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Introduction

In this note we shall introduce a fragment of the un(i)typed X

calculus which is suitable for computing on finite structures. This

fragment is generated by taking arbitrary applicative combinations of

combinators which are hereditarily of order one (H00). Members of H00 are

a generalization of the proper combinators of order one. H00 combinations

enjoy many properties familiar from the untyped X calculus. There are

pairing and fixed point constructions as well as a nice set of integers.

Nevertheless, our first main result is that the word problem for H00

combinations is (log space complete for) polynomial time. In contrast, our

second main result is that Hllbert's 10 problem can be encoded into the

unification problem for H00 combinations. In other words, all effective

computing can be done by equation solving in H00 combinations.



(0) H00

For the present we shall think of members of H00 as atoms with

associated reduction rules. These reduction rules generate a notion of

reducibility which we shall refer to as —> . H00 and —> are defined

simultaneously by induction as follows.

If a is a combination of x's then X defined by the reduction rule

A X "** «X

belongs to H00. If $ is a —•> normal combination of members of H00 and

x's then X defined by the reduction rule

A X ""* «A

belongs to H00. In each case we write X = Ax 2t. Examples:

I = Ax x

w = Ax xx

Cxx s ** x I

(1) Encloding Data Types in H00

Booleans: T = I

D = I



If then else (and pairing):

[X,Y] = Xx x(XyX)Y

Fixed Points:

If X = Xx 0. set V = [yy/x]£, Y = Xy V and Fix(X) = YY. Then X

Fix(X) = Fix(X)

Finite Sets with Discriminators:

Given {a0> . . . a } set a. = Xx. . . .x. I, and E. = Xx x^T. . .T . a a

a . a o...a-. Note thatn-1 n-2 1

T if j < i
E. a. = '

" F if i < j

Integers:

0^=1, 1 = Ax xx = (o, 2 = Xx(xx)(xx),

3 =Xx ((xx)(xx))((xx)(xx)).....

Set °o = 2 2 = Fix( ]J , and n = Xx .x(. . . (x ̂ ) . . . ) . We have nl =nfi and
n+1

more generally

n m = (n + l)m - 1 Q.

More about this later.



(2) Circuit Value Problems

A circuit value problem is a list of Boolean equations in the

variables x....x of the form
1 n

x . = T

x. = F
1

x1 = Xj V xk j,k < i

x. = x . A x. j,k<i
1 J K

where each x. appears on the i.h.s. exactly once. For each x. we

define X. € H00 as follows

X.x -» xT if x. = T
l l

X.x ->xF if x. = F
l i

X..X -> xX.I(AyXk)(Az F)I if xj[ = x. V xfc

X±x -» xX.I(Xy T)Xk I if x± = x. A x^.

Observe that the X. can be computed from the circuit value problem in

space and

X±I = F <=> x±

for i = 1...n.



Consequently, the word problem for H00 combinations is £og space hard

for polynomial time.

(3) Properties of -»

-» is a regular left normal combinatory reduction system ([3]) so it

satisfies the Church-Rosser and Standardization theorems. Clearly any

normal H00 combination belongs to H00. If M is a H00 combination with no

normal form we write M = 1. This makes sense since the corresponding X

term is an order 0 unsolvable. More generally, it is easy to see that

conversion based on -» coincides with /3 conversion of the corresponding

X terms.

We define the notion of 1 normal form (Inf) as follows. M is in

Inf if M = X or

M = XYML...M where XY = 1 and each M. is in inf.
1 m I

It is easy to see that Inf's always exist. However, they are not unique.

Example:

Let a = Xx xlwx. Observing that al — > I we have

aa — > coa — > aa.

The following relation >-* is useful in computing lnfs (as usual we

assume X = Xx 9C)



XM >—> [M/x]3C if M = 1

Z if XY = Z
XY >-

[Y/x]2t if XY = ±

>—» is actually decidable; more about this later. A simple induction

shows

M = X => M >-̂ > X.

We need some notation. If we write M = M[JL , . . . ,M ] then the M. are
1 m 1

disjoint occurrences of the corresponding H00 combinations in M.

Lemma:

Suppose M = M[Mr...,Mm] with M,. = X± for i = l...m and M -» N.

Then we can write N = N[Nlf...,N ] with N. = Y. for j = l...n so that

M[Xr...,Xm] >-> N[Yr...,Yn].

Proof:

Suppose M -» N by contracting the redex A = XP. As usual we assume
A

X = Ax St.

Case 1.

A is disjoint from the 1YL. Then M = M[A,MX, . . .IKJ and

N = M [[P/xj^.JL, ...,M ]. In case P = 1 we are done if we write



N = NrM,,...,M 1. Otherwise let P = Y. By the above remark P >-» Y. IfL 1 m

XY = Z write N = N[[P/x]a,M1, . . .MJ. We have M[Xr....Xm] >̂ >

MCXY.X- , . . . ,X ] >-» N[Z.X- , . . . ,X ]. Finally, if XY = 1 writeu 1 m 1 mJ

9L = £[x, . . . ,x] showing all occurrences of x. We have

N = M[£[P,...,P], M r...,M m].

Write N = N[P, . . . ,P,M1>.. . .Mm]. We have M[Xj .XJ >-̂>

M[XY,Xr...,Xm] >-> M[a[Y,...,Y], Xr...,Xm] = N[Y, . . .Y,Xr . . .Xm].

Case 2:

A C M . for some i. W.^.o.g. assume i = 1. Write ML = JL[A].

Since N = M^CCP/x]!], . . .M ] and M^CP/x]^] = Xj we can write

N = N[M1[[P/x]2t],. --.Mm] amd M^.-.-.X^ = N[Xj .XJ.

Case 3:

Some M. C A. Wlog assume ML .... ,M, C A but no others. Clearly we

can assume that no Mi is X so ML, . . . .M, C P. Write P = PEMj, . . .

and let Q = [P/x]&.

Subcase 1;

P = 1. Write Q = QEMj, . . . ,M ] indicating all the substituted

occurrences of the M. (j < k) in Q. We have N = M[Q[Mr . . . , M k],

Mk+1, . . . ,Mm], so we can write N = NEMj, . . . , Mk, Mk+1, . . . , M m], and then

M[Xr . . . , Xm] = M[XP[Xr . . . ,Xk], X k + r . ... XJ >-» M[[P[Xr . . . , Xfc] / x]flC.
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Subcase 2;

P = Y and XY = 1. Write Q = Q[P] indicating the substituted

occurrences of P in Q. We have N = M[Q[P], M, 1 M ], so we can

write N = N[P,M. . .... M ], and then M[X- , . . . , X ] = M[XP[X- , . . . .X. ],

XJ » M[XY,Xk+1,..., XJ >̂ > M[[Y

Subcase 3;

P = Y and XY = Z. Write N s N[Q,M, M ] . Then MCX. X]

>^ MEXY.X^,..., XJ » M[Z,Xk+1 Xm]HN[Z,Xk+r..., XJ.

Proposition:

If M -> N and N is 1 normal, then M >̂ > N.

Proof:

By the lemma we can write N = N[N. N ] with N. = Y. so that

M >̂ > N[Y r Y n]. Since N is in Inf for i = l...m Nt = Yj. Thus

M >-̂  N.

(4) E

C is the partial order on H00 generated from the following cover

relations

Y £ X if X = Xx Y

Ax 2L £ X if X = k x^. . .SCn



X = X X C HOO is admissible if X is closed under £ and
1 n

X. g X . ^ i < j. Note that if X is admissible and X..X = Y then

Y € X.

X Y is the n x n matrix with entries in {1,..., n,JL} defined by

k if X.X. = X,

xxd.J) = '
 1 J

1 1 otherwise

The proceedure ( ) is computed on X combinations as follows: X. = X.

and

(X.M^ . . .M ) = (X.ML. . .M ) i f X. = Ax X.v 1 1 nr v j 2 nr 1 j

o r M̂  = Xi

and Xj[Xk = X.

X . X . M i ••• M 1 i f M^ = X .
1 j 2 m 1 j

and X.X. = 1
i J

^ if Mj = 1

and x € St

Although the output of ( ) can be exponentially long in the input this is

only because of repeated subterms. The proceedure will run in time

polynomial in the input and Xy ^ the o u tP u t is coded by a system of

assignment statements. For example, if X.M. . . .M is M, the last
l 1 m

alternative in the definition of (M) adds the assignment
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XM M O M
1 2 m

to those for M1 , . . . , M . This coding is precisely what is needed for the

application below.

Obviously, M is in Inf.

(5) The Relation »

The relation H» is defined by

XY

Observe that the conversion relation generated by » restricted to

admissible X can be presented as a finitely presented algebra ([2]).

i* is particularly useful in conversion between lnfs.

Fact:

If M = 1, then (MN)1 =

Proof:

By induction on the definition of ( )

Fact:

If X = Ax £t and M = 1, then

(XM)1
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Proof:

By induction on Q.

Lemma:

If M >—» N then M1 H> N1.

Proof:

By induction on M. When M is an atom, there is nothing to prove.

Induction Step:

M = XM1 . . .M . We suppose that M >—» N by contracting the
x m •

A

redex A.

Case 1;

A C M . for some i.
— 1

Subcase 1:

X = Ax Y or ML = Z and XZ = Y. In case i = 1 we have

M1 = (YM2. . .M m)
1 = N1. In case i > 1 we have M1 = (YM2. . -M^

1,

N 1 = (YNO. . .N )
X and YMO. . .M >—> YNO. . .N . Thus by induction hypothesisz m z m z m

M1 R> N1.

Subcase 2'

In

M"f = Y and XY = 1. In case i = 1 we have M1 = XYM^ . .M1 = N1.
1 z m

case i > 1 we have M1 = XYM^ . .M1 and N 1 = XYN^ • • • N1 where for
z m z m
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j = 2...m either N. = M. or M. >—»N.. Thus by induction hypothesis
J J J J

1 H> N 1

J J
M1 H» N1 and M1 H> N1.

Subcase 3:

ML = 1 and x € 3C. In case i = 1 we have M 1 = [lffx]9C M^ ••• M 1

1 1 J z m

and N = [N/x]ffl ••• M where ML >—» N1 . By induction hypothesis
A

MJ I-> N^ SO M 1 i-> N1. In case i > 1 we have M^ = [ M ^ / x ] ^ • • • M

and N 1 = [Mf/x]2tN^ ••• N 1 where for j = 2 ... m either N. = M. or

M. >—»N.. Thus by induction hypothesis M 1 »-> N*1: so M 1 »-> N1.
J ^ J J J

Case 2;

A 2 X M r

Subcase 1 .*

X = Xx Y or M̂ " = Z and XZ = Y. In the first case

M = (YMO. . .M ) = N . In the second case, since A is a >—» redex
m

= Z and M1 = (YM2. . .l^)
1 = N1.

Subcase 2:

M. = Y and XY = 1. Since A is a >—» redex we have Mj = Y and

N = [Y/x]3C M2...Mm. In addition M 1 = XY M^ ••• tfj •->

= ([Y/x]9M2...Mm)
X since [Y/x]& = 1. Thus M 1 *-> N1.
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Subcase 3:

= 1 and x € 3L We have M 1 =

M^ ••• M 1 = ([M../x]SC M o ... M J1 since M = 1 = [M/x]&. Thus M 1 i-> N 1

in all the cases.

Proposition*.

If M and N are 1 normal and M - ^ N then M i-> N.

Proof:

Suppose M — > N. By previous proposition M >-> N. Thus by the

lemma M = M 1 »-> N 1 = N.

Corollary.

If M and N are Infs and M = N, then 3P P is a ±nf and

M •-> P «-i N.

Proof:

By the Church-Rosser theorem there is a Q s . t . M — > Q € — N. We

can set P = Q .

(6) Computation of \y

We suppose that \ v is given, and we wish to comput x w • Toward
A. AA -«

n+1
TT

this end we need a proceedure ( ) which takes as an input an XX -

combination and depends on \ Y and a parameter F C {1, . . . , n+1} x {n+1}
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(Here we suppose x y has been supplemented with values for pairs not in

r.).

Input: M

If M = X. then return i else

If M = XJWJ.-.MJJ then do

If Xi = XxX. then (X.M2...MM)
H else

h:= (MX)
H

If h = (k,£) then return (k,£) else

If h = k then

cases: (i,k) 6 F return (i,k)

i = n + 1 and k < n h:=([Xk/x]3tn+1)
H

If h = p then

(X MO...M )
H

v p 2 mJ

else

return h

(i,k) € r. If Xx(i,k) = p then

(XpM2...MM)
H

else

return (i,k)

TJ

Note that if the values ([Xk/x]9C -) for k = l...n have been
TT

precomputed and stored for look up then the proceedure ( ) runs in time

polynomial in the input.
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TT

( ) computes a first approximation to the head of a JLnf for the

input. It is used as follows. For i = 1,..., n + 1 set

h. = ([X + 1/x]3L)
H. Define a graph G f as follows. The points of G r

are the values h. and the pairs ( i , n + l ) € I \ The edges are the

directed

Given ( i , n + l ) € F (i, n + 1) begins a unique path which either cycles or

terminates in a value outside of T. If this path cycles then X.X . = JL

as we shall see below. The path terminates in a pair (j,k) only if

>Cx(J.k) = 1 so again X..Xn+1 = 1.

Finally, if the path terminates in an integer k then for the last

edge in the path

(j,n + 1) -*k

we can conclude X.X . = X, . Thus at least one new value can be added to
J n+1 k

Xy and F decreased by at least one.

Lemma^

I f [X./x]3C. - > X .X .M- . . .M , t h e n X.X. = 1 .L J J i i j l m' IJ

Proof:

If [X./x]3L — > X.X.M-...M , then there is a standard reduction by the

standardization theorem. This reduction has the form
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[X./x]SC. -^ X.NJ^.-.N
head head

reduction of N~

X.X.N....N -» X.X.ML...M .
l j l m . ^ . 1 j 1 mJ internal J

Now the reduction X.X. -»[X./x]5t . V
1 J J head * ° 1 m

X.X.N-...N -» [X./x]2t N.....N - > ••• is a quasi left most
head i J 1 m J 1 m

reduction of N n

reduction of X.X.. Thus X.X. has no normal form (see [1] pgs. 327-329).

Given admissible X, \^ can be computed recursively from the initial

segments of X in time polynomial in X.

(7) A Polynomial Algorithm for the Word Problem

Suppose that we are given two H00 combinations M and N together

with the reduction rules for their atoms. Construct an admissible X

containing these rules. This can be done in time polynomial in the input.

Next compute >(„ as above. Using \~ compute M and N as systems of

assignment statements. Finally add to these systems the equations

X.X. = ([X./x]3C.) for each pair X.,X. € X (or rather the corresponding

systems of assignment statements) and, using the algorithm for the word

problem for finitely presented algebras [2], test whether x« = x^ is a

consequence of these statements. (2)-(7) can be summarized as follows.

Theorem

The word problem for H00 combinations is log space complete for

polynomial time.
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(8) Integers

X is said to be pure if it is a proper combinator of order one.

Define Pure(M) 4=» MI = I and M°° = «.

Fact:

Pure (M) «• 3Xpure M = X.

Proof:

<= is clear since o000 = °°. Suppose Pure(M). Since MI = I, M ^ 1

so M = X for some X. As usual assume X = Ax 3t. Since co -» coco s if y

is contained in 9t then Y is contained in any reduct of X00. Thus by

Church-Rosser Y must be °°. But this contradicts MI = I. Hence X is

pure.

Define Int(M) *=> Pure(M) and (Mfi)(MQ) = M(Qfi).

Fact:

Int(M)*=> 3X integer M = X.

Proof:

=̂ is clear since if n = Ax 3C then n + 1 = Ax 93C = Ax[xx/x]3C.

Suppose Int(M). Then for some pure X = Ax VL M = X and

[fi/x]3C[Q/x]9: = [QQ/x]ft. Since Q -̂  Q, by Church-Rosser, 90C = [xx/x]9:. An

easy induction shows that the tree 9L is complete binary; thus X is an

integer.
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The notion of an co-scheme is defined inductively as follows. I and

Xx (0 are co-schemes. If Xx3L , . . . , Xx3t are co-schemes then Xx x3L . . .3t
I n In

i s an co-scheme. For example, for each integer n n i s an co-scheme.

Define Scheme(M) <=> 3N Pure(N) and Mfi = Nco and MI = co. Note that for

each integer n Scheme(n).

Fact:

Scheme(M) ^ there exists an co-scheme X s.t.

X = M

Proof:

Suppose Scheme(M) so 3N Pure(N), Ml = Nco, and MI = co. Since

Pure(N) there exist pure X s.t. N = X. Since MI = co, M ^ 1 and there

exists Y = Xy y s.t. M = Y. If y € *?/, since MI = co we have M = Xx co.

If y € <*/, since Q -» Q, ty contains no atom other than co. Thus Y is an

co-scheme.

Define Sum(M,N,P) <=> PQ = M(Nfi).

Fact:

Sum(n,m,]D) <=> p = n + m.

Proof:

Obvious.
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(9) Encoding Hilberfs 10 t h Problem into H00 Unification

We have already seen how to represent the set of integers as the

projection of the set of solutions to a H00 unification problem, and how to

represent the sum of two integers. It remains to represent multiplication.

Lemma:

If X is an o-scheme and there exist integers n, m s.t..Xl^ = np

and X2 = mp then there exists a linear function £„ ' TL -» TL such that

for all positive k

Xk = ^(k) Q

Proof:

By induction on % (again we assume X = Xx £).

Basis:

We shall check four cases. This will simplify the induction step.

Case 1;

9C = x. This is impossible since 2 ^ mp

Case 2;

3C = w. This is impossible since 1̂  ̂ mQ
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Case 3;

9C = xx. This is impossible since °° £ mf}.

Case 4;

a = xco. Clearly «v(x) = x - 1.

Induction Step:

a = S t ^ . Set

Case 1;

N- j£ ±. Since M1 is an applicative combination of a>'s, we have

M- = (o and 2L = x. If M^ ^ 1 similarly M^ = w, and since we are in

the induction step and 9L £ x, 9L £ w this is impossible. Thus M 9 = 1.

Similarly N 2 = 1. Thus we have nfi = X! = o M 2 = M 2M 2 so n > 0 and

M 2 = n - lQ. In addition, mfi = X2 = 2N2 = (N2N2)(N2N2) so m > 1 and

N~ = m - 20. Thus by induction hypothesis applied to Ax 9L, ^

exists. Thus by i v exists with

Case 2;

ML = 1. As above N- = ±. Since M 1M 2 = nfi n > 0 and

M 2 = n - 10 = M2. Similarly m > 0 and Nj = m - in = Ng. Thus by

induction hypothesis applied to both Ax 3L and Ax 3L, ^^^ ^ and
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e x l s t s

Note that if the w-scheme X satisfies XI = np and X2 = mp, then

*x(x) = (m - n)x + (2n - m).

Define It(M,N) <=> 3 P.Q.R Scheme(M) and Int(P) and Int(Q) and

Int(R) and Sum(P,l.,N) and Sum(N,N,Q) and Sum(R,l_,Q) and Ml. = ?Q and

M2 = RQ.

Fact:

Itfn.n + 1).

Fact:

If It(M,n) then there exists an CJ scheme X s.t. M = X and for

m > 0 Xm = n*m - 1.

Finally we are ready to define multiplication.

Define ProdtM^P) <=> 3 LTQR It(L,T) and Int(T) and Int(Q) and Int(R)

and Sum(M,I,T) and Sum(Q,i,LN) and Sum(R,N,Q) and R = P.
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Fact:

Prod(m,n,£) <=£• m#n = p.

(8)-(9) can be summarized as follows.

Theorem •'

Every RE set of integers can be represented as the projection of the

set of all solutions of a H00 unification problem.
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