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CUT ELIMINATION THEOREM FOR THE SECOND ORDER

ARITHMETIC WITH THE [f1-COMPREHENSION AXIOM

AND THE CO-RULE1

Mariko Yasugi

Introduction.

In [l] Schutte introduced the constructive co-rule to

the first order arithmetic and proved the (complete) cut elimination

theorem for the first order arithmetic, by translating it into

a cut-free subsystem of the system with the constructive co-rule.

Takeuti extended this idea in [6] and showed that the second

order arithmetic with the fL -comprehension axiom can be

translated into a cut free subsystem of the second order arith-

metic with the Tj_ -comprehension axiom and the constructive co-rule.

This was done by modifying his consistency proof of the system

SINN (cf. [5]), using the same system of ordinal diagrams.

In this article we shall prove the (complete) cut elimination

theorem for the second order arithmetic with the 7T_ -comprehension

axiom and the (general) co-rule. The proof of the theorem indicates

that the reduction method which is used for the consistency

proof of SINN works for the system with an infinite rule as

well, although the system of ordinal diagrams which corresponds

Part of this work was done while the author was at the University
of Bristol.

2
~ HUNT LIBRARY
I CARNE61E-MELL0N UNIVERSITY



to the latter is no longer constructive.

At the end, we remark that if we restrict the a>-rule to

the constructive one, then the cut elimination theorem holds
2

within the system with tie constructive co-rule.

§1

The Formulation of the System

In this section the system of the second order arithmetic

with the IT, -comprehension axiom and the a>-rule is formulated.

It is a modification of the system SINN in [5] and shall be

called the system W.

1.1. The Language and the Rules of Inference. (cf. Chapters 1

and 2 of [5]). The language and the formulas of W are those

of SINN. The sequences are defined as those of SINN except that

we admit only those sequences which do not have any occurrence

of a free t-variable (a first order variable). If a formula

or a sequence has no free t-variable, then it may be called

't-closed1.

The beginning sequences of W are the t-closed beginning

sequences of SINN and the rules of inference of SINN £XcejDt the

induction and the V right on a t-variable are adopted in W.

W has also the following rule of inference, called the 'co-rule1:

2
The author thanks Dr. J. Cleave and Professor G. Takeuti for
their valuable discussions.



to-rule

r -> A,F(i) i < to

r - A, VxF(x)

where 'T - A,F(i) i < to' expresses the fact that T - A,F(i)

is given for every natural number i. Each F -» A,F(i) is called

the i-th upper sequence and T -» A, VxF(x) is called the lower

sequence of an to-rule. F(i) is called a subformula and VxF(x)

is called the principal formula of the rule.
•i

Following Schutte's terminology [l], we shall call the

inferences weakening, exchange and contraction 'weak inferences'

and others 'strong inferences'.

1.2. Proof-figures. The tree form proof-figure of W is defined

like the proof-figure of SINN (cf. 13.3 of Chapter 1, [5])>

changing the concept of inferences to the one in 1.1. The

concepts concerning the proof-figures of SINN may be translated

into the concepts concerning the proof-figure of W in an

obvious manner. For example, an to-rule is implicit if a descendant

of its principal formula is a cut formula, and also an to-rille can

be a boundary inference. A sequence is said to be W-provable

if it is the end sequence of a proof-figure of W.

In the following a 'proof or a 'W-proof means a proof-

figure of W.

1.3. The to-complexity of a W-proof P, which is given as a



countable ordinal and is denoted by co(P), is defined as follows.

1) If P consists of a beginning sequence only, then

to(P) - 0.

P P P
2) Let P be of the form ^ or }. 2. Then co(P) = co(P..)

or co(P) = max((o(P,), to(P2)) accordingly, where max(6_,6«) is

the maximum of 6_ and 6O in the sense of ordinal arithmetic.

P± ±<a>
3) Let P be of the form g , where ' P± i < w1

expresses that a proof P. is given for every natural number i.

Then co(P) = sup co(P.), where sup 6. is the supremum of 6.
i<w x i<co x x

for all i < to in the sense of ordinal arithmetic.

It is obvious that <o(P) = 0 if and only if P has no

o)-rule and, if Q is a subproof of P, then co(Q) < co(P) .

If Q is a subproof of P and S is the end sequence

of Q, then co(Q) is sometimes denoted by co(S : P) .

1.4. Ww-Proofs. Let Q be a countable (non-zero) ordinal.

Let P be a proof of W which satisfies to(P) < 0. Then P

is called a W^-proof and the end sequence of P is said to be YLv-

provable. It is obvious that every W-proof is a W^-proof for

some ft.
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Cut Elimination Theorem

In this section O is arbitrary (countable ordinal) but

fixed. Our main purpose is to prove the following.

Theorem. If a sequence S is Wjy provable, then S is W~-

provable without cut.

We prove the theorem in a more generalized form.

2.1. The System W'~. First we introduce a rule of inference,

called 'substitution' (cf. 3.1 of Chapter 2 in [5]), to W.

Substitution is a rule of inference of the form

*'Bn

where V is an arbitrary (t-closed) semi-isolated variety and

is substituted for all occurrences of a in the concerning

sequence. The definition of the proof in 1.1 is changed so

that the substitution is allowed as a rule of inference. The

o>-complexity co(P) of a proof with substitutions is defined

as in 1.3.

Let P be a proof in the present extended sense. P is

called a W' -proof if:

1) w(P) is less than Q;
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2) there is no logical inference (including the u>-rule)

in P under a substitution.

Part 2) implies that every substitution is in the end

piece of P and hence the number of substitutions in a proof

is finite.

The system W'« is the collection of W'w-proofs and the

end sequence of a W'Q-proof is said to be W^v-provable. It

is easily seen that a W'w-proof is a Ww-proof if and only if

it has no substitution.

The substitution is redundant in W«.

2.2. In order to prove our theorem (stated at the beginning of §2),

we shall first define the W^-proof with degree in the manner

that every Ww-proof is a W'~-proof with degree, and prove

the following.

Proposition. Let P be a Ww-proof with degree. Then there

is a cut-free Ww-proof of the end sequence of P.

Theorem then follows immediately: Let S be provable

with a W^-proof P. Then, as a special case of the above

proposition, there is a cut free W^-proof of S.

2.3. The Definition of W1^-Proofs with Degree and the System

of Ordinal Diagrams 0(w + 1,O x w ). The y-degree, the grade

and the degree are defined like in Chapter 2 of [5]. Notice that

the number of free f-variables which are used as eigen variables



of the inferences V right on an f-variable under a sequence

is finite. Also, the degree is well defined since the number

of substitutions in a W'jj-proof is finite. A W'^-proof P

is called a W'Q-proof with degree if there is a degree for P

which satisfies the conditions in 4 of Chapter 2 in [5].

Let 0 X to be the cartesian product of O and to

which is ordered lexicographically. Then the system of ordinal

diagrams (abbreviated to o.d.s.) O(to + 1,0 x to ) is defined as

in [4], which we sometimes denote by 0(0). For the sake of

simplicity, we call the o.d.s. of O(O) simply the o.d.s. The

o.d.s. are mainly denoted by a,b,c,.... The elements of 0 x or

are denoted by [u,a] etc., where u < O and a < or.

An o.d. of 0(to + 1,0 X or) is assigned to every W'Q-proof

with degree, like in Chapter 2 of [5]. Preceding the assignment

of o.d.s., we define s(a) for every o.d. a as follows. If a

is [u,a], then s(a) is u. If a is (j;[u,a],b), then s(a)

is max(u,s(b)). If a is a_#...#-a., then s(a) is

max(s(a1),...,s(ai>).

Let P be an arbitrary wl«-proof with degree. The grade

of an occurrence of a formula D in P, defined as in 2.3 of

Chapter I in [5], is denoted by g(D : P) (or g(D) when P

is fixed). We first assign o.d.s. of 0(0) to the sequences

in P.

1) The o.d. of a beginning sequence (in P) is [0,0],
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2) If S, and Sg are the upper sequence and the lower

sequence of a weak inference, then the o.d. of S 2 is identical

with that of Sj.

3) If S is the lower sequence of one of the inferences "/ ,

y\ left, V left on a t-variable, V right on an f-variable and

explicit V left on an f-variable, then the o.d. of S is

(a); [0,0],a), where a is the o.d. of the upper sequence.

4) If S is the lower sequence of an inference right,

then the o.d. of S is (co; [0,0], aft" b), where a and b are

the o.d.s. of upper sequences.

5) If S is the lower sequence of an implicit V left

on an f-variable of the form

F(V),T - A
V<pF(<p3,l" - A '

then the o.d. of S is (co; [O,g(F(V)) + 2],a), where a is the

o.d. of the upper sequence.

6) If S is the lower sequence of a cut, then the o.d. of S

is (co;[0,m + l],a#b), where m is the grade of the cut formula,

and a and b are the o.d.s. of the upper sequences.

7) Let S be the lower sequence of an co-rule, and let

a , a.., ... , a., ..., i < CO be the o.d.s. assigned to its upper

sequences. Then the o.d. of S is (co; [sup s(a. ),0], [0,0]) .
i<co x
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8) If S is the lower sequence of a substitution with

degree i, then the o.d. of S is (i : [0,0],a), where a is

the o.d. of the upper sequence.

The o.d. of a sequence S in a W!«-proof with degree,

say P, is denoted by w(S : P) or, sometimes abbreviated to w(S).

The o.d. of P is defined as the o.d. of the end sequence of P,

which is sometimes denoted by w(P).

2.4. Some Consequences of the Definition in 2.3. The following

are obvious from the definition.

Corollary. 1) Let S be in a W'^-proof P. Then co(S;P) = s(w(S;P))

(See 1.3 for w(S;P).)

2) Define the index elements of an o.d. as follows. [u,a]

has no index element; the index elements of (j : [u,a],b) are j

and those of b ; the index elements of a_ # .. ,4f a. are those

of a,,...,a.. If there is no substitution above a sequence S

in P, then all index elements of w(S : P) are co.

3) If Sj is under S 2 in a proof P, then

w(S2 : p) ^ w(S1 : P).

< o holds if and only if there is a strong inference between S,

and S2-

Note. Due to 1) above, we could have defined w(S : P) using

w(Q) for subproofs Q of P instead of using s(a). It is,
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however, more convenient to use s(a) in stating and proving

certain lemmas for the o.d.s. (See below.)

0)(P) or, equivalently, s(w(P)) is sometimes denoted by s(P)

7) of the definition in 2.3 makes sense since, by 1) of

the corollary,

sup s(a.) = sup to(S. : P) = to(S : P) < 0,
x x

where S , S,,...,S.,... are the upper sequences of S.

The following lemmas are useful for the proof of Proposition

in 2.2.

Lemma. 1) If there is a component of an o.d. b of the form

(i : [u,b],d), then u is called an outermost second element of b.

Let a and b be o.d.s. whose index elements (if there are

any) are all to. If v is the maximum of the outermost second

elements of b and s(a) < v, then a <. b for all j (j < co

or j is oo) .

2) Let a,b and c be o.d.s. such that there exist

three finite lists of o.d.s.,

{bQ(

{cQ(
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satisfying the following conditions.

(1) a. (i < m) is of one of the forms (k;[0,a],a.+1),

(k; [0,a],a1+1# d) and (k; [O,a],d#ai+1) and b± and c± are

of the corresponding forms, i.e. b^ is (k;[0,a],bi+,),

(k; [0,a],b i + 1#d), or (k; [0,a], d^ b ± + 1 ) , and similarly for c ^

(2) c m is of the form (I; [0,a],am# bm> .

Then s(c) = max(s(a),s(b)).

Note, lie may omit b in the above definition. In that case

the conclusion is s(c) = s(a).

3) Let a , i < to, and c be o.d.s. such that there

exist finite lists of o.d.s.

for every i < to and

satisfying the following conditions.

(1) c. (j < m-) is of one of the forms (k; [0,a],c. . ) ,
J 3 ^

(k;[0,a],c.+1^ d) and (k; [O,a],d#c . + 1 ) , and a. has a corresponding

form for each i < co.

(2) c is (to; [sup s(ah,0],[0,0]).c is (to; [sup s(ah
i<to

Then s(c) > sup s(a ) .
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4) Let a and b be o.d.s. such that there exist two

finite lists of o.d.s.

(aQ(= a),a1, . . .,am(= c)

and

CbQ(= b),b1, ...,bm(= c))

satisfying the following conditions.

a± (i < m) is of one of the forms (k; [O,a],ai+1), (k; [O,a],ai+1#d)

(k; [0,a], d:ttai+1) and (k; [u,0], [0,0]), where u > s(ai+1) and

b. has a corresponding form, namely one of the forms (k; [0, b], b. .-,),

(k;[O,b],bi+1^d), (k; [0,b], d #b ± + 1) and (k; [u,0], [0,0]), where

u > s(b.+_), and b < a. Then b <. a for all j and, for

every j < CO, for every j-section of b, say e, there exists

a j-section of a, say e1, such that e <. ef .

5) (cf. Lemma 1 of Appendix to 10.1.1.2 of §4 in [5].)

Let p be any natural number, and let c and d be o.d.'s

such that there exist two finite lists

and

{cQ(= c),c , .. .,cm)

{dQ(= d),dr...,dm}

of o.d.s. satisfying the following conditions (l)-(4).

(1) Every c^ (I < m) is of one of the forms (k;[0,0],
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where k > p, (to; [O,a+l],c<t+1^re) and (w; [O,a+l],e^

(2) Every d̂  (I < m) is (k;[0,0],d^+1> or (I;[0,a+l],dt+1# e)

or (I; [0,a+l],e# &i+1) <>r (w; [0,a+l],e^d^+1> according as c^

is (k;[0,0],c^+1), or (u);[O,&+l],cl+1# e) or (a) : [0,a+l],e

(3) dm <. cm for any j such that p < j < o>.

(4) For any j such that p < j < 03, and for any j-

section a of d , there exists a j-section b of c
m m

such that a <. b.

Then, d <. c for any j such that p < j < o>: and for

any j such that p < j < co, and for any j-section a of d,

there exists a j-section b of c such that a <. b.

Proof. The proof is by induction on m(a,b), where m(a,b)

is the sum of the numbers of ( )'s and ̂ 's in a and b.

1°. m(a,b) = 0. Let a be [u,a] and b be [v,b].

Then u < v by hypothesis. Therefore a <. b for all j

(by definition). Suppose m(a,b) > 0.

2°. a is (o);[u,a],c) and b is [v,b].

2.1°. a ̂  b if and only if [u,a] < [v,b]. But from

the hypothesis u < v.

2.2°. a < ^ b if c < w [v,b] and a <m b.

The latter is true from 2.1° and c < w [v,b] since s(a) < v

implies s(c) < v and, as m(c,b) < m(a,b), the inductive

hypothesis holds.

HUNT LIBRARY
CARNE61E-MELL0N UNIVERSITY
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2.3°. j < co. Since all index elements of a and b are co,

there is no j-section in either a or b if j < co. There-

fore, a <. b if a < b, which is 2.2°.

3°. a is [u,a] and b is (co; [v,b], d). Similarly.

4°. a is (co; [u,a],c) and b is (co; [v,b], d) .

4.1°. a < b since [u,a] < [v,b].

4.2°. a < w b if c < w b and a <m b. The latter is 4.1°

and c < b holds since s(a) < v implies s(c) < v and, as

m(c,b) < m(a,b), the inductive hypothesis holds.

4.3°. a <. b for j < to from 4.2°.

5°. a is of form a. #... #a., k > 1. Obvious from the

inductive hypothesis.

The proofs of 2) and 3) are omitted.

4) Prove the following for every i < m by induction on

m - i:

(*) bi <j a ±
 f o r a 1 1 J and* f o r every j < co, for

every j-section of b±, say d, there exists a j-section of a.,

say d1, such that d <. d1.
~"3

1°. i = m. Both am and bm are c. So (*) trivially

holds.



15

2°. Assume (*) for i + 1. As an example, take the case

where a.± is (k; [0,a],ai+1"# d) and b± is (k; [O,b],b±+1^rd).

2.1°. a = b and a
i + 1 "" ^i+i* Then a. = b. and the

second part of (*) follows from a property of general theory

of o.d.s.

2.2°. b < a. b. < a. since b < a.

1) k - co. b± < w a± since b±+14f d <^ a i + 1# d (by in-

ductive hypothesis) < a. (an co-section), and b. < a..

Suppose j < co. If e is a j-section of b., then e

is either a j-section of b
i + 1 or d. If e is a j-section

of d, then e is a j-section of a.. If e is a j-section

of b
i + 1> then by inductive hypothesis there is a j-section

of &±+i>
 s&y e S such that e <. e'. e1 <. a.^ and so, e <. a.

Let j Q be the least K> such that I > j and I is an index

of b. and/or a.. Then b. <. a. by inductive hypothesis.
Jo

Therefore b. <. a..

2) k < co. For j > k, bi <. &± since b± <m a±. b± <fe a

since b
i + 1 ^ d <^ a i + 1# d (by inductive hypothesis) < k &±

(k-section), and b̂ ^ ̂  a.±.
 b

i + 1 # d is the only k-section

of b± and
 a

i + 1 #
 d is a k-section of &±. For j < k, the

argument in 1) for j < co goes through.

5) See the proof of Lemma 1 of Appendix to 10.1.1.2 of

§4 in [5].
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2.5. Proof of Proposition in 2.2. The proposition is proved

by transfinite induction on the o.d.s. of W'n-proofs along

the ordering < of o.d.s. (cf. 3) of Corollary in 2.4.)

We more or less follow the consistency proof of Chapter 2 of [5],

Hence, we shall demonstrate the detailed proofs only for a few

cases. At each step we show that the cut free W-proof P'

(hence without substitution) which is obtained as a result of

the reduction satisfies the condition 6o(P') <, to(P), which

implies that P! is a WQ-proof.

First we introduce another rule of inference, 'term re-

placement', to W'«-proofs, (cf. 8.1 of Chapter 2 in [5].)

The o.d.s. of the upper sequence and the lower sequence

of a term replacement are identical. A term replacement is

redundant in W'^.

In the following, an o.d. which is placed above a sequence

denotes the o.d. of that sequence in the proof under consideration,

1 . There is an explicit logical inference in the end

piece of P. Let I be a last such inference.

1.1°. I is an to-rule. Let P be of the form

r •* e,F(i) i < co

(co;[sup s(a.O,0],[0,0])
i< 1

r - 0, VxF(x)

fl ' A .
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where A contains VxF(x). (K is either A itself or is

obtained from A by one or more substitutions.) Define P^

for each i < co, copying P, as follows.

a

-i e , F(i)
— weakening, exchange

r -» F(i), e ,.

ci
, A

To each substitution in P. the same degree as to the corresponding

substitution in P is assigned.

First, a. < (co; [sup s(a.),O], [0,0]) holds for all j by
1 J i<co x

1) of Lemma in 2.4. (Recall that all index elements of a ^ if

there is any, are CO: cf. Corollary 2) in 2.4.) Therefore,

by letting a. and (co; [sup s(a.),0],[0,0]) be d and c
i i<co 1 m m

respectively, and c. and b be c and d respectively,

(l)-(4) in 5) of Lemma in 2.4 hold. (There is no j-section

of a1 if j < co.) Thus ci <Q b from 5) of Lemma in 2.4,

and hence, by induction hypothesis, there is a cut free W,*-
proof Pi' of jf^ A, F(i), such that co(P±

l) < co(P±) (= s(c±)).

Define PT as
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P i
t i < oo

ff - A, VxF(x)

• exchange, contraction

fl- A

Since no substitution and no cut are introduced P' is a

cut free W-proof and to(P') = sup 6o(P.') < sup co(P.) = sup s(c.) < s(P)
i«o x i<co i K & * ~

(cf. Corollary 1) in 2.4 and 3) of Lemma in 2.4, where a

is c. and c is w(P) here.)

1.2°. I is V left on an f-variable. Let P be of the

form

a

F(V), r - e
(w;[0,0],a)

V<PF(<P), r - e

Define Q from P:

F(V),

, r, F(V) - e

fl, F(V) S A
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Since a <. (to; [0,0],a) for any j < to and there is no j-

section of a if j < co, the conditions in 5) of Lemma in 2.4

hold for a, c, (ui; [0,0],a) and b. Therefore c < b, and

hence, by induction hypothesis, there is a cut free Ww-proof

of ff,F(V) - A, say Q1, such that o)(Q') < to(Q). Define P1

as

Q'

- A

Then co(P') = 0)(Q') < co(Q) = s(c) = s(b) = co(P) (cf. Corollary 1)

in 2.4), and hence P' is a cut free W^-proof.

1.3°. , I is V right on an f-variable. Similarly to 1.2°.

Use 4) of Lemma in 2.4.

2 . The case where there is no explicit logical inference

in the end piece of P but there is an equality axiom as a

beginning sequence in the end piece of P. The reduction for

this case is carried out like in 8.4 of Chapter II in [5],

3 . The case where there is no explicit logical inference

and equality axiom in the end piece of P, but there is a logical

beginning sequence in the end piece of P. The reduction is
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carried out like in 8.5 in [5].

4°. Elimination of weakenings in the end piece of P. We

may assume besides the conditions in 3° that the end piece of P

does not contain any logical beginning sequences. We can define

another W'rt-Pro°f with degree, say P*, eliminating weakenings

in the end piece of P by mathematical induction on the number

of inferences in the end piece of P. (Note that, although P

may be an infinite proof, the end piece of P is now finite

under the above conditions.) The elimination of weakenings

is carried out exactly like 8.6 in Chapter 2 of [5]. As a

consequence, we can show that for every j-section a of w(P*)

there is a j-section b of w(P) such that a <. b for

0 < j < o>, and w(P*) <• w(P) for 0 < j < co. In particular,
j —

w(P*) ^ w(P).

If w(P*) < Q w(P), then apply inductive hypothesis to P*

and obtain a cut free W«-proof P*' of the same end sequence.

P1 is defined by

weakening, exchange
the end sequence of P

s(P') = s(P*») < s(P*) < s(P). If w(P*) = w(P), then proceed

to the next step.

5°. Essential Reduction. In the following we shall assume

that the end piece of a W'^-proof with degree contains none

of the explicit logical inference, the beginning sequences

and the weakening. We may also assume that P is distinct
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from its end piece.

The existence of a suitable cut is proved like in 9 of

Chapter 2 of [5], since the end piece of P is finite under

the assumption of 5°.

Now we shall define the essential reduction according to

the outermost logical symbol of the cut formula of a suitable

cut. We shall find a W'w-proof with degree (say Q) of the

end sequence of P such that w(Q) < w(P) and s(Q) < s(P).
o ~™*

Then, by induction hypothesis, there is a cut free W^-proof Q1

of the end sequence of Q such that s(Q') < s(Q). Thus,

taking Q' as P!, we complete the proof. The reduction of P

to Q is carried out exactly like in 10 of Chapter 2 in [5]

except the case where the outermost logical symbol of the cut

formula is V on a t-variable, which shall be treated seperately.

The required properties on the o.d.s. are easily proved. (In

applying Lemmas in Appendix to 10.1.1.2 in [5], read [0,a]

instead of a.)

The case where the outermost logical symbol is V on a

t-variable is treated as follows. P is of the form
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A .

There is an i such that s = i is true. Define P» and P o
-L A

as follows, and then Q is defined in terms of P, and Po. In

the following two figures P, and P2, the o.d.s. above the

sequences are relative to Q.
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Q:

cut

I

2 «l
A

Every substitution in Q is given the same degree as the degree

of the corresponding substitution in P.

s(Q) < s(P) is obvious from the way Q is constructed.

The proof of e1 <Q e goes as follows. Let us call the sequence

\ 2
 ln p s i and the ff^ ff2' If,- Tf2 - \> V

in Q S9. a. < (w;[sup s(a. ),0], [0,0]) for all 0 < j < to
* x J i<w x - -

by 1) of Lemma in 2.4. (Recall that all index elements of a.

are to, as there is no substitution above T -* 6 F-(i) in P.

cf. Corollary 2) in 2.4.) Therefore a. and (to; [sup s(a. ),0], [0,0])
i<w x

satisfy the condition for dm and cm in 5) of Lemma in 2.4.

((4) holds trivially, since a. has no j-section if j < to.)

Hence c' <. c for 0 < j < to and, for every j-section of c1,

say f, where 0 < j < co, there is a j-section of c, say g,

such that f <. g. Thus
j

(to; [0,g(VxF(x)) + l],c' # d) < (to; [0,g(VxF(x)) + l],c^d)
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for all 0 < j < to and, for 0 < j < to, for every j-section

of (to; [O,g(VxF(x)) + l],c'# d), say f, there is a j-section

of (to; [O,g(VxF(x)) + l],c#d), say g, such that f <. g.

By the definition of Q,

w(S2 : Q)

= (to; [O,g(F(s))+l], (to; [O,g(VxF(x))+l],c'# d) # (w; [O,g(VxF(x) )+l], c# d' ) )

while w(S1 : P) = (to; [O,g(VxF(x)) + l],c#d). w(S2 : Q)<O0w(S1 : P)

is obvious, since g(F(s)) < g(VxF(x)). (There is no V right

on an f-variable under those sequences in either P or Q.)

w(S2 : Q) < w vKSj : P), since each component of the to-section

of w(S2 : Q), say f, satisfies f < w w(S7 : P) from above and

w(So : Q) < w(Sn : P) . Suppose 0 < j < to. If f is a j-section of^ co ± —

w(S2 : Q), then it is a j-section of (to; [O,g(VxF(x)) + l],c'#:d) or of

(to; [O,g(VxF(x)) + l],c#d'). In any case, there is a j-section

of v(S1 : P), say g, such that f <. g. Therefore, f <. w(S1 : P).

So by induction hypothesis, w(S2 : Q) <. w(S, : P). Therefore,

by 5) of Lemma in 2.4, e1 < e.
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3
§3. Remark on the System with the Constructive CO-Rule.

3.1. The Definitions of the System and the co-Complexity.

The system of the second order arithmetic with the FT,-comprehension

axiom and the constructive co-rule is defined by an inductive

definition in terms of Godel numbering (see [2] and [6]). We

shall call this system Z (which is actually a set of numbers).

In particular, the constructive co-rule is described as follows.

Let e be (Godel number of) a recursive function such that

{e}(i) gives a proof of a sequence of the form T -* 9 , F(i)

for every i. Then we may conclude T -* 6 ,VxF(x) .

r i r -\
We shall use the notations A , P etc. in order to denote

the concepts of a formula A, a proof P, etc., though actually

we have only the numbers.

The co-complexity of a proof of Z, say rP n, is defined like

in 1.3, and it is easily shown that co(rPn) < cu. for every

proof rP n of Z, where co_ is the first non-constructive ordinal.

Thus, for the Q in 1.4, we only have to consider Ci < CO. . In

fact we can give the co-complexities in the set 0- (a linearly

ordered subset of the set 0 of constructive ordinals which has

3
It should be noted that, like the case of the first order

arithmetic (cf. [2]), the constructive co-rule is adequate for
any second order arithmetic. This has been proved by Takahashi in
[3]. Hence, mathematically, it suffices to deal with the system
with the constructive co-rule.
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the order type 01. ) .

The subsystem of Z which consists of all the proofs P~*

such that to(rp"1) <~ ft for an ft in 0, is denoted by Z^,

where < is the ordering of 0.

3.2. We may extend Z so that the

a rule of inference. The condition on the degree is recursive

since the number of substitutions in a proof is finite (cf. 2.3.),

Thus we can define the set of proofs with degree, say Z', like

in 2.3. The grade of a formula rA} in a Z1-proof rPn is defined

as a recursive function of rA n and rP n. It is easily shown as

before that Z is a subset of Z1.

3.3. The concept of 'a cut free proof of Z! is defined in an

obvious manner.

Lemma. There exists a partial recursive function f such that

f is defined for all proofs with degree (of Z1) and, if rp~"

is a member of Z1, then f( Pn) is a cut free Z-proof of the

end sequence of rP . Moreover

From the lemma follows the

Theorem. (Cut Elimination Theorem). If a sequence is Z-provable

4
In fact, the length of any proof in Z is less than to. ; more

precisely, it can be defined in 0̂  .
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then it is Z-provable without cut.

We only outline the proof of the lemma.

3.4. The function f is defined by examining the reductions

which are carried out in 2.5. Let q(e,p) be a partial recursive

function of e and p such that if e actually gives the

function f and p denotes a proof of Z', then q(e,p) gives

the result of the reduction.

The crucial cases are 1.1° and 5° (of 2.5; the cases where

the outermost logical symbols are V on a t-variable). For 1.1°

q(e, p) is expressed as £(r(e,p),p), where r(e,p) corresponds to

a recursive function which produces the cut free proof of

7J "* F(i), A for every i and £ is a recursive function (cf.

1.1° of 2.5). For 5°, q(e, p) is expressed as (e)(T (p)), where

r.(p) corresponds to the Q in 5° of 2.5 and i can be found

recursively from p.

Thus, by recursion theorem, there is a number e such

that

(eo3(p) - q(eQ,p).

The partial recursive function which is represented by e

shall be called f.

3.5. We may define the system of o.d.s. O(to + 1,0., x or) and
q

the well orderings <. for j < w and <oQ, where 0. x or

is ordered lexicographically. If p is in Z1, then we can

assign an o.d. of the above system to p, say w(p), as in 2.3
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in terms of the degree and the grade (cf. 3.2). We can then

prove the lemma in 3.3 for the function f, which has been

defined in 3.4, by transfinite induction on w(p) along < Q

of the above system. The computations on the o.d.s. and the

CO-complexities are carried out like in 2.5, using the lemmas in

2.4. We shall only remark that r(e ,p) indeed represents a

required recursive function, for: let r\ be a recursive function

such that TjCi^P"1) = rp/* in 1.1°. Then r(eQ,
rp"T) is defined

as Ai((eo}(T7(i,
rPn)) where Ai( {eQ] (77(1,

 rP n )) ) represents

the Godel number of a function of i whose value is (e

for each i. On the other hand, w(r7(i, rP"*)) < w(rPn) holds,

and hence (e }(?7(i,rP )) is defined for every i by induction

hypothesis.

3.6. We could state the lemma in 3.3 as follows.

For any Cl in 0_, there exists a partial recursive

function f such that f is defined for all proofs with

degree whose co-complexities are less than O, and, for such

a rp"1, fCp"7) is a cut free proof of Z~

The above statement is proved by using the system of o.d.s

0(co + 1,C(O) X co3), where C(O) = [fi/neO1 A /i < Q ft). In this

case, 0(co + 1,C(Q) X co ) is a recursively enumerable set

and < i for i < co and <QQ are partial recursive relations.

3.7. A Translation of the System SINN. The system SINN is

translated into Z^ , where co is the notation for co in 0,.

Proposition. Let S be a t-closed sequence (of SINN). If S
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is SINN-provable, then S is Z^j-provable.

Proof. A proof-figure of SINN is called regular if it satisfies

the following conditions: all eigen variables are distinct

from one another and if a variable a (a) is the eigen variable of

a V right on a t-variable (f-variable), say I, then a (a.)

does not occur under I and in any string which does not contain

the upper sequence of I. It suffices to prove the proposition

for regular proofs (of SINN).

Let P be a proof-figure of SINN. Let TT(S;P) and TT(P)

be defined as follows. If S is a beginning sequence in P,

then TT(S;P) = 1 . If S is the lower sequence of a V right

on a t-variable, and S, is its upper sequence, then

TT(S;P) = TTCSJJP) + 1.

If S is the lower sequence of other inferences, then TT(S;P) = TT(S, ;P)

or = max(7r(S, ;P),TT(S2J'P) ) respectively, where S, and S 2 are

upper sequences. TT(P) is defined as 7r(the end sequence of P;P) .

(TT(P) < co is obvious.)

Now we shall prove the proposition in a stricter form:

(*) Let P(b1,...,b.) be an arbitrary regular proof-figure of

SINN, where b.,,...,b, in P indicate all occurrences of

free t-variables in P which are not used as eigen variables.

Then there is a recursive function 0 of k arguments such that

for an arbitrary k-tuple of natural numbers i,,...,i.,

0(i.., . . ., i. ) is Z /p/. . ^N -proof whose end sequence is
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(Godel number of) that of P d p ..., ife), where j ^

is obtained from PCbj,. ..,bk) by replacing b1,...,bfc by

i_, ...,i. respectively.

First we introduce the rule 'term replacement' to the system

and prove (*) by mathematical induction on the number, say ,-C,

of two rules of inference, V right on a t-variable and induction

in P.

0) t = 0, i.e. P has neither induction nor V right on a t-

variable. Define 0 as 0(i1, ...,ik) =
 rP(±lt ..., i^f for all

(i1,...,i.). It is easily seen that, for an arbitrary

(i1,...,ik), 0(i1,...,ik) is a Zj-proof.

In the following I > 0 is assumed and, in order to simplify

the notation, we shall assume k = 1 and denote b.. and i_

simply by b and i respectively. There are three cases.

1) There is an inference I in P which has two upper sequences

and satisfies the following.

(a) There is neither induction nor V right on a t-

variable under I.

(b) Let P be of the form

P2(b)

R(b)

where P, and P 2 are subproofs of P and R is the part

of P under I. Then both P̂ ^ and P 2 have either induction
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or V right on a t-variable.

From (b) the number of inductions and V rights on a

t-variable in each of P. and P 2 is less than t, so that,

by the inductive hypothesis, there are recursive functions 0,(i)

and 0«(i) corresponding to P. and P~ respectively. Let

0.(i) = "p.'Ci)1 for j = 1,2. Then define 0(i) as the

Godel number of

Evidently 0 is recursive. That 0(i) is a z
7r(p(5) )~P

roof

follows from the induction hypothesis.

2) 1) is not the case and the lowermost inference in P, say I,

which is either induction or V right on a t-variable is

induction. Let P be of the form

Q(a,b) 1 F(a), r - 6, F(a')

R(b)

We may assume that s does not have a. The number of inductions

and V rights on a t-variable in Q(a,b) is less than I, and

hence inductive hypothesis applies. Namely, there is a recursive

function 0 corresponding to Q(a,b) and, for each (n, i) ^(n,i)

is a Z /Q/ ,^-proof whose end sequence is F(n, i), F(i) -» 0(i),

F(n',i) , where T(i) etc. is obtained from T etc. by replacing b by i,
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and F(n,i) is an abbreviation of F(n)(i). In particular,

for all i, for an n fixed, this is so. Let s* be

obtained from a term s by replacing b by i. As s* is

closed, there is a numeral m such that s* = m is true.

Using the above facts and the inductive hypothesis, 0(i) is

defined as the GQdel number of the reduction of a proof-figure

with respect to an induction for the consistency proof (cf. 8.3

in Chapter 2 of [5]).

3) 1) is not the case and the lowermost such inference is

an V right on a t-variable. Let P be of the form

Q(a,b) r - e , F(a)

- Q, VxF(x)

R(b)

The number of such inferences in Q(a,b) is less than -t, and

hence the inductive hypothesis applies. Namely, there is a

recursive function ij) corresponding to Q(a,b) and, for every

r "i
(n.i), i/)(n,i) is a Z ,*, , v\-proof. Let ?/>(n,i) = Q'(n,i) ,

7r(Q(a,b;; ^ T ^
The Go'del number of

n < <a

is given as 3.5W(n,±) .^(1)^ 6(i),VxFU)\ w h e r e r(1)^ etc
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means the substitution of i for b. This is a recursive

function of i, which we call x(i). 0(i) is defined in terms

of X, by adding the part R(i). 0 is recursive and 0(i)

7r(P(b))"is a W ,D,. .v-proof of
 r S ( i ) \
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