we could prescribe the /? of (8.1) and leave /1 free to accommodate (8.4).
(The artificiality inherent in prescribing the temperature at the center is comparable
to that in prescribing /i.)

Let us now discuss the feasibility of choosing parameters /? and \i to satisfy
(3.27) and (8.4). For thermoelastic materials that are sensitive to temperature
changes, the curve 0 *-> (T*(l,/?),njfc(l,/?)) in (r,n)-space and the surface (/i,/?) H+
(r*(l,^,/?),n*(l,/i,i3),^(l,/i,i8)) may be expected to vary considerably with the
parameters /1 and /?. Indeed, it would not be difficult to give sufficient conditions
on the constitutive functions to ensure that 0 or /1 or both could be found at which
the requisite intersections take place. To do so, we could first observe that (3.21c)
and (8.1) imply that

(8.5)

By the remarks following (3.16), the integrand in (8.5) has the same sign as /1. If
fi > 0, then (8.5) implies that 0(0 - • 00 as 0 - • 00 for each £• If we can show
that (our constitutive assumptions imply that) the solutions (T^O) of (3.21) are
under control, so that the integrand of (8.5) has an upper bound on solutions, then
we obtain 6(() - • —00 as 0 —> —00. (To do this, we could follow [3] to show that
solutions (r, n) are confined to certain invariant regions. When the resulting bounds
are introduced into (8.5), we get integral inequalities for 0 alone. Under favorable
constitutive hypotheses (which are mild) we could use the available theory for such
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inequalities to control 6 and thus control the integrand.) We omit the technical
details (cf. [14]). Of course, we get analogous results for /i < 0. When we have
to choose /i, we use the assumption following (3.16) to show that we can push the
integrand of (8.5) to ±oo by pushing y. to ±oo, provided the other variables are
under control.

We need further constitutive restrictions on the dependence of /* on q in order
to ensure that the solution of (3.21) for phase 0 supports the construction we have
just described. These have the following character: For (r, n, $% s) in a given subset
E of (0, oo) x (—oo, oo) x (0, oo) x [0,1], there is a positive number t (depending on
£) such that

When we invoke (8.6), we must prescribe the set €. This assumption is equivalent
to the requirement that the constitutive function q of (3.13) be asymptotically
superlinear in 8' when a = 1 and be asymptotically superquadratic in 0' when
a = 2.

In Section 10 we shall show that a suitable version of (8.6) together with mild
constitutive conditions imply that (r^n) for a solution of the system (3.21) for
the phase 0 containing the center, subject to (8.1) and to either the intactness
condition (3.25) or the cavitation condition (3.26), behaves just like solutions of
the autonomous system

(8.7a,b) r =r i/'(r,n,/?,0) - r, n = aTl(r,n,/?, 0) - an

for the phase containing the center; this system is just a version of (4.1). (In
particular, solutions are defined for all £ in a neighborhood of — oo.) This means
that when (3 is determined, the state of the center is completely known from a
simple computation of the corresponding singular point for (8.7). The state at
the center and the way it can jump at critical thresholds of the data are the most
important physical aspects of the problems we treat.

9. THE THERMOELASTIC PROBLEM WITH STRUCTURED INTERFACES

We now extend the methods of Section 6 to thermoelastic problems by accounting
for the failure of our system to be autonomous. Let us first suppose that (8.4)
is prescribed, so that the parameter y. is at our disposal. It is illuminating to
parametrize the terminal curve \B as a •-> (T*(cr),n*(or)), so that (3.27) and (8.4)
have the form

(9.1a)

We denote (9.1a) by

(91b)

Let

(9-2)
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denote the solution of (3.21) for the kth phase for £ < 1 subject to the terminal
conditions (9.1). For each fixed /i, (9.2) defines a two-dimensional surface in the
three-dimensional space of (r, n, 6) parametrized by (, a. This surface contains the
curve (9.1).

Let

(9.3) J * ( e . * , / 0 * X * - i ( r , n - ^

where {r^n^ff) are replaced with their values given by (9.2). The set of (£,c) for
which

(9.4) J*(e,*.fO-O
lie on a curve-like set §2*-if* in the (£,a)-plane. Equation (9.4) is the analog of
(6.5). For (f,a) in §£*-i,fc, r*({,a,/i),n*(£,af/i),0±(£,<r,/i) lies in a curve-like set
§ 5 ; _ M in (r,n}0)-space.

As in (6.7) we now define

(9-5) n

The members of §B*_2 ^ and §>lj_a ^ are precisely those that satisfy the interface
conditions (3.22), (3.23).

We now take §.4£_2 k to be an terminal curve just like §B* and construct the so-
lutions of (3.21) for the (A: — l)st phase that ends on §-4*_i$*. But here the terminal
values off are not constant, but are those for §£*_i,fc» By exactly the same methods
used to construct &4£_j *, we obtain the curve-like sets §*4*_i h_2<> • • • >

Now we choose a J3 and construct the solution

(9.6) £" {ro{U^\no{i^^

of (3.21) for phase 0 satisfying (8.1) and either (3.25) or (3.26). The existence of
such solutions, which look like those for (8.7), is discussed in Section 10. For each
fixed (/?,;*), (9.6) defines a curve in (r,n, ̂ )-space. If this curve intersects %AQI at
exactly the value of £ corresponding to the intersection point, then our solutions
in each phase determine a solution of our full problem. Of course, for fixed (/?,/i)
it is extremely unlikely that two curves intersect in three-dimensional space. But
by the remarks at the end of Section 8, we can expect to vary 6Q appreciably by
varying (3. Thus for each p. we can expect to find a /? = /?*(A«) that causes (9.6) and
%AQI to intersect, though not necessarily at the right £. Since 6 has the same sign
as /i by our constitutive hyperbolics on q, we can equivalently parametrize solution
with 6 instead of £. Since 6 is sensitive to changes in /*, we can expect to find a /i
that delivers the right value for £ at this intersection.

The adjustment of this argument when /* is prescribed follows the lines of Sec-
tion 8.

Although there are appreciable computations for these nonautonomous prol>
lems in these shooting methods, the essential qualitative feature of the solutions,
namely, the behavior of the solutions at the center is completely determined from
an elementary study of (8.7).
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10. THERMOELASTIC PROBLEMS AS ASYMPTOTICALLY AUTONOMOUS PROBLEMS

We now sketch the proofs of the assertion made at the end of Section 8. These are examples
of perturbation theorems for asymptotically autonomous systems, for which there is a rich theory
(see Hale [9, Sec. IV.3] and Markus [12], e.g.). Since we could not find theorems that directly
apply to our situations, we prove the requisite results.

It is intuitively clear that as £ -4 —oo, our problem approaches an autonomous problem. We
should like to take initial conditions at the center of the body at an unstable singular point of this
autonomous system, but a trajectory cannot leave any singular point. We accordingly must be
content with starting a trajectory on the unstable manifold near the singular point. The following
development shows how to handle the consequent technicalities.

We first study the behavior of of solutions of (3.21a,b) near a saddle point (r x , n x ) € (0, oo) xR
of the autonomous system (8.7) for the phase containing the center. We assume that (8.6) holds
for (r, n, 9) in a compact subset of (0, oo) x R x (0, oo) and for all $ sufficiently small. For simplicity
of exposition, we assume that f1, T1, and /* are twice continuously differentiate. (See Hale [9,
Sec. IV.3] for weaker conditions that work.) We set

(10.1)

Let

(10.2) WCS*4(

Then using (8.7), we can write (3.21a,b) as

(10.3)

where

A-[aTr* a(T*-l)\'

f ^"AJ + i'.V-1 +O (|«|J + (A»)» +e»«-»)) 1
~ [aT* A6 + ar/e<-1 + O (|«|J + (A*)s + e3«-O) J -g

From (3.21c), (8.4), and (10.1) we get a version of (8.5):

(10.4) ( 0 ) ( O A

We want to convert (10.3) into a useful integral equation that exploits the saddle-point structure.
Since (rx

tn
x) is a saddle point of (8.7), A has one positive eigenvalue A"*" and one nega-

tive eigenvalue — A~ with corresponding unit eigenvectors e+ and e~. Let 11+ and II" be the
projections of R2 onto span{e+} and span{e~}, so that Il+C + n~C s (. Thus

We now get the desired representation or solutions of (10.3):

10.6. Lemma. Let (8.6) bold for (r, n, *) in a compact subset of (0, oo) x R x (0, oo) and for aii
s sufficiently sm&ll. For each solution (zyA6) of (10.3), (10.4) for which (r*,n*) + z(() lies in a
compact subset K of (0, o o ) x R / b r ( < a, there is a C+ in span{e+} n [JC \ ( r x , n x)] such that

*(0 = e^w-'iC* + / e^-^-'Jn+g^ffj), A*(IJ), ij) <fr?
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for £ < v. Conversely, any solution of (10.6), (10.4) for which (rx
9n*) + x(£) lies in a compact

subset of (0, oo) x R for £ < er is a soiut/on of (10.3), (10.4).

Proof. By the variation-of-constants formula, (10.3) is equivalent to

(10.7) *(O = eA«-*>«(<r)+jre

Since A commutes with 11*, (10.5) and (10.7) imply that

Since (r*,n*) + *(£) € K for ( < *, we use (8.6) to deduce from (10.4) that A0 - t 0 (mono-
tonically) as ( -4 -oo. It follows that there is a number N > 0 such that |g(x(i7), Aflfa), t?)| < N
for f) < a. Thus, for p < ( < v%

(10.9)

Thus the limit of the integral in (10.8) as p —• — oo exists. Letting p -4 — oo in (10.8), we get

(10.10) I I ( O /

Now we replace ( in (10.10) by ^, substitute the resulting expression into (10.7), and use the
properties of II ± to reduce (10.7) to (10.6) with C+ = II+z(<r). The last statement of the
theorem is proved by direct computation. O

We adopt the system (10.4), (10.6) as our governing equations. We now show that this system
is solvable.

10.11. Lemma. For any C+ in span{e+} with |C+ | sufficiently small, the system (10.6), (10.4)
Jias a unique solution £ *-* (2#U,c,^,/i,C+)i*#(€>^i^i^iC+)) deRned on (—oo,r] depending
continuously a, /?, /i, C+.

Sketch of proof. Let

(10.12) f?((r,C+,*)s{(x,Atf)€C°(-oo,ir]: sup

Note that for 6 sufficiently small, if z is in &(0',C*t£)> then its values lie in K — (r*,nx). For £
sufficiently small, the properties of g and / ' readily imply that the operator defined by the right-
hand sides of (10.4) and (10.6) is a uniform contraction taking Q(<rt C

+1S) (which is a closed subset
of the Banach space of bounded continuous functions on (—oo, a]) into itself. The Contraction
Mapping Principle yields the conclusion. O

It immediately follows from (8.6) that there is a positive number C such that

(10.13) |^(OI < Ce'K-1) for { < cr.

Here and below we suppress some of the arguments of 0*. In view of (10.13) and the definition of
g, we find from (10.6) that there is a C> 0 and a function S1-4 K{6) > 0 with K(S) -4 0 as *-4 0
such that

(10.14)
+ C

for £ < tr. When applied to (10.14), Lemma III.6.2 of Hale [9] implies
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10.15. Theorem. Let (8.6) hold for (r, n, 9) in a compact fubcet of (0, oo) x R x (0, oo) and for
mil • sufficiently small. If 8 is small enough, then

(10.15) * * (0 -4 0 as £-4-oo.
This is the critical result of our analysis, which implies that the state at the center of the

thermoelastic body is described by a saddle point of (8.7) when this saddle point lies in a compact
set in (0,oo) x R. By following Hale, we could show that z*(() approaches 0 exponentially fast
as £ —¥ — oo and could show that its trajectory is tangent to •+ at 0, but these results, while
illuminating, are not crucial for our development. This development is an adaptation of that of
Hale [9, Sec. IV.3].

Now we show how to handle problems in which the state at the center of the thermoelastic body
is described by an initial point that does not lie in a compact set of the phase space (C\ oo) x R.
This initial point may be (r, n) s (oo, 0) for cavitation, or (rt n) = (0, —oo) or (r, n) r- oo, oo) for
intact centers. The singular behavior of reasonable constitutive functions near thif . r.iti&l point
prevents us from obtaining an equation like (10.3): The matrix A does not have a well-defined
limit at the point; its values depend on the manner in which the initial point is approached.

Let (f ,fi) be a solution of (8.7) emanating from the initial point. (It lies on §C or §S.) We
seek solutions of (3.21a,b) of the form

(10.16a) r s f u, n = #iv,
(10.16b) ti(-oo) s i s v(-oo).

We indicate how to prove that there are solutions of this form; further constitutive assumptions
(cf. [13]) ensure uniqueness. Substituting (10.16) into (3.21a,b) we obtain

(10.17a) u

(10.17b) 1 >
or ft

When the right-hand sides of (10.17) are regular, the existence theory for solutions of it subject
to (10.16b) can be treated by methods like those used to treat (10.3).

We illustrate how the regularity of (10.17) can be demonstrated in a specific, but typical
problem in which the state of the center corresponds to (r, n) = (0, —oo), which is a saddle point
in the sense that §5 emanates from it. We now assume that (8.6) holds for (r, n) in a neighborhood
Af of (0, -co) (i.e., when the material is highly compressed). As before, we deduce that 0(() -+ ft
as £ -+ —oo if (r, n) € «V. Now suppose that the constitutive equations (3.10), (3.11) in the phase
containing the center have the form
(10.18a) f(T, i/, B% s) s - c *

(10.18b) #(r , i/, $, •) a -fc

where o and b are positive constants, G is a positive-valued continuous function, and the ellipses
stand for terms negligible with respect to the visible terms for (r, n) in AT. (See [3] for the treatment
of constitutive equations more complicated than (10.18).) FVom (10.18) we immediately obtain

(10.19) t - n r ° J

The substitution of (10.19) into (10.17) yields
(10.20a)

(10.20b)
v
a
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where

(10.20c) # s (-

The terms in braces in (10.20a,b) are completely regular for (utv) near its initial value (1,1).
Thus (10.20a,b) is well-behaved if # is. It is easy to show (cf. [13]) that if (10.18) holds, then

(10.21a) f = tfO?y-1+... where /?(/?) > 0, „ = £ ± i j | ± ± ± 2 l .

For (0, -co) to be a saddle point it is necessary that b > a. From (3.1) and (10.18b) we immediately
obtain that

(10.21b) P s utf, ft s -K?09, 0)uT*~l f - • - • - » + . . . f

so that <P approaches a positive constant as £ -4 —oo. In view of our preceding remarks, we
conclude that an analog of Theorem 10.15 holds in this case.

11. COMMENTS

Our treatment in Sections 8 and 9 are versions of the shooting method for ordi-
nary differential equations (see Keller[10]). (Our methods are reminiscent of those
used to solve the Riemann problem for hyperbolic conservation laws (cf. Smoller
[16]), not surprisingly, since the Riemann problem and our problems are each con-
cerned with the disposition of discontinuities.) What makes our problems special
is that our approach exploits the tmderlying geometry so that we can extract use-
ful qualitative insights about solutions with little effort. We also believe that our
formulations could lead to practical numerical algorithms.

Let us assume that q of (3.13) is linear in 6f as in the Fourier heat conduction
law. In this case, (3.21c) reduces to an equation of the form 6 = <7(r,n, 0)/z. If the
solution of this equation satisfying (8.1) decays fast enough to /? as £ —> — oo, then
we can carry out all the analysis of Section 10. We do not get this decay if g is
constant.

Our methods can handle many other kinds of jump conditions at interfaces, e.g.,
some allowing jumps in 6.
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