NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.

COMBINATORS HEREDITARILY OF ORDER ONE

by

Rick Statman
Department of Mathematics
Carnegie Mellon University
Pittsburgh, PA 15213

Research Report No. 88-32 ${ }_{2}$

July 1988

Combinators Hereditarily of Order One

 by
Rick Statman

July 1988

Introduction
In this note we shall introduce a fragment of the un(i)typed λ calculus which is suitable for computing on finite structures. This fragment is generated by taking arbitrary applicative combinations of combinators which are hereditarily of order one (HOO). Members of HOO are a generalization of the proper combinators of order one. HOO combinations enjoy many properties familiar from the untyped λ calculus. There are pairing and fixed point constructions as well as a nice set of integers. Nevertheless, our first main result is that the word problem for $H O O$ combinations is (log space complete for) polynomial time. In contrast, our second main result is that Hilbert's $10^{\text {th }}$ problem can be encoded into the unification problem for HOO combinations. In other words, all effective computing can be done by equation solving in $H O O$ combinations.
(0) HOO

For the present we shall think of members of HOO as atoms with associated reduction rules. These reduction rules generate a notion of reducibility which we shall refer to as \rightarrow. HOO and \rightarrow are defined simultaneously by induction as follows.

If X is a combination of x 's then X defined by the reduction rule

$$
X x \rightarrow X
$$

belongs to HOO. If \mathscr{X} is a \rightarrow normal combination of members of HOO and x's then X defined by the reduction rule

$$
X x \rightarrow x
$$

belongs to HOO. In each case we write $X \equiv \lambda x \mathscr{X}$. Examples:

$$
\begin{aligned}
\mathrm{I} & \equiv \lambda \mathrm{xx} \\
\omega & \equiv \lambda \mathrm{xxx} \\
\mathrm{~K}_{*} & \equiv \lambda \mathrm{xI} \\
\mathrm{C}_{* *} & \equiv \lambda \mathrm{xxI}
\end{aligned}
$$

(1) Encloding Data Types in HOO

$$
\text { Booleans: } \quad \mathrm{T} \equiv \mathrm{I},
$$

If \qquad then \qquad else \qquad (and pairing):

$$
[\mathrm{X}, \mathrm{Y}] \equiv \lambda \mathrm{x} x(\lambda y \mathrm{X}) \mathrm{Y}
$$

Fixed Points:
If $X \equiv \lambda x \mathscr{X}$ set $\mathscr{Y} \equiv[y y / x] \mathscr{X}, Y \equiv \lambda y$ of and $F i x(X) \equiv Y Y$. Then X $\operatorname{Fix}(X)=\operatorname{Fix}(X)$

Finite Sets with Discriminators:

$$
\text { Given }\left\{a_{0}, \ldots a_{n}\right\} \text { set } \underline{a_{i}} \equiv \lambda x_{1} \ldots x_{i} I \text {, and } E_{i} \equiv \lambda x x_{<} I_{i} I_{n} a_{n} a_{n}
$$

$a_{n-1} a_{n-2} \cdots a_{1}$. Note that

$$
E_{i \underline{j}}^{a_{j}}=\left\{\begin{array}{lll}
T & \text { if } & j \leq i \\
F & \text { if } & i<j
\end{array}\right.
$$

Integers:

$$
\begin{aligned}
& \underline{0} \equiv \mathrm{I}, 1 \equiv \lambda \mathrm{xx} \equiv \omega, \underline{2} \equiv \lambda \mathrm{x}(\mathrm{xx})(\mathrm{xx}), \\
& \underline{3} \equiv \lambda \mathrm{x}((\mathrm{xx})(\mathrm{xx}))((\mathrm{xx})(\mathrm{xx})), \ldots
\end{aligned}
$$

 more generally

$$
\hat{\mathrm{n}} \underline{\mathrm{~m}}=(\underline{n}+1) \mathrm{m}-1 \Omega .
$$

More about this later.
(2) Circuit Value Problems

A circuit value problem is a list of Boolean equations in the variables $x_{1} \ldots x_{n}$ of the form

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{i}}=\mathrm{T} \\
& \mathrm{x}_{\mathrm{i}}=\mathrm{F} \\
& \mathrm{x}_{\mathrm{i}}=\mathrm{x}_{\mathrm{j}} \vee \mathrm{x}_{\mathrm{k}} \quad \mathrm{j}, \mathrm{k}<\mathrm{i} \\
& \mathrm{x}_{\mathrm{i}}=\mathrm{x}_{\mathrm{j}} \wedge \mathrm{x}_{\mathrm{k}} \quad \mathrm{j}, \mathrm{k}<\mathrm{i}
\end{aligned}
$$

where each x_{i} appears on the $\ell . h . s$. exactly once. For each x_{i} we define $X_{i} \in H O O$ as follows

$$
\begin{gathered}
X_{i} x \rightarrow x T \text { if } x_{i}=T \\
X_{i} x \rightarrow x F \quad \text { if } x_{i}=F \\
X_{i} x \rightarrow X_{j} I\left(\lambda y X_{k}\right)(\lambda z F) I \quad \text { if } x_{i}=x_{j} \vee x_{k} \\
X_{i} x \rightarrow x X_{j} I\left(\lambda y \text { T) } X_{k} I \quad \text { if } \quad x_{i}=x_{j} \wedge x_{k}\right.
\end{gathered}
$$

Observe that the X_{i} can be computed from the circuit value problem in log space and

$$
\begin{aligned}
& X_{i} I=T \Leftrightarrow x_{i}=T \\
& X_{i} I=F \Leftrightarrow x_{i}=F
\end{aligned}
$$

for $i=1 \ldots n$.

Consequently, the word problem for HOO combinations is ℓ og space hard for polynomial time.
(3) Properties of \rightarrow
\rightarrow is a regular left normal combinatory reduction system ([3]) so it satisfies the Church-Rosser and Standardization theorems. Clearly any normal HOO combination belongs to HOO. If M is a HOO combination with no normal form we write $M=\perp$. This makes sense since the corresponding λ term is an order 0 unsolvable. More generally, it is easy to see that conversion based on \rightarrow coincides with β conversion of the corresponding λ terms.

We define the notion of \perp normal form (lnf) as follows. M is in Lnf if $M \equiv X \quad$ or

$$
M \equiv X Y M_{1} \ldots M_{m} \text { where } X Y=\perp \text { and each } M_{i} \text { is in } \operatorname{Lnf} .
$$

It is easy to see that lnf 's always exist. However, they are not unique. Example:

> Let $\alpha \equiv \lambda \mathrm{xxI} \omega \mathrm{x}$. Observing that $\alpha \mathrm{I} \rightarrow \mathrm{I}$ we have $\alpha \alpha \rightarrow \omega \alpha \rightarrow \alpha \alpha$.

The following relation $>$ is useful in computing lnfs (as usual we assume $\quad \mathrm{X} \equiv \lambda \mathrm{x} \boldsymbol{X}$)

$$
\begin{aligned}
& X M>\rightarrow[M / x] x \quad \text { if } \quad M=\perp \\
& X Y>\left\{\begin{array}{cc}
Z & \text { if } \quad X Y=Z \\
{[Y / x] X} & \text { if } \quad X Y=\perp
\end{array}\right.
\end{aligned}
$$

$>\rightarrow$ is actually decidable; more about this later. A simple induction shows

$$
M=X \Rightarrow M \gg X
$$

We need some notation. If we write $M \equiv M\left[M_{1}, \ldots, M_{m}\right]$ then the M_{i} are disjoint occurrences of the corresponding HOO combinations in M.

Lemma:
Suppose $M \equiv M\left[M_{1}, \ldots, M_{m}\right]$ with $M_{i}=X_{i}$ for $i=1 \ldots m$ and $M \rightarrow N$. Then we can write $N=N\left[N_{1}, \ldots, N_{n}\right]$ with $N_{j}=Y_{j}$ for $j=1 \ldots n$ so that $M\left[X_{1}, \ldots, X_{m}\right]>N\left[Y_{1}, \ldots, Y_{n}\right]$.

Proof:
Suppose $\underset{\Delta}{\rightarrow} \rightarrow \mathrm{N}$ by contracting the redex $\Delta \equiv \mathrm{XP}$. As usual we assume $\mathrm{X} \equiv \lambda \mathrm{x} \mathscr{X}$.

Case 1.
Δ is disjoint from the M_{i}. Then $M=M\left[\Delta, M_{1}, \ldots M_{m}\right]$ and $N \equiv M\left[[P / X] X_{1}, M_{1}, \ldots, M_{m}\right]$. In case $P=\perp$ we are done if we write
$\mathrm{N} \equiv \mathrm{N}_{\mathrm{f}} \mathrm{M}_{1}, \ldots, \mathrm{M}_{\mathrm{m}} 1$. Otherwise let $\mathrm{P}=\mathrm{Y}$. By the above remark $\mathrm{P} \gg \mathrm{Y} . \quad$ If XY $=\mathrm{Z}$ write $\mathrm{N}=\mathrm{N}\left[[\mathrm{P} / \mathrm{x}] \mathrm{a}, \mathrm{M}_{1}, \ldots . \operatorname{MJ}\right.$. We have $\mathrm{M}\left[\mathrm{X}_{\mathrm{r}} \ldots \ldots \mathrm{X}_{\mathrm{m}}\right]>^{\wedge}>$

$9 L^{-}=£[x, \cdot ., x]$ showing all occurrences of x. We have
$N \equiv M\left[£[P, \ldots, P], M_{r} \ldots, M_{m}\right]$.
Write $N=\bar{N}\left[P, \ldots, P, M_{1>} \ldots . M_{m}\right]$. We have $M[X j \ldots . X J \gg$
$M\left[X Y, X_{r} \ldots, X_{m}\right] \rightarrow M\left[a[Y, \ldots, Y], X_{r} \ldots, X_{m}\right]=\bar{N}\left[Y, \ldots X_{r} \ldots X_{m}\right]$.

Case 2:
ACM. for some i. W.^.o.g. assume $i=1$. Write $M_{1}=J_{1}[A]$. Since $\left.\left.\left.N=M^{\wedge} C C P / x\right]!\right], \cdot . M\right]$ and $\left.\left.M^{\wedge} C P / x\right]^{\wedge}\right]=X j$ we can write $N=N\left[M_{1}[[P / x] 2 t], .--M_{m}\right]$ amd $M^{\wedge} .-.-. X^{\wedge} \equiv N[X j$ \qquad . XJ .

Case 3:

Some $M_{i} \underline{C} A . W l o g$ assume $M_{1} \ldots, M_{k}$ C A but no others. Clearly we can assume that no M_{i} is X so $M L, \ldots$. . . $M_{\mathbf{r}}{ }_{\mathbf{k}} C_{-} P$. Write $P=P E M j, \ldots$. $\left.M_{\mathbf{k}}\right]$ and let $Q \equiv[P / x] \&$.

Subcase 1;
$P=1$. Write $Q=Q E M j, \cdot ., M]$ indicating all the substituted occurrences of the $M_{j}(j<k)$ in Q. We have $N=M\left[Q\left[M_{r} . ., M_{k}\right]\right.$, $\left.M_{k+1}, \ldots, M_{m}\right]$, so we can write $N=\mathbb{N E M j}$, . . . , $\left.M_{k}, M_{k+1}, \ldots, M_{m}\right]$, and then $M\left[X_{r} \ldots, X_{m}\right]=M\left[X P\left[X_{r} \ldots, X_{k}\right], X_{k+r} \ldots X J>M\left[\left[P\left[X_{r} \ldots, X_{f c}\right] / x\right] f l C\right.\right.$. $\left.X_{k+1}, \ldots, X_{m}\right] \equiv M\left[Q\left[\vec{X}_{1}, \ldots, \vec{X}_{k}\right], X_{k+1}, \ldots, X_{m}\right] \equiv N\left[\mathrm{X}_{1}, \ldots, \vec{X}_{k}, X_{k+1}, \ldots, X_{m}\right]$.

Subcase 2;

$$
\mathrm{P}=\mathrm{Y} \text { and } \mathrm{XY}=\perp . \text { Write } \mathrm{Q} \equiv \mathrm{Q}[\overrightarrow{\mathrm{P}}] \text { indicating the substituted }
$$

occurrences of P in Q. We have $N \equiv M\left[Q[\vec{P}], M_{k+1}, \ldots, M_{m}\right]$, so we can write $N \equiv N\left[\vec{P}, M_{k+1}, \ldots, M_{m}\right]$, and then $M\left[X_{1}, \ldots, X_{m}\right] \equiv \operatorname{M}\left[\operatorname{XP}\left[X_{1}, \ldots, X_{k}\right]\right.$, $\left.X_{k+1}, \ldots, X_{m}\right] \gg M\left[X Y, X_{k+1}, \ldots, X_{m}\right] \gg M\left[[Y / x] x, X_{k+1}, \ldots, X_{m}\right]$ $\left.\equiv \operatorname{M[Q[Y} \vec{Y}], X_{k+1}, \ldots, X_{m}\right] \equiv \vec{N}\left[\vec{Y}, X_{k+1}, \ldots, X_{m}\right]$.

Subcase 3;

$$
\begin{array}{rl}
& P=Y \text { and } X Y=Z . \quad \text { Write } N \equiv N\left[Q, M_{k+1}, \ldots M_{m}\right] \text {. Then } M\left[X_{1}, \ldots, X_{m}\right] \\
>M & M\left[X Y, X_{k+1}, \ldots, X_{m}\right] \gg M\left[Z, X_{k+1}, \ldots, X_{m}\right] \equiv N\left[Z, X_{k+1}, \ldots, X_{m}\right] .
\end{array}
$$

Proposition:

If $M \rightarrow N$ and N is \perp normal, then $M \gg N$.

Proof:
By the lemma we can write $N \equiv N\left[N_{1}, \ldots, N_{n}\right]$ with $N_{i}=Y_{i}$ so that $M \gg N\left[Y_{1}, \ldots, Y_{n}\right]$. Since N is in Lnf for $i=1 \ldots m \quad N_{i} \equiv Y_{i}$. Thus $M \gg N$.
(4) ㄷ
\sqsubseteq is the partial order on $H 0 O$ generated from the following cover relations

$$
\begin{aligned}
& Y \text { 도 } X \quad \text { if } X \equiv \lambda x \\
& \lambda \mathrm{x} \mathscr{x}_{\mathrm{i}} \text { 도 } \mathrm{X} \text { if } \mathrm{X} \equiv \lambda \mathrm{x} \quad \mathrm{x} \mathscr{X}_{1} \ldots x_{\mathrm{n}}
\end{aligned}
$$

$X \equiv X_{1}, \ldots, X_{n} \subset$ HOO is admissible if X is closed under \sqsubseteq and $X_{i} \subset X_{j} \Rightarrow i<j$. Note that if X is admissible and $X_{i} X_{j}=Y$ then $Y \in X$.
x_{X} is the $n \times n$ matrix with entries in $\{1, \ldots, n, \perp\}$ defined by

$$
X_{X}(i, j)= \begin{cases}k & \text { if } X_{i} X_{j}=X_{k} \\ \perp & \text { otherwise }\end{cases}
$$

The procedure ($)^{\perp}$ is computed on X combinations as follows: $X_{i}^{\perp} \equiv X_{i}$ and

$$
\begin{aligned}
\left(X_{i} M_{1} \ldots M_{m}\right)^{\perp}=\left(X_{j} M_{2} \ldots M_{m}\right)^{\perp} \text { if } X_{i} & \equiv \lambda x X_{j} \\
\text { or } M_{1}^{\perp} & \equiv X_{k} \\
\text { and } X_{i} X_{k} & =X_{j} \\
X_{i} X_{j} M_{2}^{\perp} \cdots M_{m}^{\perp} \text { if } M_{1}^{\perp} & \equiv X_{j} \\
\text { and } X_{i} X_{j} & =\perp \\
{\left[M_{1}^{\perp} / x\right] 9 M_{2}^{\perp} \cdots M_{m}^{\perp} \text { if } M_{1} } & =\perp \\
\text { and } x & \in \mathscr{X}
\end{aligned}
$$

Although the output of ($)^{\perp}$ can be exponentially long in the input this is only because of repeated subterms. The procedure will run in time polynomial in the input and X_{X} if the output is coded by a system of assignment statements. For example, if $X_{i} M_{1} \ldots M_{m}$ is M, the last alternative in the definition of $(M)^{\perp}$ adds the assignment

$$
\mathrm{x}_{\mathrm{M}}=\left[\mathrm{x}_{\mathrm{M}_{1}} / \mathrm{x}\right] \mathscr{X} \mathrm{x}_{\mathrm{M}_{2}} \cdots \mathrm{x}_{\mathrm{m}}
$$

to those for M_{1}, \ldots, M_{m}. This coding is precisely what is needed for the application below.

Obviously, M^{\perp} is in lnf.
(5) The Relation \rightarrow

The relation H is defined by

$$
\mathrm{XY} \mapsto([\mathrm{Y} / \mathrm{x}] x)^{\perp} .
$$

Observe that the conversion relation generated by \leftrightarrow restricted to admissible X can be presented as a finitely presented algebra ([2]). \leftrightarrow is particularly useful in conversion between lnfs.

Fact:

$$
\text { If } M=\perp, \text { then }(M N)^{\perp} \equiv M^{\perp} N^{\perp}
$$

Proof:
By induction on the definition of ($)^{\perp}$

Fact:

$$
\text { If } X \equiv \lambda x \mathscr{X} \text { and } M=1 \text {, then }
$$

$$
(X M)^{\perp} \equiv([M / X] \mathscr{X})^{\perp}
$$

Proof:

$$
\text { By induction on } \subseteq \text {. }
$$

Lemma:

$$
\text { If } M \gg N \text { then } M^{\perp} \mapsto N^{\perp} \text {. }
$$

Proof:
By induction on M. When M is an atom, there is nothing to prove.

Induction Step:

$$
M \equiv \mathrm{XM}_{1} \ldots \mathrm{M}_{\mathrm{m}} . \quad \text { We suppose that } \underset{\Delta}{\mathrm{M}>\mathrm{N}} \text { by contracting the }>\rightarrow
$$

redex Δ.

Case 1;
$\Delta \subseteq M_{i}$ for some i.

Subcase 1:
$X \equiv \lambda \times Y$ or $M_{1}^{\perp} \equiv Z \quad$ and $\quad X Z=Y . \quad$ In case $\quad i=1 \quad$ we have $M^{\perp} \equiv\left(Y_{2} \ldots M_{m}\right)^{\perp} \equiv N^{\perp}$. In case $i>1$ we have $M^{\perp} \equiv\left(Y_{2} \ldots M_{m}\right)^{\perp}$, $\mathrm{N}^{\perp} \equiv\left(\mathrm{YN}_{2} \ldots \mathrm{~N}_{\mathrm{m}}\right)^{\perp}$ and $\mathrm{YM}_{2} \ldots \mathrm{M}_{\mathrm{m}}>\rightarrow \mathrm{YN}_{2} \ldots \mathrm{~N}_{\mathrm{m}}$. Thus by induction hypothesis $\mathrm{M}^{\perp} \mapsto \mathrm{N}^{\perp}$ 。

Subcase 2:

$M_{1}^{\perp} \equiv Y$ and $X Y=\perp$. In case $i=1$ we have $M^{\perp} \equiv X Y M_{2}^{\perp} \ldots M_{m}^{\perp} \equiv N^{\perp}$. In case $i>1$ we have $M^{\perp} \equiv X Y M_{2}^{\perp} \ldots M_{m}^{\perp}$ and $N^{\perp} \equiv X_{Y N} N_{2}^{\perp} \cdots N_{m}^{\perp}$ where for
$j=2 \ldots m$ either $N_{j} \equiv M_{j}$ or $M_{j} \longrightarrow \rightarrow N_{j}$. Thus by induction hypothesis $M_{j}^{\perp} \mapsto N_{j}^{\perp}$ and $M^{\perp} \mapsto N^{\perp}$.

Subcase 3:

$$
M_{1}=\perp \text { and } x \in \mathscr{X} . \quad \text { In case } i=1 \text { we have } M^{\perp} \equiv\left[M_{1}^{\perp} x\right] X M_{2}^{\perp} \cdots M_{m}^{\perp}
$$

$$
\text { and } N^{\perp} \equiv\left[N_{1}^{\perp} / x\right] 9 M_{2}^{\perp} \cdots M_{m}^{\perp} \text { where } M_{1}>\underset{\Delta}{\longrightarrow} N_{1} \text {. By induction hypothesis }
$$ $M_{1}^{\perp} \mapsto N_{1}^{\perp}$ so $M^{\perp} \mapsto N^{\perp}$. In case $i>1$ we have $M_{1}^{\perp} \equiv\left[M_{1}^{\perp} / x\right] 9 M_{2}^{\perp} \cdots M_{m}^{\perp}$ and $N^{\perp} \equiv\left[M_{1}^{\perp} / x\right] 9 N_{2}^{\perp} \cdots N_{m}^{\perp}$ where for $j=2 \ldots m$ either $N_{j} \equiv M_{j}$ or $M_{j}>\underset{\Delta}{\longrightarrow} N_{j}$. Thus by induction hypothesis $M_{j}^{\perp} \mapsto N_{j}^{\perp}$ so $M^{\perp} \mapsto N^{\perp}$.

Case 2;

$$
\Delta \equiv \mathrm{XM}_{1}
$$

Subcase 1:

$X \equiv \lambda x Y$ or $M_{1}^{\perp} \equiv Z \quad$ and $\quad X Z=Y$. In the first case $M^{\perp} \equiv\left(Y_{2} \ldots M_{m}\right)^{\perp} \equiv N^{\perp}$. In the second case, since Δ is a \gg redex $M_{1} \equiv Z \quad$ and $M^{\perp} \equiv\left(Y_{2} \ldots M_{m}\right)^{\perp} \equiv N^{\perp}$.

Subcase 2:
$M_{1}^{\perp} \equiv Y$ and $X Y=1 . \quad$ Since Δ is a $>$ redex we have $M_{1} \equiv Y$ and
 $\equiv\left([\mathrm{Y} / \mathrm{x}] 9 \mathrm{M}_{2} \ldots \mathrm{M}_{\mathrm{m}}\right)^{\perp}$ since $[\mathrm{Y} / \mathrm{x}] \mathscr{X}=\perp$. Thus $\mathrm{M}^{\perp} \mapsto \mathrm{N}^{\perp}$.

Subcase 3:
$M_{1}=\perp$ and $x \in \mathscr{X}$. We have $M^{\perp} \equiv\left[M_{1}^{\perp} / x\right] M_{2}^{\perp} \cdots M_{m}^{\perp} \equiv\left(\left[M_{1} / x\right] x\right)^{\perp}$ $M_{2}^{\perp} \cdots M_{m}^{\perp} \equiv\left(\left[M_{1} / x\right] x M_{2} \ldots M_{m}\right)^{\perp}$ since $M_{1}=\perp=\left[M_{1} / x\right] x$. Thus $M^{\perp} \mapsto N^{\perp}$ in all the cases.

Proposition:

If M and N are \perp normal and $M \longrightarrow N$ then $M \mapsto N$.

Proof:
Suppose $M \rightarrow$ N. By previous proposition $M \gg N$. Thus by the lemma $M \equiv M^{\perp} \mapsto N^{\perp} \equiv N$.

Corollary.
If M and N are lnfs and $M=N$, then $\exists P \quad P$ is a lnf and

$$
M \mapsto P \lll N .
$$

Proof:
By the Church-Rosser theorem there is a Q s.t. $M \rightarrow Q \lll N$. We can set $P \equiv Q^{\perp}$.
(6) Computation of ${ }^{x} \mathbf{X}$

We suppose that $X_{\mathbf{X}}$ is given, and we wish to comput $X_{X_{X}}$. Toward this end we need a proceedure ($)^{H}$ which takes as an input an $X X_{n+1}$ combination and depends on ${ }^{X_{X}}$ and a parameter $\Gamma \subseteq\{1, \ldots, \mathrm{n}+1\} \times\{\mathrm{n}+1\}$
(Here we suppose χ_{X} has been supplemented with values for pairs not in $\Gamma).$.

() ${ }^{\mathrm{H}}$

Input: M
If $M \equiv X_{i}$ then return i else
If $M \equiv X_{i} M_{1} \ldots M_{M}$ then do
If $X_{i} \equiv \lambda x X_{j}$ then $\left(X_{j} M_{2} \ldots M_{M}\right)^{H}$ else

$$
h:=\left(M_{1}\right)^{H}
$$

If $h=(k, \ell)$ then return (k, ℓ) else
If $h=k \quad$ then
cases: $(\mathrm{i}, \mathrm{k}) \in \Gamma \quad \operatorname{return}(\mathrm{i}, \mathrm{k})$
$i=n+1$ and $k \leq n \quad h:=\left(\left[X_{k} / x\right] x_{n+1}\right)^{H}$
If $h=p \quad$ then

$$
\left(X_{p} M_{2} \ldots M_{m}\right)^{H}
$$

else
return h
$(\mathrm{i}, \mathrm{k}) \notin \Gamma . \quad$ If $\quad \begin{array}{r}\mathrm{X}_{\mathbf{X}}(\mathrm{i}, \mathrm{k})=\mathrm{p} \text { then } \\ \left(\mathrm{X}_{\mathrm{p}} \mathrm{M}_{2} \ldots \mathrm{M}_{\mathrm{M}}\right)^{H}\end{array} \quad$ else
return (i,k)

Note that if the values $\left(\left[X_{k} / x\right]_{n+1}\right)^{H}$ for $k=1 \ldots n$ have been precomputed and stored for look up then the proceedure () ${ }^{\mathrm{H}}$ runs in time polynomial in the input.
() ${ }^{\mathrm{H}}$ computes a first approximation to the head of a lnf for the input. It is used as follows. For $\mathrm{i}=1, \ldots, \mathrm{n}+1$ set
$h_{i}=\left(\left[X_{n+1} / x\right] x_{i}\right)^{H}$. Define a graph G_{Γ} as follows. The points of G_{Γ} are the values h_{i} and the pairs $(i, n+1) \in \Gamma$. The edges are the directed

$$
(\mathrm{i}, \mathrm{n}+1) \longrightarrow \mathrm{h}_{\mathrm{i}} .
$$

Given (i,n+1) $\in \Gamma$ (i, $n+1)$ begins a unique path which either cycles or terminates in a value outside of Γ. If this path cycles then $X_{i} X_{n+1}=\perp$ as we shall see below. The path terminates in a pair (j, k) only if $X_{X}(j, k)=\perp$ so again $X_{i} X_{n+1}=\perp$.

Finally, if the path terminates in an integer k then for the last edge in the path

$$
(j, n+1) \rightarrow k
$$

we can conclude $X_{j} X_{n+1}=X_{k}$. Thus at least one new value can be added to ${ }^{x_{\mathbf{X}}}$ and Γ decreased by at least one.

Lemma:
If $\left[X_{j} / x\right] x_{i} \rightarrow X_{i} X_{j} M_{1} \ldots M_{m}$, then $X_{i} X_{j}=1$.

Proof:
If $\left[X_{j} / x\right] x_{i} \rightarrow X_{i} X_{j} M_{1} \ldots M_{m}$, then there is a standard reduction by the standardization theorem. This reduction has the form

$$
\begin{array}{r}
{\left[X_{j} / x\right] x_{i} \xrightarrow[\text { head }]{\rightarrow} X_{i} N_{0} N_{1} \cdots N_{m} \xrightarrow{\text { head }}} \\
\\
X_{i} X_{j} N_{1} \ldots N_{m} \xrightarrow[\text { reduction of }]{\rightarrow} N_{0}
\end{array}
$$

Now the reduction $X_{i} X_{j} \rightarrow\left[X_{j} / x\right] X \underset{\text { head }}{\rightarrow} X_{i} N_{0} N_{1} \cdots N_{m}$
$\rightarrow \quad X_{i} X_{j} N_{1} \ldots N_{m} \rightarrow\left[X_{j} / x\right] \mathscr{X} N_{1} \ldots N_{m} \rightarrow \cdots$ is a quasi left most reduction of N_{0}
reduction of $X_{i} X_{j}$. Thus $X_{i} X_{j}$ has no normal form (see [1] pgs. 327-329).
Given admissible $X,{ }_{X}$ can be computed recursively from the initial segments of \mathbf{X} in time polynomial in \mathbf{X}.
(7) A Polynomial Algorithm for the Word Problem

Suppose that we are given two HOO combinations M and N together with the reduction rules for their atoms. Construct an admissible \mathbf{X} containing these rules. This can be done in time polynomial in the input. Next compute X_{X} as above. Using X_{X} compute M^{\perp} and N^{\perp} as systems of assignment statements. Finally add to these systems the equations $X_{i} X_{j}=\left(\left[X_{j} / x\right] x_{i}\right)^{\perp}$ for each pair $X_{i}, X_{j} \in X$ (or rather the corresponding systems of assignment statements) and, using the algorithm for the word problem for finitely presented algebras [2], test whether $x_{M}=x_{N}$ is a consequence of these statements. (2)-(7) can be summarized as follows.

Theorem

The word problem for HOO combinations is \log space complete for polynomial time.
(8) Integers
X is said to be pure if it is a proper combinator of order one.
Define $\operatorname{Pure}(M) \Leftrightarrow M I=I \quad$ and $\quad M \infty=\infty$.

Fact:

Pure $(M) \Leftrightarrow$ EXpure $M=X$.

Proof:
\Leftarrow is clear since $\infty \infty=\infty$. Suppose Pure(M). Since MI $=1, M \neq \perp$ so $M=X$ for some X. As usual assume $X \equiv \lambda x \mathscr{X}$. Since $\infty \rightarrow \infty \infty$, if Y is contained in X then Y is contained in any reduct of X^{∞}. Thus by Church-Rosser Y must be ∞. But this contradicts $M I=I$. Hence X is pure.

Define $\operatorname{Int}(M) \Leftrightarrow$ Pure (M) and $(M \Omega)(M \Omega)=M(\Omega \Omega)$.

Fact:

$$
\operatorname{Int}(M) \Leftrightarrow \exists X \text { integer } \quad M=X
$$

Proof:

$$
\Leftarrow \text { is clear since if } \underline{n} \equiv \lambda x \mathscr{X} \text { then } \underline{n}+1 \equiv \lambda x \mathscr{X} X \equiv \lambda x[x x / x] \mathscr{X} .
$$

Suppose $\operatorname{Int}(M)$. Then for some pure $X \equiv \lambda x \mathscr{X} \quad M=X$ and
$[\Omega / \mathrm{x}] \mathscr{X}[\Omega / \mathrm{x}] \mathscr{X}=[\Omega \Omega / \mathrm{x}] \mathscr{X} . \quad$ Since $\Omega \rightarrow \Omega$, by Church-Rosser, $\mathscr{X} \mathscr{X} \equiv[\mathrm{xx} / \mathrm{x}] \mathscr{X}$. An easy induction shows that the tree X is complete binary; thus X is an integer.

The notion of an ω-scheme is defined inductively as follows. I and $\lambda \mathrm{x} \omega$ are ω-schemes. If $\lambda \times x_{1}, \ldots, \lambda \times x_{n}$ are ω-schemes then $\lambda \mathrm{x} \times x_{1} \ldots x_{n}$ is an ω-scheme. For example, for each integer $n \hat{n}$ is an ω-scheme. Define Scheme $(M) \Leftrightarrow \nexists N \operatorname{Pure}(N)$ and $M \Omega=N \omega$ and $M I=\omega$. Note that for each integer n Scheme (\hat{n}).

Fact:
Scheme $(M) \Rightarrow$ there exists an ω-scheme X s.t.

$$
\mathrm{X}=\mathrm{M}
$$

Proof :
Suppose Scheme(M) so $\exists \mathrm{N}$ Pure (N), $\mathrm{M} \Omega=\mathrm{N} \omega$, and $\mathrm{MI}=\omega$. Since
Pure(N) there exist pure X s.t. $N=X$. Since $M I=\omega, M \neq \perp$ and there exists $Y \equiv \lambda y$ y s.t. $M=Y$. If $y \notin \mathscr{y}$, since $M I=\omega$ we have $M=\lambda x \omega$. If $y \in$ oy, since $\Omega \rightarrow \Omega$, y contains no atom other than ω. Thus Y is an ω-scheme.

Define $\operatorname{Sum}(M, N, P) \Leftrightarrow P \Omega=M(N \Omega)$.

Fact:
$\operatorname{Sum}(\underline{n}, \underline{m}, \underline{p}) \Leftrightarrow p=n+m$.

Proof:
Obvious.
(9) Encoding Hilbert's $10^{\text {th }}$ Problem into HOO Unification We have already seen how to represent the set of integers as the projection of the set of solutions to a HOO unification problem, and how to represent the sum of two integers. It remains to represent multiplication.

Lemma:
If X is an ω-scheme and there exist integers n, m s.t. $\mathrm{X} \underline{1}=\underline{n} \Omega$ and $X \underline{2}=\underline{m} \Omega$ then there exists a linear function $\ell_{X}: \mathbb{Z} \rightarrow \mathbb{Z}$ such that for all positive k

$$
\mathrm{X} \underline{\mathrm{k}}=\underline{\ell}_{\mathrm{X}}(\mathrm{k}) \Omega
$$

Proof:
By induction on \mathscr{X} (again we assume $X \equiv \lambda x \mathscr{X}$).

Basis:

We shall check four cases. This will simplify the induction step.

Case 1;

```
X\equivx. This is impossible since \underline{2}\not=\underline{m}\Omega
```

Case 2;

```
X\equiv\omega. This is impossible since 1}\not=\underline{m}
```

Case 3;

$$
\mathscr{X} \equiv \mathrm{xx} . \quad \text { This is impossible since } \infty \neq \underline{m} \Omega .
$$

Case 4;

$$
\mathscr{X} \equiv \mathrm{x} \omega . \quad \text { Clearly } \quad \ell_{\mathrm{X}}(\mathrm{x})=\mathrm{x}-1
$$

Induction Step:

$$
\mathscr{X} \equiv x_{1} x_{2} . \quad \text { Set } \quad M_{1} \equiv[\underline{1} / \mathrm{x}] \mathscr{X}_{1}, N_{1} \equiv[\underline{2} / \mathrm{x}] \mathscr{x}_{1}, M_{2} \equiv[\underline{1} / \mathrm{x}] x_{2}, \quad \mathrm{~N}_{2} \equiv[\underline{2} / \mathrm{x}] \mathscr{x}_{2} .
$$

Case 1;

$N_{1} \neq \perp$. Since M_{1} is an applicative combination of ω 's, we have $M_{1} \equiv \omega$ and $X_{1} \equiv x$. If $M_{2} \neq \perp$ similarly $M_{2} \equiv \omega$, and since we are in the induction step and $x_{2} \not \equiv \mathrm{x}, x_{2} \not \equiv \omega$ this is impossible. Thus $M_{2}=\perp$. Similarly $N_{2}=1$. Thus we have $\underline{n} \Omega=X \underline{1}=\omega M_{2}=M_{2} M_{2}$ so $n>0$ and $M_{2}=\underline{n}-1 \Omega$. In addition, $\underline{m} \Omega=X \underline{2}=\underline{N}_{2}=\left(N_{2} N_{2}\right)\left(N_{2} N_{2}\right)$ so $m>1$ and $\mathrm{N}_{2}=\underline{\mathrm{m}-2 \Omega}$. Thus by induction hypothesis applied to $\lambda \mathrm{x} \mathscr{X}_{2}, \ell_{\lambda \times X_{2}}$ exists. Thus by ℓ_{X} exists with

$$
\ell_{\mathrm{X}}(\mathrm{x})=\ell_{\lambda \mathrm{x}} \mathscr{x}_{2}(\mathrm{x})+\mathrm{x}
$$

Case 2;

$$
M_{1}=\perp . \quad \text { As above } N_{1}=\perp . \quad \text { Since } M_{1} M_{2}=\underline{n} \Omega \quad n>0 \text { and }
$$ $M_{2}=\underline{n-1} \Omega=M_{2}$. Similarly $m>0$ and $N_{1}=\underline{m}-1 \Omega=N_{2}$. Thus by induction hypothesis applied to both $\lambda \mathrm{x} \mathscr{X}_{1}$ and $\lambda \mathrm{x} \mathscr{X}_{2}, \ell_{\lambda \mathrm{x}} \mathscr{X}_{1}$ and

$\ell_{\lambda \mathrm{x} x_{2}}$ exist. Since $\ell_{\lambda \mathrm{x} x_{1}}(1)=\mathrm{n}-1=\ell_{\lambda \mathrm{x}} x_{2}$ and $\ell_{\lambda \mathrm{x} \mathscr{x}_{1}}(2)=m-1=$ $\ell_{\lambda \mathrm{x} \mathscr{X}_{2}}{ }^{(2)}, \ell_{\lambda \mathrm{x} x_{1}}=\ell_{\lambda \mathrm{x}}{x_{2}}$. Thus ℓ_{X} exists and

$$
\ell_{X}(\mathrm{x})=\ell_{\lambda \mathrm{x}} \mathscr{x}_{1}(\mathrm{x})+1
$$

Note that if the ω-scheme X satisfies $X \underline{1}=\underline{n} \Omega$ and $X \underline{2}=\underline{m} \Omega$, then $\ell_{\mathrm{X}}(\mathrm{x})=(\mathrm{m}-\mathrm{n}) \mathrm{x}+(2 \mathrm{n}-\mathrm{m})$.

Define $\operatorname{It}(M, N) \Leftrightarrow \exists P, Q, R \quad$ Scheme (M) and $\operatorname{Int}(P)$ and $\operatorname{Int}(Q)$ and $\operatorname{Int}(R)$ and $\operatorname{Sum}(P, \underline{1}, N)$ and $\operatorname{Sum}(N, N, Q)$ and $\operatorname{Sum}(R, \underline{1}, Q)$ and $M \underline{1}=P \Omega$ and $\mathrm{M} \underline{2}=\mathrm{R} \Omega$.

Fact:

$$
\operatorname{It}(\hat{n}, \underline{n+1})
$$

Fact:

If $\operatorname{It}(\mathrm{M}, \underline{\mathrm{n}})$ then there exists an ω scheme X s.t. $\mathrm{M}=\mathrm{X}$ and for $m>0 \quad X \underline{m}=\underline{n} \cdot m-1$.

Finally we are ready to define multiplication.

Define $\operatorname{Prod}\left(M_{1} N_{1} P\right) \Leftrightarrow \exists \operatorname{LTQR} \operatorname{It}(L, T)$ and $\operatorname{Int}(T)$ and $\operatorname{Int}(Q)$ and $\operatorname{Int}(R)$ and $\operatorname{Sum}(M, \underline{1}, T)$ and $\operatorname{Sum}(Q, \underline{1}, L N)$ and $\operatorname{Sum}(R, N, Q)$ and $R=P$.

Fact:
$\operatorname{Prod}(\underline{m}, \underline{n}, \underline{p}) \Leftrightarrow m \cdot n=p$.
(8)-(9) can be summarized as follows.

Theorem:
Every RE set of integers can be represented as the projection of the set of all solutions of a HOO unification problem.
(10) References
[1] Barendregt, The Lambda Calculus, North Holland, 1984.
[2] Kozen, The complexity of finitely presented algebras, STOC, 1977.
[3] Klop, Combinatory Reduction Systems, Math. Centrum, Amsterdam, 1980.

